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We study the capillary rise of viscous liquids into sharp corners formed by two surfaces
whose geometry is described by power laws, hi(x) = cix

n, i = 1, 2, where c2 > c1

for n > 1. Prior investigations of capillary rise in sharp corners have shown that the
meniscus altitude increases with time as t

1/3, a result which is universal, i.e., applies
to all corner geometries. The universality of the phenomenon of capillary rise in sharp
corners is revisited in this work through the analysis of a partial di↵erential equation for
the evolution of a liquid column rising into power-law-shaped corners, which is derived
using lubrication theory. Despite the lack of geometric similarity of the liquid column
cross-section for n > 1, there exists a scaling and a similarity transformation that are
independent of ci and n, which gives rise to the universal t1/3 power-law for capillary
rise. However, the prefactor, which corresponds to the tip altitude of the self-similar
solution, is a function of n, and it is shown to be bounded and monotonically decreasing
as n ! 1. Accordingly, the profile of the interface radius as a function of altitude
is also independent of ci and exhibits slight variations with n. Theoretical results are
compared against experimental measurements of the time evolution of the tip altitude
and of profiles of the interface radius as a function of altitude.
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1. Introduction

The invasion of a wetting liquid against gravity into a narrow vertical conduit, called
capillary rise, is a classical illustration of the e↵ects of capillarity (de Gennes et al. 2004).
Historically, the phenomenon was a recurring subject of experimentation and speculation,
e.g., Hooke (1661), Hauksbee (1706), Jurin (1717), and Laplace (1806), before it was
finally attributed to the capillary pressure that arises due to the curvature induced by the
contact angle formed by the liquid with the interior surface of the conduit. A viscous liquid
driven by capillary e↵ects into a tube of uniform cross-section experiences a constant
driving pressure and increasing viscous dissipation, and thus advances di↵usively as t1/2

(see Bell & Cameron (1906); Lucas (1918); and Washburn (1921)). Di↵erent dynamics
are observed when the tube cross-section, which a↵ects the capillary pressure and viscous
dissipation, varies axially; for example, the advancement of the meniscus into tube with
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an expanding conical geometry exhibits a t
1/4 power-law for the meniscus position as a

function of time (Reyssat et al. 2008).
Flow into open channel geometries di↵ers from flow into closed conduits due to the

replacement of a solid boundary by a free interface. The geometry of the flow conduit is no
longer fixed, and consequently the curvature of the liquid-air interface, the cross-sectional
area, and flow rate are no longer fully determined by the geometry of the solid surfaces.
Instead, these quantities vary both axially and with time. In the simplest cases the flow
can be modeled by a one-dimensional partial di↵erential equation(PDE). For example,
analyses of low-Reynolds-number, unidirectional flow in a sharp triangular corner have
been based on the Poisson equation, e.g., Ayyaswamy et al. (1974) and Ransoho↵ &
Radke (1988), and the continuity equation relating the axial derivative of flow rate to
the time derivative of the cross-sectional area of the conduit then is used to obtain the
dynamics, e.g., Lenormand & Zarcone (1984). For cases in which the geometry of the
conduit changes with time due to elastocapillary deformations, additional power laws for
capillary rise have been identified by Duprat et al. (2011) and Di et al. (2016).
When a liquid partially filling a triangular corner of interior angle ✓i has a contact

angle ✓ with the adjacent solid walls such that ✓ < (⇡ � ✓i)/2 (the condition identified
by Concus & Finn (1969)), the liquid spontaneously spreads along the corner due to
capillarity. For such flows in the absence of gravity, Romero & Yost (1996) and Weislogel
& Lichter (1998) analyze the dynamics and identify a similarity solution, which reveals
that the meniscus advances as t1/2. Warren (2004) identifies di↵erent power laws for the
spreading of a liquid drop of fixed volume into triangular corner. When the Concus-Finn
condition is satisfied, liquid will rise in triangular corners against gravity and approach a
hyperbolic equilibrium profile, as originally documented by Taylor (1710) and Hauksbee
(1712). Under such circumstances, the tip of the liquid in the corner rises to a theoretically
infinite height as t1/3 according to a similarity transformation presented by Tang & Tang
(1994) and Higuera et al. (2008). This power law for capillary rise applies to corners whose
shapes are described by arbitrary power-laws h(x) / x

n, with n > 1, and not just to
corners with straight walls (n = 1, linear corners), as shown experimentally and argued
theoretically by Ponomarenko et al. (2011). The universality of this power law was later
corroborated by Zhou & Doi (2020) using a PDE derived using the Onsager principle to
describe capillary rise into symmetric power-law-shaped corners. Table 1 summarizes the
contributions of prior investigations to the understanding of the dynamics of capillary
rise in sharp power-law corners.

The initial study of capillary flow in sharp corners by Tang & Tang (1994) was
motivated by the practical need to eliminate air bubbles when filling thin tubes, and since
then there has been continued interest in the design of both open and closed channels
with sharp interior corners to leverage capillary action for precise flow control, e.g.,
Weislogel & Lichter (1998); Gurumurthy et al. (2018); Berthier et al. (2019). Studies
of capillary flow in confined geometries also aid in the understanding of imbibition in
porous media, e.g., Cai et al. (2022), and wicking in textiles, e.g., Duprat (2022), which
are often characterized by irregularly shaped conduits with a wide range of length scales.

Our aim is to present a derivation using the lubrication approximation of a model
of capillary rise in power-law-shaped corners, discuss how self-similarity arises in the
phenomenon, and highlight those aspects of the phenomenon that are universal, i.e.,
independent of the corner geometry, while pointing out those that are not. The paper
is organized as follows. In section 2, we describe the geometry of the corner and of
the liquid cross-section in horizontal planes. In section 3, we introduce equations that
model the flow of a liquid in a narrow channel, and we specialize the equations for the
case of capillary rise in section 4. In section 5, we scale variables to render the problem
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Reference Equation Rate of Rise Column Geometry

Tang and Tang (1994) n = 1 n/a n/a

Higuera et al. (2008) n = 1 Exp, Num: n = 1 Exp, Num: n = 1

Ponomarenko et al. (2011) n/a Exp: n = 1, 2, 3 n/a

Zhou and Doi (2020) n > 1 (symmetric) Num: n = 1, 2 Num: n = 1, 2

Current Work n > 1 (generalized) Exp: n = 2 Exp: n = 2

Table 1. Contributions to the understanding of the universality of capillary rise of a liquid into
a sharp corner whose geometry is described by a power-law h(x) / xn. In the references listed
in this table, the self-similarity of the phenomenon and the t1/3 rate of rise of the meniscus are
reported. It is indicated whether the reference presented a time evolution equation describing
capillary rise in a corner, and whether confirmation of the power-law for capillary rise and the
shape of the liquid column were provided. The powers n of each of the contributions are listed,
in addition to whether those contributions consisted of experimental measurements (Exp) or
numerical results (Num) obtained by solving the governing PDE.

dimensionless, present a similarity transformation that reduces the PDE to an ordinary
di↵erential equation (ODE), and briefly discuss the universal and self-similar aspects
of the problem. The time evolution of the rising meniscus at early times is modelled
in section 6. Section 7 describes the experimental set-up and compares experimental
measurements with theoretical predictions. Section 8 concludes the paper.

2. Geometry

2.1. Power-law corners

We consider the flow of a liquid into a sharp corner created by two surfaces of possibly
di↵erent geometry. The surfaces are in contact along the z-axis, which is oriented such
that the acceleration of gravity is �gez, as depicted in figure 1(a). A schematic of the
horizontal cross-sectional geometry is shown in figure 1(b). In the cross section, the
surfaces contact at the origin, and their locations are given by

hi(x) = cix
n
, i = 1, 2 n > 1, (2.1)

where n is a real number greater than or equal to one, and the geometric parameters ci
have dimensions of [Length]�(n�1). We impose the condition c2 > c1, where the inequality
is necessary so that the surfaces do not coincide but the ci may have the same sign. The
thickness of the gap formed by the surfaces is

h(x) = h2(x)� h1(x) = cx
n
, (2.2)

where c = c2 � c1.
Before moving forward, we discuss the applicability of this simple corner geometry,

i.e., corners formed by power-law surfaces with a single exponent n, to understanding
corners with more varied and complex geometries. One may consider the case in which
each surface has a di↵erent power, hi(x) = cix

ni , e.g., with n2 > n1. However, this case
reduces to h(x) = h1(x) = c1x

n1 as x ! 0 since x
n2 ⌧ x

n1 . Furthermore, any arbitrary
(smooth) surface profile may be approximated by a Taylor series expansion near x = 0,
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(a) (b)

Figure 1. Geometry of a power-law corner. (a) Fluid column in the gap formed by two surfaces
which meet at vertical line. Gray lines indicate the liquid-solid and liquid-air interfaces. (b)
Diagram of a planar cross-section. The corner is located at the origin and it is formed by two
surfaces which are located at h2(x) and h1(x). The width of the liquid column is w(z, t) and the
radius of the liquid-air interface is s(z, t).

which yields a power series. Taking the limit as we approach the corner, we may keep
only the leading-order term and thus use a power law to describe the surface geometry.
Therefore, we focus our investigations on power-law corners with a single exponent,
n1 = n2 = n, so that we may capture the essential features of the phenomenon while
maintaining brevity.

