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We consider a dynamic model of Bayesian persuasion in which infor-
mation takes time and is costly for the sender to generate and for the
receiver to process, and neither player can commit to their future ac-
tions. Persuasion may totally collapse in a Markov perfect equilibrium
of this game. However, for persuasion costs sufficiently small, a version
of a folk theorem holds: outcomes that approximate Kamenica and
Gentzkow’s sender-optimal persuasion as well as full revelation and ev-
erything in between are obtained in Markov perfect equilibrium as the
cost vanishes.
I. Introduction
Persuasion is a quintessential formof communication in which one individ-
ual (the sender) pitches an idea, a product, a political candidate, a point of
view, or a course of action to another individual (the receiver).Whether the
thankEmir Kamenica and four anonymous referees formany insightful and constructive
stions. We are also grateful to Martin Cripps, Jeff Ely, Faruk Gul, Stephan Lauermann,

nically published June 2, 2023

of Political Economy, volume 131, number 7, July 2023.
The University of Chicago. All rights reserved. Published by The University of Chicago Press.
/doi.org/10.1086/722985

1797

https://doi.org/10.1086/722985


1798 journal of political economy
receiver ultimately accepts that pitch—or is persuaded—depends on the
underlying truth (the state of the world) but, importantly, also on the infor-
mation the sender manages to communicate. In remarkable elegance and
generality, Kamenica and Gentzkow (2011; henceforth KG) show how the
sender should communicate information in such a setting, when she can
perform any (Blackwell) experiment instantaneously, without any cost in-
curred by her or by the receiver. This frictionlessness gives full commitment
power to the sender, as she can publicly choose any experiment and reveal
its outcome, all before the receiver can act.
In practice, however, persuasion is rarely frictionless. Imagine a salesper-

sonpitching a product to a potential buyer. The buyermay have an interest
in buying the product but requires some evidence that it matches his
needs. To convince the buyer, the salesperson might demonstrate certain
features of the product ormarshal customer testimonies and sales records,
any of which takes real time and effort. Likewise, to process information,
the buyermust pay attention, which is costly. Clearly, these features arepres-
ent in other persuasion contexts, such as a prosecutor seeking to convince
juries or a politician trying to persuade voters.
In this paper, we study the implications of these realistic frictions. Im-

portantly, if information takes time to generate but the receiver can act
at any time, the sender no longer automatically enjoys full commitment
power. Specifically, she cannot promise to the receiver what experiments
she will perform in the future, effectively reducing her commitment
power to a current flow experiment. Given the lack of commitment by
the sender, the receiver may stop listening and take an action if he does
not believe that the sender’s future experiments are worth waiting for.
The buyer in the example above may walk away at any time when he be-
comes sufficiently pessimistic about the product or about the prospect of
the salesperson eventually persuading him. We will examine to what ex-
tent and in what manner the sender can persuade the receiver in this en-
vironment with limited commitment. As we will demonstrate, the key
challenge facing the sender is to instill the belief that she is worth listen-
ing to, namely, to keep the receiver engaged.
We develop a dynamic version of the canonical persuasion model: the

state is binary, L or R, and the receiver can take a binary action, ‘ or r. The
receiver prefers to match the state by taking action ‘ in state L and r in
state R, while the sender prefers action r regardless of the state. Time is
GeorgeMailath, MegMeyer, Sven Rady, Nikita Roketskiy, Hamid Sabourian, Larry Samuelson,
Sara Shahanaghi, and audiences in various seminars and conferences for helpful comments
and discussions. Che is supported by the National Science Foundation (SES-1851821). Che
andKim are supported by theMinistry of Education of the Republic of Korea and theNational
Research Foundation of Korea (NRF-2020S1A5A2A03043516). This paper was edited by Emir
Kamenica.Ourdear friend and coauthor, KonradMierendorff, passed away inAugust 2021. All
the ideas and results in this paper are collaborative work by the three authors, but Che andKim
are responsible for any remaining errors.



