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We study theoretically and experimentally pressure-driven flow between a flat wall and a
parallel corrugated wall, a design widely used in microfluidics for low-Reynolds-number
mixing and particle separation. In contrast to previous work, which focuses on recirculating
helicoidal flows along the microfluidic channel that result due to its confining lateral walls, we
study the three-dimensional pressure and flow fields and trajectories of tracer particles at the
scale of each corrugation. Employing a perturbation approach for small surface roughness,
we find that anisotropic pressure gradients generated by the surface corrugations, which are
tilted with respect to the applied pressure gradient, drive transverse flows. We experimentally
measure the flow fields using particle image velocimetry and quantify the effect of the ratio
of the surface wavelength to the channel height on the transverse flows. Further, we track
tracer particles moving nearby the surface structures and observe three-dimensional skewed
helical trajectories. Projecting the helical motion to two dimensions reveals oscillatory near-
surface motion with an overall drift along the surface corrugations, reminiscent of earlier
experimental observations and independent of the secondary helical flows that are induced
by confining lateral walls. Finally, we quantify the hydrodynamically-induced drift transverse
to the mean flow direction as a function of distance to the surface and the wavelength of the
surface corrugations.

Key words:

1. Introduction

The development of microfluidic devices has lead to novel technological and biomedical
applications by making possible rapid sorting, mixing, and focusing of various small
biological or synthetic constituents (Giddings 1993; Stone et al. 2004; Whitesides 2006;
Shields IV et al. 2015). The future design of ‘lab-on-a-chip’ devices, which, due to their
small size, can be routinely used in different settings, could be important for, e.g., the
analysis of single-cells (Stott e al. 2010; Hosic et al. 2016; Qasaimeh et al. 2017; Farahinia
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et al. 2021), thereby, allowing for rapid disease detection or for advancing the fundamental
understanding of biological processes.

Microfluidic approaches have been utilized to guide and control transport processes for
several objectives. Examples range from the separation of the components of blood, such as
red or white blood cells (Huang er al. 2004; Davis et al. 2006; McGrath et al. 2014), to the
focusing and detection of biological cells (Qasaimeh et al. 2017; Farahinia ez al. 2021), to the
mixing of particulate suspensions (Stroock et al. 2002b,a; Stroock & McGraw 2004). The
underlying methods rely on different physical mechanisms, such as ‘active’ concepts, which
use externally applied forces and filters (Giddings 1993; Stone et al. 2004; Shields IV et al.
2015), or ‘passive’ concepts, which exploit hydrodynamic effects due to fluid inertia (Segré &
Silberberg 1961; Di Carlo et al. 2007; Humphry et al. 2010), pillar arrays in channels (Huang
et al. 2004; Davis et al. 2006; McGrath et al. 2014), or patterned microfluidic walls (Stroock
et al. 2002b; Asmolov et al. 2015; Choi & Park 2007; Hsu et al. 2008; Choi et al. 2011;
Qasaimeh et al. 2017).

Several passive approaches utilize surface topography, relying on the careful design and
synthesis of surface structures, mostly, at the micron scale. Corrugations oriented obliquely
to the axial flow direction or v-shaped herringbone structures were originally proposed for
the mixing of laminar streams (Stroock et al. 2002a,b; Stroock & McGraw 2004). In addition
to mixing, passive approaches have been used to separate or detect particles. For example,
microfluidic channels with oblique corrugations on one wall have been applied widely to
separate colloidal particles (Choi & Park 2007; Hsu et al. 2008; Choi et al. 2011) and for
the detection of plasma (Qasaimeh et al. 2017) or circulating tumor cells (Stott et al. 2010).
The parallel oblique corrugations on the top or bottom wall generate a transverse pressure
gradient and, due to the lateral confinement of the channel, helical streamlines result, where
the pitch of the helix spans several corrugations (Stroock et al. 2002a,b; Stroock & McGraw
2004). The recirculating flows generated by the corrugations, which will be in opposite
lateral directions at the corrugated and flat surfaces, transport particles to each lateral wall
depending on the particle’s position along the channel height, which depends, for example on
the particle’s size or density, and can be controlled using inertial focusing (Segré & Silberberg
1961; Di Carlo et al. 2007). Therefore, particles with different properties can be transported to
opposite lateral walls and sorted according to the property of interest. Similarly, v-shaped, or
herringbone, corrugations create counter-rotating vortices in the microchannel. These flows
bring particles to their equilibrium configuration between adjacent vortices either near the
herringbone surface or near the planar wall, depending on their density, to separate particles
into different streams for sorting or detection (Hsu et al. 2008).

The aforementioned studies focused on the recirculating flows, generated by surface
topography, at the scale of the channel size. The effect of surface structure on the flow
and particle motion nearby the surface, at the scale of individual corrugations, remains
relatively unexplored. Recent insights for the non-trivial trajectories come from our work on
particle sedimentation nearby corrugated surfaces (Chase et al. 2022), where we quantified,
experimentally and theoretically, the impact of corrugation shape and particle size on the
transport behavior without background flow and due only to the disturbance flow generated
by the interaction of the particle and surface structure. In contrast to results observed in
microfluidic channels, where particles are separated by size due to differences in their
equilibrium position along the channel height, it was shown that the magnitude of the
lateral displacement for particles of different sizes depends not only on their distance to the
corrugated wall, but on non-trivial relationships between the particle size and corrugation
wavelength.

