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We study theoretically and experimentally pressure-driven flow between a flat wall and a8
parallel corrugated wall, a design widely used in microfluidics for low-Reynolds-number9
mixing and particle separation. In contrast to previous work, which focuses on recirculating10
helicoidal flows along the microfluidic channel that result due to its confining lateral walls, we11
study the three-dimensional pressure and flow fields and trajectories of tracer particles at the12
scale of each corrugation. Employing a perturbation approach for small surface roughness,13
we find that anisotropic pressure gradients generated by the surface corrugations, which are14
tilted with respect to the applied pressure gradient, drive transverse flows. We experimentally15
measure the flow fields using particle image velocimetry and quantify the effect of the ratio16
of the surface wavelength to the channel height on the transverse flows. Further, we track17
tracer particles moving nearby the surface structures and observe three-dimensional skewed18
helical trajectories. Projecting the helical motion to two dimensions reveals oscillatory near-19
surface motion with an overall drift along the surface corrugations, reminiscent of earlier20
experimental observations and independent of the secondary helical flows that are induced21
by confining lateral walls. Finally, we quantify the hydrodynamically-induced drift transverse22
to the mean flow direction as a function of distance to the surface and the wavelength of the23
surface corrugations.24
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1. Introduction26

The development of microfluidic devices has lead to novel technological and biomedical27
applications by making possible rapid sorting, mixing, and focusing of various small28
biological or synthetic constituents (Giddings 1993; Stone et al. 2004; Whitesides 2006;29
Shields IV et al. 2015). The future design of ‘lab-on-a-chip’ devices, which, due to their30
small size, can be routinely used in different settings, could be important for, e.g., the31
analysis of single-cells (Stott et al. 2010; Hosic et al. 2016; Qasaimeh et al. 2017; Farahinia32
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et al. 2021), thereby, allowing for rapid disease detection or for advancing the fundamental33
understanding of biological processes.34

Microfluidic approaches have been utilized to guide and control transport processes for35
several objectives. Examples range from the separation of the components of blood, such as36
red or white blood cells (Huang et al. 2004; Davis et al. 2006; McGrath et al. 2014), to the37
focusing and detection of biological cells (Qasaimeh et al. 2017; Farahinia et al. 2021), to the38
mixing of particulate suspensions (Stroock et al. 2002b,a; Stroock & McGraw 2004). The39
underlying methods rely on different physical mechanisms, such as ‘active’ concepts, which40
use externally applied forces and filters (Giddings 1993; Stone et al. 2004; Shields IV et al.41
2015), or ‘passive’ concepts, which exploit hydrodynamic effects due to fluid inertia (Segré &42
Silberberg 1961; Di Carlo et al. 2007; Humphry et al. 2010), pillar arrays in channels (Huang43
et al. 2004; Davis et al. 2006; McGrath et al. 2014), or patterned microfluidic walls (Stroock44
et al. 2002b; Asmolov et al. 2015; Choi & Park 2007; Hsu et al. 2008; Choi et al. 2011;45
Qasaimeh et al. 2017).46

Several passive approaches utilize surface topography, relying on the careful design and47
synthesis of surface structures, mostly, at the micron scale. Corrugations oriented obliquely48
to the axial flow direction or v-shaped herringbone structures were originally proposed for49
the mixing of laminar streams (Stroock et al. 2002a,b; Stroock & McGraw 2004). In addition50
to mixing, passive approaches have been used to separate or detect particles. For example,51
microfluidic channels with oblique corrugations on one wall have been applied widely to52
separate colloidal particles (Choi & Park 2007; Hsu et al. 2008; Choi et al. 2011) and for53
the detection of plasma (Qasaimeh et al. 2017) or circulating tumor cells (Stott et al. 2010).54
The parallel oblique corrugations on the top or bottom wall generate a transverse pressure55
gradient and, due to the lateral confinement of the channel, helical streamlines result, where56
the pitch of the helix spans several corrugations (Stroock et al. 2002a,b; Stroock & McGraw57
2004). The recirculating flows generated by the corrugations, which will be in opposite58
lateral directions at the corrugated and flat surfaces, transport particles to each lateral wall59
depending on the particle’s position along the channel height, which depends, for example on60
the particle’s size or density, and can be controlled using inertial focusing (Segré & Silberberg61
1961; Di Carlo et al. 2007). Therefore, particles with different properties can be transported to62
opposite lateral walls and sorted according to the property of interest. Similarly, v-shaped, or63
herringbone, corrugations create counter-rotating vortices in the microchannel. These flows64
bring particles to their equilibrium configuration between adjacent vortices either near the65
herringbone surface or near the planar wall, depending on their density, to separate particles66
into different streams for sorting or detection (Hsu et al. 2008).67

The aforementioned studies focused on the recirculating flows, generated by surface68
topography, at the scale of the channel size. The effect of surface structure on the flow69
and particle motion nearby the surface, at the scale of individual corrugations, remains70
relatively unexplored. Recent insights for the non-trivial trajectories come from our work on71
particle sedimentation nearby corrugated surfaces (Chase et al. 2022), where we quantified,72
experimentally and theoretically, the impact of corrugation shape and particle size on the73
transport behavior without background flow and due only to the disturbance flow generated74
by the interaction of the particle and surface structure. In contrast to results observed in75
microfluidic channels, where particles are separated by size due to differences in their76
equilibrium position along the channel height, it was shown that the magnitude of the77
lateral displacement for particles of different sizes depends not only on their distance to the78
corrugated wall, but on non-trivial relationships between the particle size and corrugation79
wavelength.80