keeping the listener engaged 1799
continuous and the horizon is infinite. At each point in time, unless the
game has ended, the sender may perform some flow experiment. In re-
sponse, the receiver either takes an action and ends the game or simply
waits and continues the game. Both the sender’s choice of experiment
and its outcome are publicly observable. Therefore, the two players al-
ways share a common belief about the state.
The sender has a rich class of Poisson experiments at her disposal. Spe-

cifically, we assume that at each instant, the sender can generate a collec-
tion of Poisson signals. The possible signals are flexible in their direction-
alities: a signal can be either good news (inducing a posterior above the
current belief) or bad news (inducing a posterior below the current be-
lief). In addition, the news can be of arbitrary accuracy: the sender can
choose any target posterior, although more accurate signals (with targets
closer to 0 or 1) arrive at a lower rate. Our model generalizes the existing
Poissonmodels in the literature, which considered either a good news or a
bad news Poisson experiment of given accuracy (e.g., Keller, Rady, and
Cripps 2005; Keller and Rady 2015; Che and Mierendorff 2019).
Any experiment, regardless of its accuracy, requires a flow cost c > 0 (per

unit of time) for the sender to perform and for the receiver to process.
That the cost is the same for both players is a convenient normalization,
with nomaterial consequence (see n. 8). Ourmodel of information allows
for the flexibility and richness of Kamenica andGentzkow (2011) but adds
the friction that information takes time to generate. This serves to isolate
the effects of the friction.
We may interpret the model in the canonical communication context,

such as a salesperson pitching a product to a buyer. The former is trying
to persuade the latter that the product fits his needs, an event denoted by
R. Once inside the store, the buyer is deciding whether to listen to the pitch
(wait), leave the store (action ‘), or purchase the product (action r). We in-
terpret the series of pitches made by the salesperson as experiments. A sales-
person’s pitches may include the types of product features demonstrated
as well as her manner, tone, and body language with which her messages
are delivered.Hence, thepitches can reveal a lot aboutwhat she is intending
to say, not just what she is saying, consistent with public observability of ex-
periments assumed in our model. Meanwhile, whether the pitches succeed
depends on the buyer’s idiosyncratic needs and is uncertain from the
salesperson’s perspective. It is also reasonable that an experienced salesper-
son could get feedback on her pitch directly or indirectly from the buyer’s
reactions, which would make the outcome of the experiment public. As in
our model, the key issue is whether the buyer believes the salesperson’s
pitches to be worth listening to. Our analysis will focus on this issue.
We studyMarkov perfect equilibria (MPEs) of this game, that is, subgameper-

fect equilibrium strategy profiles that prescribe the sender’s flow experiment
and the receiver’s action (‘, r, or wait) at eachbelief p, the probability that the
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state is R. We are particularly interested in the equilibrium outcomes when
the frictions are sufficiently small (i.e., in the limit as theflow cost c converges
to zero). In addition, we investigate the persuasion dynamics, or the type of
pitch the sender uses to persuade the receiver in equilibria of this game.
Is persuasion possible? If so, to what extent?—Whether the sender can per-

suade the receiver depends on whether the receiver finds her worth listen-
ing to—or,more precisely, on his belief that the sender will provide enough
information to justify his listening costs. This belief depends on the sender’s
future experimentation strategy, which in turn rests on what the receiver
will do if the sender betrays her trust and reneges on her information pro-
vision. The multitude of ways in which the players can coordinate on these
choices yields a folk theorem–like result. There is an MPE in which no per-
suasion occurs. When the cost c becomes arbitrarily small, however, we also
obtain a set of persuasionequilibria that ranges fromones that approximate
Kamenica and Gentzkow’s (2011) sender-optimal persuasion to ones that
approximate full revelation; we show that any sender (receiver) payoff be-
tween these two extremes is attainable in the limit as c tends to zero.
In the no-persuasion equilibrium, the receiver is pessimistic about the