Here, we complement these findings by studying pressure-driven flow between a corrugated
surface and a parallel flat wall. Using a perturbation ansatz for the amplitude of the
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surface structure, we calculate the pressure field induced by the surface pattern and derive
analytical expressions for the three-dimensional flow fields up to the second order in the
surface roughness. Based on these results, we determine the motion of tracer particles near
the corrugated wall. While the large-scale helicoidal flows in corrugated microchannels,
generated by the combined effect of the corrugations and the lateral confining walls, have a
diameter equal to that of the channel dimension and a pitch of several wavelengths (Stroock
et al. 2002a), our results reveal that tracer particles also follow three-dimensional helical
trajectories, independent of the lateral confining walls, which have a pitch of one wavelength
and a diameter that depends on the distance to the corrugated surface and the corrugation
wavelength. Projected to two dimensions, the trajectories of tracer particles resemble the
oscillatory near-surface motion observed in several experiments (Choi & Park 2007; Hsu
et al. 2008; Choi et al. 2011; Qasaimeh et al. 2017). The oscillatory pattern is characterized
by near-surface particle motion along the corrugations while moving above grooves and
across the corrugations while moving over ridges. Moreover, our results demonstrate that
near-surface particles exhibit an overall drift along the surface corrugations, leading to a
skewed helical trajectory. We quantify the overall displacement as a function of surface
wavelength and particle position along the channel height, showing that the lateral drift can
be achieved independent of the recirculating flows generated in closed channels.

Our paper is structured as follows: In Section 2, we outline a hydrodynamic model for the
pressure-driven flow between a flat wall and a parallel rough wall. In Section 3, we describe
our experimental method for measuring the flow field in a corrugated microchannel using
particle image velocimetry. To our knowledge, this is the first experimental measurement
of velocity fields in corrugated microchannels. We also outline our method for three-
dimensional single-particle tracking in the corrugated channels. In Section 4, we provide
experimental and theoretical results for the roughness-induced pressure and flow fields
and compare them qualitatively and quantitatively. Furthermore, we find good agreement
between our experimentally measured mean velocities and the theory from Stroock et al.
(2002a) for flows generated in corrugated microchannels with confining lateral walls. Most
importantly, our results are complemented by theoretical and experimental measurements of
three-dimensional helical particle trajectories. Finally, we investigate the effect of the ratio
of corrugation wavelength to channel height for varying positions along the channel height
on the lateral drift of tracer particles in the flow.

2. Hydrodynamic model

We consider three-dimensional, low-Reynolds-number, pressure-driven flow between two
plates, where the lower surface has a given shape, z = eLH(x,y), with shape function
H(x,y), as indicated in Fig. 1. Here, L denotes the distance between the upper surface
and the reference surface Sy, and we denote by € a dimensionless roughness parameter.
The velocity and pressure fields, u(x,y, z) and p(x, y, z), respectively, obey the Stokes and
continuity equations,

uViu =Vp and V-u=0, 2.1

where y denotes the fluid viscosity. We have no-slip boundary conditions on the lower
and upper surfaces: u(x,y,z = eLH(x,y)) = 0 and u(x,y,z = L) = 0. Subsequently, we
consider small surface corrugations, corresponding to € < 1, and expand the flow field up
to third order in the small parameter e,

u=u+euV + u® +0(). (2.2)

An average pressure gradient is applied along the direction of the flow, (dp/dx) = -G,
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Figure 1: Sketch of pressure-driven flow between the lower corrugated surface S,,, and the upper planar wall
(side view). Here, L denotes the distance between the upper surface and a reference surface Sg at z = 0,
H(x,y) is the shape function, and € is the surface roughness.

and hence we rescale by
u=——->VU, p=GLP, z=LZ, x=LX, y=LY. (2.3)

By using the method of domain perturbation (Kamrin et al. 2010; Kurzthaler ez al. 2020),
we obtain the boundary conditions for the components of the expansion:

oU©
v® =0, UM =_HXY | ,
( ) 0Z |1z=0
oy 1 82u©®
U =-HX N S| - SHXGDE | oz=o, (2.4a)
v® =0, vV=0 U?=0 onZ=1. (2.4b)

We note that the zeroth-order flow field is pressure-driven flow between parallel plates,
v =z (1 = Z)ex and the pressure is P = _Xey. Thus, the boundary conditions
(2.4a) on Z = 0 simplify to: UV (X,Y,Z = 0) = —H(X,Y)ex and UP(X,Y,Z = 0) =
—H(X,Y)0U" /Z|z-0 + H(X,Y)?ex.

Generally, one can calculate the first-order perturbation U" by applying a Fourier
transform to the X— and Y —components,

_ 1 .
U(Kx. Ky, Z) = >~ / i e KXY (x Y, Z) dXdY; (2.5)
R

the inverse transform is U(X,Y,Z) = 2m)~" [, e KxXXK U (Ky, Ky, Z) dKxdKy. The
Stokes and continuity equations (2.1) then simplify to

d? 2\ 70 _ [ d) s
(d22 -K )U = 1K+ede P, (2.6a)
o=y AW
K-U — =0, 2.6b
i + iz ( )

where we have used fJ(l) = [U(l),V(l),W(l)]T, K = [Kx,Ky,0]T, and K = |K]|.
Rearranging (2.6a)-(2.6b) provides an equation for the pressure field,

& ) s
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which can be solved by P(1) = po(K) exp(—KZ) + p1(K) exp(K Z). Using this form as input
for Egs. (2.6a)-(2.6b), we can calculate the velocity field U (1) and determine the coefficients
po and p; by enforcing the boundary conditions [Eqs. (2.4a)-(2.4b)], which depend on
the surface shape H(X,Y). Knowledge of the first-order flow field U () then allows us to
iteratively compute the second-order flow field U®) with boundary conditions in Eqs. (2.4a)-
(2.4b). The velocity fields obtained via the domain-perturbation approach have been validated
with numerical simulations of the full hydrodynamic flows (assuming a shear-flow scenario)
by Roggeveen et al. (2023). In particular, the error of the perturbative approach remained
small for small surface roughness and moderate for large wavelengths /L > 2.