2.2. Scaling of the dimensions of the liquid cross-section

In this section, we examine the geometry of the liquid cross-section to identify scaling
relationships between its various geometrical descriptors. The width of the column w(z, t)
is the minimal value of x of the liquid-air interface, and it is a function of the altitude z

(figure 1). The liquid-air interface in the cross-section can assumed to be a circular arc
with radius s(z, t). The use and justification of this assumption in the context of capillary
rise will be discussed in greater detail in section 4. We anticipate that the liquid column
is long and narrow such that the triple line at which the liquid, solid, and air meet is
nearly parallel to the z-axis. Therefore, the angle made by the liquid-air interface and
the solid surface in the horizontal cross-section is approximated to be the equilibrium
contact angle ✓ of the liquid, which is assumed to be constant.

In the remainder of this section, we will identify the relationship between the interface
radius s(z, t), the width w(z, t), and the equilibrium contact angle ✓. In particular, we
show below that, in certain limits, the radius and width scale as

2s(z, t) cos ✓ ⇠ cw
n(z, t) = h(w(z, t)) or w(z, t) ⇠ [2c�1

s(z, t) cos ✓]1/n (n > 1)
(2.3)

and s(z, t) ⌧ w(z, t), which will enable the use of lubrication theory in section 3.
By defining the horizontal positions of the triple lines on the upper and lower surfaces



Capillary rise in sharp corners 5

as x2(z, t) and x1(z, t), respectively (see figure 1(b)), we find that

x2(z, t) = w(z, t) + s(z, t)[1� sin (✓ + �2(x2(z, t)))] (2.4a)

x1(z, t) = w(z, t) + s(z, t)[1� sin (✓ � �1(x1(z, t)))], (2.4b)

where �i(x) = tan�1(h0
i(x)), with h

0
i(x) = dhi/dx, are the angles measured from the x-

axis to the lines tangent to the solid surfaces. Then, by defining the center of the circular
arc of the interface as (xc(z, t), yc(z, t)), we can write

yc(z, t) + s(z, t) cos(✓ + �2(x2(z, t))) = h2(x2(z, t)) (2.5a)

yc(z, t)� s(z, t) cos(✓ � �1(x1(z, t))) = h1(x1(z, t)). (2.5b)

Subtracting the two preceding equations yields the geometrical relationship

s(z, t)[cos(✓ + �2(x2(z, t))) + cos(✓ � �1(x1(z, t)))] = h2(x2(z, t))� h1(x1(z, t)). (2.6)

For the case n = 1, in which case c is dimensionless, we can take the xz-plane to be the
symmetry plane of the corner without loss of generality such that h0

2(x) = �h
0
1(x) = c/2,

�2(x) = ��1(x) = tan�1(c/2) and

x1(z, t) = x2(z, t) = w(z, t) + s(z, t)
h
1� sin

⇣
✓ + tan�1 c

2

⌘i
. (2.7)

Then, (2.6) becomes

2s(z, t) cos
⇣
✓ + tan�1 c

2

⌘
= h

⇣
w(z, t) + s(z, t)

h
1� sin

⇣
✓ + tan�1 c

2

⌘i⌘
. (2.8)

By using the definition in (2.2), we obtain

2s(z, t) cos
⇣
✓ + tan�1 c

2

⌘
= cw(z, t) + cs(z, t)

h
1� sin

⇣
✓ + tan�1 c

2

⌘i
. (2.9)

Rearranging and considering the limit c ⌧ 1, we find

2s(z, t) cos ✓ ⇠ cw(z, t) = h(w(z, t)) or w(z, t) ⇠ 2c�1
s(z, t) cos ✓ (n = 1). (2.10)

For the case n > 1, the surfaces are tangent to the xz-plane at x = 0 and the
limx!0 �i(x) = 0. As xi(z, t) ! 0 for i = 1, 2, we find that x2(z, t) ⇠ x1(z, t) ⇠
w(z, t) + s(z, t)(1� sin ✓) and (2.6) simplifies to

2s(z, t) cos ✓ ⇠ h(w(z, t) + s(z, t)(1� sin ✓))= c[w(z, t) + s(z, t)(1� sin ✓)]n, (2.11)

where the last equality comes from applying the definition of h(x) in (2.2). Since both
s(z, t) ! 0 and w(z, t) ! 0, we anticipate that terms on the right-hand side of (2.11)
with powers of s2(z, t) or greater are insignificant compared to the s(z, t) term on the
left, and thus consider the balance

2s(z, t) cos ✓ ⇠ cw
n(z, t) + cnw

n�1(z, t)s(z, t)(1� sin ✓)). (2.12)

By rearranging terms, we find that in the limit cnwn�1(z, t) ⌧ 1,

2s(z, t) cos ✓ ⇠ cw
n(z, t) = h(w(z, t)) or w(z, t) ⇠ [2c�1

s(z, t) cos ✓]1/n (n > 1).
(2.13)

Therefore, in the limit as xi(z, t) ! 0 for i = 1, 2, s(z, t)/w(z, t) ! 0. Due to the results
(2.10) obtained for n = 1 and (2.13) for n > 1, we may use the relation in (2.3) stated
at the start of this section for n > 1 when cnw

n�1(z, t) ⌧ 1. In the n = 1 case, certain



6 K. Wu, C. Duprat, and H. A. Stone

conditions on the corner geometry (i.e., a small interior angle) must be satisfied. In the
n > 1 case, c may vary, but for a given value of c we require the dimension of the liquid
cross-section to be su�ciently small.
The results derived in this section may be understood through the context of geometric

similarity. When two shapes are geometrically similar, corresponding angles and dimen-
sionless ratios between linear dimensions are identical, so that the shapes are scaled
versions of each other. Geometric similarity of the liquid cross-sections holds only for
n = 1. When n > 1, s(z, t) and w(z, t) are not directly proportional (see (2.3)), and the
ratio s(z, t)/w(z, t) ! 0 as the cross-section shrinks to a point. Geometric similarity is
also closely tied to the nature of the constant parameters ci (and c). When n = 1,
the cross-sections are geometrically similar because the ci, which are dimensionless
descriptors of the geometry, are constant. However, when n > 1, the definition of

geometric similarity is no longer met because there are constant quantities c
�1/(n�1)
i

with units of [Length], which leads to dimensionless parameters that vary with the
size of the cross-section. Perhaps surprisingly, the introduction of parameters ci with
physical dimensions when n > 1 does not preclude the presence of self-similarity in the
phenomenon of capillary rise in sharp corners. This result will be discussed in greater
detail in section 5.

Finally, we note that by assuming a cross-section of the form in figure 1(b), we implicitly
assume that, if the liquid does not extend to z ! 1, the location of the maximum height
of the fluid is located on the z-axis (x = y = 0), where the two surfaces make contact.
However, this is not necessarily true at early times. Work by Higuera et al. (2008) and
by Ponomarenko et al. (2011) show that in the initial stages of capillary rise into a sharp
corner, the maximum meniscus altitude is located at some finite x. Higuera et al. (2008)
develop a model using lubrication theory which reveals that in a linear corner the location
of maximum altitude approaches x = 0 as t�1/3. Ponomarenko et al. (2011) use an organ
model and find that in corners of general geometry the e↵ective radius of the leading
meniscus decreases as t

�1/3. Given the scaling (2.3) between the interface radius and
the width, the location of the maximum altitude is expected to approach the corner as
t
�1/3n, as we discuss more below. Experiments and numerical simulations performed by
Higuera et al. (2008) find that the location of the maximum is e↵ectively located at x = 0
for long times. Therefore, the geometric description of the liquid column given in this
section is appropriate when considering the dynamics of capillary rise in a sharp corner
at long times when the liquid has assumed a long and narrow geometry. Capillary rise at
early times is considered separately. A model based on the work of Higuera et al. (2008)
is developed for corners with n > 1 in section 6, where we show this t�1/3n power law.