sender generating sufficient information, sohe simply takes an actionwith-
out waiting for information. Facing this pessimism, the sender becomes
desperate andmaximizes her chance of once-and-for-all persuasion involv-
ingminimal information, which turns out to be the sort of strategy that the
receiver would not find worth waiting for, justifying his pessimism.
In a persuasion equilibrium, by contrast, the receiver expects the sender

to deliver sufficient information to compensate his listening costs. This op-
timism in turn motivates the sender to deliver on her promise of informa-
tive experimentation; if she reneges on her experimentation, the ever op-
timistic receiver would simply wait for experimentation to resume an
instant later instead of taking the action that the sender would like him
to take. In short, the receiver’s optimism fosters the sender’s generosity
in information provision, which in turn justifies this optimism. As we will
show, equilibria with this virtuous cycle of beliefs can support a wide range
of outcomes fromKamenica andGentzkow’s (2011) optimal persuasion to
full revelation, as the flow cost c tends to zero.1

Persuasion dynamics.—Our model informs us of what kind of pitch the
sender should make at each point in time; how long it takes for the
sender to persuade the receiver, if ever; and how long the receiver listens
1 The mechanism using a virtuous cycle of beliefs to support cooperative behavior in a
dynamic environment has been utilized in other economic contexts. Among others, Che
and Sákovics (2004) show how this mechanism can be used to overcome the holdup prob-
lem. In fact, the main tension in our dynamic persuasion problem can be interpreted as a
holdup problem: the receiver wants to avoid incurring listening costs if the sender will be-
have opportunistically and not provide sufficient information. However, the current paper
differs in other crucial aspects; in particular, the rich choice of information structures is
unique here and has no analog in Che and Sákovics (2004).
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to the sender before taking an action. The dynamics of the persuasion
strategy adopted in equilibrium involves rich behavioral implications that
are absent in the static persuasion model.
In ourMPEs, the sender optimallymakes use of the following three strat-

egies: (1) confidence building, (2) confidence spending, and (3) confi-
dence preserving. The confidence-building strategy involves a bad news Pois-
son experiment that induces the receiver’s belief (that the state is R) to
either drift upward or jump to zero. Under this strategy, the belief moves
upward for surewhen the state is R andquite likely evenwhen the state isL;
in fact, this strategy minimizes the probability of bad news by insisting that
the news be conclusive. The sender finds it optimal to use this strategy
when the receiver’s belief is already close to the persuasion target (i.e.,
the belief that will trigger him to choose r).
The confidence-spending strategy involves a good news Poisson experiment

that generates an upward jump to some target belief, either one inducing
the receiver to choose r or at least one inducing him to listen to the sender.
Such a jump arises rarely, however, and absent this jump, the receiver’s be-
lief drifts downward. In this sense, this strategy is a risky one that spends the
receiver’s confidence over time. This strategy is used when the receiver is
already quite pessimistic about R, so that either the confidence-building
strategy would take too long, or the receiver would simply not listen. In par-
ticular, it is used as a “last ditch” effort, when the sender is close to giving up
on persuasion or when the receiver is about to choose ‘.
The confidence-preserving strategy combines the above two strategies—

namely, a good news Poisson experiment inducing the belief to jump to
a persuasion target and a bad news Poisson experiment inducing the belief
to jump to zero. This strategy is effective if the receiver is sufficiently skep-
tical relative to the persuasion target so that the confidence-building strat-
egy will take too long. Confidence spending could expedite persuasion for
a range of beliefs but would run down the receiver’s confidence in the pro-
cess. Hence, at some point, the sender finds it optimal to switch to the
confidence-preserving strategy, which prevents the receiver’s belief from
deteriorating further. The belief where the sender switches to this strategy
constitutes an absorbing point of the belief dynamics; from then on, the
belief does not move, unless either a sudden persuasion breakthrough
or breakdown occurs.
The equilibrium strategy of the sender combines these three strategies