It is worth emphasizing that the theory is, in principle, valid for arbitrary surface shapes.
However, analytical progress is limited by whether the surface shape function H(X,Y)
and powers of it (e.g., H(X,Y)? is required for the second-order flow field) have an
analytically tractable Fourier transform. Furthermore, one may need to perform a numerical
backtransform of the pressure and flow fields to real space. For cosine and sine functions, the
calculations can be done analytically. Consequently, for every shape function, which can be
expanded in terms of a Fourier series (i.e., periodic, piece-wise continuous, and integrable
over the period), our approach allows calculating (semi-)analytically the flow fields.

At this point, we want to mention that the stream function for two-dimensional shear flow
near a periodic surface has been addressed recently (Assoudi et al. 2018). Also, analytical
work on the three-dimensional streamlines over sinusoidal surface grooves, tilted with respect
to the principal flow direction, has provided a prediction for the helicity of the flow (Stroock
et al. 2002a). The same authors later calculated the flow over herringbone structures in
a channel of finite width in terms of a Fourier expansion by approximating the surface
grooves with an effective slip velocity (Stroock & McGraw 2004). The focus of the latter
study, however, was on the impact of the corrugated surfaces on the mixing of particulate
suspensions.

3. Experimental methods

We fabricate two channels, both with corrugations of wavelength 4 on the top wall,
but with different channel heights L, therefore varying the ratio of A/L. We 3D print
molds of the negative of each channel (Formlabs Form 2) and cast a clear channel from
polydimethylsiloxane (PDMS). We punch inlet and outlet holes and bond the PDMS channel
to a glass slide (Fig. 2a). One channel has a height L = 320 pm and surface amplitude
€L = 30 pm. The second channel has a height L = 615 pm and surface amplitude
€L = 60 pm. The wavelength of the surface corrugations for both channels is 4 = 600 pm,
and the aspect ratio (width to height) of both channels is 10. The channel height and
corrugation wavelength and amplitude were measured by filling the channel with a fluorescent
dye and taking xz images using a confocal microscope (Leica) (Fig. 2b).

To measure the flow field in the channel, we use a syringe pump, with prescribed flow
rates of 2.5 and 10 pL min~!, respectively, for the L = 320 and 615 pm channels, to flow
a suspension of neutrally buoyant fluorescent 1 pum diameter tracer particles through the
channel. We use a confocal microscope (Leica) to image a 916 pm X 916 pm section in
xy at a frame rate of 7.4 fps and capture 200 frames. Using PIV Lab (Thielicke & Sonntag
2021; Stamhuis & Thielicke 2014) in MATLAB (MathWorks), we perform particle image
velocimetry of the steady flow field to measure the axial and transverse components of the
velocity. We image at 40 different z positions along the channel height. A stack of 200 time
series images at z =120 pm is shown in Fig. 2¢, where the oscillations of the streamlines are
visible as bright streaks.

In addition to measuring the flow field in the xy—plane, we can measure the three-
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Figure 2: Experiments: (a) The channel used in the experimental system is cast polydimethysiloxane with
corrugations on the upper wall. (b) A cross-sectional view of the channel visualized with fluorescent dye.
Here, the wavelength is 4 = 600 pm, the heightis L = 320 pm, and the amplitude is eL = 30 pm. (c¢) Flow
field visualization of pressure-driven flow in the corrugated channel from a time stack of 200 experimental
images taken at a frame rate of 7.4 fps with 1 pm diameter fluorescent particles. (d) Visualization of the
trajectory of a 5 pm diameter particle in pressure-driven flow in the corrugated channel.

dimensional trajectories of individual tracer particles. For the same channels, we flow a
dilute suspension of neutrally buoyant fluorescent tracer particles with a diameter of 5 pm
through the channel at a constant flow rate using a syringe pump. We take xyzt images
using a confocal microscope (Leica). The xy image is 916 pm by 230 pm, and we image
27 sections in z with a step size of 2.365 pm at a frame rate of 18 fps, acquiring the xyz
volume in 1.5 seconds. For every time step, we find the (x, y) location of the particle using
the circle detection algorithm in MATLAB (Mathworks). We determine the z position of
the particle at each time step by first cropping the image around the particle location and
calculating G(z) = >, I(x,y), where I(x,y) is the image intensity, for each image in the
z—stack. The image with max(G) is determined to be the z position of the particle. We iterate
this process for each time step to find the particle trajectory (x(t), y(¢),z(¢)). A sample
trajectory, projected to the xy plane, is shown as the superposition of the frames of the
determined best z position for each time step in Fig. 2d.