3. Flow in a narrow open channel

In this section, we derive the equation governing the flow of a liquid into a sharp corner.
We consider the case in which the liquid occupies a long and narrow space, in particular
with Ly ⌧ Lx ⌧ Lz, where Lx, Ly, and Lz represent the characteristic length scales of
velocity variations in their respective directions. The ratios of the characteristic length
scales in the cross-sectional plane with that in the primary direction of flow are small,
Lx/Lz ⌧ 1 and Ly/Lz ⌧ 1. Thus, we may apply the lubrication approximation, in which
we consider the flow to be approximately unidirectional, u = uz(x, y, z, t)ez and pressure
gradients in the xy-plane to be negligible compared to those in the z-direction. Thus,
the pressure p = p(z, t) responsible for flow in the channel is approximately a function
of z alone (i.e., independent of x and y) and time, t. Such use of lubrication theory is
standard in the modeling of many long and narrow flows, such as capillary flow in sharp
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corners, e.g., Tang & Tang (1994), Weislogel & Lichter (1998), Higuera et al. (2008),
Zhou & Doi (2020), etc.

The corner is an open channel, meaning that the liquid flowing in it is not entirely
confined by solid surfaces. As a result, the cross-sectional area of the liquid column is a
function of both z and t due to the evolution with time of the liquid-air interfaces that
comprise the remainder of its boundary. As such, the equation of continuity assuming
incompressibility is, e.g., Lenormand & Zarcone (1984),

@A

@t
= �@Q

@z
, (3.1)

where A(z, t) is the area of the liquid cross-section and Q(z, t) is the volumetric flow rate
in the axial direction.

A practical constraint for problems involving flow into a corner from a reservoir is that
the volume of liquid in the column is finite for finite time, e.g., Romero & Yost (1996)
and Weislogel & Lichter (1998),

Z 1

0
A(z, t)dz < 1 for 0 6 t < 1. (3.2)

This finite volume condition results in the boundary conditions (5.9) and (5.10) below,
which are derived in Appendix B and presented in section 5, for the ODE obtained by
applying a similarity transformation to the governing equation (4.6) derived in section 4.
The area of the cross-section is found by integrating the height of the gap over the width
of the liquid column w(z, t),

A(z, t) =

Z w(z,t)

0
h(x)dx =

c

n+ 1
w

n+1(z, t), (3.3)

in which higher-order terms due to the curvature of the interface in the xy-plane have
been neglected since we consider the limit s(z, t)/w(z, t) ⌧ 1.
The flow rate is calculated by integrating the axial velocity over the area of the liquid

cross-section. Due to the separation of length scales, Ly ⌧ Lx ⌧ Lz, the gradients of
the axial velocity in the x- and z-directions are negligible in comparison to that in the
y-direction, and we may write for the axial velocity:

@
2
uz

@y2
=

1

µ

@p

@z
, (3.4)

where µ is the dynamic viscosity and p(z, t) is the pressure. Lubrication theory was
applied in this way in the plane of the cross-section by Zhou & Doi (2020). We impose
the no-slip boundary conditions at the bounding surfaces,

uz(x, h2(x), z, t) = uz(x, h1(x), z, t) = 0, (3.5)

and find that the velocity profile is parabolic:

uz(x, y, z, t) = � 1

2µ

@p

@z

⇥
�y

2 + [h2(x) + h1(x)]y � h1(x)h2(x)
⇤
. (3.6)

The corresponding expression for the velocity distribution given by Zhou & Doi (2020)
(see their equation (2.9)) for a symmetric gap is recovered when we set c2 = �c1 = c/2.
The flow rate is calculated by integrating the velocity over the cross-section,

Q(z, t) =

Z w(z,t)

0

Z h2(x)

h1(x)
uz(x, y, z, t)dydx = � 1

12µ

@p

@z

c
3

3n+ 1
w

3n+1(z, t). (3.7)
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Although the velocity field depends on the parameters ci corresponding to the individual
surfaces, the flow rate depends only on the combined geometric parameter c of the gap.
Thus, the approximations of the area and the flow rate are una↵ected by the asymmetry
of the corner and depend only on the total thickness of the gap h(x), a result which
may be expected due to the narrow geometries required in the application of lubrication
theory.

Making use of (2.3), we can write (3.3) and (3.7) in terms of the interface radius,

A(z, t) =
21+1/n

n+ 1
c
�1/n[s(z, t) cos ✓]1+1/n and (3.8a)

Q(z, t) = � 1

3µ

@p

@z

21+1/n

3n+ 1
c
�1/n[s(z, t) cos ✓]3+1/n

. (3.8b)

Inspecting equations (3.3), (3.7), and (3.8) and knowing that s / cw
n, we observe that

A / ws and Q / ws
3. One may arrive at the scaling of the area by using a reasonable

estimate of the area of the cross-section as a product of characteristic length scales in
orthogonal directions. The scaling for the flow rate may be expected from analysis of
the classical problem of unidirectional viscous flow in a channel with a high-aspect-ratio
(Ly ⌧ Lx) rectangular cross-section (Boussinesq 1868). When n = 1, s / w, there is
geometric similarity, and the scaling of the area and flow rate may described by a single
length scale A / w

2 / s
2 and Q / w

4 / s
4. When n > 1, there is no geometric similarity,

and both the area and flow rate scale with fractional powers of the linear dimensions. The
proper dimensions for both quantities are achieved by the inclusion of the appropriate
power of the geometric parameter c characteristic of the corner geometry.
Rewriting the continuity equation (3.1) using the expressions (3.8), we arrive at

@

@t

h
s
1+1/n(z, t)

i
=

cos2 ✓

3µ

n+ 1

3n+ 1

@

@z


s
1+1/n(z, t)

@p

@z

�
. (3.9)

The finite volume condition becomes
Z 1

0
s
1+1/n(z, t)dz < 1 for 0 6 t < 1 (3.10)

which is used to obtain boundary conditions for (3.9) (see Appendix B for detailed
derivations) and will be presented later in section 5 (see (5.9) and (5.10)).

In the next section, these equations are specialized for capillary rise by substituting
the appropriate expression for the pressure gradient. The relevant boundary condition is
also provided.

4. Capillary rise

We examine capillary rise against gravity, or flow due to the Young-Laplace pressure,
arising from the curved liquid-air interface and conservative gravitational body forces. As
originally noted by Tang & Tang (1994), the flow is driven due to gradients in the modified
pressure (Batchelor 1967). Due to the long and narrow geometry of the liquid column,
the axial curvature is negligible, and the mean curvature of the interface determined
primarily by the curvature in the horizontal cross-section. Since the pressure is constant
in the xy-plane, the mean curvature must be the same at every point of the interface in
the cross-section. So, the interface in the cross-section is taken to be a circular arc with
radius s(z, t), and the modified pressure is

p(z, t) = � �

s(z, t)
+ ⇢gz. (4.1)
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At a given time t, we expect the interface to converge to its equilibrium shape for
which the Young-Laplace pressure balances the hydrostatic pressure as we approach the
reservoir. Furthermore, at a given altitude z, we expect capillary pressure and hydrostatic
pressure to balance at long times. These conditions are expressed as

s(z, t) ⇠
`
2
cg

z
as z ! 0 or t ! 1 (4.2)

or in terms of the width of the column,

w(z, t) ⇠
 
2c�1

`
2
cg cos ✓

z

!1/n

as z ! 0 or t ! 1 (4.3)

where `cg =
p
�/⇢g is the capillary length.