in different ways under different economic conditions, thereby exhibit-
ing rich and novel persuasion dynamics. Our characterization in section V
describes precisely how the sender uses them in different equilibria.
Related literature.—This paper primarily contributes to the Bayesian

persuasion literature that began with Kamenica and Gentzkow (2011) by
studying the problem in a dynamic environment. Several recent papers
also consider dynamic models (e.g., Brocas and Carrillo 2007; Kremer,
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Mansour, and Perry 2014; Au 2015; Ely 2017; Renault, Solan, and Vieille
2017; Che andHörner 2018;Henry andOttaviani 2019; Ely and Szydlowski
2020; Orlov, Skrzypacz, and Zryumov 2020; Marinovic and Szydlowski
2020; Bizzotto, Rüdiger, andVigier 2021). Our focus is different frommost
of these papers since we consider gradual production of information and
assume that there is no commitment.2

Two papers closest to ours in this regard are Brocas and Carrillo (2007)
and Henry and Ottaviani (2019), who restrict the set of feasible experi-
ments so that information arrives gradually. The former considers a binary
signal in a discrete-time setting, and the latter employs a drift-diffusion
model in a continuous-time setting.3 Unlike our model, the receiver in
their models cannot stop listening and take an action at any time: he
can move only after the sender stops experimenting (Brocas and Carrillo
2007) or applies for approval (Henry and Ottaviani 2019). This modeling
difference reflects interests in different economic problems/contexts; for
example, Henry and Ottaviani (2019) focus on regulatory approval, while
we study persuasive communication. However, the difference leads to very
different persuasion outcomes: in their models, complete persuasion fail-
ure never occurs, and there exists a unique equilibrium.4 Another impor-
tant difference is that the sender in their models does not enjoy the rich-
ness and control of information structures: in both papers, the sender
2 Orlov, Skrzypacz, and Zryumov (2020) characterize an equilibrium that resembles
some aspects of our equilibrium in a model where the sender (agent) faces no constraint
in the release of information. In particular, they show that the sender may pipet informa-
tion—release information gradually—in a way that resembles our confidence-building (R-
drifting) strategy. The resemblance is more apparent than fundamental, however. In their
main model, the sender intrinsically prefers the receiver to delay exercise of a real option;
i.e., the delay of the receiver’s action per se is desired by the sender. She can fully reveal the
state instantaneously but chooses to delay release of information in order to incentivize the
receiver to wait longer. In our model, the sender has no intrinsic preferences for delay and
provides information only to persuade the receiver to take a particular final action.

3 McClellan (2022) and Escudé and Sinander (2023) also study dynamic persuasion in
drift-diffusion models. McClellan (2022) characterizes the optimal dynamic approval
mechanism under full commitment. Escudé and Sinander (2023) consider a sender dy-
namically optimizing against a receiver who chooses a series of actions myopically.

4 Henry and Ottaviani (2019) consider three regimes that differ in the players’ commit-
ment power. Their informer authority regime corresponds to the sender-optimal dynamic
outcome, in that the sender stops as soon as the belief reaches the minimal point at which
the receiver is willing to take action r (approves the project). It is easy to show that in this case,
if the receiver could reject/accept the project unilaterally at any time and discounted his fu-
ture payoff or incurred a flow cost as in ourmodel, he would take an action immediately with-
out listening, andpersuasionwould fail completely. Their no-commitment regime is similar to
ourmodel butwith the crucial difference that the sender does not have theoption to pass, i.e.,
to stop experimentingwithout abandoning theproject. This feature allows the receiver (e.g., a
drug approver) to force the sender to keep experimenting, resulting in the receiver-optimal
persuasion as the unique equilibrium outcome. If passing were an available option, as we as-
sume inourmodel,multiple equilibria supported by virtuous cycles of beliefs would arise even
in their drift-diffusionmodel, producing a range of persuasion outcomes and ultimately lead-
ing to the same kind of result as our theorem 2 (see n. 18). Finally, their evaluator authority
case is obtained when the receiver can commit to an acceptance threshold.
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decides simply whether to continue and has no influence over the type of
information generated.
The receiver’s problem in our paper involves a stopping problem, which