Here, we complement these findings by studying pressure-driven flow between a corrugated81
surface and a parallel flat wall. Using a perturbation ansatz for the amplitude of the82
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surface structure, we calculate the pressure field induced by the surface pattern and derive83
analytical expressions for the three-dimensional flow fields up to the second order in the84
surface roughness. Based on these results, we determine the motion of tracer particles near85
the corrugated wall. While the large-scale helicoidal flows in corrugated microchannels,86
generated by the combined effect of the corrugations and the lateral confining walls, have a87
diameter equal to that of the channel dimension and a pitch of several wavelengths (Stroock88
et al. 2002a), our results reveal that tracer particles also follow three-dimensional helical89
trajectories, independent of the lateral confining walls, which have a pitch of one wavelength90
and a diameter that depends on the distance to the corrugated surface and the corrugation91
wavelength. Projected to two dimensions, the trajectories of tracer particles resemble the92
oscillatory near-surface motion observed in several experiments (Choi & Park 2007; Hsu93
et al. 2008; Choi et al. 2011; Qasaimeh et al. 2017). The oscillatory pattern is characterized94
by near-surface particle motion along the corrugations while moving above grooves and95
across the corrugations while moving over ridges. Moreover, our results demonstrate that96
near-surface particles exhibit an overall drift along the surface corrugations, leading to a97
skewed helical trajectory. We quantify the overall displacement as a function of surface98
wavelength and particle position along the channel height, showing that the lateral drift can99
be achieved independent of the recirculating flows generated in closed channels.100

Our paper is structured as follows: In Section 2, we outline a hydrodynamic model for the101
pressure-driven flow between a flat wall and a parallel rough wall. In Section 3, we describe102
our experimental method for measuring the flow field in a corrugated microchannel using103
particle image velocimetry. To our knowledge, this is the first experimental measurement104
of velocity fields in corrugated microchannels. We also outline our method for three-105
dimensional single-particle tracking in the corrugated channels. In Section 4, we provide106
experimental and theoretical results for the roughness-induced pressure and flow fields107
and compare them qualitatively and quantitatively. Furthermore, we find good agreement108
between our experimentally measured mean velocities and the theory from Stroock et al.109
(2002a) for flows generated in corrugated microchannels with confining lateral walls. Most110
importantly, our results are complemented by theoretical and experimental measurements of111
three-dimensional helical particle trajectories. Finally, we investigate the effect of the ratio112
of corrugation wavelength to channel height for varying positions along the channel height113
on the lateral drift of tracer particles in the flow.114

2. Hydrodynamic model115

We consider three-dimensional, low-Reynolds-number, pressure-driven flow between two116
plates, where the lower surface has a given shape, I = n!� (G, H), with shape function117
� (G, H), as indicated in Fig. 1. Here, ! denotes the distance between the upper surface118
and the reference surface (0, and we denote by n a dimensionless roughness parameter.119
The velocity and pressure fields, u(G, H, I) and ?(G, H, I), respectively, obey the Stokes and120
continuity equations,121

`r
2u = r? and r · u = 0, (2.1)122123

where ` denotes the fluid viscosity. We have no-slip boundary conditions on the lower124
and upper surfaces: u(G, H, I = n!� (G, H)) = 0 and u(G, H, I = !) = 0. Subsequently, we125
consider small surface corrugations, corresponding to n ⌧ 1, and expand the flow field up126
to third order in the small parameter n ,127

u = u (0)
+ nu (1)

+ n
2u (2)

+ O(n
3
). (2.2)128129

An average pressure gradient is applied along the direction of the flow, hd?/dGi = �⌧,130
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Figure 1: Sketch of pressure-driven flow between the lower corrugated surface (F and the upper planar wall
(side view). Here, ! denotes the distance between the upper surface and a reference surface (0 at I = 0,
� (G, H) is the shape function, and n is the surface roughness.

and hence we rescale by131

u =
⌧!

2

2`
[, ? = ⌧!%, I = !/ , G = !- , H = !. . (2.3)132

133

By using the method of domain perturbation (Kamrin et al. 2010; Kurzthaler et al. 2020),134
we obtain the boundary conditions for the components of the expansion:135

[ (0) = 0, [ (1) = �� (- ,. )
m[ (0)

m/

���
/=0

,136

[ (2) = �� (- ,. )
m[ (1)

m/

���
/=0

�
1
2
� (- ,. )

2 m
2[ (0)

m/
2

���
/=0

on / = 0, (2.4a)137

[ (0) = 0, [ (1) = 0, [ (2) = 0 on / = 1. (2.4b)138139

We note that the zeroth-order flow field is pressure-driven flow between parallel plates,140
[ (0) = / (1 � /) e- and the pressure is % (0) = �-e-. Thus, the boundary conditions141
(2.4a) on / = 0 simplify to: [ (1)

(- ,. , / = 0) = �� (- ,. )e- and [ (2)
(- ,. , / = 0) =142

�� (- ,. )m[ (1)
/m/ |/=0 + � (- ,. )

2e-.143
Generally, one can calculate the first-order perturbation [ (1) by applying a Fourier144

transform to the -� and .�components,145

[̃( -, . , /) =
1

2c

π
R2
4
�i( --+ .. )[(- ,. , /) d-d. ; (2.5)146

147

the inverse transform is [(- ,. , /) = (2c)�1
Ø
R2 4

i( --+ .. )[̃( -, . , /) d -d . . The148
Stokes and continuity equations (2.1) then simplify to149 ✓

d2

d/2 �  
2
◆
[̃

(1) =
✓
iQ + e/

d
d/

◆
%̃
(1)