Our experiments have Stokes number Sy; = 1072, where the Stokes number is defined

,d2U . . . . . . .
by Six = L 118,3) . Here p, is the particle density, d,, is the particle diameter, U is the
characteristic fluid velocity, u is the fluid viscosity, and D is the hydraulic diameter of the

channel.

4. Results and discussion

While the theory presented in Section 2 is valid for arbitrary surface shapes, here we study
the aspect of parallel corrugations, reminiscent of the widely used pattern in microfluidic
devices (Stroock et al. 2002b; Choi & Park 2007; Hsu et al. 2008; Choi et al. 2011; Qasaimeh
et al. 2017). We consider a surface shape H(X,Y) = cos(Ky(X + Y)) characterized by the
wavenumber ko = Ko/ L, corresponding to a wavelength A = 27/ kg. We note that the surface
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Figure 3: Surface structure and roughness-induced pressure. (@) Contour plot of the surface structure
H(X,Y). The gray shaded areas indicate the height profile of the underlying surface, where dark areas
correspond to grooves and white areas to ridges, respectively. The arrow indicates the direction of the
applied pressure gradient (b) Contour plot of the roughness-induced components of the pressure field
P— PO = p(D) 4 2p(2) ¢ the center of the channel Z = 0.2. Here, the black dashed lines correspond to
the maxima of the surface structure. (¢) Roughness-induced pressure along X at Y = O for varying Z. The
black dashed line corresponds to H(X,Y). The wavelength in (b) and (c) is /L = 2. The applied pressure
gradient is in the X direction.

corrugations are at an angle of n/4 to the direction of the applied pressure gradient (see
Fig. 3a). In what follows, we refer to fluid transport along corrugations when a fluid particle
moves on a path in the positive X-direction but with displacement in the negative Y -direction,
and across corrugations when the flow path is instead in the positive Y-direction.

To compute the pressure and flow fields, we follow the general approach outlined in
Section 2. Therefore, we use the Fourier transform of the surface shape H(Kx, Ky) =
n[6(Ko+ Kx)6(Ko+Ky) +6(Kg — Kx)6(Ko — Ky)], where 6(-) denotes the delta function,
as input to calculate the pressure P! and the velocity field U "in Fourier space and
transform it back to real space analytically. We repeat this for the second-order flow field
U® | where the Fourier backtransform is still doable but becomes tedious. An alternative
way to compute the flow fields, which relies on the sinusoidal form of the surface shape, is
outlined by Roggeveen et al. (2023).

4.1. Roughness-induced pressure fields

We find that the surface corrugations lead to the generation of a pressure field P that varies
with position. In particular, the zeroth-order pressure field is P(°) = —X and the first-order
pressure field evaluates to

Koe—Ko\/E(2+Z)
X
(1+4K2 - cosh(2V2Ko))

y [ezw/ikoz 4 oAV2Ko | (2\/51(0 - 1) 2VIK(Z41) _ p2V2Ky (2\51(0 + 1)] .
4.1)

P (X,Y,Z) =sin(Ko(X +Y))

Higher-order terms are lengthy and not presented here. For a corrugated surface H(X,Y) =
cos (Ko (X +7Y)) (see Fig. 3a), the roughness-induced contributions to the pressure field at
Z = 0.2 are shown in Fig. 3b. Plotting the roughness-induced contributions to P along X
at Y = 0 for varying Z—positions (Fig. 3c), we see that the pressure builds up in front of
the surface ridges and decreases in front of the surface grooves, where the surface shape is
depicted by the black dashed line.

In particular, the first-order contribution to the pressure, which can be abbreviated by
P = sin(Ko(X +Y))PV(Z) [Eq. (4.1)], has its extrema at the inflection points of the
surface, i.e., at points of vanishing curvature, cos(Ko(X + Y)) = 0. The extrema are at
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Figure 4: Theoretical and experimental velocity fields. (a) Streamlines of the theoretical velocity field in
the XZ— plane, O +euM + 2@ w0 + ew) + EWDNT and (b) YZ- plane, (VO 4 ey 4
v wO 4 ew® 4+ 2w T The gray areas indicate the surface shape from the side. (c-d) Streamlines
of the theoretical velocity field in the XY —plane, [U(O) +eUM 1+ 2y@ v ey 4 GZV(Z)]T, at (c)
Z = 0.20 and (d) Z = 0.35. The gray shaded areas indicate the height profile of the underlying surface,
where dark areas correspond to grooves and white areas to ridges, respectively (see colormap in Fig. 3(a)).
(e-f) Streamlines of the experimental velocity field in the XY —plane at (¢c) Z = 0.20 and (d) Z = 0.35. In all
panels the wavelength is A/L = 1.87 and the surface roughness is € = 0.094. Furthermore, the color map
corresponds to the magnitude of the velocity in a particular plane. Note that for the experimental velocities,
the magnitude includes only the X and Y components of the velocity, since the Z component is not measured.

X+Y = 2n+1)7/(2Ky) = 2n+1)A/(4L) forn € Z, with minima at X+Y = (4n+1)A/(4L)
and maxima at X+Y = (4n—1)A/(4L). The inflection points are modified by the second-order
contribution P(?).

We find that the magnitude of the roughness-induced contributions to the pressure decrease
as Z increases, moving towards the flat upper wall (Fig. 3). Finally, we note that the pressure
field generated by the corrugated surface is anisotropic relative to the direction of the applied
pressure gradient, along X, (Fig. 3b) and can therefore induce, in addition to flows along the
Z—direction, transverse flows (in the XY —plane).