Since the radius is a hyperbolic function of the altitude z in (4.2), it is implied that
that capillary rise in sharp corners never reaches an equilibrium in the current model.
Realistically, capillary rise changes due to other e↵ects such as van der Waals forces,
which become important for small enough length scales. We note that the profile of the
meniscus is hyperbolic as reported by Hauksbee (1712) only for the case n = 1.
In the equilibrium profile (4.3), the first and second derivatives of the width become

large as we approach the reservoir. In this limit, the assumptions that the inclinations of
the triple lines are insignificant and that the axial curvature of the interface is negligible
are invalid. Then, the angle of the liquid-air interface with the solid boundaries would
no longer be approximately equal to the equilibrium contact angle, and due to the
contributions of the axial curvature to the mean curvature of the interface, (4.2) would
no longer hold. Furthermore, the axial curvature would not necessarily be identical
everywhere on the interface in the cross-section, which would lead to deviations of the
interface from a circular arc.
We may identify conditions for the validity of these assumptions by estimating the

inclinations and axial curvature given the equilibrium profile (4.2). The first derivative
of the width dw/dz can be used to approximate the magnitude of the slope of the triple
line, which is thus found to be O(w/z). The axial curvature may approximated by the
second derivative of the width,

d2w

dz2
=

n+ 1

n2

(2c�1
`
2
cg cos ✓)

1/n

z2+1/n
=

n+ 1

n2
w

�1
⇣
w

z

⌘2
(4.4)

where we have used the equilibrium relation between w and z (4.3). Therefore, the axial
curvature and any perturbations to a circular interface of radius s(z, t) are O((w/z)2).
Corrections to the shape and mean curvature of the interface at equilibrium for the n = 1
case are provided by Tang & Tang (1994). Corrections for general n > 1 are not included
here.

Going forward, we omit the functional dependence of variables for brevity. The axial
gradient of the pressure (4.1) is

@p

@z
=

�

s2

@s

@z
+ ⇢g =

�

s2

✓
@s

@z
+

s
2

`2cg

◆
. (4.5)

Using (4.5) in (3.9) we obtain the equation describing capillary rise in a power-law
corner:

@

@t

⇣
s
1+1/n

⌘
=
� cos2 ✓

3µ

n+ 1

3n+ 1

@

@z


s
1+1/n

✓
@s

@z
+

s
2

`2cg

◆�
. (4.6)
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The time evolution equation (4.6) prior to non-dimensionalization may be compared
with equation (3.6) of Zhou & Doi (2020), which is an equivalent equation written in
terms of the column width (see appendix A) and involves both c and n. We note that
with the choice of the interface radius s(z, t) as the dependent variable, equation (4.6)
is independent of details of gap geometry aside from the power n in the coe�cients: the
fractional exponents simplify upon distribution of the derivatives, and the parameter c

does not appear. The limited influence of the corner geometry is reminiscent of the initial
proposal by Ponomarenko et al. (2011) of a universal law for capillary rise in corners and
the later observation by Zhou & Doi (2020) that tip dynamics are independent of c. The
next section is dedicated to identifying the aspects of capillary rise in sharp corners that
are universal and those that are not by analyzing equation (4.6).

5. Scaling and a self-similar solution

5.1. Scaling

Equation (4.6) is made dimensionless by scaling lengths and time using

z̃ =
z

`cg(cos ✓)1/2
, s̃ =

(cos ✓)1/2s

`cg
, and t̃ =

�(cos ✓)1/2t

3µ`cg
. (5.1a,b,c)

Due to the absence of c from (4.6), characteristic scales are used here that are
independent of c, or alternatively independent of the length scale c

�1/(n�1) (n > 1)
of the corner geometry. A similar choice of characteristic scales for time and altitude
was made by Ponomarenko et al. (2011), which reflects the expected universality of
the phenomenon. For ease of comparison with other statements of this capillary rise
problem, e.g., Higuera et al. (2008) and Zhou & Doi (2020), the scaling and similarity
transformation for the equivalent expression of (4.6) in terms of the width w(z, t) is given
in Appendix A.
Applying the scaling (5.1a,b,c) leads to the equation

@

@ t̃

⇣
s̃
1+1/n

⌘
=

n+ 1

3n+ 1

@

@z̃


s̃
1+1/n

✓
@s̃

@z̃
+ s̃

2

◆�
, (5.2)

subject to the conditions

s̃(z̃, t̃) ⇠ 1

z̃
as z̃ ! 0 or t̃ ! 1 (5.3)

and Z 1

0
s̃
1+1/ndz̃ < 1 for 0 6 t̃ < 1. (5.4)

5.2. Similarity solution

We observe that the problem described in (5.2), (5.3), and (5.4) is invariant under the
one-parameter family of scaling transformations

ẑ = �z̃ t̂ = �
3
t̃ ŝ = �

�1
s̃, (5.5a,b,c)

thus we know that there is a similarity solution of the form, e.g., Bluman & Kumei (2013)
and Debnath (2005),

�(⌘) = t̃
1/3

s̃(z̃, t̃) where ⌘ = t̃
�1/3

z̃. (5.6)
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(a)(a) (b)

Figure 2. Solutions to the ODE (5.7) (a) The dimensionless tip altitude ⌘⇤ as a function of n.
The values of ⌘⇤ corresponding to the first few integer n are listed in the inset table. A complete
table can be found in appendix C. In the limit n ! 1, �0(⌘⇤) ! ⌘⇤ ⇡ 1.4326. (b) The function
�(⌘) obtained by numerically solving the ODE. The condition for hydrostatic equilibrium (5.8a),
�(⌘) = 1/⌘, is shown in black.

Applying the transformation produces the ODE

�1

3
⌘
d

d⌘

⇣
�
1+1/n

⌘
=

n+ 1

3n+ 1

d

d⌘


�
1+1/n

✓
d�

d⌘
+ �

2

◆�
(5.7)

with the conditions

�(⌘) ⇠ 1

⌘
as ⌘ ! 0 and (5.8a)

Z 1

0
�(⌘)1+1/nd⌘ < 1. (5.8b)

Following an argument (see Appendix B for details) similar to that presented by Romero
& Yost (1996) for capillary flow into a sharp horizontal groove, the inequality in (5.8b)
can be used to show that the liquid column extends to a finite altitude z

⇤ (or ⌘⇤ in
dimensionless terms) at which the cross-section reduces to a point,

�(⌘⇤) = 0, (5.9)

as well as to derive a boundary condition at this location,

�
0(⌘⇤) = � 3n+ 1

3(n+ 1)
⌘
⇤
. (5.10)

Analogous conditions were also adopted by Weislogel & Lichter (1998). Higuera et al.

(2008) and Zhou & Doi (2020) derive an equivalent boundary condition expressed in
terms of a function approximating the profile of the column near the tip. The ODE (5.7)
was solved numerically using (5.8a), (5.9), and (5.10) (see Appendix C for details). The
dimensionless tip altitude ⌘⇤ for a series of integer n are plotted in figure 2(a). Figure
2(a) contains an inset table listing the ⌘⇤ corresponding to the first few values of n,
and a complete table is provided in Appendix C. In the limit as n ! 1, the boundary
condition (5.10) implies that �0(⌘⇤) ! �⌘⇤. By numerically solving the ODE, we find
that limn!1 ⌘

⇤ ⇡ 1.4326 (see figure 2(a)). The corresponding solutions �(⌘) are plotted
in figure 2(b).
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5.3. Self-similarity and universality

This section briefly discusses the existence of self-similar and universal aspects of cap-
illary rise in sharp corners. In the language of Barenblatt (2003), phenomena are similar
if they di↵er only in the values of their corresponding physical parameters while their
corresponding dimensionless parameters are identical. This is the natural generalization
of geometric similarity in which dimensionless quantities like angles and length ratios are
preserved while a shape is scaled. Furthermore, we say that phenomena are self-similar
when there exists a time- or space-dependent scaling of dimensional quantities for which
the phenomenon becomes invariant. Self-similar phenomena are characterized by power-
law growth and the existence of similarity transformations through which it is possible to
reduce the number independent variables and in this case obtain an ODE from a PDE.
Self-similarity is often observed in the propagation of persistent singularities, such as the
motion of contact lines at the edges of spreading drops, e.g., Eggers & Fontelos (2015). A
common feature of self-similar phenomena is universality, since self-similarity is usually
observed in the intermediate asymptotic regime in which both initial conditions and the
large scale structure of the solution are irrelevant. The term “universal” is used here to
refer to features of capillary rise in sharp corners that do not depend on corner geometry,
or in other words that are common for all powers n and geometric parameters c.
As discussed in section 2, there is an additional length scale c�1/(n�1) characteristic of

the corner geometry when n > 1, and the liquid cross-section lacks geometric similarity
due to the existence of dimensionless quantities that are not constant as the size of the
cross-section is varied. The system also fails to satisfy the definition of physical similarity
for the same reason. However, when written in terms of the interface radius, the cross-
sectional area and flow rate (3.8) scale with the same power of c, and thus c does not
appear in the evolution equation expressed in terms of the interface radius (4.6) even
prior to non-dimensionalization. As noted previously, the fractional exponents in (4.6)
and (5.2) simplify upon distribution of the derivatives, and information about the corner
geometry remains only in the power n in the coe�cients. It becomes apparent that there
is a similarity transformation (5.6) that is independent of c and n, and so we confirm
the universality of t1/3 proposed by Ponomarenko et al. (2011). That is, the tip altitude
advances with the same power of t for all corner geometries:

z
⇤

`cg(cos ✓)1/2
= ⌘

⇤
✓
�(cos ✓)1/2t

3µ`cg

◆1/3

, (5.11)

or

z̃
⇤ = ⌘

⇤
t̃
1/3

. (5.12)