, (2.6a)150

iQ · [̃
(1)

+
d,̃ (1)

d/
= 0, (2.6b)151

152

where we have used [̃
(1) = [*̃

(1)
, +̃

(1)
, ,̃

(1)
]
) , Q = [ -, . , 0]) , and  = |Q |.153

Rearranging (2.6a)-(2.6b) provides an equation for the pressure field,154 ✓
d2

d/2 �  
2
◆
%̃
(1) = 0, (2.7)155

156
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which can be solved by %̃ (1) = ?0( ) exp(� /) + ?1( ) exp( /). Using this form as input157
for Eqs. (2.6a)-(2.6b), we can calculate the velocity field [ (1) and determine the coefficients158
?0 and ?1 by enforcing the boundary conditions [Eqs. (2.4a)-(2.4b)], which depend on159
the surface shape � (- ,. ). Knowledge of the first-order flow field [ (1) then allows us to160
iteratively compute the second-order flow field[ (2) with boundary conditions in Eqs. (2.4a)-161
(2.4b). The velocity fields obtained via the domain-perturbation approach have been validated162
with numerical simulations of the full hydrodynamic flows (assuming a shear-flow scenario)163
by Roggeveen et al. (2023). In particular, the error of the perturbative approach remained164
small for small surface roughness and moderate for large wavelengths _/! & 2.165

It is worth emphasizing that the theory is, in principle, valid for arbitrary surface shapes.166
However, analytical progress is limited by whether the surface shape function � (- ,. )167
and powers of it (e.g., � (- ,. )

2 is required for the second-order flow field) have an168
analytically tractable Fourier transform. Furthermore, one may need to perform a numerical169
backtransform of the pressure and flow fields to real space. For cosine and sine functions, the170
calculations can be done analytically. Consequently, for every shape function, which can be171
expanded in terms of a Fourier series (i.e., periodic, piece-wise continuous, and integrable172
over the period), our approach allows calculating (semi-)analytically the flow fields.173

At this point, we want to mention that the stream function for two-dimensional shear flow174
near a periodic surface has been addressed recently (Assoudi et al. 2018). Also, analytical175
work on the three-dimensional streamlines over sinusoidal surface grooves, tilted with respect176
to the principal flow direction, has provided a prediction for the helicity of the flow (Stroock177
et al. 2002a). The same authors later calculated the flow over herringbone structures in178
a channel of finite width in terms of a Fourier expansion by approximating the surface179
grooves with an effective slip velocity (Stroock & McGraw 2004). The focus of the latter180
study, however, was on the impact of the corrugated surfaces on the mixing of particulate181
suspensions.182

3. Experimental methods183

We fabricate two channels, both with corrugations of wavelength _ on the top wall,184
but with different channel heights !, therefore varying the ratio of _/!. We 3D print185
molds of the negative of each channel (Formlabs Form 2) and cast a clear channel from186
polydimethylsiloxane (PDMS). We punch inlet and outlet holes and bond the PDMS channel187
to a glass slide (Fig. 2a). One channel has a height ! = 320 �m and surface amplitude188
n! = 30 �m. The second channel has a height ! = 615 �m and surface amplitude189
n! = 60 �m. The wavelength of the surface corrugations for both channels is _ = 600 �m,190
and the aspect ratio (width to height) of both channels is 10. The channel height and191
corrugation wavelength and amplitude were measured by filling the channel with a fluorescent192
dye and taking GI images using a confocal microscope (Leica) (Fig. 2b).193

To measure the flow field in the channel, we use a syringe pump, with prescribed flow194
rates of 2.5 and 10 �L min�1, respectively, for the ! = 320 and 615 �m channels, to flow195
a suspension of neutrally buoyant fluorescent 1 �m diameter tracer particles through the196
channel. We use a confocal microscope (Leica) to image a 916 �m ⇥ 916 �m section in197
GH at a frame rate of 7.4 fps and capture 200 frames. Using PIV Lab (Thielicke & Sonntag198
2021; Stamhuis & Thielicke 2014) in MATLAB (MathWorks), we perform particle image199
velocimetry of the steady flow field to measure the axial and transverse components of the200
velocity. We image at 40 different I positions along the channel height. A stack of 200 time201
series images at I =120 �m is shown in Fig. 2c, where the oscillations of the streamlines are202
visible as bright streaks.203

In addition to measuring the flow field in the GH�plane, we can measure the three-204
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Figure 2: Experiments: (a) The channel used in the experimental system is cast polydimethysiloxane with
corrugations on the upper wall. (b) A cross-sectional view of the channel visualized with fluorescent dye.
Here, the wavelength is _ = 600 �m, the height is ! = 320 �m, and the amplitude is n! = 30 �m. (c) Flow
field visualization of pressure-driven flow in the corrugated channel from a time stack of 200 experimental
images taken at a frame rate of 7.4 fps with 1 �m diameter fluorescent particles. (d) Visualization of the
trajectory of a 5 �m diameter particle in pressure-driven flow in the corrugated channel.

dimensional trajectories of individual tracer particles. For the same channels, we flow a205
dilute suspension of neutrally buoyant fluorescent tracer particles with a diameter of 5 �m206
through the channel at a constant flow rate using a syringe pump. We take GHIC images207
using a confocal microscope (Leica). The GH image is 916 �m by 230 �m, and we image208
27 sections in I with a step size of 2.365 �m at a frame rate of 18 fps, acquiring the GHI209
volume in 1.5 seconds. For every time step, we find the (G, H) location of the particle using210
the circle detection algorithm in MATLAB (Mathworks). We determine the I position of211
the particle at each time step by first cropping the image around the particle location and212
calculating ⌧ (I) =

