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Abstract

We review a selection of models for wormlike micelles undergoing reptation and chain

sequence rearrangement (e.g. reversible scission) and show that many di�erent assumptions

and approximations all produce similar predictions for linear rheology. Therefore, the inverse

problem of extracting quantitative microscopic information from linear rheology data alone

may be ill-posed without additional supporting data to specify the sequence rearrangement

pathway. At the same time, qualitative parameter estimates can be obtained equally well

from any of the models in question. Our study also provides a careful re-assessment of how

to best reconcile arti�cial chain sequence rearrangement pathways (such as Poisson renewal)

with physical processes like reversible scission.

1 Introduction

Wormlike micelles (WLMs) are polymer-like structures that self-assemble from small-molecule sur-

factants in aqueous solution [1, 2, 3, 4, 5, 6, 7]. In industrial applications, ranging from fast-moving

consumer goods to environmental cleanup, WLMs are often preferred to other self-assembled sur-

factant structures (e.g., spherical micelles or bilayer membranes) because the viscosity and elasticity
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of a WLM formulation can be adjusted over a wide range by tuning the salt concentration [8, 9,

10, 11]. Familiar applications of WLMs include home and personal care products like shampoos,

liquid soaps, and hand sanitizers [12, 13, 14]. In the late 1980s, experimental and theoretical

studies of WLM systems expanded considerably, covering both rheology and phase behavior across

many surfactant chemistries [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Three decades later, WLMs

remain a productive research area for the rheology community, and WLMs are often seen as a

`model polymer' platform for studying universal features of nonlinear polymer rheology, viscoelas-

tic �ow instabilities, and more [26, 27, 28, 29, 25, 30, 31]. At the same time, WLMs are distinct

from traditional covalently bonded polymers in that WLMs can break and reform reversibly, with

implications for structure (e.g. length distribution) and rheology.

As pertains to rheology, early conceptual breakthroughs provided valuable mechanistic insights,

beginning with the Cates model [15] of reptation with reversible chain scission. The most widely

cited conclusions of the Cates model are:

� A polydisperse mixture of WLMs relaxing by reptation will exhibit a single relaxation time

τ if the time it takes for a typical WLM to break τB is much faster than the time it would

take a typical WLM to relax by reptation in the absence of reversible scission reactions, τ̄rep.

� The single relaxation time in question is proportional to the geometric mean of the reptation

and breaking times, τ ∼ [τ̄repτB]
1/2 .

However, the full implications of the Cates model are much more nuanced; these two major results

alone are not su�cient to support a complete interpretation of linear rheological data for most

WLM systems, as one must consider at least four additional layers of complexity. There are: (1)

many chain sequence rearrangement pathways besides reversible scission [32, 30, 33]; (2) many

relaxation processes besides reptation [34, 35, 36]; (3) many WLM architectures besides �exible

linear chains, and (4) many distinct scaling regimes for di�erent relative values of τB and τ̄rep [23,

37, 38]. More challenging still, (5) the same set of nominal assumptions (e.g. reversible scission,

no loops or branching) can yield a library of candidate models using di�erent approximations and

seemingly unrelated mathematical machinery [15, 16, 34, 39].

In this paper, we will attempt to disentangle some of the complexities associated with (1), (4),

and (5) as enumerated above, comparing predictions from models that nominally cover similar

systems using di�erent mathematical machinery and/or di�erent representations of the underlying

physical processes. Direct comparisons to experimental data are not featured in this discussion,

since the models in question have been previously and independently validated in this regard. We

will assume the reader has a basic familiarity with Cates' 1987 theory and the physical picture

of reptation and reversible scission that it encodes, but no depth of knowledge regarding model

details or supporting mathematical machinery.
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The complexities of (2) and (3) are out of scope for our present study: we address only linear

chain architectures for which the primary relaxation mechanism in the absence of chain sequence

rearrangements (such as those caused by reversible scission) is reptation. However, we do acknowl-

edge the practical importance of understanding di�erent relaxation pathways (e.g. contour length

�uctuations, constraint release Rouse motion) and di�erent WLM architectures (loops, branches,

rods, networks), for which the main conclusions of the present study may not necessarily gener-

alize. A comparison of branched and unbranched WLM rheology will feature in a forthcoming

publication [40], and further comparisons must be left to future research.

The rest of this paper is structured as follows. To begin, section 2 reviews the existing space

of models, assumptions, and approximations for reptation and chain sequence rearrangement in

WLMs. In section 3 we use the `simplest' model [23] to generate benchmark calculations for direct

model/model comparisons to follow in sections 4�6: section 4 compares with di�erent versions of

the original `Poisson Renewal' (PR) model by Granek and Cates [16], section 5, compares with

di�erent versions of the `Pointer method' by Zou and Larson [34], and section 6 compares with a

double reptation shu�ing model by Peterson and Cates [23]. As a supplementary discussion, sec-

tion 7 summarizes key ideas in feature-parameter mapping for linear rheology of WLMs, including

the e�ects of intra-tube Rouse modes. The conclusions of sections 4 - 6 are summarized in section

8, where future research directions are discussed.

Overall, we �nd that the di�erent models of linear WLM rheology that we consider (all intending

to describe the same physical problem) are not distinct. By this we mean that if one of the models

is suitable to �t some experimental data, an equivalent �t can be obtained from any of the other

models (albeit with di�erent parameter inputs). On the basis of this conclusion, we argue that

experimentalists and formulation-scientists can be con�dent in choosing any one of these models

to extract usable qualitative formulation-property relationships for linear rheology data. The

di�erences between models do however matter, to whatever extent one is interested in using linear

rheology data for quantitative extraction of kinetic information, such as identifying a speci�ed

chain sequence rearrangment pathway (e.g., reversible scission vs. end attack) and the associated

rate constants. We �nd that the rearrangement pathway itself does not leave a clear signature

in the linear rheology data, and hence extracting quantitative formulation-property relationships

from linear rheology alone is likely an ill-posed problem. This highlights the need for separate

measurements (independent of linear rheology) to corroborate a proposed rearrangement pathway,

whenever such quantitative relationships are required.

3



2 Background

In this section, we will review the basic microscopic processes relevant to WLM rheology, estab-

lish a nomenclature for comparing modeling frameworks, and summarize the history and overall

landscape of linear constitutive models for WLMs.

2.1 Review of Microscopic Processes

WLMs are sometimes termed `living polymers', in that their chain-like structures (with contour

length vastly exceeding their diameter) resemble polymers, but instead of being formed from a

(terminating, generally irreversible) sequence of polymerization reactions, chains of varying molec-

ular weight are formed through a series of (non-terminating, reversible) self-assembly processes

[41, 42, 43]. One important self assembly process is reversible scission; the forward reaction sees

WLMs spontaneously breaking apart at some random contour position, and the reverse reaction

sees WLM ends merging together (cf. Figure 1(b)). At equilibrium, the principle of detailed bal-

ance requires that the overall rate of the forward process and the reverse process must be equal.

Assuming all WLM ends are equally reactive, the equilibrium number density distribution n(L) as

a function of WLM contour length L varies as n(L) ∼ exp(−L/L̄), where L̄ is the number-average

length of a WLM [15].

(b)

(a)

Figure 1: Graphical representations of important microscopic processes for WLMs. (a) Very long
WLMs can become entangled such that stress relaxation occurs primarily through reptation. (b)
The equilibrium molecular weight distribution of WLMs is determined by sequence rearrangement
processes like reversible scission, in which WLMs randomly break apart and recombine.

As the energy needed to break a WLM increases, the typical WLM length grows longer, with

an exponential dependence on the scission energy and a power law dependence on the concen-

tration [32, 44, 45]. When the WLMs become very long and are su�ciently concentrated, they
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become entangled with one another. For the purpose of this discussion, WLMs are entangled when

topological constraints between neighboring WLMs (arising because they cannot pass through one

another) strongly restrict the lateral motions of a typical WLM (Figure 1 (a)).

As a WLM di�uses along its own contour, it simultaneously evacuates previously occupied

portions of its tube on one side and creates new tube sections on the other. This process of

losing the original tube is intrinsically tied to stress relaxation and is known as reptation [46,

47] (see Figure 1(a)). The mechanistic interplay between reversible scission and reptation was

�rst considered by Cates [15], who argued that reversible scission speeds up stress relaxation by

converting slow-relaxing interior tube segments to fast-relaxing end segments with every scission

event. Note in Figure 1 that when WLMs break or combine, their con�ning tubes simply merge

or divide; there should be no net creation or destruction of tube segments from reversible scission

processes alone [39]. This remark will be important in section 4.3.

2.2 Terms and De�nitions for Comparisons

Having established the physical context of the problem at hand, there are a number of terms that

should be precisely de�ned before we can begin discussing and comparing di�erent WLM models.

Even readers who are deeply familiar with WLM models should read this section carefully, as

terms like �rearrangement�, �breaking time�, and �distinct� will take on speci�c meanings for the

purposes of this paper.

� Rearrangement Mechanisms � In section 2.1, we discussed reversible scission as one possi-

ble pathway for chain sequence rearrangement, through which sections of WLM chains are

randomly reassigned to di�erent contour positions and di�erent chain lengths. Other chain

sequence rearrangements are listed below. In principle, the choice of sequence rearrangement

pathway is independent of the choice of mathematical modeling framework (e.g. continuum

or stochastic).

� End attack (also known as �end interchange�): the end of a WLM can insert itself along

the length of a neighboring WLM, forming a temporary ternary branch point. The

branch point can then break apart, splitting o� a fragment from the WLM that was

originally attacked.