The scaling of the tip altitude with time in (5.11) is equivalent to the result in Zhou & Doi
(2020) (see their equation (3.25)) up to factors of n despite di↵erences in the choices of
characteristic lengths in the intervening scaling step and in the form of the ODE obtained
by similarity transformation. In (5.11) and (5.12), the constant c is absent. However, due
to the dependence of the prefactor and dimensionless tip altitude ⌘⇤ on n, the rate of
capillary rise is not truly universal. The prefactor ⌘⇤ of the power law varies with n

because n appears in the coe�cients of the nonlinear evolution equation (4.6) and in the
boundary condition (5.10). The quantity ⌘⇤ decreases monotonically with the power n,
and its value is bounded between approximately 1.6718 and 1.4350 for 1 6 n < 1 (see
figure 2(a)). Zhou & Doi (2020) also report that variations in the prefactor are small
based on values obtained up to n = 5, which are tabulated in their table 1.
In summary, we anticipate that capillary rise proceeds as t1/3 for all c and n, and that

the rates of capillary rise in corners characterized by the same power n are the same
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regardless of the values of c. Furthermore, we can identify another feature shared by
liquid columns rising in corners. For a given n, the profiles of the interface radius s as
a function of the axial coordinate z are identical regardless of the value of c, and they
all share the same self-similar profile. Experimental data is presented in section 7 that
illustrate these results.
In the next section, we examine the early stages of capillary rise. Power laws for the

evolution of geometric features of the meniscus are identified that depend di↵erently
on the geometry of the corner than those presented for capillary rise at late times
in which the liquid geometry is long and narrow. The following result suggests that
the corner geometry a↵ects the dynamics of capillary rise in ways that are not always
straightforward.
6. Capillary rise at early times

In this section, we examine the early stages of the capillary rise phenomenon using
a formulation of the problem in terms of the altitude of the meniscus Z(x, t). The
developments in this section follow Higuera et al. (2008) who reported an analogous
calculation for linear corners. It is found that the maximum altitude of the meniscus does
not coincide with the line of contact of the surfaces forming the corner. This problem
also admits a similarity solution, which reveals the rates at which the maximum altitude
of the meniscus increases and at which the location of this maximum approaches the
corner.

6.1. Model

First, by applying lubrication theory and making use of the separation of scales Ly ⌧
Lx and Ly ⌧ Lz, we write the velocities averaged over the gap height

(ux, uz) = �h
2(x)

µ

✓
@p

@x
,
@p

@z

◆
0 < z < Z(x, t), x > 0 (6.1)

where p(x, z, t) is the pressure driving the flow. The pressure is approximately constant
in the y-direction as a result of the geometry, and the velocity uy is negligible, uy/ux ⌧ 1
and uy/uz ⌧ 1. The corresponding flux in each direction is

(qx, qz) = �h
3(x)

µ

✓
@p

@x
,
@p

@z

◆
0 < z < Z(x, t), x > 0. (6.2)

Using (2.2), we substitute for the gap height (x)

(ux, uz) = �c
2
x
2n

µ

✓
@p

@x
,
@p

@z

◆
0 < z < Z(x, t), x > 0 (6.3)

(qx, qz) = �c
3
x
3n

µ

✓
@p

@x
,
@p

@z

◆
0 < z < Z(x, t), x > 0. (6.4)

For an incompressible flow, mass conservation requires @qx/@x+ @qz/@z = 0, or

@

@x

✓
x
3n @p

@x

◆
+ x

3n @
2
p

@z2
= 0 0 < z < Z(x, t). (6.5)

At the edge of the corner where the surfaces contact, we expect the velocity and flux to
vanish, or equivalently

@p

@x
! 0 as x ! 0. (6.6)

The reference pressure is

p(x, z = 0, t) = 0, (6.7)
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and a pressure boundary condition holds at the interface:

p(x, z = Z(x, t), t) = �2� cos ✓

cxn
+ ⇢gZ(x, t) (6.8)

where it has been assumed that axial contributions to mean curvature are negligible and
that the interface is approximately circular in horizontal cross-sections, and the definition
(2.2) and asymptotic relation (2.3) have been applied. We assume that the meniscus is a
material surface that travels with the average velocity, DZ/Dt = uz, in which case

@Z

@t
� c

2
x
2n

µ

@p

@x

@Z

@x
+

c
2
x
2n

µ

@p

@z
= 0 at z = Z(x, t). (6.9)

If we begin with the initial condition

Z(x, t = 0) = 0, (6.10)

then the characteristic scale in the vertical direction is small compared to that in the
horizontal direction, Lz ⌧ Lx and we may use lubrication theory to simplify (6.5) and
(6.9) to

@
2
p

@z2
= 0 0 < z < Z(x, t), x > 0, and (6.11)

@Z

@t
+

c
2
x
2n

µ

@p

@z
= 0 at z = Z(x, t). (6.12)

6.2. Scaling and Similarity Solution

Scaling the lengths by

(z̃, Z̃) =
(z, Z)

`cg(cos ✓)1/2
and x̃ =

x

⇥
2c�1`cg(cos ✓)1/2

⇤1/n (6.13a,b)

and pressure and time by

p̃ =
p

⇢g`cg(cos ✓)1/2
and t̃ =

�(cos ✓)1/2t

3µ`cg
, (6.14a,b)

we obtain the system

@
2
p̃

@z̃2
= 0 0 < z̃ < Z̃(x̃, t̃), x̃ > 0 (6.15a)

p̃(x̃, z̃ = 0, t̃) = 0 (6.15b)

p̃(x̃, z̃ = Z̃(x̃, t̃), t̃) = � 1

x̃n
+ Z̃(x̃, t̃), (6.15c)

@Z̃

@ t̃
+ 12x̃2n @p̃

@z̃
= 0 at z̃ = Z̃(x̃, t̃), and (6.15d)

Z̃(x̃, t̃ = 0) = 0. (6.15e)

Solving (6.15a) with (6.15b) and (6.15c) yields the solution for the pressure

p̃(x̃, z̃, t̃) =
z̃

Z̃(x̃, t̃)

✓
Z̃(x̃, t̃)� 1

x̃n

◆
. (6.16)
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(a)(a) (b)

Figure 3. Similarity solution for capillary rise at early times. (a) Locations ⇠⇤ of the
maximum of the function ⇣(⇠) as a function of n. (b) Profiles of ⇣(⇠) for di↵erent n.

Substituting the expression for the pressure (6.16) into (6.15d), we obtain

@Z̃

@t
= 12x̃n

 
1� Z̃(x̃, t̃)x̃n

Z̃(x̃, t̃)

!
, (6.17)

which can be solved with the initial condition (6.15e) to find

�x̃
n
Z̃(x̃, t̃)� ln[1� x̃

n
Z̃(x̃, t̃)] = 12x̃3n

t̃. (6.18)

We observe that (6.18) is invariant under the one parameter family of scaling transfor-
mations

x̂ = �x̃ t̂ = �
�3n

t̃ Ẑ = �
�n

Z̃. (6.19a,b,c)

Therefore, there is a similarity transformation

⇣(⇠) = t̃
�1/3

Z̃(x̃, t̃) where ⇠ = t̃
1/3n

x̃ (6.20)

through which we obtain

�⇠n⇣ � ln(1� ⇠
n
⇣) = 12⇠3n. (6.21)

The solution for ⇣(⇠) can be written using the Lambert W -function

⇣(⇠) = ⇠
�n
h
1 +W

⇣
�e

�1�12⇠3n
⌘i

. (6.22)

6.3. Evolution of the maximum meniscus altitude

Taking the derivative of (6.21) with respect to ⇠, and setting ⇣ 0(⇠) = 0, we find that
there is a maximum ⇣

⇤ located at ⇠⇤ such that

(⇠⇤)n⇣⇤
✓

1

1� (⇠⇤)n⇣⇤
� 1

◆
= 36(⇠⇤)3n. (6.23)