Õ
� (G, H), where � (G, H) is the image intensity, for each image in the213

I�stack. The image with max(⌧) is determined to be the I position of the particle. We iterate214
this process for each time step to find the particle trajectory (G(C), H(C), I(C)). A sample215
trajectory, projected to the GH plane, is shown as the superposition of the frames of the216
determined best I position for each time step in Fig. 2d.217

Our experiments have Stokes number (C : ⇡ 10�9, where the Stokes number is defined218

by (C : =
d?32

?*

18`⇡ . Here d? is the particle density, 3? is the particle diameter, * is the219

characteristic fluid velocity, ` is the fluid viscosity, and ⇡ is the hydraulic diameter of the220
channel.221

4. Results and discussion222

While the theory presented in Section 2 is valid for arbitrary surface shapes, here we study223
the aspect of parallel corrugations, reminiscent of the widely used pattern in microfluidic224
devices (Stroock et al. 2002b; Choi & Park 2007; Hsu et al. 2008; Choi et al. 2011; Qasaimeh225
et al. 2017). We consider a surface shape � (- ,. ) = cos( 0(- + . )) characterized by the226
wavenumber :0 =  0/!, corresponding to a wavelength _ = 2c/:0. We note that the surface227
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Figure 3: Surface structure and roughness-induced pressure. (a) Contour plot of the surface structure
� (- ,. ). The gray shaded areas indicate the height profile of the underlying surface, where dark areas
correspond to grooves and white areas to ridges, respectively. The arrow indicates the direction of the
applied pressure gradient (b) Contour plot of the roughness-induced components of the pressure field
% � %

(0) = n% (1)
+ n

2
%
(2) at the center of the channel / = 0.2. Here, the black dashed lines correspond to

the maxima of the surface structure. (c) Roughness-induced pressure along - at . = 0 for varying / . The
black dashed line corresponds to � (- ,. ). The wavelength in (b) and (c) is _/! = 2. The applied pressure
gradient is in the - direction.

corrugations are at an angle of c/4 to the direction of the applied pressure gradient (see228
Fig. 3a). In what follows, we refer to fluid transport along corrugations when a fluid particle229
moves on a path in the positive --direction but with displacement in the negative. -direction,230
and across corrugations when the flow path is instead in the positive . -direction.231

To compute the pressure and flow fields, we follow the general approach outlined in232
Section 2. Therefore, we use the Fourier transform of the surface shape �̃ ( -, . ) =233
c[X( 0 +  -)X( 0 +  . ) + X( 0 �  -)X( 0 �  . )], where X(·) denotes the delta function,234

as input to calculate the pressure %̃ (1) and the velocity field [̃
(1) in Fourier space and235

transform it back to real space analytically. We repeat this for the second-order flow field236
[ (2) , where the Fourier backtransform is still doable but becomes tedious. An alternative237
way to compute the flow fields, which relies on the sinusoidal form of the surface shape, is238
outlined by Roggeveen et al. (2023).239

4.1. Roughness-induced pressure fields240

We find that the surface corrugations lead to the generation of a pressure field % that varies241
with position. In particular, the zeroth-order pressure field is % (0) = �- and the first-order242
pressure field evaluates to244

%
(1)

(- ,. , /) = sin( 0(- + . ))
 04

� 0
p

2(2+/ )

(1 + 4 2
0 � cosh(2

p
2 0))

⇥

⇥

h
4

2
p

2 0/ + 4
4
p

2 0 +

⇣
2
p

2 0 � 1
⌘
4

2
p

2 0 (/+1)
� 4

2
p

2 0
⇣
2
p

2 0 + 1
⌘i

.

(4.1)

245

246

Higher-order terms are lengthy and not presented here. For a corrugated surface � (- ,. ) =247
cos ( 0 (- + . )) (see Fig. 3a), the roughness-induced contributions to the pressure field at248
/ = 0.2 are shown in Fig. 3b. Plotting the roughness-induced contributions to % along -249
at . = 0 for varying /�positions (Fig. 3c), we see that the pressure builds up in front of250
the surface ridges and decreases in front of the surface grooves, where the surface shape is251
depicted by the black dashed line.252

In particular, the first-order contribution to the pressure, which can be abbreviated by253
%
(1) = sin( 0(- + . ))%̄

(1)
(/) [Eq. (4.1)], has its extrema at the inflection points of the254

surface, i.e., at points of vanishing curvature, cos( 0(- + . )) = 0. The extrema are at255
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Figure 4: Theoretical and experimental velocity fields. (a) Streamlines of the theoretical velocity field in
the -/� plane, [* (0)

+ n*
(1)

+ n
2
*

(2)
,,

(0)
+ n,

(1)
+ n

2
,

(2)
]
) and (b) ./� plane, [+ (0)

+ n+
(1)

+

n
2
+
(2)

,,
(0)

+n,
(1)

+n
2
,

(2)
]
) . The gray areas indicate the surface shape from the side. (c-d) Streamlines

of the theoretical velocity field in the -.�plane, [* (0)
+ n*

(1)
+ n

2
*

(2)
,+

(0)
+ n+

(1)
+ n

2
+
(2)

]
) , at (c)

/ = 0.20 and (d) / = 0.35. The gray shaded areas indicate the height profile of the underlying surface,
where dark areas correspond to grooves and white areas to ridges, respectively (see colormap in Fig. 3(a)).
(e-f) Streamlines of the experimental velocity field in the -.�plane at (c) / = 0.20 and (d) / = 0.35. In all
panels the wavelength is _/! = 1.87 and the surface roughness is n = 0.094. Furthermore, the color map
corresponds to the magnitude of the velocity in a particular plane. Note that for the experimental velocities,
the magnitude includes only the - and. components of the velocity, since the / component is not measured.