� Bond interchange: two WLM can fuse at some point along their contours, forming a

temporary quaternary branch point. The branch point can decay back to two linear

WLMs, exchanging material in the process.

� Shu�ing: an arti�cial rearrangement pathway in which WLMs are continuously and

randomly reorganized in a uniform way.
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� Poisson renewal: another arti�cial rearrangement pathway, analogous to shu�ing but

allowing non-uniform (length-dependent) rates of rearrangement.

� Rearrangement Mathematics � To simulate the rheology of WLM undergoing one of the

aforementioned rearrangement processes, there are two basic types of mathematical frame-

works that can be used. In principle, either framework can be used to equivalent e�ect (cf.

reversible scission [15, 39]), though in practice the details of each rearrangement processes

may naturally favor one approach over the other.

� Stochastic models: A stochastic model is de�ned in terms of a Langevin equation

(stochastic di�erential equation) for individual chain dynamics. Stochastic models (such

as the Pointer algorithm) are often more �exible, more intuitive, and more easily con-

structed, but can be computationally expensive compared to continuum models.

� Continuum models: A continuum model is de�ned in terms of continuous variables and

deterministic equations for ensemble-averaged quantities. Continuum models (such as

Poisson renewal and shu�ing) are often di�cult to set up, but they can be computa-

tionally e�cient compared to stochastic models.

� Breaking time � For a physical rearrangement pathway (e.g. reversible scission or end attack),

the "breaking time" τB is the average time for a WLM of average length to break. For

arti�cial sequence rearrangement pathways (e.g. shu�ing or Poisson renewal) the "breaking

time" τB is a measure of the mean rearrangement time for a typical tube segment, and cannot

necessarily be interpreted as a physical breaking time.

� Additive process � two stress relaxation processes A and B are `additive' if their contributions

to the relaxation modulus are determined independently and added together, i.e. G(t) =

GA(t) +GB(t).

� Physics vs. �tting � When comparing a data set with a model, the physics of the model

determine whether a good �t exists in principle, but whether a good �t can actually be found

is a separate question that also depends on the optimization engine used to search the model's

parameter space.

� Rheologically Distinct vs. indistinct models � Given two models, A and B, with supporting

parameter sets α and β, model A is indistinct from model B if for every parameter set α there

exists a parameter set β (and vice versa) such that A and B yield practically indistinguishable

viscoelastic outputs. Where this condition is not met, models A and B are distinct for some

portion of their respective parameter spaces.
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2.3 History and Landscape of WLM Models

In this section, we will provide a brief summary of the constitutive models that have been developed

to interpret the linear rheology of WLMs. Our goal is to place these models in their historical

context and discuss the factors that motivated their development. A summary perspective on

comparisons between models can be found in Appendix C.

Cates' initial work on reptation with reaction employed a stochastic modeling approach [15].

The model began by choosing a random point on a random chain and then simulating the processes

of reptation (1D random walk of a point particle) and reversible scission (changes in the length of

1D line interval) until the section of tube represented by the point particle relaxed (random walker

reaches an endpoint of the 1D interval). Simulating this process many times revealed a distribution

of tube survival times and a time-dependent overall tube survival probability P̄ (t). The stress

relaxation modulus G(t), which describes stress relaxation following a small step deformation,

can be computed by multiplying the tube survival probability by a shear modulus Ge, such that

G(t) = GeP̄ (t).

In principle it is possible to measure experimentally a relaxation modulus G(t), but a more

accurate and convenient measurement of the same information comes via the complex modulus

G∗(ω) for small amplitude oscillatory deformations at varying frequency ω. The relaxation modulus

G(t) and complex modulus G∗(ω) are related by the one-sided Fourier transform (OSFT), G∗(ω) =

iω

ˆ ∞

0

eiωtG(t)dt. The real/imaginary parts of G∗(ω) are termed the storage/loss moduli and

describe the elastic/viscous response of the material at varying frequencies. Both G(t) and G∗(ω)

measure the equilibrium (linear) viscoelastic response of a material, so the micelle size distribution

is not perturbed from equilibrium by these measurements. Studying not only G(t) but also G∗(ω)

has been a major preoccupation of every WLM modelling e�ort, at least since the work of Turner

and Cates [48]. It is worth noting that for stochastic models, executing an OSFT is an inherently

ill-conditioned problem [49].

A direct numerical evaluation of G∗(ω) for a WLM model was �rst developed by Granek

and Cates [16], who introduced a complicated multi-dimensional integral constitutive relation

(continuum model) for the relaxation modulus G(t). However, G(t) was never solved for directly;

instead, the authors showed that when an OSFT is applied to the constitutive relation itself, the

original PDE collapses into a simpler equation for G∗(ω) that is trivial to evaluate numerically.

The fact that continuum models deal with the OSFT problem so easily is a signi�cant advantage

of continuum models over stochastic models.

Granek and Cates also extended the basic reptation-only framework to include additional stress

relaxation processes, including contour length �uctuations (CLF) and intra-tube Rouse modes.

Both relaxation processes were introduced as piecewise continuous elements in a single-WLM
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relaxation modulus G0(t), e�ectively making them nonseparable from reptation in the original

Poisson renewal approach. This simpli�es the calculations, but in general the stress relaxation

from faster intra-tube Rouse modes can simply be added to the stress arising from entanglements,

provided1 the breaking time τB is much longer than the Rouse time of a single entanglement

segment τe [34, 39, 51, 52]. This means that one can independently choose models for relaxation

at the tube scale (reptation, CLF, etc.) and intra-tube scale (�exible, semi�exible, etc.) [34,

53, 54], and the contributions to the complex modulus G∗(ω) will be additive. We will therefore

restrict our focus to modeling tube-scale relaxation processes and, except for a brief discussion

in section 7, our �gures will not capture high frequency features such as a local minimum in the

loss modulus. At the same time, high frequency Rouse modes are very important for a complete

material characterization [55, 56, 57, 58], and so a general discussion on the interpretation of Rouse

modes is provided in section 7.2.

Around the same time as the Poisson renewal model, an alternative continuum modeling ap-

proach was put forward by Lequeux [59]. Lequeux framed WLMs as a population of chains di�ering

in length, generalizing the concept of a "population balance equation" from its conventional con-

text of mass balance (describing changes in the size distribution) to produce an additional balance

equation on stress. Lequeux suggested that every time self-assembling structures exchange mate-

rial (e.g. by reversible scission in the case of WLM), both the mass and the stress of the original

structures are transferred to a new sector of the WLM size distribution - a process that can be

described with mathematical precision through "stress balance" terms appended to an existing dif-

ferential constitutive equation for stress relaxation in the absence of rearrangement. Models that

preserve this basic structure to describe stress relaxation with physical rearrangement processes

will here be called "population balance" constitutive equations.

While Lequeux's work is deeply insightful, it su�ers from a few problems. First, the mathe-

matical framework is unwieldy compared to the much simpler Poisson renewal model. Second, the

model fails to capture Cates' scaling in the fast-breaking limit due to the use of a single mode

approximation for reptation in the absence of rearrangement. Presumably for these reasons, the

population balance framework for continuum modeling of WLMs was abandoned for almost three

decades after its initial introduction.

Since the Poisson renewal model was �rst published in 1992, the �eld of polymer rheology has

made many signi�cant advances. New relaxation processes and microscopic insights that were

�rst introduced into polymer theory subsequently incorporated into WLM models [34, 60, 61, 39].

The past three decades have also brought signi�cant advances in computational resources, and

so stochastic models have become a viable option for �tting and interpreting experimental data

1For well-entangled systems of any WLM chemistry, this approximation should hold to the best of the authors'
knowledge. However there are other living polymer systems for which it does not hold [50].
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even at large scales. In this context, Zou and Larson developed the `Pointer model' (physics) and

an associated `Pointer algorithm' (�tting procedure) for interpreting experimental data of G∗(ω)

in well-entangled semi-�exible WLMs [34]. To our knowledge, this was the �rst WLM model

with an accompanying �tting algorithm and also the �rst to distribute a full open-source model

implementation.

All of the above models can make predictions for linear rheology, but when generalized to the

nonlinear regime (which is not the main topic of this paper) most lead to constitutive equations

of integral form (i.e. based on a memory kernel G(t)). The approach by Lequeux was di�erent,

leading a a di�erential constitutive equation that could in principle be generalized to include non-

linear relaxation processes. The distinction between di�erential and integral constitutive relations

matters in a practical sense; the former is simpler and more widely used for �uid dynamics cal-

culations. This explains the recent re-emergence [39, 62, 23] of the population-balance approach

initiated by Lequeux. Note also that the Vasquez-Cook-McKinley (VCM) model of WLM rheology

can also be interpreted as a severely coarse grained population balance approach in which micelles

take on only two di�erent lengths [63, 64].

Motivated by growing interest in the quantitative nonlinear rheology of WLMs, Peterson and

Leal developed a fully coupled nonlinear population balance constitutive equation for WLMs, bor-

rowing a description of nonlinear relaxation processes from an existing model for well entangled

polymers [62]. In its �rst formulation, this model had the same weaknesses (single-mode approx-

imation and computational complexity) as the Lequeux model, but follow-up work by Peterson

and Cates provided corrections that restored key scaling exponents and allowed computationally

tractable methods of solution [39, 23]. A new set of continuum models for the linear rheology of

WLMs emerged as a part of this larger e�ort, including (1) a full-chain (i.e. with resolution of

tube segments in each chain) population balance model for reversible scission2 and (2) a simpli�ed

approximation of the population balance approach, called `shu�ing' [39, 23]. The relationship

between shu�ing and reversible scission is discussed in Appendix A.