has been studied extensively in the single agent context, beginning with
Wald (1947) and Arrow, Blackwell, and Girshick (1949). In particular,
Nikandrova andPancs (2018), Che andMierendorff (2019), andMayskaya
(2020) study an agent’s stopping problem when she acquires information
through Poisson experiments.5 Che and Mierendorff (2019) introduced
the general class of Poisson experiments adopted in this paper. However,
the generality is irrelevant in their model, because unlike here, the deci-
sion maker optimally chooses only between two conclusive experiments
(i.e., never chooses a nonconclusive experiment).
The paper is organized as follows. Section II introduces the model.

Section III illustrates the main ideas of our equilibria. Sections IV and
V characterize our MPE strategies and study their payoff implications.
Section VI concludes.
II. Model
We consider a game in which a sender (she) wishes to persuade a receiver
(he). There is an unknown state q that can be either L (left) or R (right).
The receiver ultimately takes a binary action ‘ or r, which yields the follow-
ing payoffs:
5 Th
Mosca
2019)
2022)
States/Actions

Payoffs for the Sender and Receiver

‘ r

L (0, uL
‘ ) (v, uL

r )
R (0, uR

‘ ) (v, uR
r )
e Wald stopping problem has also
rini and Smith 2001; Fudenberg, S
and in a model that allows for gen
.

been studied with dr
track, and Strzaleck
eral endogenous ex
The receiver gets uq
a if he takes action a ∈ f‘, rg when the state is

q ∈ fL, Rg. The sender’s payoff depends only on the receiver’s action:
she gets v if the receiver takes r and zero otherwise. We assume uL

‘ >
maxfuL

r , 0g and uR
r > maxfuR

‘ , 0g, so that the receiver prefers to match
the action with the state, and also v > 0, so that the sender prefers action
r to action ‘. Both players begin with a common prior p0 that the state is
R and use Bayes’s rule to update their beliefs.
KG benchmark.—By now, it is well understood how the sender optimally

persuades the receiver if she can commit to an experiment without any
restrictions. For each a ∈ f‘, rg, let Ua(p) denote the receiver’s expected
ift-diffusion learning (e.g.,
i 2018; Ke and Villas-Boas
perimentation (see Zhong
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payoff when he takes action a with belief p. In addition, let p̂ denote the
belief at which the receiver is indifferent between actions ‘ and r, that is,
U‘ðp̂Þ 5 Urðp̂Þ.6
If the sender provides no information, then the receiver takes action r

when p0 ≥ p̂. Therefore, persuasion is necessary only when p0 < p̂. In this
case, the KG solution prescribes an experiment that induces only two
posteriors, q2 5 0 and q1 5 p̂. The former leads to action ‘, while the
latter results in action r. This experiment is optimal for the sender, be-
cause p̂ is the minimum belief necessary to trigger action r, and setting
q2 5 0 maximizes the probability of generating p̂ and thus action r.
The resulting payoff for the sender is p0v=p̂, as given by the dashed line
in the left panel of figure 1. The flip side is that the receiver enjoys no
rents from persuasion; his payoff is Uðp0Þ ≔ maxfU‘ðp0Þ, Urðp0Þg, the
same as if no information were provided, as depicted in the right panel
of figure 1.
Dynamic model.—We consider a dynamic version of the above Bayesian