The location ⇠⇤ of the maximum is shown in figure 3(a), and the corresponding solutions
to (6.21) are shown in figure 3(b). Also, it is possible to examine (6.21) to determine how
the location and value of the maximum depends on the power n.
It can be shown that ⇣⇤ ⇡ 2.0200 for all n and that ⇠⇤ ! 1 as n ! 1. By defining

� = ⇠
n
⇣, we can write (6.21) and (6.23) as

�3�⇤ � 3 ln(1� �
⇤) = 36(⇠⇤)3n (6.24a)
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and

�
⇤
✓

1

1� �⇤ � 1

◆
= 36(⇠⇤)3n. (6.24b)

In writing (6.24a), we have used the fact that if (6.21) applies for all ⇠ and ⇣(⇠), it must
be true at ⇠⇤ and ⇣⇤. Then, noting that the expressions on the right sides of (6.24a) and
(6.24b) are identical, we set the left sides equal,

�
⇤
✓

1

1� �⇤ � 1

◆
= �3�⇤ � 3 ln(1� �

⇤) (6.25)

and find that �⇤ ⇡ 0.6450. Then, we use (6.24a) or (6.24b) to solve for (⇠⇤)n, and we
conclude that (⇠⇤)n ⇡ 0.3193. (⇠⇤)n is a constant, so ⇠⇤ ! 1 as n ! 1. Furthermore, by
using the definition of �, we find that ⇣⇤ = (⇠⇤)�n

�
⇤ ⇡ 2.0200, which is constant for all

n. We observe these features in figure 3(b).
Due to (6.20), we find that the location of the maximum moves towards x̃ = 0 as

x̃
⇤ = ⇠

⇤
t̃
�1/3n

, (6.26)

where the prefactor ⇠⇤ is a function of n. Using physical quantities,

x
⇤

⇥
2c�1`cg(cos ✓)1/2

⇤1/n = ⇠
⇤
✓
�(cos ✓)1/2t

3µ`cg

◆�1/3n

. (6.27)

The maximum meniscus altitude increases as

Z̃
⇤ = ⇣

⇤
t̃
1/3

. (6.28)

or

Z
⇤

`cg(cos ✓)1/2
= ⇣

⇤
✓
�(cos ✓)1/2t

3µ`cg

◆1/3

. (6.29)

Therefore, in the early stages of capillary rise, we expect the rate at which the meniscus
rises (6.29) to be universal, that is, independent of c and n. However, the rate at which
the location of the maximum altitude approaches the corner (6.27) depends on both c

and n.

7. Experiments

7.1. Methods

Experiments were conducted in order to measure the rate of capillary rise at late times
as well as the shape of the liquid column in a quadratic corner (n = 2), which was formed
by the contact of a cylinder and a flat plate. A closed contour centered at x = 0, y = ±bi

with geometry described by (Stone 2005)

x
m + y

m
i = b

m
i (7.1)

where m is a positive, even integer and yi = y ⌥ bi creates a surface at

hi(x) ⇠ ±cix
n (7.2)

where n = m and

ci = ± 1

mb
m�1
i

. (7.3)

Corners were created by pressing a flat plate (b1 = 1) to a circular cylindrical tube
(m = 2) of radius b2 = b, both made of glass, so that the corner is formed by surfaces at
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(b)(a) (c)

Figure 4. Rise of a liquid column in the corner formed by a cylinder and a plate (n = m = 2).
(a) Graphical rendering of fluid interface viewed from an angle. (b) Image of the liquid column
from an experiment with a view orthogonal to the plate. Scale bar is 10 mm. (c) Geometry of
a horizontal cross-section of a liquid column between a cylinder and plate.

Dynamic Viscosity Density Surface Tension Capillary Length Contact Angle

µ [mPa s] ⇢ [g/mL] � [mN/m] `cg [mm] ✓ [�]

Silicone Oil 16.7 0.950 19.2 1.44 0

Mineral Oil 28.6 0.838 27.1 1.82 20

Table 2. Relevant properties of the liquids used in experiments.

h2(x) ⇠ cx
2 with c = 1/2b and h1(x) = 0 . Experiments were performed for two di↵erent

cylinder radii, b = 4 mm and b = 9 mm. Figure 4(a) shows a schematic of the liquid
column rising in such a configuration. Pairs of magnets placed at two axial locations
were used to hold the tube and plate in contact. Prior to the experiments, the glass was
cleaned using ethanol and distilled water.

Experiments were performed using silicone oil (Sigma Aldrich, Product Number
378348) and mineral oil (Sigma Aldrich, Product Number 330779), whose properties
are listed in table 2. The oils were dyed using fluorescent automotive dye (The Dow
Chemical Company, Fluorescent Yellow 131SC) at concentrations of 5 µL per 20 mL for
mineral oil and 20 µL per 20 mL for silicone oil. For imaging, the liquid was illuminated
with 365 nm UV light. An experimental image of the illuminated liquid column is shown
in figure 4(b). Due to the use of fluorescent dye, the pixels corresponding to the liquid
have much greater intensity values compared to those corresponding to the background.
The tip altitude is identified by locating the steep gradient in pixel intensity between
the background and the liquid.

Experiments were recorded using a DSLR camera (Nikon, D5100) oriented so that the
focal plane was parallel with the plate. Videos were acquired at 30 frames per second
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Figure 5. Location of the tip of the liquid column as a function of time. Data are shown for b = 9
mm in red and b = 4 mm in blue. Solid lines indicate data for silicone oil and dashed lines indicate
data for mineral oil. (a) With dimensions and plotted on linear axes. (b) Non-dimensionalized
and plotted on log-log axes. The function (5.12) with the value of ⌘⇤ = 1.5761 (for n = 2) is
shown as a solid black line.

using a resolution of 1920 ⇥ 1080 pixels, and images were calibrated using an object of
known size in the focal plane. Typical resolutions were around 17 pixels per mm.
Trigonometric relations were used to calculate the radius of the liquid-air interface from

the width. Figure 4(c) shows the cross-section of a liquid column between a cylinder of
radius b and a flat plate. The angle ↵ spanned by the wetted perimeter of the cylinder
cross-section is related to the corresponding wetted length a of the plate by the equation

a

b
= sin↵+ (1� cos↵) tan

↵

2
. (7.4)

The radius of the interface is related to the separation and the wetted angle by

s

b
=

1� cos↵

cos ✓ + cos(✓ + ↵)
. (7.5)

When ✓ = 0, we recover the result given by Princen (1969) for a cylinder in contact with
a plate.

7.2. Results and discussion

In this section, results of the experiments are reported and discussed. Videos were
analyzed to obtain two types of data: (1) the location z

⇤(t) of the tip of the liquid
column as a function of time, and (2) profiles of the interface radius s(z, t) as a function
of the axial coordinate for selected times.
The location of the tip as a function of time is shown in figure 5 for two di↵erent oils

and two di↵erent cylinder radii. The altitude of the tip is plotted as a function of the
time on linear axes in figure 5(a). Figure 5(b) shows the same data scaled using (5.1a,b,c)
and plotted on logarithmic axes along with the solution (5.12) using the dimensionless
tip altitude ⌘⇤ = 1.5761, which corresponds to n = 2. In figure 5(a), we observe that
the trajectories for a single fluid (silicone oil) in corners created by cylinders of two
di↵erent radii are nearly coincident prior to scaling, which supports the hypothesis that
the cylinder radius does not a↵ect the evolution of the tip altitude. Since (5.1a,b,c) does
not involve the gap geometry, this overlap persists in figure 5(b) after the tip altitude
and time have been non-dimensionalized. Although the oils have di↵erent viscosities,
capillary lengths, and contact angles, the trajectories all collapse onto the same curve
after scaling.
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Figure 6. Interface radius as a function of altitude rescaled using (5.1a,b,c). Data are shown
for b = 9 mm in red and b = 4 mm in blue. The equilibrium profile (5.3) is shown in black.
(a) Data acquired for silicone oil (✓ = 0) at t̃ = 4450, 8900, 13350, 22250 for both radii. (b)Data
acquired for mineral oil (✓ = 20�) at t̃ = 6750, 10120, 13490, 20240.