Besides the models outlined above, there are several others worth noting, but that will not

feature in the comparisons to follow. We will not include the Lequeux model, nor will we include

any model (such as VCM) that employs a single-mode approximation of reptation [62, 63], as the

limitations of a single-mode approxmiation are already well known. Similarly, slip-link models

provide an excellent description of CLF [65, 66, 61], but here we will focus on highly entangled

systems where CLF is subdominant to reptation, in which case slip-link models become computa-

tionally prohibitive. Indeed slip-link models for WLM have only considered a maximum of Z̄ = 9

entanglements per WLM in studies thus far [61, 67]. Finally, we exclude nonlinear rheology mod-

2Considering reptation and reversible scission only, the original Cates model [15], the Pointer model[34], and the
full-chain population balance model [39] are all di�erent ways of modeling the exact same underlying processes.
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els that build upon a fast-breaking approximation, since these models do not attempt to capture

details of linear rheology outside the limit where reversible scission is much faster than reptation

(for which linear rheology is essentially Maxwellian [68, 39, 69]). Instead, we will focus on linear

rheology models featuring a full-chain description of reptation in �exible WLMs, and we allow for

diverse means of describing WLM sequence rearrangements (i.e. not limited to reversible scission).

Speci�cally, our study will compare predictions of the Poisson renewal model, the Pointer model,

and the shu�ing model.

In each of these modeling frameworks, one can make rheological predictions for linear WLMs

undergoing reptation with some kind of underlying pathway for WLMs to rearrange their material.

Likewise, all of these frameworks have been independently shown to match well to experimental

data on linear rheology, including e�ects of multiple relaxation times. If the models are distinct,

then whichever model provides the best �t to a given set of data likely provides the most reliable

interpretation of the underlying physical processes. However, if the models are not distinct then

an equivalent �t can be obtained from any choice of model, each implying a di�erent description of

the underlying physical processes. Where multiple models appear equally valid, �tting parameters

can only provide qualitative (not quantitative) microscopic insights regardless of the goodness of

�t until the underlying rearrangement pathway can be independently ascertained.

A central question that we aim to address is therefore given as follows: when �tting to linear

rheology data, absent any other supporting information, are the model predictions distinct so that

a good �t to data validates the model and �tting parameters, or indistinct, so that each model

can give an equivalent �t, using di�erent model-dependent parameters to achieve that �t?

The organization of our study is as follows. In section 3, we use the shu�ing model to generate

a set of benchmark calculations against which calculations using other models can be compared.

In section 4 we review the original Poisson renewal model and compare its predictions to the

benchmark calculations. Newly identi�ed problems with the Poisson renewal model (and possible

corrections) are discussed in sections 4.3 and 4.4. In section 5, several versions of the Pointer model

(single reptation, double reptation, end attack) are compared with the benchmark calculations,

using the Pointer algorithm to handle the parameter search. In section 6 we compare the shu�ing

model with and without constraint release by double reptation to determine whether these two

versions of the model are distinct. Finally, section 7.2 discusses the importance of high frequency

Rouse modes for interpreting experimental data.

Across all of these comparisons, we �nd that none of the models are distinct for the practical

purpose of providing a �t to experimental data if those data are dominated by low and moderate-

frequency reptation and breakage/rejoining e�ects, excluding higher-frequency dynamics such as

CLF, Rouse relaxation, and bending modes. We also �nd that stochastic models tend to struggle

with �tting G∗(ω) at high frequencies due to the ill-conditioned OSFT problem.
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3 Shu�ing Model Predictions

In this section, we will review the shu�ing model developed by Peterson and Cates [39, 23]

(subsection 3.1) and then generate a set of benchmark results to facilitate our search for distinct

model predictions (subsection 3.2). We choose the shu�ing model as our benchmark because it

is the simplest model to explain and the fastest to compute. Section 3.1 is primarily intended

as a review for readers not yet familiar with reptation models and the general Cates theory for

reptation with reversible scission. Other readers can continue to section 3.2.

3.1 Basic Cates theory via reptation and shu�ing: a review

The shu�ing model begins from an equilibrium distribution of WLM lengths, n(L) ∼ exp(−L/L̄),

where n(L) gives the number density of WLMs with contour length L in solution and L̄ is the

number-average length [15]. As with all of the models considered here, we neglect loops and

branches, and assume that the typical WLM is long enough to neglect minimum size constraints

(i.e., much longer than the diameter). As per classical reptation theory, when WLMs are very

long they become entangled, and constraints on lateral (as opposed to curvilinear) movement are

interpreted as a con�ning tube-like potential. Polymer stress is tied to the orientation of these

tube segments, which are treated as �xed topological constraints: the only way for stress to relax

is for a polymer to di�use along its own contour, or `reptate', to escape its con�ning tube and

establish a new tube con�guration that is stress free.

To frame the above statements more precisely, we de�ne a function P (t, s, L) to keep track of

the mean `tube survival probability' for a tube segment on a WLM of length L, initially at contour

position s ∈ [0, L], at time t. The mean tube survival probability P̄ (t) is averaged across all WLM

lengths and all contour positions to describe the overall fraction of initial tube segments that

have been able to relax. The WLM stress decays in proportion to the surviving tube segments,

G(t) = GeP̄ (t), where the constant of proportionality is a shear modulus Ge. WLM ends are

always taken to be stress free, P (t, s = 0, L, L) = 0, and at t = 0 the system is initialized with all

the original tube segments in place, P (t = 0, s, L) = 1. Finally, in the absence of reversible scission

or any such sequence rearrangements, reptation theory describes tube survival via 1D di�usion of

a �exible polymer along its own contour with a mobility that scales inversely with the polymer

length, M = M0/L with M0 = L̄3/π2τ̄rep or equivalently3 τ̄rep = L̄3/π2M0.

3Sometimes the expression given for the reptation time τ̄rep drops the coe�cient of π2, as was done in the
original Poisson renewal model and shu�ing model, but the Pointer model includes it. Therefore, when we report
calculations from the Poisson renewal model and the shu�ing model, the numerical values of ζ are larger (by a
factor of π2) than they would be if those models' original de�nition of τ̄rep were considered.
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All of the above ideas can be expressed in the form of a PDE:

∂

∂t
P (t, s, L) =

1

L
M0

∂2

∂s2
P (t, s, L) (1)

P (t, s = 0, L, L) = 0 (2)

P (t = 0, s, L) = 1 (3)

Any model with the same WLM size distribution n(L) and the same basic description of rep-

tation (whether stochastic or continuous) will ultimately yield an identical result when sequence

rearrangements are present but in�nitely slow, τB/τ̄rep → ∞.

Where sequence rearrangements cannot be ignored, describing processes like reversible scis-

sion or end attack with mathematical precision is possible but complicated [39]. Fortunately, a

`shu�ing' rearrangement is simple to describe and captures many of the same ideas. We refer the

reader to Appendix A for further discussion on the relationship between reversible scission and the

shu�ing model.

The shu�ing approximation of WLM rearrangements supposes that segments are uniformly,

randomly, and continuously reshu�ed with a characteristic timescale τB. In PDE form, this is

achieved by appending a shu�ing term to the end of equation 1:

∂

∂t
P (t, s, L) =

1

L
M0

∂2

∂s2
P (t, s, L) +

1

τB
(P̄ (t)− P (t, s, L)) (4)

P̄ (t) =

´∞
0

dLn(L)
´ L

0
dsP (t, s, L)´∞

0
dLn(L)L

(5)

P (t, s = 0, L, L) = 0 (6)

P (t = 0, s, L) = 1 (7)

Equation 4 will be called the "shu�ing model", and the use of a shu�ing term, P̄ − P , will be

called the "shu�ing approximation" wherever it is used as an approximation of a di�erent de�ned

sequence rearrangement pathway. The relationship between the shu�ing approximation and true

reversible scission is discussed in Appendix A.

The complex modulus for the shu�nig model is given by:

G∗(ω)

Ge

= iω

[
⟨η0⟩

1− ⟨η0⟩/τB

]
(8)

⟨η0⟩ =
ˆ ∞

0

dze−zz

[
∞∑

p,odd

1

p2
[1/τB + iω + p2/τ̄rep/z

3]−1

]
(9)
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z = L/L̄ (10)

The notation in equations 8 and 9 is chosen to emphasize commonality with the Poisson renewal

model equations as originally published (cf. equations 14 and 15).

As we will discuss in section 4.4, describing the `shu�ing time' as a `breaking time' is a con-

venience, used here to streamline the nomenclature of this paper. In reality, reversible scission

and shu�ing are di�erent processes, and intuitions on the relationship between the two can be

misleading. The derivation of equation 8 from equation 4 can be found in Ref. [39] and will not

be reproduced here.

For a maximally e�cient numerical implementation of the shu�ing model, the in�nite sum

in equation 9 can be collapsed to a closed-form, leaving a single 1D quadrature as the limiting

calculation:

⟨η0⟩ = τ̄rep

ˆ ∞

0

dze−z z

A

[
1 +

2

z
√
A

tanh
(z√A

2

)]
(11)

A = z(iωτ̄rep + τ̄rep/τB) (12)

3.2 Benchmark calculations

The shu�ing model has three �ttable material parameters: a shear modulus Ge; a reptation time

τ̄rep, and a breaking time τB. If the complex modulus is scaled by the shear modulus Ge and the

imposed frequency is scaled by the reptation time τ̄rep, then the only remaining parameter (and

the one that determines the shape of G′(ω) and G′′(ω) ) is the ratio of the breaking time and the

reptation time, ζ = τB/τ̄rep. This same argument applies to the Poisson renewal model and Pointer

model as well.