- +. = (2=+1)c/(2 0) = (2=+1)_/(4!) for = 2 Z, with minima at - +. = (4=+1)_/(4!)256
and maxima at -+. = (4=�1)_/(4!). The inflection points are modified by the second-order257
contribution % (2) .258

We find that the magnitude of the roughness-induced contributions to the pressure decrease259
as / increases, moving towards the flat upper wall (Fig. 3). Finally, we note that the pressure260
field generated by the corrugated surface is anisotropic relative to the direction of the applied261
pressure gradient, along - , (Fig. 3b) and can therefore induce, in addition to flows along the262
/�direction, transverse flows (in the -.�plane).263

4.2. Roughness-induced flow fields264

The streamlines along the channel (-/�plane), shown in Fig. 4a, display oscillations over265
the surface corrugations, which vanish near the flat upper wall. Furthermore, we find a non-266
vanishing lateral velocity field in the ./�plane (Fig. 4b), which is solely generated by the267
corrugated surface. In particular, the flow moves in opposite . -directions over surface ridges268
compared to grooves. This response leads to flow patterns, which alternate their direction269
depending on the underlying surface structure.270

The streamlines (-.�plane) are oscillatory in the transverse direction (. -direction),271
transporting fluid along the direction of the corrugations above surface grooves and across272
the corrugations above ridges; see Fig. 4c-d for / = 0.20 and / = 0.35, respectively.273
The gray shaded background depicts the height of the underlying surface with height map274
corresponding to Fig. 3a. The oscillations are a result of the pressure field and, consequently,275
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Figure 5: Theoretical and experimental velocities for varying_/!. The measured experimental and theoretical
- and. velocities,* and+ , along. = 0 for (a-b) _/! = 1.87 and (c-d) _/! = 0.98 for varying / positions.
The symbols indicate the experimental data and the solid lines are the theoretical prediction. The gray areas
indicate the surface shape at the position along - .

the pressure gradients generated due to the corrugated surface structure (Fig. 3b-c). The276
pressure gradient over the grooves has d%

d. > 0, which generates flow along the corrugations,277
in the negative .�direction. Flow moves across the corrugations (positive .�direction) over278
the ridges, where d%

d. < 0. As expected, the oscillatory flow becomes weaker for increasing / .279
We also observe that, nearby the surface, the flow along the surface grooves is faster than above280
the surface ridges. To compare our experimental measurements to theoretical predictions,281
we rescale the experimental measurements using (2.3), where ⌧ is determined for pressure-282
driven flow in a rectangular channel with prescribed flow rate & and channel height and283

width ! and F, respectively. Therefore, ⌧ = 12`&
F!3

✓
1 �

6!
F

1Õ
==0

⇤�5
= tanh

�
⇤= F!

� ◆�1
, with284

⇤= = (2=+1) c
2 . Comparing experimental results with the theoretical predictions (Fig. 4c-285

d), we find qualitatively similar behavior, where fluid is transported along the grooves and286
across the ridges. Additionally, both theory and experiments show that the magnitude of287
the velocity is larger over the grooves than over the ridges. However, the magnitude of the288
velocity differences, |*groove�*ridge | and |+groove�+ridge |, of our experimental measurements289
are smaller than the theory predicts; in particular, for / = 0.35 (Fig. 4f), we see very little290
variation in the velocity between the ridges and the grooves. We believe that the discrepancy291
between theory and experiments is twofold. While small spatial fluctuations in the velocity292
field result from the fabrication of our corrugated channels, the overall difference in velocity293
differences, |*groove �*ridge | and |+groove � +ridge |, results from the absence of channel side-294
walls in our theory. We consider this aspect later in more detail and show that the average295
velocities are better described by the theory of Stroock et al. (2002b), which accounts for the296
side walls of the channel (Fig. 6).297

We quantitatively compare the theoretical and experimental * and + velocities along -298
at . = 0 for varying / positions for pressure-driven flow over a surface with _/! = 1.87299
(Fig. 5a-b). As expected, both the experimental measurements (symbols) and theoretical300
predictions (solid lines) show that the magnitude of the velocity differences, for both * and301
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Figure 6: Mean velocities along the channel height for varying _/! (a) h*i and (b) h+i averaged over
1.5_ in the -� and .�directions for various / positions in the channel. (c) The ratio of h+i/h*i is an
approximation for the drift of a particle in the transverse direction. Large negative values near the corrugated
surface indicate drift along the direction of the corrugations. Experimental data are indicated by the symbols.
The dotted lines indicate the theory presented in this work for pressure-driven flow between two parallel
plates. The solid lines are the theory from Stroock et al. (2002a) for a channel with confining lateral walls
(Eqs. A 1a-A 1b).