4.2. Roughness-induced flow fields

The streamlines along the channel (XZ—plane), shown in Fig. 4a, display oscillations over
the surface corrugations, which vanish near the flat upper wall. Furthermore, we find a non-
vanishing lateral velocity field in the Y Z—plane (Fig. 4b), which is solely generated by the
corrugated surface. In particular, the flow moves in opposite Y -directions over surface ridges
compared to grooves. This response leads to flow patterns, which alternate their direction
depending on the underlying surface structure.

The streamlines (XY —plane) are oscillatory in the transverse direction (Y-direction),
transporting fluid along the direction of the corrugations above surface grooves and across
the corrugations above ridges; see Fig. 4c-d for Z = 0.20 and Z = 0.35, respectively.
The gray shaded background depicts the height of the underlying surface with height map
corresponding to Fig. 3a. The oscillations are a result of the pressure field and, consequently,
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Figure 5: Theoretical and experimental velocities for varying A/ L. The measured experimental and theoretical
X and Y velocities, U and V, along Y = 0 for (a-b) A/L = 1.87 and (¢-d) /L = 0.98 for varying Z positions.
The symbols indicate the experimental data and the solid lines are the theoretical prediction. The gray areas
indicate the surface shape at the position along X.

the pressure gradients generated due to the corrugated surface structure (Fig. 3b-c). The
pressure gradient over the grooves has g—}’f > 0, which generates flow along the corrugations,
in the negative Y —direction. Flow moves across the corrugations (positive ¥ —direction) over
the ridges, where 3—1; < 0. As expected, the oscillatory flow becomes weaker for increasing Z.
We also observe that, nearby the surface, the flow along the surface grooves is faster than above
the surface ridges. To compare our experimental measurements to theoretical predictions,
we rescale the experimental measurements using (2.3), where G is determined for pressure-

driven flow in a rectangular channel with prescribed flow rate Q and channel height and
-1

width L and w, respectively. Therefore, G = % 1- % ZOA;S tanh (A,%)| . with
n=

Ay = w Comparing experimental results with the theoretical predictions (Fig. 4c-

d), we find qualitatively similar behavior, where fluid is transported along the grooves and
across the ridges. Additionally, both theory and experiments show that the magnitude of
the velocity is larger over the grooves than over the ridges. However, the magnitude of the
velocity differences, |Ugroove = Uridge| and [Varoove — Viidge |, Of our experimental measurements
are smaller than the theory predicts; in particular, for Z = 0.35 (Fig. 4f), we see very little
variation in the velocity between the ridges and the grooves. We believe that the discrepancy
between theory and experiments is twofold. While small spatial fluctuations in the velocity
field result from the fabrication of our corrugated channels, the overall difference in velocity
differences, |Ugroove — Uridge| and [Vgroove — Viidgel» results from the absence of channel side-
walls in our theory. We consider this aspect later in more detail and show that the average
velocities are better described by the theory of Stroock et al. (2002b), which accounts for the
side walls of the channel (Fig. 6).

We quantitatively compare the theoretical and experimental U and V velocities along X
at Y = 0 for varying Z positions for pressure-driven flow over a surface with 1/L = 1.87
(Fig. 5a-b). As expected, both the experimental measurements (symbols) and theoretical
predictions (solid lines) show that the magnitude of the velocity differences, for both U and
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Figure 6: Mean velocities along the channel height for varying A/L (a) (U) and (b) (V) averaged over
1.52 in the X— and Y—directions for various Z positions in the channel. (c) The ratio of (V)/(U) is an
approximation for the drift of a particle in the transverse direction. Large negative values near the corrugated
surface indicate drift along the direction of the corrugations. Experimental data are indicated by the symbols.
The dotted lines indicate the theory presented in this work for pressure-driven flow between two parallel
plates. The solid lines are the theory from Stroock ez al. (2002a) for a channel with confining lateral walls
(Eqs. A la-A 1D).

V, is largest for Z-positions closest to the corrugated surface. Furthermore, we find that the
axial velocity U is slower over the surface ridges and faster over the surface grooves. The
magnitude of the velocity differences is larger for the transverse velocity V than for the axial
velocity U for both the experimental measurements and theoretical predictions. We find that
above the surface ridges, the transverse velocity V is positive, leading to transport across
the corrugations (in the positive Y —direction), while in the grooves, the velocity is negative,
inducing transport along the corrugations (in the negative Y —direction). Furthermore, the
magnitude of the transverse velocity V is larger over the grooves than the ridges, for the
Z—positions shown here.

In general, we find that the discrepancy between the experimental measurements of the
axial velocity compared to the theoretical predictions is larger for the 1/ L = 0.98 surface than
for the A/L = 1.87 surface (Fig. 5c-d). In this short wavelength regime, it has been shown
numerically that the domain perturbation method for calculating the flow velocities becomes
less accurate (Roggeveen et al. 2023). Thus, including higher-orders in our small-roughness
expansion could capture the experimental observations better. We note that the theoretical
prediction of the axial velocity for Z = 0.36 is slower above the grooves and faster above
the ridges which is the opposite of the theoretical prediction at Z = 0.36 for the 1/L = 1.87
surface. We also find that for the transverse velocity V, the experimental measurements are
more positive than the theoretical predictions. In fact, the theoretical predictions for V are
almost entirely negative, along the surface corrugations. We also find, both experimentally
and theoretically, that the axial velocity differences are larger for A/L = 1.87 than for
A/L = 0.98, and the transverse velocity differences are smaller for /L = 1.87 than for
A/L = 0.98. This finding illustrates that there is a nontrivial relationship between the surface
structure and the magnitude of the roughness-induced velocities.