In Figure 2, we compare predictions for the loss modulus G′′(ω) = Im(G∗(ω)) as a function of

frequency for ζ ranging from very small, ζ = 10−3, to very large, ζ = 105. For very large values,

ζ > 103, predictions become independent of ζ; the rearrangements are so slow that most chains

are able to relax by reptation before they experience a rearrangement. For very small values,

ζ ≪ 1, the frequency response for ωτB < 1 approximates a single-mode Maxwell material. At

higher frequencies, ωτB ≫ 1, relaxation processes are fast enough to proceed unchanged by WLM

rearrangements and all curves collapse. Here, we remind the reader that intra-tube Rouse modes

are considered a separate, additive, contribution to the stress; those terms are omitted here, and

so �gure 2 does not show a local minimum in G′′(ω) (see discussion in section 2 and 7).

For very large values of ζ, WLM rearrangements are negligible and there will be no distinction

between any of the models we consider (apart from the distinction of single vs double reptation, cf.

section 6). Likewise, for very small values of ζ, all of these models have previously been shown to

recover single-mode Maxwell rheology at frequencies ωτB < 1. Therefore, to search for distinctive
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Figure 2: Comparing the loss modulus G′′/Ge as a function of frequency ωτ̄rep for varying values
of ζ = τB/τ̄rep. For very small values of ζ, the peak in the loss modulus shifts towards higher
frequencies, and for very large values of ζ (or very large frequencies, ωτ̄rep > 1/ζ) the loss modulus
collapses to a single curve. Note that these loss moduli exclude a separable contribution from the
intra-tube Rouse modes (discussed in section 2 and section 7) and therefore do not show an upturn
at high frequencies.

features we will focus on predictions at intermediate values of ζ ∼ O(1). For simplicity, we report

results for just two values; (1) ζ = π2 gives a system that is transitional between fast breaking

ζ ≪ 1 and slow breaking scenarios, and (2) ζ = 0.01π2 gives a system that is fast breaking but still

shows a clear break from ideal Maxwell behavior. In the text, these values of ζ will be rounded to

ζ = 10 and ζ = 0.1. Here and elsewhere4, the complex modulus will be rescaled by the zero shear

steady state recoverable compliance modulus J0
e = lim

ω→0

G′(ω)

G′′(ω)2
and the frequencies will be scaled

by the terminal relaxation time τ0 = lim
ω→0

G′(ω)

G′′(ω)ω
. Scaling this way guarantees agreement in the

limit ω → 0, so we only need to compare the high frequency response at di�erent values of ζ to

test whether two models are distinct, in the sense de�ned in section 2.

Benchmark calculations for the shu�ing model with ζ = 10 and ζ = 0.1, scaled to collapse in

the zero frequency limit as described in the preceding paragraph, are reported in Figure 3. The

main focus of this paper is to see whether di�erent models (e.g. Pointer, Poisson renewal, etc.)

can reproduce similar curves using (potentially) di�erent values of ζ.

We have been careful to present our calculations in terms of a rescaled frequency-dependent

complex modulus G∗(ω) rather than a parametric Cole-Cole plot of loss modulus vs storage modu-

lus. This is because the Cole-Cole plot loses frequency information and cannot provide a complete

test of distinctiveness; in principle, predictions of G∗(ω) that are strikingly di�erent could appear

identical under a Cole-Cole representation.

4Comparisons featuring the Pointer model in section 5 will rescale by J0
e and τ0 as de�ned by the benchmark

(shu�ing) calculations. This breaks any guarantee of agreement in the zero frequency limit but preserves the �best
�t� identi�ed by the Pointer model's �tting algorithm.
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Figure 3: Benchmark calculations for the loss modulus G′′(ω) and storage modulus G′(ω) for
ζ = 10 and ζ = 0.1. All curves have been shifted to ensure agreement in the low frequency range.

4 Poisson Renewal Model

The shu�ing model, as de�ned in equation 4, assumes a constant value of τB. In this section, we

allow the rate of rearrangement to vary across di�erent sectors of the length distribution and explore

the resulting implications. For bulk rheology, we �nd that a length-dependent τB(L) recovers the

bulk rheology equations of the Poisson renewal equation (subsection 4.1). We compare the bulk

rheology predictions of the Poisson renewal model against the benchmark calculations (subsection

4.2) and then provide physical and mathematical arguments in favor of a constant value of τB
(subsections 4.4 and 4.3 ).

Readers who are only interested in a practical comparison of Poisson renewal and shu�ing

calculations can proceed directly to subsection 4.2, skipping subsections 4.1, 4.4, and 4.3. Readers

who are interested in developing a deeper understanding of the subtle distinctions between models

should �nd the rest useful.

4.1 Review of the Poisson renewal model

In this section, we will consider a generalization of the shu�ing model for which the breaking time

varies with WLM length:

∂

∂t
P (t, s, L) =

1

L
M0

∂2

∂s2
P (t, s, L) +

1

τB(L)
(P̄ (t)− P (t, s, L)) (13)

Integrating these equations (following the derivation in Appendix B of Peterson and Cates [39])

we obtain the constitutive equation from the Poisson renewal model:
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[16]:
G∗(ω)

Ge

= iω

[
⟨η0⟩

1− ⟨η0/τB⟩

]
(14)

⟨η0/τB⟩ =
ˆ ∞

0

dze−zz
1

τB(z)

[
∞∑

p,odd

1

p2
[1/τB(z) + iω + p2/τ̄rep/z

3]−1

]
(15)

z = L/L̄ (16)

A comparison of the rearrangement mechanisms for shu�ing and Poisson renewal (as described

in the original publication [16]) is interesting but beyond the scope of this section. Some details

are give in Appendix B.

To motivate the need for a length-dependent τB(L), the Poisson renewal model noted that longer

chains rearrange (i.e. break) more quickly than short chains. For reversible scission rearrangements,

the Poisson renewal model uses:

τB
τB0

=
3.3

2 + L/L̄
(17)

and for WLMs that rearrange by the `end attack' pathway, the Poisson renewal model uses:

τB
τB0

=
4.0

1 + L/L̄
(18)

The numerators of these expressions were determined via a �tting process, comparing with

predictions from a stochastic model of reversible scission and end attack rearrangement pathways.

From the denominators, we see that the breaking time is constant for short chains and inversely

proportional to length for very long WLMs. Here, τB is therefore the overall "renewal time" for

a chain to react, whether by scission or recombination, but we are calling it a "breaking time" to

maintain a common nomenclature for model/model comparisons. For Poisson renewal, we de�ne

ζ = τB0/τ̄rep, where τB0 is intended to capture the true characteristic breaking time for reversible

scission.

4.2 Comparison between benchmark and Poisson renewal

For the Poisson renewal model with reversible scission (equations 17 and 4), we �nd that the bench-

mark predictions of the shu�ing model for ζ = 10 and ζ = 0.1 can be reproduced, respectively,

by using instead ζ = 20 and ζ = 0.15 in the Poisson renewal model. These results are shown in

Figure 4.

For the Poisson renewal model with end attack (equations 18 and 4), we �nd that the benchmark

predictions of the shu�ing model for ζ = 10 and ζ = 0.1 can be reproduced, respectively, using
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Figure 4: Comparing predictions of the Poisson renewal model with reversible scission (equations
17 and 4) against the benchmark calculations of the shu�ing model with (a) ζ = 10 and (b)
ζ = 0.1, cf. Figure 3. There is no obvious distinction apart from the di�ering �tted value of (a)
ζ = τB0/τ̄rep = 20 and (b) ζ = τB0/τ̄rep = 0.15 in the Poisson renewal model.

ζ = 15 and ζ = 0.1 in the Poisson renewal model. These results are shown in Figure 5.
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Figure 5: Comparing predictions of the Poisson renewal model with end attack (equations 18 and
4) against the benchmark calculations of the shu�ing model with (a) ζ = 10 and (b) ζ = 0.1, cf.
Figure 3.

The main di�erence between Poisson renewal and shu�ing appears to be the choice of param-

eters needed to �t a particular data set and not the range of data sets suitable for �tting. Thus,

the inverse problem of extracting kinetic parameters from conventional linear rheology data alone

is likely ill-posed without additional information to inform the choice of a sequence rearrangement

pathway. Further discussion on this subject is given in section 7.2.

Given that di�erent functional forms of τB can lead to the same quality of �t, it is important to

remember that one major purpose of �tting to experimental data is to extract model parameters
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(e.g. Ge, τB or τB0, τ̄rep), and these model parameters should describe real physical processes

even where the Poisson renewal or shu�ing models themselves do not. If the �tted parameters

do not consistently map to the physical value of τB for a given system, this should be regarded

as a scienti�c shortcoming. For example, if di�erent models (all providing very good �ts) give

incompatible predictions for τB, then the quantitative value of a true WLM breaking time cannot

be determined from rheology data alone.