+ , is largest for /-positions closest to the corrugated surface. Furthermore, we find that the302
axial velocity * is slower over the surface ridges and faster over the surface grooves. The303
magnitude of the velocity differences is larger for the transverse velocity + than for the axial304
velocity* for both the experimental measurements and theoretical predictions. We find that305
above the surface ridges, the transverse velocity + is positive, leading to transport across306
the corrugations (in the positive .�direction), while in the grooves, the velocity is negative,307
inducing transport along the corrugations (in the negative .�direction). Furthermore, the308
magnitude of the transverse velocity + is larger over the grooves than the ridges, for the309
/�positions shown here.310

In general, we find that the discrepancy between the experimental measurements of the311
axial velocity compared to the theoretical predictions is larger for the _/! = 0.98 surface than312
for the _/! = 1.87 surface (Fig. 5c-d). In this short wavelength regime, it has been shown313
numerically that the domain perturbation method for calculating the flow velocities becomes314
less accurate (Roggeveen et al. 2023). Thus, including higher-orders in our small-roughness315
expansion could capture the experimental observations better. We note that the theoretical316
prediction of the axial velocity for / = 0.36 is slower above the grooves and faster above317
the ridges which is the opposite of the theoretical prediction at / = 0.36 for the _/! = 1.87318
surface. We also find that for the transverse velocity + , the experimental measurements are319
more positive than the theoretical predictions. In fact, the theoretical predictions for + are320
almost entirely negative, along the surface corrugations. We also find, both experimentally321
and theoretically, that the axial velocity differences are larger for _/! = 1.87 than for322
_/! = 0.98, and the transverse velocity differences are smaller for _/! = 1.87 than for323
_/! = 0.98. This finding illustrates that there is a nontrivial relationship between the surface324
structure and the magnitude of the roughness-induced velocities.325

In addition to not satisfying _/! > 1 for the short wavelength surface _/! = 0.98, some of326
the error between the theoretical model and experimental measurements shown in Figs. 4-5327
can be understood by considering the difference in geometry between the theory presented328
in this work and our experiments. The theory presented here considers pressure-driven flow329
between two parallel plates, without side walls, while the experiment is a channel that has330
confining lateral walls. The implication of this difference is that the model allows for a net flux331
in the transverse direction, while in the experiment, the net flux must be zero in the transverse332
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direction. The lateral confining walls induce a helicoidal flow, where fluid is transported in333
the negative .�direction near the corrugated wall and in the positive .�direction near the334
upper flat wall, as described by Stroock et al. (2002a).335

To understand the effects of lateral confining walls, we measure the mean velocities, h*i336
and h+i over 1.5_ in the -� and .�directions for varying / and compare our experimental337
measurements to the theory presented in this work with no lateral walls and to the theory338
of Stroock et al. (2002a), which includes effects of lateral walls. Fig. 6a shows that our339
experimental measurements (symbols) agree reasonably well with both the model of Stroock340
et al. (2002a) (solid lines) and the model presented in this work (dashed lines). Additionally,341
we are able to experimentally measure the h*i velocity for / < 0, and we do not observe342
any recirculating flow within the corrugations, which would be indicated by h*i < 0. The343
mean transverse velocities are shown in Fig. 6b. Without confining lateral walls, the theory344
presented here (dashed lines) shows that the mean transverse velocity will always transport345
fluid along the direction of the corrugations, h+i < 0, and becomes larger in magnitude346
close to the corrugations. The confining lateral walls impose the constraint that the net flux347
in the transverse direction is zero, requiring that, near the upper wall, the mean transverse348
velocity h+i > 0. There is a turning point in the lower half of the channel where h+i < 0. We349
find good agreement between the model from Stroock et al. (2002a) and our experimental350
measurements, which indicates that although we do not satisfy _/! > 1, the theory still351
captures the behavior well for _/! = 0.98. We note that inside of the corrugations, / . 0.1,352
the experimental measurements of |h+i | decrease because they are averaged over the entire353
cross-section, where a portion is the solid corrugated surface.354

Taking h+i/h*i, we obtain the ratio of the net flux in the transverse direction compared to355
the axial direction, or the direction of the applied pressure gradient. In particular, h+i/h*i =356
�1 indicates that the the flow direction is parallel to the grooves, at an angle c/4. We find357
that, nearby the corrugations and for a given / , the ratio of h+i/h*i is more negative for358
_/! = 0.98 than _/! = 1.87, indicating that shorter wavelengths produce a larger flux359
in the transverse direction. This observation is found for both the theory presented in this360
work and that of Stroock et al. (2002a) and for the experimental measurements. We note361
that this observation is for tracer particles. For larger particles (_/0 = O(1)), Chase et al.362
(2022) shows that transverse displacement depends non-trivially on the interaction between363
the particle size and surface corrugation wavelength.364

4.3. Helical motion of neutrally buoyant tracer particles365

We plot the experimental three-dimensional trajectories of tracer particles for _/! = 1.87366
and 0.98 in Fig. 7a. The three-dimensional motion is helical, where the pitch of the helix is367
the wavelength of the corrugated surface. This helical trajectory is distinct from the helical368
streamlines described by Stroock et al. (2002a,b), where the pitch of the helix spans several369
wavelengths and the diameter is the width of the channel. The mechanism for both of these370
helical trajectories is due to the corrugated surface, however, the helix we measure is due371
to the changes in pressure over one wavelength, while the helix measured by Stroock et al.372
(2002a,b) is due to the confining lateral walls driving flow along the corrugations near the373
corrugated wall and in the opposite direction near the flat upper wall. Stroock et al. (2002a,b)374
emphasize that the helicoidal flow field is useful for mixing in low-Reynolds-number flows in375
channels. The smaller scale helical trajectories that we observe nearby the corrugated surface376
are independent of the background helicoidal flow and could have implications for mixing377
nearby a contaminated rough surface or transporting the species perpendicular to the rough378
wall. Furthermore, this mixing occurs independent of the confining lateral channel walls,379
and, therefore, is generic to flow over rough surfaces in any geometry.380

Projecting the three-dimensional helical motion to the -.�plane, as shown in Fig. 7b, we381
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Figure 7: Three-dimensional experimental helical trajectories of tracer particles. (a) Three-dimensional
particle trajectories over 1.5_ for _/! = 1.87 and 0.98 (see experimental methods in Sec. 3). (b) Projection
of of the three-dimensional trajectories to the -. -plane. (b) Projection of the three-dimensional trajectories
to the -/-plane.