In addition to not satisfying A/L > 1 for the short wavelength surface 1/L = 0.98, some of
the error between the theoretical model and experimental measurements shown in Figs. 4-5
can be understood by considering the difference in geometry between the theory presented
in this work and our experiments. The theory presented here considers pressure-driven flow
between two parallel plates, without side walls, while the experiment is a channel that has
confining lateral walls. The implication of this difference is that the model allows for a net flux
in the transverse direction, while in the experiment, the net flux must be zero in the transverse

Rapids articles must not exceed this page length
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direction. The lateral confining walls induce a helicoidal flow, where fluid is transported in
the negative Y —direction near the corrugated wall and in the positive Y —direction near the
upper flat wall, as described by Stroock et al. (2002a).

To understand the effects of lateral confining walls, we measure the mean velocities, (U)
and (V) over 1.51 in the X— and Y —directions for varying Z and compare our experimental
measurements to the theory presented in this work with no lateral walls and to the theory
of Stroock et al. (2002a), which includes effects of lateral walls. Fig. 6a shows that our
experimental measurements (symbols) agree reasonably well with both the model of Stroock
et al. (2002a) (solid lines) and the model presented in this work (dashed lines). Additionally,
we are able to experimentally measure the (U) velocity for Z < 0, and we do not observe
any recirculating flow within the corrugations, which would be indicated by (U) < 0. The
mean transverse velocities are shown in Fig. 6b. Without confining lateral walls, the theory
presented here (dashed lines) shows that the mean transverse velocity will always transport
fluid along the direction of the corrugations, (V) < 0, and becomes larger in magnitude
close to the corrugations. The confining lateral walls impose the constraint that the net flux
in the transverse direction is zero, requiring that, near the upper wall, the mean transverse
velocity (V) > 0. There is a turning point in the lower half of the channel where (V) < 0. We
find good agreement between the model from Stroock et al. (2002a) and our experimental
measurements, which indicates that although we do not satisfy A/L > 1, the theory still
captures the behavior well for /L = 0.98. We note that inside of the corrugations, Z < 0.1,
the experimental measurements of |[(V)| decrease because they are averaged over the entire
cross-section, where a portion is the solid corrugated surface.

Taking (V) /{U), we obtain the ratio of the net flux in the transverse direction compared to
the axial direction, or the direction of the applied pressure gradient. In particular, (V)/(U) =
—1 indicates that the the flow direction is parallel to the grooves, at an angle 7/4. We find
that, nearby the corrugations and for a given Z, the ratio of (V)/{U) is more negative for
A/L = 0.98 than /L = 1.87, indicating that shorter wavelengths produce a larger flux
in the transverse direction. This observation is found for both the theory presented in this
work and that of Stroock ef al. (2002a) and for the experimental measurements. We note
that this observation is for tracer particles. For larger particles (1/a = O(1)), Chase ef al.
(2022) shows that transverse displacement depends non-trivially on the interaction between
the particle size and surface corrugation wavelength.

4.3. Helical motion of neutrally buoyant tracer particles

We plot the experimental three-dimensional trajectories of tracer particles for A/L = 1.87
and 0.98 in Fig. 7a. The three-dimensional motion is helical, where the pitch of the helix is
the wavelength of the corrugated surface. This helical trajectory is distinct from the helical
streamlines described by Stroock et al. (2002a,b), where the pitch of the helix spans several
wavelengths and the diameter is the width of the channel. The mechanism for both of these
helical trajectories is due to the corrugated surface, however, the helix we measure is due
to the changes in pressure over one wavelength, while the helix measured by Stroock et al.
(2002a,b) is due to the confining lateral walls driving flow along the corrugations near the
corrugated wall and in the opposite direction near the flat upper wall. Stroock et al. (2002a,b)
emphasize that the helicoidal flow field is useful for mixing in low-Reynolds-number flows in
channels. The smaller scale helical trajectories that we observe nearby the corrugated surface
are independent of the background helicoidal flow and could have implications for mixing
nearby a contaminated rough surface or transporting the species perpendicular to the rough
wall. Furthermore, this mixing occurs independent of the confining lateral channel walls,
and, therefore, is generic to flow over rough surfaces in any geometry.

Projecting the three-dimensional helical motion to the XY —plane, as shown in Fig. 7b, we



382
383
384
385
386
387

12

(@)

" 0.30

e

. = .
. et )
o LLTY .