Where there is independent veri�cation of a speci�c kinetic pathway for sequence rearrange-

ments (e.g., reversible scission or end attack), can we determine what form of τB(L) (exempli�ed

by equations 17, 18) will be best for mapping experimental spectra onto the mechanistically correct

kinetic parameters? In subsections 4.3 and 4.4, we identify potential problems in the original Pois-

son renewal construction, arguing in favor of a length-independent τB for shu�ing approximations

of reversible scission and end-attack rearrangements.

4.3 Concerns regarding conservation relationships

In the Cates framework for WLM rheology, rearrangements do not directly lead to stress relaxation.

Instead, they indirectly facilitate stress relaxation by turning slow-relaxing interior tube segments

into fast-relaxing end segments. In other words, rearrangements do not create or destroy tube

segments but only move them from one WLM chain to another, changing their distance from the

nearest chain end in the process. Surprisingly, an unintended consequence of a length-dependent

τB(L) is that shu�ing rearrangements no longer conserve tube segments. Averaging equation 13

over all chain lengths and all contour positions yields:

∂

∂t
P̄ =

[
− 2M0⟨

1

L

∂P

∂s

∣∣∣∣∣
s=0

⟩

]
+

[
⟨τ−1

B ⟩P̄ − ⟨τ−1
B P ⟩

]
(19)

where

⟨X⟩ =
´∞
0

n(L)dL
´ L

0
X(s, L) ds´∞

0
n(L)dL

´ L

0
ds

The �rst term on the right hand side of equation 19 describes relaxation by reptation, and the

second block of terms describes the overall creation/destruction of tube segments happening di-

rectly via shu�ing. If the shu�ing process conserved tube segments, the second block would be

identically zero at all times, but this is only guaranteed to hold if τB is independent of length5.

To guarantee conservation of surviving tube segments in a shu�ing model with length-dependent

rates of rearrangement, the mean tube survival probability in a "renewed" chain should not be the

5This issue is clearly demonstrated for a shu�ing mechanism, but it is also present for the original Poisson
renewal rearrangement mechanism. Additional notes on the original description of the Poisson renewal mechanism
are given in Appendix B
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population-average tube survival probability. Instead, it should be weighted by the rate at which

chains of di�erent lengths make themselves available to rearrangement. In other words, we can

rede�ne P̄ in equation 13 to be the average tube survival probability of WLMs presently being

rearranged.

P̄ (t) =
⟨P/τB⟩
⟨1/τB⟩

=

´∞
0

n(L)dL
´ L

0
dsP (t, L, s)/τB(L)´∞

0
n(L)dL

´ L

0
ds1/τB(L)

(20)

We can call this Poisson renewal with a common pool. Enforcing a common pool for rearrange-

ments is a signi�cant change from the original Poisson renewal formulation, as the bulk rheology

is now given by:

G∗(ω)

Ge

= iω

[
⟨η0/τB⟩

⟨1/τB⟩ − ⟨η0/τ 2B⟩

]
(21)

⟨1/τB⟩ =
ˆ ∞

0

dze−zz
1

τB(z)
(22)

For τB following equation 17, we solve equation 21 and �nd that the shu�ing calculations with

ζ = 10 and ζ = 0.1 can be reproduced with ζ = 55 and ζ = 0.4, respectively. Thus the common

pool approximation is not distinct from the original Poisson renewal model.
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Figure 6: Comparing predictions of the Poisson renewal common pool model with reversible scission
(equations 17, 4 and 20) against the benchmark calculations of the shu�ing model with (a) ζ = 10
and (b) ζ = 0.1, cf. Figure 3.

4.4 Detailed balance and the concept of renewal

In Cates' original work on reptation and reaction, it was shown that reversible scission leads to

faster stress relaxation because it transforms slow-relaxing interior portions of a WLM into fast-

relaxing end portions. This happens every time a WLM breaks, but when two WLMs reattach
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there is no resulting stress relaxation. Any approximate sequence rearrangment strategy (e.g.

Poisson renewal or shu�ing) should attempt to capture the rate at which slow-relaxing interior

segments are moved to a WLM end.

In equation 13, WLMs of length L are removed from the population at length L with rate

1/τB(L) and replaced at the same rate by chains with the same length and a uniform internal

distribution of tube segments with mean tube survival probability P̄ . For reversible scission,

equilibrium reaction kinetics dictate that WLMs of length L are removed from the population

at length L at a rate of 2/τB0 by recombination and a rate of L/(L̄τB0) by reversible scission.

Therefore, it would seem sensible to formulate a shu�ing model with a breaking time that includes

both of these processes, cf. equation 17. Unfortunately, this misses a key distinction: chains of

length L produced by scission of long chains L′ > L are very di�erent from chains of length L

produced by recombination of shorter chains L′ +L′′ = L. For recombination events, no new ends

are created.

By detailed balance, every time a WLM of length L breaks it must be replaced by a pair

of shorter WLMs (in some other, possibly distant part of the system) with lengths L′ < L and

L′′ = L − L′ undergoing the reverse process of recombination. In recombination, there is no

transfer of interior segments to end segments, and therefore no path for faster stress relaxation in

the population of WLMs with length L. For WLMs of length L, faster stress relaxation is only

possible when the micelle in question was generated by scission of a longer micelle.

Integrating over all possible breaking events for all WLMs longer than length L seems di�cult,

but detailed balance provides a solution. At equilibrium, the rate at which WLMs of length

L form by scission of longer WLMs must be equal to the rate of the reverse process at which

WLMs of length L undergo recombination. For reversible scission (assuming equal reactivity

of end segments), the latter is given by 2/τB0, and is independent of length. Furthermore, since

fragments of length L have one relaxed end and one unrelaxed end, the rate at which renewed chain

ends are produced for chains of length L must be half of this rate, 1/τB0. Therefore, we argue that

a constant τB (rather that the L-dependent one used in the original Poisson renewal approach)

will provide a better approximation of the essential Cates mechanism, because it gives the true

rate at which slow-relaxing interior segments are "renewed", i.e. transformed to fast-relaxing end

segments.

For an alternative means of arriving at the same conclusion, Appendix A discusses a set of

approximations by which a shu�ing model with constant τB can be derived from the full reversible

scission equations.
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5 Pointer Algorithm

Similarities between shu�ing (which is our benchmark) and Poission renewal may not be too sur-

prising in retrospect, given that the two models have similar equations for bulk rheology. In con-

trast, the Pointer model has a completely di�erent construction, capturing genuine WLM sequence

rearrangements caused by identi�able kinetic schemes like reversible scission and end attack. By

comparing against predictions from the Pointer model, we can assess the in�uence of the shu�ing

approximation directly.

In its complete form, the Pointer model includes a library of descriptions for many microscopic

process relevant to WLM rheology, from intra-tube Rouse �uctuations of sti� polymers to contour

length �uctuations and bond-interchange rearrangement processes. We mention this at the outset

because the main advantage of a stochastic model over a continuum model is its versatility and

�exibility � whereas a major disadvantage is the di�culty in computing6 the OSFT of G(t) to get

G∗(ω). In this section we will have to confront challenges with the OSFT, but we will have limited

opportunities to highlight the versatility of the full Pointer model approach.

First, we evaluate the Pointer model with reversible scission rearrangements [34]. In Figure 7,

we �nd that the the benchmark results of the shu�ing model with ζ = 10 and ζ = 0.1 can be

approximately reproduced with the Pointer model using ζ = 26 and ζ = 0.6. Figure 7 shows some

di�erences between the Pointer model and the benchmark calculations at high frequencies, but

we attribute this to numerical challenges with computing the OSFT and not physical di�erences

between the models. In practice, these numerical challenges are less important once intra-tube

Rouse modes dominate G∗(ω) at high frequencies.

Next, we evaluate the Pointer model with end-attack rearrangements [60]. In Figure 8, we �nd

that the benchmark results of the shu�ing model with ζ = 10 and ζ = 0.1 can be approximately

reproduced with the end-attack Pointer model using ζ = 39 and ζ = 0.6.

Finally, we compare our benchmark shu�ing calculations against the Pointer model for re-

versible scission, but now with a `double reptation' transformation of the relaxation modulus G(t)

[34, 74]. This changes the modelling of the reptation sector, but leaves the rearrangement kinetics

unchanged. In Figure 9, we �nd that the benchmark results of the shu�ing model with ζ = 10 and

ζ = 0.1 can be approximately reproduced with the double reptation Pointer model using ζ = 5.5

and ζ = 0.18.

Despite signi�cant changes in the set of underlying assumptions and approximations, the various

types of Pointer model for reptation and rearrangement are evidently not distinct from the shu�ing

model or various Poisson renewal models considered in section 4. In all cases, the models can be

6In practice there is a vast range of tools from traditional signal processing that have been developed to numeri-
cally approximate an OSFT operation, but in principle the problem is fundamentally ill-posed due to the ambiguity
in regularization [70, 71, 72, 73].
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Figure 7: Comparing predictions of the Pointer model with reversible scission against the bench-
mark calculations of the shu�ing model with (a) ζ = 10 and (b) ζ = 0.1, cf. Figure 3. There is
no major distinction, apart from the di�ering �tted value of ζ in the Pointer model. We also note
some oscillations in the loss modulus for the Pointer method, which we attribute to di�culties in
computing an OSFT. The inability to accurately resolve G′′ at high frequencies is likely responsible
for other overall �tting discrepancies.

made to almost coincide within their predictive ranges for linear rheology, given suitable choices

of model parameters such as ζ (which then depend strongly on the model chosen).