Figure 8: Three-dimensional theoretical helical trajectories of neutrally buoyant point-particles. (a) Three-
dimensional particle trajectories over 6_ for _/! = 2, 4, and 10. (b) Projection of of the three-dimensional
trajectories to the -. -plane. / (0) = 0.3 for all trajectories.

see that the lateral displacement is larger for the smaller _/! surface. In addition to the two-382
dimensional measurements that we reported earlier, here we have experimental measurements383
of the particle’s trajectory in the /�direction (Fig. 7c). We find that the oscillations in the384
/�direction are larger for the longer wavelength surface, _/! = 1.87, despite the smaller385
lateral displacement.386

Our theoretical model allows us to further explore the full ramifications of the three-387
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Figure 9: Trajectories of tracer particles near corrugated surfaces. (a-b) Particle trajectories in the (a) -.�
plane and (b) -/� plane for a surface with wavelength _/! = 2 and roughness n = 0.1 and different initial
particle-surface distances / (0). The gray shaded areas in (a) indicate the height of the underlying surface
(see colormap in Fig. 3(a)). Gray areas in (b) indicate the surface from the side. (c) Slope of the particle drift
in the -.�plane as a function of wavelength _/! and for different initial particle-surface distances / (0).
The symbols indicate the slopes of the trajectories starting at (- = 0,. = 0, / = / (0)). The dotted lines
correspond to the theoretical prediction of the slope (Eq. (4.3)) by using / = / (0) and the solid lines are
the predictions using the average distance h/i as input for Eq. (4.3).

dimensional flow and the potential effect of mixing due to the corrugations. We explore388
the effect of wavelength on the trajectories of tracer particles following the streamlines in389
pressure-driven flow in a channel with one corrugated surface and one planar surface, without390
confining lateral walls.391

We denote by r (C) = [G(C), H(C), I(C)]
) the position of a particle at time C. Rescaling392

length scales by !, time scales by !/*, and velocities by ⌧!2
/2`, the equation of motion393

(neglecting hydrodynamic interactions, i.e., point-like particles) obeys:394

dX
d)

= / (1 � /)e- + n[ (1)
(X) + n2[ (2)

(X), (4.2)395
396

where capital letters represent the rescaled variables. For a pressure-driven flow between two397
planar walls (corresponding to [ (1) = [ (2) = 0) the particle displacements are �- ()) =398
)/ (0) (1 � / (0)) and �. ()) = �/ ()) = 0, where / (0) denotes the initial position at time399
) = 0. The particle trajectory near a corrugated wall is obtained by numerically evaluating400
Eq. (4.2).401

In Fig 8a, we show helical trajectories for _/! = 2, 4, and 10 starting at a position402
/ (0) = 0.3. We find that the theoretical predictions agree qualitatively with our exper-403
imental measurements in that the shortest wavelength surfaces produce the largest drift404
(Fig. 8b), while having the smallest changes in / (Fig. 8a). Quantitative comparison405
between experimental and theoretical three-dimensional trajectories will be influenced by406
the confining lateral walls in our experiments. Additionally, to compare the net drift of407
our experimental three-dimensional trajectories with the theoretical predictions, longer408
experimental trajectories will provide more robust measurements of the net drift, which409
we leave to future work.410

4.4. Hydrodynamically-induced drift411

Most importantly, we find that the particle trajectories are oscillatory and display an overall412
hydrodynamically-induced drift along the surface corrugations. To quantify this behavior413
further, we have performed simulations for various initial positions / (0) and wavelengths_/!414
and extracted the slope U of the trajectories, see Fig. 9. Our results indicate that the slope415
of the trajectories, irrespective of / (0) or _/!, is negative, and hence, the particles have a416
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net displacement along the surface grooves. This qualitative behavior is in agreement with417
experiments of colloidal particles nearby surface corrugations, e.g., Choi & Park (2007); Hsu418
et al. (2008); Choi et al. (2011). The magnitude of the slope becomes smaller for increasing419
wavelength _/! and particle-surface distance / (0) (Fig. 9c). We further approximate the420
slope U of the trajectories by integrating the velocities * and + over one wavelength and421
taking the ratio:422

U '

Ø _/!
0 + (- ,. , /)d-Ø _/!
0 * (- ,. , /)d-

=
n

2
(1 � /)+̄

(2)
0

/ (1 � /) + n2(1 � /)*̄
(2)
0

, (4.3)423

where *̄ (2)
0 and +̄ (2)

0 are constants. The slope U depends on the dimensionless wavenum-424
ber  0, the roughness n , and the vertical coordinate / . We find that the displacement is largest425
nearby the corrugations and that the effect is strongest for short wavelength surfaces. For426
long wavelength surfaces, the transport in the simulated trajectories becomes independent427
of the /�position. The prediction for the slope U with / = / (0) explains fairly well the428
drift of particles for small _/! obtained from our simulations, however, it deviates from the429
data for larger _/! (Fig. 9c). We note that the vertical motion of the particle varies along its430
trajectory, which affects the overall drift (Fig. 9b). Therefore, we replace / by its distance h/i431
averaged over the surface wavelength _/! in Eq. (4.3), which allows for a better description432
of the slope U.433