The comparison in figure 5(b) shows that it requires a time of 102 � 103µ`cg/� in
order to approach the similarity solution, which is natural owing to the time required to
evolve into a slender flow configuration and to enter the regime in which the interme-
diate asymptotics are relevant. Other possible contributors to the initial transients are
discussed by Quéré (1997) and Clanet & Quéré (2002). At long times, the tip progresses as
approximately t̃

1/3, which agrees with experimental and numerical results due to Higuera
et al. (2008) for linear corners, and with experimental observations of Ponomarenko et al.

(2011) for power-law corners with linear, quadratic, and cubic (n = 3) corners.
We further investigate the validity of the model by examining the interface radius as a

function of the altitude at di↵erent times. Figure 6 shows profiles of the interface radius
at di↵erent times acquired for cylinder radii b = 4 mm and b = 9 mm using silicone
oil (figure 6(a)) and mineral oil (figure 6(b)). The data is shown rescaled according to
(5.1a,b,c). For the data acquired using both oils, we observe that the tip altitudes for
both radii at each of the times are nearly coincident, which is to be expected given the
agreement in figure 5. In figure 6(a), the profiles acquired using silicone oil for the two
radii also nearly overlap. This agreement between rescaled data for cylinder radii that
di↵er by more than a factor of two suggests that the corner geometry a↵ects neither the
interface radius nor the tip altitude and supports the use of the characteristic scales in
(5.1a,b,c), which do not depend on the geometric constant c.
However, there are discrepancies between the profiles for di↵erent radii for the data

acquired using mineral oil in figure 6(b). Although there is good agreement between
the profiles for the di↵erent radii near the tip, the two sets of profiles diverge as they
approach the reservoir. The improved agreement towards the tip of the column may be
attributed to greater accuracy at higher altitudes of the approximations associated with
the assumption of a long and narrow column geometry. Specifically, the assumption is
made that the incline of the triple line is negligible and thus the angle between the free
surface and the solid surface is the contact angle ✓, and this assumption leads to the
relation (2.3). When the contact angle is zero, which is the case for the data shown
in figure 6(a) obtained using silicone oil, the angle in the cross-section and the contact
angle are the same, but the di↵erence between them would become more significant as
the contact angle increases, e.g. when mineral oil, which has a contact angle of 20�, is
used.
Then, we proceed to test the validity of the similarity solution using the experimental
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Figure 7. Interface radius as a function of altitude at dimensionless times
t̃ = 4450, 8900, 13350, 22250, 35600 for silicone oil with b = 9 mm. (a) Non-dimensionalized
profiles. The equilibrium profile (5.3) is shown in black. (b) Profiles transformed using (5.6).
The solution to the ODE (5.7) with n = 2 is shown in black.

Figure 8. Interface radius as a function of altitude from experiments using di↵erent oils and
cylinder radii. Data are shown for b = 9 mm in red and b = 4 mm in blue. The profiles have been
transformed using the similarity transformation (5.6). The solution to the ODE (5.7) shown in
black. (a) Data acquired for silicone oil (✓ = 0�) at t̃ = 4450, 8900, 13350, 22250 for both radii
and additionally t̃ = 35600 for b = 9 mm. (b) Data acquired for mineral oil (✓ = 20�) at
t̃ = 6750, 10120, 13490, 20240.

data. Figure 7 shows the profiles of the interface radius at five di↵erent times for silicone
oil rising in a corner created using a cylinder of radius b = 9 mm. In figure 7(a), the
profiles after scaling with (5.1a,b,c) and prior to applying the similarity transformation
(5.6) are shown. As in figure 6, we observe that the tip altitude advances with time and
that the profile extends to greater altitudes while gradually converging to the equilibrium
curve (5.3). After applying the transformation in (5.6), the curves at the di↵erent times
collapse onto the solution of (5.7).

In the results presented and discussed thus far, it is apparent that experimental data
departs from the theoretical predictions near the advancing front. In figure 5(b), we
observe that the scaled tracks of the tip altitude lie slightly below the prediction (5.12)
obtained by scaling and solving the di↵erential equation. This behavior was also observed
by Higuera et al. (2008), who found that the ODE solution overestimated the measured
front location. The overestimation of the front location is related to the discrepancy
between the predicted and measured self-similar profiles in figure 7. Specifically, while
the measured profiles appear to collapse well with the similarity transformation, the



Capillary rise in sharp corners 21

self-similar curve departs from the theoretical curve near the tip of the column, such
that the location of the tip in the measurements ultimately falls short of the predictions.
Considering the simplifying assumptions used in the development of the model, there are
several possible reasons for why this may be the case. For example, it was assumed
that the contact angle always takes its equilibrium value, which may not be true
for an advancing liquid front. Furthermore, we have neglected van der Waals forces,
which become important at the small length scales found near the tip of the column.
Investigations by Gurumurthy et al. (2018) of the formation of tongues or rivulets of
liquids due to capillary rise in the sharp corners in closed polygonal capillaries show
that the size of the capillary influences the prefactor for the power law. E↵ects on the
equilibrium meniscus shape and the boundary condition near the reservoir (e.g., due to
confinement by solid walls in polygonal channels) may alter the dynamics and shape of
the rising column.

In figure 8, profiles of the interface radius, transformed according to the similarity
solution (5.6), from experiments conducted using silicone oil in corners created by two
cylinder radii b = 4 mm and b = 9 mm, are shown. In figure 8(a), we observe that
for experiments conducted using silicone oil, profiles of the interface radius for the two
cylinder radii, when transformed, collapse onto the same curve. However, as discussed
previously, the agreement is not perfect for the mineral oil experiments represented in
figure 8(b), which is likely due to the non-zero contact angle. The profiles for each cylinder
radius appear to be self-similar, but these self-similar profiles are distinct from each other
and from the theoretical curve except for the region close to the tip of the column.

8. Conclusion

We have investigated capillary rise of a liquid into a sharp corner formed by the contact
of two power-law surfaces hi(x) = cix

n, i = 1, 2 for n > 1. Lubrication theory was
used to derive the PDE describing the evolution of the liquid column in the corner
and investigated the e↵ects of corner geometry on various aspects of the phenomenon,
specifically rate of capillary rise and the geometry of the liquid column which is formed.
It is found that flow rate and area depend on the combined parameter c = c2 � c1,
and that when the evolution equation is expressed in terms of the interface radius s,
the parameter c is absent so that the corner geometry enters only through the power
n. Consequently, the characteristic scales for time, the altitude of the column tip, and
the interface radius are independent of the corner geometry, i.e., they are universal. In
addition, we identified a geometry-independent similarity transformation, confirming the
universality of the t

1/3 power-law of capillary rise. The prefactor ⌘⇤ in the power-law is
the dimensionless tip altitude, which depends only on n and monotonically decreases from
⌘
⇤ ⇡ 1.6718 at n = 1 to ⌘⇤ ⇡ 1.4378 as n ! 1. Due to the universality of the scaling and

the similarity transformation, the profiles of the interface radius for a given power n are
the same regardless of the value of c. These results are experimentally verified using oils
with di↵erent equilibrium contact angles, among other fluid properties. Measurements of
capillary rise generally agreed well with the theory, but some disagreement is observed
for the experimentally obtained profiles for a nonzero contact angle, indicating that the
contact angle a↵ects the limits of validity of the model.
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Appendix A

In this appendix, we formulate the capillary rise problem in terms of the width of the
liquid column for ease of comparison with prior treatments of this problem by Higuera
et al. (2008) and Zhou & Doi (2020). By substituting for the interface radius s(z, t) using
a rearrangement of (2.3),

s =
c

2 cos ✓
w

n
, (A 1)

the PDE (4.6) may be expressed as

@

@t

�
w

n+1
�
=
� cos2 ✓

3µ

n+ 1

3n+ 1

@

@z

⇢
w

n+1

⇣
c

2 cos ✓

⌘
@

@z
(wn) +

⇣
c

2 cos ✓

⌘2 w
2n

`2cg

��
. (A 2)

The PDE (A2) corresponds exactly to equation (3.6) in (Zhou & Doi 2020). The finite
volume condition (3.10) is

Z 1

0
w

n+1(z, t)dz < 1 for 0 6 t < 1, (A 3)

and the boundary condition (4.2) becomes

⇢gz =
2� cos ✓

cwn
as z ! 0. (A 4)

Then, scaling the variables by

z̃ =
z

`cg(cos ✓)1/2
, w̃ =

w

⇥
2c�1`cg(cos ✓)1/2

⇤1/n , and t̃ =
�(cos ✓)1/2t

3µ`cg

(A 5a,b,c)
allows us to write (A 2), (A 3), and (A 4) in dimensionless form

@
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n+1
�
=

n+ 1

3n+ 1

@

@z̃

⇢
w̃

n+1
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@z̃
(w̃n) + w̃
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��
, (A 6)