6 Shu�ing with Double Reptation

Double reptation is a simple, and often successful, approximation strategy for dealing with the

problem of thermal constraint release in well-entangled polymer melts [75, 69]. For polydisperse

systems of entangled and unbreakable polymers, the double reptation and single reptation ap-

proximations generally lead to distinct rheological predictions for the same input molecular weight

distribution [74]. It is therefore surprising that in section 5, the choice of single vs double rep-

tation within a Pointer model for WLMs can be absorbed into a shift of the �tted parameters.

This probably comes from the fact that double reptation and single reptation are not very distinct

for systems whose rearrangements are much faster than reptation (single mode Maxwell) or much

slower (unbreakable chains with exponential polydispersity).

All the same, a skeptical reader might wonder if distinct features do emerge at intermediate

ζ, but have been misattributed to artifacts of the OSFT problem in Figure 9. This question can

be resolved thanks to a recently developed continuum model implementation for double reptation,

using a generalization of the shu�ing model [23] to avoid the OSFT problem. In Figure 10, we show

that the benchmark results of the single reptation shu�ing model with ζ = 10 and ζ = 0.1 can be

approximately reproduced with the double reptation shu�ing model using ζ = 2 and ζ = 0.025.
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Figure 8: Comparing predictions of the Pointer model with end attack against the benchmark
calculations of the shu�ing model with (a) ζ = 10 and (b) ζ = 0.1, cf. Figure 3.
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Figure 9: Comparing predictions of the Pointer model with double reptation against the benchmark
calculations of the shu�ing model with (a) ζ = 10 and (b) ζ = 0.1, cf. Figure 3.

For the fast breaking system, the transition out of a single mode Maxwell response around ωτB ∼ 1

is very slightly broader for the double reptation approximation, but this feature is likely too subtle

to be noticed in any comparison with experimental data. For the comparisons at both low and

high ζ, double reption will use smaller values of ζ because reptation dynamics are sped up and a

faster breaking time is needed to maintain the same ratio of timescales for stress relaxation and

rearrangement.

From this comparison we conclude that the choice of double vs single reptation in a WLM

model modulates the �tting of model parameters but does not otherwise alter predictions in a

distinct way. Moreover, the reduction in �tted ζ from single to double reptation is consistent with

what was seen from the Pointer model, cf. Figures 9 and 7.

For a more complete treatment of constraint release, a di�erent class of constitutive modeling
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Figure 10: Comparing predictions of the double reptation shu�ing model against the single rep-
tation shu�ing model with (a) ζ = 10 and (b) ζ = 0.1, cf. Figure 3.

framework is required in order to resolve the full Rouse-like motion of the tube itself. These

ideas have been previously incorporated into population balance constitutive models for wormlike

micelles [39], but the resulting model predictions were marred by issues that arose from replacing

a discrete Rouse spectra with a continuous approximation.

7 Intra-tube Rouse Modes and Feature-Parameter Mapping

Up to this point, we have neglected intra-tube Rouse modes (i.e. Rouse modes having a wave-

length no longer than the tube diameter) and consequently none of our �gures have included the

characteristic upturn in the loss modulus seen at high frequencies [76, 77]. This section reviews a

simple and approximate way of incorporating intra-tube Rouse modes. We also discuss the rela-

tionship between "features" of linear rheology measurements and "parameters" of a �tted model

(i.e. feature-parameter mapping). This is useful for anticipating (1) what information might be

present in a given set of linear rheology data and (2) what information might be missing or best

measured by some other means.

7.1 Intra-tube dynamics

We will assume that WLMs are very �exible on scales comparable to the tube diameter, such that

the complex modulus from intra-tube Rouse modes G∗
R(ω) is given by the Rouse model [51, 78]:

G∗
R(ω) = Ge

ˆ ∞

0

dZϕ(Z)
1

Z

NeZ∑
p=Z

iωτe/2

iωτe/2 + (p/Z)2
(23)
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where Z = L/Le is an entanglement number, τe is the longest Rouse time for an entanglement

segment, ϕ(Z) is the the length distribution of the WLMs, and Ne is the number of Kuhn segments

per entanglement section. If the WLMs are very �exible on the scale of an entanglement segment,

Ne ≫ 1, the above sum approximately evaluates to:

G∗
R(ω) ≈ Ge

ˆ ∞

0

dZϕ(Z)

√
iωτe
2

arctan

[√
iωτe
2

]
= Ge

√
iωτe
2

arctan

[√
iωτe
2

]
(24)

These assumptions and approximations on �exibility may not be re�ected in real systems, but

they are useful here for pedagogical purposes. Many WLM systems will be semi-�exible or sti�, in

which case additional physics is needed to describe the rheology above ω > 1/τe [34, 54]. With this

minimal set of physics, Rouse modes introduce a new parameter - the entanglement Rouse time

τe. From reptation theory, τe should be related to the reptation time τ̄rep via the entanglement

number of a typical chain, Z̄ , with τ̄rep = 3Z̄3τe. Thus, the Rouse modes can also be seen as adding

information about the entanglement number if τ̄rep is known or included as a �tting parameter for

the low frequency rheology.

If we add G∗
R(ω) from the intra-tube Rouse modes to the complex modulus from the shu�ing

model, we get the overall complex modulus shown in Figure 11. These calculations specify an

average entanglement number of Z̄ = 30. For larger values of Z̄, the intra-tube Rouse modes are

shifted to higher frequencies. We note that for lower entanglement numbers Z̄ < 10, inclusion of

slower Rouse modes corresponding to wavelengths longer than an entanglement spacing have been

found necessary to correctly match the rheology predicted by the more microscopic slip-spring

model [67].

7.2 Feature-parameter mapping

When �tting models to experimental data, it is important to choose models that provide the right

level of physical insight. For example, if intra-tube Rouse modes are not clearly evidenced in the

linear rheology data, as detailed below, the entanglement time τe should not be included as a

�tting parameter; including it can lead to over�tting or slow/unstable convergence in the �tting

algorithm. In some respects, this is common sense, but for complicated models it is not always

obvious what information is represented in the data before conducting a thorough comparison with

a model.

This subsection aims to provide heuristics that anticipate whether an experimental data set

contains su�cient information to specify a parameter or whether that parameter must be measured

independently by some other means.

For this subsection, we de�ne the `low frequency' and `high frequency' rheology in relation to
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Flexible vs Stiff

Figure 11: Predictions for the complex modulus G∗(ω) of a very �exible WLM with ζ = 10 and
Z̄ = 30, including intra-tube Rouse modes via equation 24. At frequencies above ωτ̄rep > 103, the
intra-tube Rouse modes dominate the loss modulus, and at frequencies above ωτ̄rep > 105 they
dominate the storage modulus as well. Superimposed upon these curves are schematic indicators for
feature-parameter mapping, cf. section 7.2. The crossover frequency does not equal the reptation
time τ̄rep but it does provide information needed to ascertain τ̄rep. Likewise the separation between
τ̄rep and τe provides information needed to determine Z̄ but is not equal to Z̄. For the model �t
to be well-posed, the experimental data must contain enough distinct features to specify all model
parameters.

the freqency ωmin, at which a local minimum appears in the loss modulus. For WLMs relaxing by

reptation and intra-tube Rouse rearrangement, some model parameters can be found through the

low frequency rheology, some can be found from the high frequency rheology, and some can only

be found when combining both the high and low frequency model parameters.

As a disclaimer, our discussion on feature-parameter-mapping excludes the e�ects of contour

length �uctuations, which in principle can provide a second independent means of estimating the

entanglement number Z̄ [55]. However, for an imperfect model it is possible that di�erent model-

based comparisons or heuristics will generate con�icting estimates of the entanglement number.

Resolving such a con�ict is more of an art than a science, and it goes beyond the scope of what

we are able to cover here. The signature from contour length �uctuations enters in the low-to-

intermediate frequency range, and CLF is not strictly necessary for feature-parameter mapping

provided the system is very well entangled and not too fast breaking, ζ > 1/Z̄ .

In broad conceptual terms, we have seen that the `shape' of the low frequency response is

governed by a single dimensionless parameter7 ζ, which compares an e�ective relaxation time to the

characteristic time for some underlying stress relaxation process. Seeing this universality, the low-

frequency response involves only three parameters for a complete classi�cation - a shear modulus

Ge, a long relaxation time (e.g. τ̄rep), and some general shape parameter, ζ̄. The linear rheology

7This is true provided the WLMs are well-entangled and �exible/semi�exible with ζ ≫ 1/Z̄. For very small
values of ζ, both ζ and Z̄ are needed to describe the low frequency response due to the dominant role of contour
length �uctuations [23].
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data in the low frequency range does not contain information beyond these three parameters,

and the value assigned to those parameters will depend on the model used. If a general shape

parameter ζ̄ is not enough for a useful interpretation of the experimental data (i.e if the speci�c

choice of rearrangment pathway really matters) then the low frequency rheology data can provide

an estimate of ζ for a speci�ed rearrangment pathway, but the low frequency rheology cannot also

independently corroborate the choice of rearrangement pathway. To corroborate a rearrangement

pathway, additional experiments are needed, which can include include some combination of:

1. High frequency rheology: At high frequencies, contour length �uctuations and intra-tube

Rouse modes provide information about the entanglement number [55, 53, 79, 80] and WLM

sti�ness [54, 34, 81, 82]. Information about the entanglement number also allows an estimate

of the WLM scission energy [34, 83, 84] given a speci�ed rearrangement pathway. The high

frequency response does not di�erentiate between rearrangement pathways.