Finally, we again stress that the presented theory is valid for channels of infinite width, so434
that we do not observe circulating flows in our theoretical results (Stroock et al. 2002a,b;435
Stroock & McGraw 2004). In channels with lateral side walls, the experimental near-surface436
helical flows reported in this work are in addition to the circulating flows along the channel437
length. In our experiments, we estimate that the pitch of the helix of the channel-scale438
helicoidal flow is ⇡ 20 cm, or ⇡ 300_, compared to the pitch of the near-surface helical439
flows, _ = 600 `m (see Appendix A).440

5. Conclusions441

We have shown, theoretically and experimentally, that low-Reynolds-number pressure-driven442
flow between a flat wall and a parallel corrugated wall, whose corrugations are tilted with443
respect to the applied pressure gradient, leads to three-dimensional helical streamlines nearby444
the corrugated surface. Using a perturbation approach for small surface amplitude, our results445
reveal that, on the scale of each corrugation, the pressure gradients generated by the surface446
corrugations drive transverse flows generating the helical streamlines. These near-surface447
flows are in addition to the helicoidal recirculating flows previously studied that are generated448
by the lateral confining walls of microfluidic channels (Stroock et al. 2002a,b; Stroock &449
McGraw 2004).450

We find that the roughness-induced pressure builds up approaching a surface ridge and451
drops in front of a surface groove. These oscillations in the pressure field induce an oscillatory452
velocity along the flow direction which is faster above the surface grooves than the surface453
ridges. The velocity in the transverse direction is directed across the ridges and along the454
grooves and is largest nearby the surface. We find good qualitative agreement between our455
theory focusing on the scale of one corrugation and our experimental velocity measurements456
obtained by particle image velocimetry. Furthermore, we find good quantitative agreement457
between the mean velocities measured in our experiments and those reported by Stroock458
et al. (2002a), which account for confining lateral walls. Both our theory and the theory459
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of Stroock et al. (2002a) find that short wavelength surfaces induce larger transverse flows460
nearby the corrugates surface, which our experiments confirm.461

By tracking tracer particles moving nearby the surface corrugations, we observe three-462
dimensional skewed helical trajectories, where the particle drifts along the corrugations463
when close to a groove, while it moves across the corrugations in the presence of a ridge.464
Overall the particles display a net drift along the surface corrugations, which depends on465
surface wavelength and particle-surface distance. Our experimental measurements of the466
helical trajectories show that for longer wavelength surfaces, despite larger oscillations along467
the channel height, the net drift is smaller than it is for shorter wavelength surfaces. This468
observation is in agreement with our theoretical predictions.469

Our findings rationalize earlier experimental observations on the motion of colloids (Choi470
& Park 2007; Hsu et al. 2008; Choi et al. 2011) and biological cells (Qasaimeh et al. 2017)471
nearby corrugated surfaces and demonstrate that particle drift and oscillatory motion can472
be generated solely by the presence of the corrugated surface, independent of the lateral473
confining walls. Furthermore, these behaviors appear to be generic across different systems,474
ranging from pressure driven flows (Choi & Park 2007; Hsu et al. 2008; Choi et al. 2011;475
Qasaimeh et al. 2017) to particle sedimentation (Chase et al. 2022).476

The helical flows reported in this work might have implications for near-surface mixing.477
Their three-dimensional nature also demonstrates that patterned surfaces influence particle478
motion independent of the helicoidal flows generated due to confining walls (Stroock et al.479
2002a,b; Stroock & McGraw 2004).480

Theory and experiments capturing the finite size of the particles are required to fully481
assess the helical nature of particle trajectories in pressure-driven flow. It may also be482
interesting to study the effect of different surface shapes, such as, e.g., randomly structured483
topographies (Charru et al. 2007; Kurzthaler et al. 2020), or particle shapes (Uspal et al. 2013;484
Georgiev et al. 2020) on the observed flow patterns and trajectories. Understanding these485
aspects could provide novel ways to manipulate flow and, thereby, particle motion, which486
could be potentially useful for future technological and biomedical applications involving487
mixing and sorting.488
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Appendix A. Transverse flows in corrugated channels with side walls495

We consider a closed microfluidic channel of width F and height !, which has a corrugated496
surface topography on the lower channel wall. The surface corrugations are characterized by497
a wavelength _ and tilted at an angle \ relative to the applied pressure drop. The expressions498
for the mean axial and transverse velocities in the GH�plane for a thin (F � !), closed499
channel with shallow grooves (n! ⌧ !) (shown in Fig. 6) are from Stroock et al. (2002a).500
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The mean axial hDi and transverse hEi velocities are given by501

hDi =
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!F
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511

To compare the near surface helical flows that we measure in this work with the helicoidal512
flow due to lateral confinement, we compute the expression from Stroock et al. (2002a),513

tan⌦ =
n

2 �
 k �  ?

�
cos \ sin \

1 � n2 �3/2 �  ̃
� , (A 3)514

where ⌦ is the angle between the axial direction of the flow and the direction of flow just515
below the flat top of the channel. The pitch of the helix is then defined as516

? =
F

tan⌦
. (A 4)517

The pitch of the helix of the channel-scale helicoidal flow is ⇡ 20 cm for our channels of518
widths F = 320 and 615 �m, which is three orders of magnitude larger than the scale of519
the near-surface helical flows reported here, which have a pitch on the scale of the surface520
wavelength _ = 600 `m.521
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