Z 1

0
w̃

n+1(z, t)dz < 1 for 0 6 t < 1, (A 7)

and

z̃ =
1

w̃n
as z̃ ! 0. (A 8)

The PDE (A6) admits a similarity transformation of the form

w̃(z, t) = t̃
�1/3n

 (⌘) where ⌘ = t̃
�1/3

z̃, (A 9)



Capillary rise in sharp corners 23

by which we obtain the ODE

�1

3
⌘
d

d⌘

�
 
n+1
�
=

n+ 1

3n+ 1

d

d⌘


 
n+1

✓
d

d⌘
( n) +  

2n

◆�
(A 10)

and the conditions
Z 1

0
 
n+1(z, t)dz < 1 for 0 6 t < 1, (A 11)

and

⌘ =
1

 n
as ⌘ ! 0. (A 12)

As discussed in Appendix B, the finite volume condition implies that  becomes zero at
some finite ⌘⇤,

 (⌘) = 0 ⌘ > ⌘
⇤
. (A 13)

The boundary condition at the tip is

[ n(⌘)]0 = � 3n+ 1

3(n+ 1)
⌘
⇤
, (A 14)

and the solution near the tip behaves as

 (⌘) =


3n+ 1

3(n+ 1)
⌘
⇤(⌘⇤ � ⌘)

�1/n
(A 15)

which may be compared with (3.23) in Zhou & Doi (2020).

Appendix B

In this appendix, several consequences of the finite volume constraint (5.8b) are shown
following similar reasoning as that used by Romero & Yost (1996) in their analysis of flow
into a horizontal groove. First, it is shown that the extent of the liquid column is finite.
Then, a boundary condition at the liquid front is derived. For convenience we reproduce
the ODE (5.7), boundary condition (5.8a), and volume constraint inequality (5.8b) here:

�1

3
⌘

h
�
1+1/n(⌘)

i0
=

n+ 1

3n+ 1

h
�
1+1/n(⌘)

�
�
0(⌘) + �

2(⌘)
�i0

, (B 1a)

�(⌘) =
1

⌘
as ⌘ ! 0 and (B 1b)

Z 1

0
�
1+1/n(⌘)d⌘ < 1, (B 1c)

where primes indicate di↵erentiation with respect to the argument of the function. We
begin by noting that for a non-negative monotonically decreasing function �(⌘), (B 1c)
implies

lim
⌘!1

�(⌘) = 0, (B 2a)

lim
⌘!1

⌘�
1+1/n(⌘) = 0, and (B 2b)

lim
⌘!1

�
0(⌘) finite. (B 2c)
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A function �(⌘) may satisfy (B 2a) either by asymptotically approaching zero as ⌘
approaches infinity, in which case the function is nonzero (and positive) for all ⌘; or
by reaching zero at a finite value ⌘⇤ and remaining zero, in which case the function is
nonzero for the finite range 0 6 ⌘ < ⌘

⇤, or in other words the function has finite support.
It will be shown that functions � satisfying (B 1a) cannot asymptotically approach zero
and instead must become zero at some finite ⌘⇤, which is the location of the tip of the
liquid column. Then, a boundary condition at that location will be derived.
Making use of the equality [⌘�1+1/n(⌘)]0 = �

1+1/n(⌘) + ⌘[�1+1/n(⌘)]0, we rewrite the
left side of (B 1a) as
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where we have introduced the dummy variable ⇠. We rearrange terms,
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then integrate (B 4) from ⌘ to ⌘̃,
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which leads to
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Taking the limit of (B 6) as ⌘̃ ! 1 and applying (B 2a), (B 2b), and (B 2c), we eliminate
the first two terms on the left side,
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Then due to (B 1c)
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If �(⌘) approached zero asymptotically as ⌘ ! 1, then we would require
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1

3
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However, since �2(⌘) ! 0 as ⌘ ! 1 (a consequence of (B 2a)), (B 9) implies that
�
0(⌘) ! �1 as ⌘ ! 1, which contradicts (B 2c). Therefore, we conclude that �(⌘) must

become zero at some finite ⌘⇤ and remain zero as ⌘ increases; that is,

�(⌘) = 0 ⌘ > ⌘
⇤
. (B 10)

Now, we derive a boundary condition at ⌘⇤. Due to (B 10), we may let ⌘̃ = ⌘
⇤ in (B 6)

instead of taking the limit ⌘ ! 1,
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We proceed by defining a function f(⌘) such that

1

3

Z ⌘⇤

⌘
�
1+1/n(⇠)d⇠ = �

1+1/n(⌘)f(⌘), (B 12)

which is non-negative and monotonically decreasing. By applying L’Hôpital’s rule to
evaluate the limit of f(⌘) as ⌘ approaches ⌘⇤, it can also be shown that f(⌘) has the
property

lim
⌘!⌘⇤

f(⌘) = 0. (B 13)

Substituting (B 12) into (B 11) and dividing by �1+1/n(⌘), we are left with
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3
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Then, taking the limit of (B 14) as ⌘ ! ⌘
⇤ and applying (B 10) and (B 13), we obtain

the boundary condition

�
0(⌘⇤) = � 3n+ 1

3(n+ 1)
⌘
⇤
. (B 15)

Finally, we observe that this derivation is essentially equivalent to the method used by
Higuera et al. (2008) and Zhou & Doi (2020) to identify the boundary condition at the
tip of the liquid column. In the limit ⌘ ! ⌘

⇤, that is, when ⌘⇤ � ⌘ is small, the column
geometry is described by

�
0(⌘) = � 3n+ 1

3(n+ 1)
⌘
⇤
. (B 16)

Integrating and applying the boundary condition �(⌘⇤) = 0 yields the approximate
solution near ⌘ = ⌘

⇤,

�(⌘) =
3n+ 1

3(n+ 1)
⌘
⇤(⌘⇤ � ⌘), (B 17)

which has the same structure as the boundary conditions presented by Higuera et al.

(2008) and Zhou & Doi (2020) (see appendix A for further details).

Appendix C

The ODE for the self-similar profile of the liquid column (5.7) can be arranged as
follows to obtain a form more suited for numerical simulations:

�
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3n+ 1
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3
⌘ + �

2

◆
+

n+ 1

n
�
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. (C 1)

The shooting method was applied using the two conditions

�(⌘⇤) = 0 and (C 2)

�
0(⌘⇤) = � 3n+ 1

3(n+ 1)
⌘
⇤ (C 3)

to find the value of ⌘⇤ (to the fourth decimal place) for which the solution converged to
the equilibrium solution

�(⌘) =
1

⌘
(C 4)

as ⌘ ! 0. The results are tabulated in table 3.
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n ⌘⇤ (3n+ 1)/3(n+ 1)

1 1.6718 0.6667

2 1.5761 0.7778

3 1.5355 0.8883

4 1.5124 0.8667

5 1.4978 0.8889

10 1.4672 0.9394

20 1.4508 0.9683

30 1.4449 0.9785

50 1.4405 0.9869

100 1.4362 0.9934

200 1.4350 0.9967

500 1.4334 0.9987

3000 1.4329 0.9998

10000 1.4326 0.9999

20000 1.4326 1.0000

Table 3. Dimensionless tip altitudes ⌘⇤ and the magnitude of the numerical prefactor for
di↵erent n.

In order to avoid the singularity when �(⌘) = 0, the ODE was solved using the initial
condition

�(⌘⇤) = 1⇥ 10�11 (C 5)

instead of (C 2). Solutions were obtained using the NDSolve function in Mathematica,
Version 13.1 (Wolfram Research, Inc.).

REFERENCES

Ayyaswamy, P. S., , I. Catton & Edwards, D. K. 1974 Capillary flow in triangular grooves.
J. Appl. Mech. .

Barenblatt, G. I. 2003 Scaling . Cambridge University Press.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bell, J. M. & Cameron, F. K. 1906 The flow of liquids through capillary spaces. The Journal

of Physical Chemistry 10 (8), 658–674.
Berthier, E., Dostie, A.M., Lee, U.N., Berthier, J. & Theberge, A.B. 2019 Open

microfluidic capillary systems. Analytical Chemistry 91 (14), 8739–8750.
Bluman, G.W. & Kumei, S. 2013 Symmetries and Di↵erential Equations. Springer Science &

Business Media.
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