2. Temperature-jump: A rapid temperature change will cause the molecular weight distribution

to fall out of equilibrium. Scattering or rheological measurements taken along the path

to equilibration can reveal the natural time-scales associated with speci�c rearrangement

pathways [85, 86, 87]. In principle, the molecular weight distribution can also be perturbed

from equilibrium by non-linear rheology to facilitate the same kind of measurements, but

this has not been fully explored [62, 63].

3. Other non-rheological measurements: Additional information about the structure and dy-

namics of a WLM system can be obtained from a great variety of methods including con-

ductivity [88, 89]; neutron and light scattering [90, 91, 92, 93]; cryo-TEM [94, 95, 96, 97];

and molecular dynamics simulations [98, 99, 100, 101].

Information from (2) and (3) go beyond the narrow focus of this paper, but regarding (1)

we can note the value of high frequency linear rheology data, which provides two main pieces of

information: First, it reveals the longest intra-tube Rouse relaxation time, τe. In conjunction with

an estimation for τ̄rep (which can be estimated via the low frequency rheology), τe can be used

to estimate an entanglement number Z̄. Second, for frequencies above ω > 1/τe, the scaling laws

for loss modulus and shear modulus can reveal information about chain sti�ness [54, 102, 103].

In conjunction with estimates for Ge and τ̄rep, the high frequency rheology can provide improved

estimates of entanglement lengths and entanglement numbers [34].

The overall feature-parameter mapping strategy is summarized schematically in Figure 11,

where annotations identify features that provide information but do not imply one-to-one mappings

(i.e. the low frequency crossover is not 1/τ̄rep ). The Pointer model is currently the most complete

modeling framework for detailed feature-parameter mapping in WLM, incorporating additional
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models and correlations beyond those outlined here. In particular, the Pointer model includes

correlations to infer microscopic properties (e.g., scission energy and the entanglement length)

from the entanglement number Z̄ and the plateau modulus Ge; see for example [34].

8 Summary and Future Directions

This work summarizes a series of advances, spanning several decades, in modeling the linear

rheology of WLMs by combining the physics of reptation (di�usion) and sequence rearrangement

(breaking and reformation of chains). Speci�cally, we address three modeling frameworks - the

Poisson renewal model, the Pointer model, and the shu�ing model - that all aim to describe

reversible scission and reptation but employ di�ering assumptions and approximation schemes,

balancing constraints on computational speed, robustness, and accuracy. In practice, these models

are designed for the purpose of �tting and interpreting linear rheology data on WLMs, and in

the end we �nd that none of the models is distinct from the others for the purpose of this aim.

In other words, the shape of the complex modulus G∗(ω) can be reliably �tted by any of the

models, and all that di�ers is the �tted parameter values. This result is both disappointing and

encouraging. It is disappointing because it suggest that a good �t to experimental data obtained

with a reversible scission model does not necessarily corroborate the assumption of a reversible

scission rearrangement pathway � an equally good �t could be obtained by shu�ing or Poisson

renewal. To validate a sequence rearrangement pathway requires additional information outside of

linear rheology (cf. subsection 7.2), and such information is often slow and expensive to acquire

by comparison. However, for industrial applications a fast qualitative assessment may often be

preferable to a slow quantitative assessment. In such cases, our �ndings should be encouraging -

the fastest models are just as useful as the most detailed models for qualitative assessments.

For rapid qualitative parameter assessments and predictable �tting at all frequencies, our study

recommends a shu�ing model. Alternatively, for optimal quantitative parameter estimation with

known sequence rearrangement pathways, one can use the Pointer modeling framework. If ad-

ditional work is done on modeling the linear rheology of wormlike micelles undergoing reptation

and rearrangement (to the exclusion of all other processes), the main value would lie in resolving

questions beyond the �tting of linear rheology data, such as parameterizing a non-linear rheology

model.

At the same time, reptation is not the only rheologically meaningful tube-scale process in highly

entangled WLM systems. There are other non-separable and distinctive linear relaxation mecha-

nisms (contour length �uctuations, thermal constraint release), plus additional WLM architectures

(loops, branches, networks) to be considered, all of which were neglected in the present study. In

general the full complexity of WLM rheology should not be expected to collapse onto a small
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number of parameters as we found in this work; as new physics are incorporated, new distinctions

may emerge. However, early evidence suggests that a `principle of equivalence' in WLM rheology

could be surprisingly universal; a forthcoming publication will show that branched WLMs can be

modeled as linear WLMs, given an appropriate correction to the average micelle length [40].

In future research there are many open directions worth pursuing, especially insofar as WLMs

are a `model polymer' system for studying fundamental questions in entangled polymer rheology.

Improved WLM models could provide valuable new insights on marginally entangled polymer rhe-

ology [61], �ow-induced disentanglement [104], and convective constraint release [69, 39, 105]. For

systems far from equilibrium, WLMs may also serve as a model system for studying fundamental

questions relevant to polymer recycling (e.g. chemolysis, thermolysis, reactive compatibilization,

reactive extrusion). Finally, there are opportunities to continue integrating population balance

equations into an expanded range of complex �uids applications, from suspension crystallization

to aggregation/breakup phenomena in gels and emulsions.
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A Discussion on Reversible Scission vs Shu�ing

The full-chain population balance equations for reversible scission with reptation were �rst written

down by Peterson and Cates [39] as an exact ensemble-averaged description of the process described

in stochastic form by Cates in 1987 [15]. We �nd it useful to think of the equations as a "population

balance" model, since they follow the basic structure of a population balance equation, tracking

rearrangements of surviving tube segments in accordance with the reaction kinetics de�ned by

reversible scission. Other readers may �nd it useful to think of the ordinary reptation equation

(cf. equation 1), as a Smoluchowski equation for the distribution of surviving tube segments

along a chain; from this perspective, our full-chain population balance equations are simply the

Smoluchowski equation for reptation, but extended to include reorganization by reversible scission.

Given that our population balance model captures the same rearrangements as the (previously

solved) Pointer model, this Appendix is not concerned with �nding accurate solutions to the full

equations. Instead, the focus will be pedagocial, seeking to explain the full equations (and their

simpli�cation) term-by-term. For a more complete discussion (including equations for out-of-

equilibrium n(L), end-attack, and other relaxation processes beyond reptation) we refer the reader

to [39].

For a collection of chains reacting by reversible scission, the distribution of surviving tube seg-

ments P (t, s, L) in a collection of chains with length L can change through �ve di�erent processes:

1. Reptation - the endmost surviving segments of a tube are erased through curvilinear di�usion

2. Reaction 1 - chains of length L break into shorter fragments. All contour positions have an

equal probability of breaking, so the overall rate of breaking increases with chain length.

3. Reaction 2 - chains of length L join together with another chain to become longer. All end

segments are assumed to be equally reactive.

4. Reaction 3 - chains of length L′ > L break in a way that generates a new chain of length L

(i.e. at contour position s = L or s = L′ − L )

5. Reaction 4 - Two chains shorter than L combine together to generate a new chain of length

L

For the reaction processes (1) - (4) we introduce a pair of conservation rules: (a) when two

chains combine, the product chain preserves the surviving tube segments of the reagent chains,
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and (b) when a chain is broken, the fragment chains preserve the surviving tube segments of the

parent chain. These concepts are demonstrated graphically in Figure 12 and are discussed with

more precision in [39].

(a) (b)

Figure 12: Schematic representation of how surviving tube segments are distributed during (a)
recombination and (b) scission. For a more complete discussion, we refer the reader to our prior
work.

All these enumerated processes are represented in equation 25, where they appear in the order

as listed. Equation 25 assumes that the length distribution remains at equilibrium, n(t, L) ∼ e−L/L̄

, or else there would be additional terms and accompanying population balance equation for the

number density distribution function n(t, L).

∂

∂t
P (t, s, L) = M0

1

L

∂2P

∂s2
+

1

τB

[ loss by breaking︷ ︸︸ ︷
−L

L̄
P (t, s, L)−

loss by breaking︷ ︸︸ ︷
2P (t, s, L) +

production by scission︷ ︸︸ ︷
eL/L̄

1

L̄

ˆ ∞

L

dL′e−L′/L̄(P (t, s, L′) + P (t, L′ − s, L′))+

production by recombination︷ ︸︸ ︷
1

L̄

ˆ L

0

dL′

P (t, s, L′) if s < L′

P (t, s− L′, L− L′) if s ≥ L′

]
(25)

Because reptation and reversible scission are linear operations on the tube survival probability

distribution P (t, s, L), the principle of linear superposition applies and the ensemble averaging

implied by the equations is exact.

The �production by scission� term in equation 25 employs a �re�ection� (s → L′ − s ) of the

tube survival probability distribution inside the argument of the integral. By linear superposition,

this re�ection is not strictly necessary but is permitted since chains have no natural head or tail.

Implementing re�ections in this way enforces a symmetry in the resulting solution P (t, s, L) =

P (t, L − s, L), which will be helpful when the equations are solved numerically. No additional

re�ection is needed for the "production by recombination term" since all possible orderings of the
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(symmetric) parent chains are already considered (and equally weighted) inside the argument of

the integral.

To interpret (or apply) equation 25, the main challenge lies with the integral expressions of the

production terms. The simplifying approximations that we introduce in this Appendix section are

primarily pedagogical; they are not intended to be realistic, but we believe they are helpful for

understanding the physical meaning of the full equations and the relationship between reversible

scission and shu�ing.