B
Toreespepracett

..
(el

0.1
075 100 125 150 0.00 025 050 075 100 125 130
XL/A XL/A

.25

0.50

bl

Figure 7: Three-dimensional experimental helical trajectories of tracer particles. (a) Three-dimensional
particle trajectories over 1.54 for /L = 1.87 and 0.98 (see experimental methods in Sec. 3). (b) Projection
of of the three-dimensional trajectories to the XY -plane. (b) Projection of the three-dimensional trajectories
to the XZ-plane.
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Figure 8: Three-dimensional theoretical helical trajectories of neutrally buoyant point-particles. (a) Three-
dimensional particle trajectories over 64 for 1/L = 2,4, and 10. (b) Projection of of the three-dimensional
trajectories to the XY-plane. Z(0) = 0.3 for all trajectories.

see that the lateral displacement is larger for the smaller A/ L surface. In addition to the two-
dimensional measurements that we reported earlier, here we have experimental measurements
of the particle’s trajectory in the Z—direction (Fig. 7c). We find that the oscillations in the
Z—direction are larger for the longer wavelength surface, /L = 1.87, despite the smaller

lateral displacement.
Our theoretical model allows us to further explore the full ramifications of the three-
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Figure 9: Trajectories of tracer particles near corrugated surfaces. (a-b) Particle trajectories in the (a) XY —
plane and (b) X Z— plane for a surface with wavelength 1/L = 2 and roughness € = 0.1 and different initial
particle-surface distances Z(0). The gray shaded areas in (a) indicate the height of the underlying surface
(see colormap in Fig. 3(a)). Gray areas in (b) indicate the surface from the side. (c) Slope of the particle drift
in the XY —plane as a function of wavelength A2/L and for different initial particle-surface distances Z(0).
The symbols indicate the slopes of the trajectories starting at (X = 0,Y = 0,Z = Z(0)). The dotted lines
correspond to the theoretical prediction of the slope (Eq. (4.3)) by using Z = Z(0) and the solid lines are
the predictions using the average distance (Z) as input for Eq. (4.3).

dimensional flow and the potential effect of mixing due to the corrugations. We explore
the effect of wavelength on the trajectories of tracer particles following the streamlines in
pressure-driven flow in a channel with one corrugated surface and one planar surface, without
confining lateral walls.

We denote by r(t) = [x(1),y(t),z(t)]T the position of a particle at time 7. Rescaling
length scales by L, time scales by L/U, and velocities by GL?/2u, the equation of motion
(neglecting hydrodynamic interactions, i.e., point-like particles) obeys:

((11—? =Z(1-2)ex +eUV (R) + 2UP (R), (4.2)
where capital letters represent the rescaled variables. For a pressure-driven flow between two
planar walls (corresponding to U") = U?) = 0) the particle displacements are AX(T) =
TZ(0)(1 - Z(0)) and AY(T) = AZ(T) = 0, where Z(0) denotes the initial position at time
T = 0. The particle trajectory near a corrugated wall is obtained by numerically evaluating
Eq. (4.2).

In Fig 8a, we show helical trajectories for A/L = 2, 4,and 10 starting at a position
Z(0) = 0.3. We find that the theoretical predictions agree qualitatively with our exper-
imental measurements in that the shortest wavelength surfaces produce the largest drift
(Fig. 8b), while having the smallest changes in Z (Fig. 8a). Quantitative comparison
between experimental and theoretical three-dimensional trajectories will be influenced by
the confining lateral walls in our experiments. Additionally, to compare the net drift of
our experimental three-dimensional trajectories with the theoretical predictions, longer
experimental trajectories will provide more robust measurements of the net drift, which
we leave to future work.

4.4. Hydrodynamically-induced drift

Most importantly, we find that the particle trajectories are oscillatory and display an overall
hydrodynamically-induced drift along the surface corrugations. To quantify this behavior
further, we have performed simulations for various initial positions Z(0) and wavelengths A/ L
and extracted the slope a of the trajectories, see Fig. 9. Our results indicate that the slope
of the trajectories, irrespective of Z(0) or A/L, is negative, and hence, the particles have a
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net displacement along the surface grooves. This qualitative behavior is in agreement with
experiments of colloidal particles nearby surface corrugations, e.g., Choi & Park (2007); Hsu
et al. (2008); Choi et al. (2011). The magnitude of the slope becomes smaller for increasing
wavelength A/L and particle-surface distance Z(0) (Fig. 9c). We further approximate the
slope @ of the trajectories by integrating the velocities U and V over one wavelength and
taking the ratio:

P vx, Y, 2)dx E(1-2)v?
a = = — s
Moy, zax z(-2)+e(1-2)0;

(4.3)

where (7(52) and \752) are constants. The slope @ depends on the dimensionless wavenum-
ber K, the roughness €, and the vertical coordinate Z. We find that the displacement is largest
nearby the corrugations and that the effect is strongest for short wavelength surfaces. For
long wavelength surfaces, the transport in the simulated trajectories becomes independent
of the Z—position. The prediction for the slope @ with Z = Z(0) explains fairly well the
drift of particles for small 2/L obtained from our simulations, however, it deviates from the
data for larger 1/ L (Fig. 9c). We note that the vertical motion of the particle varies along its
trajectory, which affects the overall drift (Fig. 9b). Therefore, we replace Z by its distance (Z)
averaged over the surface wavelength A/L in Eq. (4.3), which allows for a better description
of the slope a.

Finally, we again stress that the presented theory is valid for channels of infinite width, so
that we do not observe circulating flows in our theoretical results (Stroock et al. 2002a,b;
Stroock & McGraw 2004). In channels with lateral side walls, the experimental near-surface
helical flows reported in this work are in addition to the circulating flows along the channel
length. In our experiments, we estimate that the pitch of the helix of the channel-scale
helicoidal flow is = 20 cm, or = 3004, compared to the pitch of the near-surface helical
flows, 4 = 600 um (see Appendix A).

5. Conclusions

We have shown, theoretically and experimentally, that low-Reynolds-number pressure-driven
flow between a flat wall and a parallel corrugated wall, whose corrugations are tilted with
respect to the applied pressure gradient, leads to three-dimensional helical streamlines nearby
the corrugated surface. Using a perturbation approach for small surface amplitude, our results
reveal that, on the scale of each corrugation, the pressure gradients generated by the surface
corrugations drive transverse flows generating the helical streamlines. These near-surface
flows are in addition to the helicoidal recirculating flows previously studied that are generated
by the lateral confining walls of microfluidic channels (Stroock et al. 2002a,b; Stroock &
McGraw 2004).

We find that the roughness-induced pressure builds up approaching a surface ridge and
drops in front of a surface groove. These oscillations in the pressure field induce an oscillatory
velocity along the flow direction which is faster above the surface grooves than the surface
ridges. The velocity in the transverse direction is directed across the ridges and along the
grooves and is largest nearby the surface. We find good qualitative agreement between our
theory focusing on the scale of one corrugation and our experimental velocity measurements
obtained by particle image velocimetry. Furthermore, we find good quantitative agreement
between the mean velocities measured in our experiments and those reported by Stroock
et al. (2002a), which account for confining lateral walls. Both our theory and the theory
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of Stroock et al. (2002a) find that short wavelength surfaces induce larger transverse flows
nearby the corrugates surface, which our experiments confirm.

By tracking tracer particles moving nearby the surface corrugations, we observe three-
dimensional skewed helical trajectories, where the particle drifts along the corrugations
when close to a groove, while it moves across the corrugations in the presence of a ridge.
Overall the particles display a net drift along the surface corrugations, which depends on
surface wavelength and particle-surface distance. Our experimental measurements of the
helical trajectories show that for longer wavelength surfaces, despite larger oscillations along
the channel height, the net drift is smaller than it is for shorter wavelength surfaces. This
observation is in agreement with our theoretical predictions.

Our findings rationalize earlier experimental observations on the motion of colloids (Choi
& Park 2007; Hsu et al. 2008; Choi et al. 2011) and biological cells (Qasaimeh ef al. 2017)
nearby corrugated surfaces and demonstrate that particle drift and oscillatory motion can
be generated solely by the presence of the corrugated surface, independent of the lateral
confining walls. Furthermore, these behaviors appear to be generic across different systems,
ranging from pressure driven flows (Choi & Park 2007; Hsu ef al. 2008; Choi et al. 2011;
Qasaimeh et al. 2017) to particle sedimentation (Chase et al. 2022).

The helical flows reported in this work might have implications for near-surface mixing.
Their three-dimensional nature also demonstrates that patterned surfaces influence particle
motion independent of the helicoidal flows generated due to confining walls (Stroock et al.
2002a,b; Stroock & McGraw 2004).

Theory and experiments capturing the finite size of the particles are required to fully
assess the helical nature of particle trajectories in pressure-driven flow. It may also be
interesting to study the effect of different surface shapes, such as, e.g., randomly structured
topographies (Charru et al. 2007; Kurzthaler et al. 2020), or particle shapes (Uspal et al. 2013;
Georgiev et al. 2020) on the observed flow patterns and trajectories. Understanding these
aspects could provide novel ways to manipulate flow and, thereby, particle motion, which
could be potentially useful for future technological and biomedical applications involving
mixing and sorting.
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Appendix A. Transverse flows in corrugated channels with side walls

We consider a closed microfluidic channel of width w and height L, which has a corrugated
surface topography on the lower channel wall. The surface corrugations are characterized by
a wavelength A and tilted at an angle 6 relative to the applied pressure drop. The expressions
for the mean axial and transverse velocities in the xy—plane for a thin (w > L), closed
channel with shallow grooves (eL <« L) (shown in Fig. 6) are from Stroock et al. (2002a).
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The mean axial (u) and transverse (v) velocities are given by

_60 (3, 0 ) ((L-2) (2 Zen)

(u) = T (1 5€ (1 K)) (—L2 ), (A la)
60 (3z(L-7) L- .

(v) = 625 (EZ(L2 D _ 2LZ) (K — K.)sinfcosb, (A 1b)

where K = K, cos? 6 + K| sin® @ and Zoff = ZeffL COS> 0 + Zeff| sin” 6. The expressions for K|,
K1, Zefr|» and zefr, are

K“ =—-1+ s (A2a)
A : L 2 2nL 2
sinh (%) - (%)
2L
27 ©OSh (T)
KJ_:—1+_7T ’ (Azb)
Z sinh (Z”TL)
1 2
Zeff| = 5Ky Le, (A20)
1
ZeffL = EKiLe? (A 2d)

To compare the near surface helical flows that we measure in this work with the helicoidal
flow due to lateral confinement, we compute the expression from Stroock et al. (2002a),

€’ (K) - K.)cosOsin@
1-€2(3/2-K)
where € is the angle between the axial direction of the flow and the direction of flow just
below the flat top of the channel. The pitch of the helix is then defined as
w
tan Q'

The pitch of the helix of the channel-scale helicoidal flow is = 20 cm for our channels of
widths w = 320 and 615 pm, which is three orders of magnitude larger than the scale of
the near-surface helical flows reported here, which have a pitch on the scale of the surface
wavelength 4 = 600 ym.

tanQ =

) (A3)

p= (Ad)
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