Inside of these integrals, we di�erentiate between (1) freshly broken chain ends and (2) pre-

viously relaxed chain ends. Every time a WLM breaks apart, it produces two freshly broken

ends (one on each product chain) and two previously relaxed chain ends. Every time two WLMs

combine, two previously relaxed end segments are moved to the chain interior and two previously

relaxed ends persist as they were. Stress relaxation is accelerated by the formation of freshly

formed ends and rearrangements of previously relaxed ends are less important by comparison.

Our approximation scheme will account for this di�erentiation as follows: when a chain of length

L is produced, (1) freshly broken ends are assumed to have surviving tube segments uniformly

and randomly distributed, with mean survival probability P̄ and (2) previously relaxed ends are

assumed to look similar to the typical end segment in the current population of chains with length

L. These assumptions preserve the essential distinction between freshly broken and previously

relaxed chain ends.

With these approximations in place, the "production by recombination" term becomes:

1

L̄

ˆ L

0

dL′

P (t, s, L′) if s < L′

P (t, s− L′, L− L′) if s ≥ L′
≈ 1

L̄

ˆ L

0

dL′P (t, s, L) =
L

L̄
P (t, s, L) (26)

For the "production by scission" term, we reorganize the re�ections (each chain containing one

relaxed end and one unrelaxed end) as a superposition of one chain with no relaxed ends and one

chain with two relaxed ends. Combining these simplifying approximations, we write:

eL/L̄
1

L̄

ˆ ∞

L

dL′e−L′/L̄(P (t, s, L′)+P (t, L′−s, L′)) ≈ eL/L̄
1

L̄

ˆ ∞

L

dL′e−L′/L̄(P (t, s, L)+P̄ (t)) = P (t, s, L)+P̄ (t)

(27)

Combining equation 25 with the simplifying approximations of equations 26 and 27, we get:

∂

∂t
P (t, s, L) = M0

1

L

∂2P

∂s2
+

1

τB

[
− L

L̄
P (t, s, L)− 2P (t, s, L)+

L

L̄
P (t, s, L) + P (t, s, L) + P̄ (t)

]
(28)

After cancelling terms, this becomes:
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∂

∂t
P (t, s, L) = M0

1

L

∂2P

∂s2
+

1

τB

[
P̄ (t)− P (t, s, L)

]
(29)

which is the shu�ing model featured in the main text. This is another way of arguing in favor

of a constant breaking time as the most reasonable choice for a shu�ing model of the full reversible

scission rearrangment pathway.

B Extended Discussion of Poisson Renewal

The original Poisson renewal model is attributed to a di�erent sequence rearrangement pathway

than the shu�ing pathway represented by equation 13. In the main text we have chosen to focus

on the shu�ing rearrangement pathway for two reasons: (1) the shu�ing approximation of Poisson

renewal is simpler, and (2) we translated the rearrangement process originally attributed to Poisson

renewal into equations for n(t, L) and P (t, s, L) (cf. equations 30 and 33) but found that the bulk

rheology predictions are not consistent with equation 14 when τB is constant.

The cause of such a disparity is not clear to us - it could be caused by a typo in the original

publication or an inaccuracy in the explanation or interpretation of the Poisson renewal process.

However it is our view that the main result of the Poisson renewal model, namely equation 14,

is more important than the details of its assumed arti�cial sequence rearrangement pathway. We

feel that the shu�ing model with length-dependent τB(L) preserves both the spirit of the original

model and its main result, and any disparity at the level of sequence rearrangements is curious

but ultimately does not demand careful scrutiny at this point.

The goal of this section is to review the stated mechanism of the original Poisson renewal model

and translate it into an equation for the tube survival probability P (t, s, L). In the original Poisson

renewal model, "renewal" events cause chains to (1) change length and (2) re-initialize all stress

relaxation processes. The length of the renewed chain is drawn from the equilibrium distribution,

n(L) ∼ exp(−L/L̄), and its surviving tube segments are randomly redistributed to re-initialize all

stress relaxation processes. Following these assumptions, the number density distribution evolves

as:

∂

∂t
n(t, L) = − 1

τB(L)
n(t, L) + e−L/L̄ 1

L̄

〈
1

τB
n

〉
(30)

n(t = 0, L) = n0 exp(−L/L̄) (31)〈
1

τB
n

〉
=

ˆ ∞

0

dL′ 1

τB(L′)
n(t, L′) (32)

The "production" term in equation 30 calculates the total rate of renewal events and then
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redistributes those renewed chains in accordance with a de�ned exponential molecular weight

distribution.

Next, a balance equation on surviving tube segments gives:

∂

∂t
(n(t, L)P (t, s, L)) = n(t, L)

M0

L

∂2P

∂s2
− 1

τB(L)
n(t, L)P (t, s, L) + e−L/L̄ 1

L̄

〈
1

τB
nP

〉
(33)

〈
1

τB
nP

〉
=

ˆ ∞

0

dL′ 1

τB(L′)
n(t, L′)

1

L′

ˆ L′

0

ds′P (t, s′, L′) (34)

The production term in equation 33 follows the same kinetics as the addition of new chains in

equation 30, integrating over the entire length distribution to sample every renewal event. Every

time a chain of length L′ undergoes a renewal event leading to the formation of a chain with

length L, tube survival probability in the renewed chain is uniform across all contour positions

and equal to the mean tube survival probability prior to the renewal event. Equations 30 and 33

exactly reproduce the original Poisson renewal assumptions, but they do not reproduce the bulk

rheology of equation 14. This is di�cult to prove for a general case, but for the speci�c case of

a constant breaking time the bulk rheology implied by equations 30 and 33 leads to a slightly

di�erent de�nition of ⟨η0/τB⟩, di�ering only by a factor of z inside the argument of the integral:

⟨η0/τB⟩ =
ˆ ∞

0

dze−z 1

τB

[
∞∑

p,odd

1

p2
[1/τB + iω + p2/τ̄rep/z

3]−1

]
(35)

C Expanded Summary of Models

This Appendix summarizes a selection of linear rheology models for WLMs, comparing their

strengths, weaknesses, and relationships to predecessor models. These notes relay our best cur-

rent understanding and do not necessarily represent a consensus across the �eld. Since this is not

intended to be a comprehensive list, the choice to include or omit speci�c models should not be

viewed as a value judgement on usefulness. The linear rheology models in Table 1 are mainly the

models that were featured (or at least mentioned) in the main text.

The Pointer algorithm basically updates the original Cates model to include (1) a more com-

plete library of physics, (2) a more e�cient algorithm to simulate the WLM dynamics, and (3)

a complementary protocol to interpret micelle parameters by �tting to rheological measurements.

While there have been known issues with prolonged iterations and occasional failure in converging

towards a quantitative �t for experimental data, we believe this is mainly due to challenges with

the overall nonlinear optimization and �tting process rather than the physics of the model itself.

The precise cause of these issues can depend on the initial estimate for model parameters, the

noise of experiment data, and the number of iterations allowed for the �tting. A recent work [53]
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Linear Rheology Models Type Rearrangments Notes

Cates Original [15] Stochastic RS + EA Method is intuitive but slow compared to Pointer
Lequeux PBE [59] Continuum RS Restricted to single-mode relaxation processes

Poisson Renewal [16] Continuum RS + EA (nominal) Fast and e�cient for �tting. Includes corrections for CLF.
Poisson �common pool� Continuum RS + EA (nominal) Pedagogical, not recommended for use
Pointer Algorithm [34] Stochastic RS + EA + more Includes all relevant physics in some form.

Known issues with OSFT and �tting algorithm
Full-chain PBE [39] Continuum RS + EA Technically sound but (so far) di�cult to use

Shu�ing [23] Continuum Shu�ing Minor improvement on Poisson renewal
Slip Link [61] Stochastic RS Best treatment of CR and CLF

Ideal for low entanglement numbers, Z < 10

Table 1: This table summarizes comparisons on the capabilities and limitations of the linear
rheology models considered in the main text. This list is not intended to be comprehensive, and the
notes re�ect our best current understanding. The table uses abbreviations RS (reversible scission),
EA (end attack), OSFT (one-side Fourier transform), and CLF (contour length �uctuations).

on the �tting algorithm and iteration protocol demonstrates that the aforementioned issues can

be addressed with continued attention and software improvements.

The full-chain population balance model by Peterson and Cates [39] is an ensemble-averaged

version of the Langevin equations from the original Cates model. The transformation to a contin-

uum model is exact - there are no approximations beyond those used by Cates, in contrast to the

earlier population balance attempt by Lequeux [59]. However, the full-chain population balance

model equations (cf. Appendix A) are su�ciently cumbersome that they have not been used. As

an alternative, two of us developed the "shu�ing model" (cf. section 4) as a useful approximation

strategy. It was soon discovered that the shu�ing model was a variation of (and slight improve-

ment upon) the original Poisson renewal model (c.f section 4). Corrections for contour length

�uctuations (CLF) have also been developed in both frameworks, and in this case it seems that

the equations prescribed by Poisson renewal cannot be transformed into a di�erential constitutive

equation for comparison with the shu�ing model. Shu�ing also includes corrections for double

reptation and links to nonlinear rheology models [23], and Poisson renewal prescribes corrections

for Rouse modes (though these fail for τB < τe).

While the main text (and Appendix A) identi�es physical grounds to prefer a shu�ing approx-

imation over Poisson renewal, it also shows that in practice there is very little distinction between

the two and no practical scienti�c reason to prefer one over the other. On the other hand, the

common pool approximation of section 4.4 has neither a physical basis nor a historical status and

cannot be recommended for practical use.
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