persuasion problem. Time flows continuously starting at 0. Unless the
game has ended, at each point in time t ≥ 0, the sender may perform an
experiment at a constant flow cost c from a feasible set, which will be de-
scribed precisely below, or pass—not running any experiment and not in-
curring the flow cost c.7 Just as it is costly for the sender to produce infor-
mation, it is also costly for the receiver to process it. Specifically, if the
sender experiments, then the receiver also pays the same flow cost and ob-
serves the experiment and its outcome. After that, he decides whether to
take an irreversible action (‘ or r) or to wait and listen to the information
provided by the sender in the next instant. The former ends the game,
while the latter lets the game continue.
There are twonotablemodeling assumptions. First, the receiver can stop

listening to the sender and take a game-ending action at any point in time.
This is the fundamental difference from Kamenica and Gentzkow (2011),
wherein the receiver is allowed to take an action only after the sender fin-
ishes her informationprovision. Second, the players’flow costs are assumed
6 Specifically, for each p ∈ ½0, 1�, U‘ðpÞ≔ puR
‘ 1 ð12pÞuL

‘ and UrðpÞ≔ puR
r 1 ð1 2 pÞuL

r .
Therefore, p̂ 5 ðuL

‘ 2 uL
r Þ=ðuR

r 2 uR
‘ 1 uL

‘ 2 uL
r Þ, which is well defined in (0, 1) under our as-

sumptions on the receiver’s payoffs.
7 Passing enables the sender to stop experimenting at no cost. As will be seen, the exper-

imentation always costs c > 0 even at low intensity (informativeness). While this involves a
form of discontinuity, it is largely for analytic convenience. Our results remain unchanged
even if the cost is proportional to the intensity of the experiment (see Che, Kim, and
Mierendorff 2021). One may also wonder what would happen if passing incurs the same
cost c as experimentation—a natural assumption if c is interpreted as the waiting cost rather
than the experimentation cost. Our main results would still go through under this assump-
tion, except for some details of the equilibrium characterization. Without the sender being
able to freely stop experimenting, she would never give up on persuading, so the lower bound-
ary of the experimentation region, denoted by p* later, is always determined by the receiver’s
incentives, as in proposition 2.
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to be the same. This is, however, just a normalization that allows us to di-
rectly compare the players’ payoffs, and all subsequent results can be rein-
terpreted as relative to each player’s individual flow cost.8

Feasible experiments.—We consider a general class of experiments whose
informativeness per unit time is bounded in a proper way. Formally, we
let pt denote the belief that q 5 R at time t and represent an experiment
by a regular martingale process hpti—that is, a càdlàg martingale process
over X ≔ ½0, 1� that is progressively measurable with respect to its natu-
ral filtration fF tg—with countably many discontinuities and a determin-
istic continuous path at each point in history. Its martingale property fol-
lows from the law of iterated expectations (or Bayes plausibility). We let
P denote the set of all regular martingale processes.9

For any q ≠ p2 ≔ limt 0↑tpt 0 , let lqðq, pt2Þ≔ limdt → 0P½pt 5 qjpt2dt , q�=dt
denote the rate at which the belief changes from pt2 to q in state q. The
set of feasible experiments is then defined as

P* ≔ h pt i ∈ P : o
q≠pt2

lRðq, pt2Þ 2 lLðq, pt2Þj j ≤ l for all t  and pt2

( )
:

FIG. 1.—Payoffs from static persuasion. Solid lines, payoffs without persuasion (informa-
tion). Dashed line, sender’s expected payoff in KG solution. Dash-dotted lines, payoffs under a
fully revealing experiment.
8 Suppose that the sender’s cost is given by cs, while that of the receiver is cr. Such amodel
is equivalent to our normalized one in which c 0r 5 c 0s 5 cr and v 0 5 vðcr=csÞ. When solving
the model for a fixed set of parameters (uq

a , v, c, l), this normalization does not affect
the results. If we let c tend to zero, we are implicitly assuming that the sender’s and receiver’s
(unnormalized) costs, cs and cr, converge to zero at the same rate. See n. 26 for a relevant
discussion.

9 The requirement of a deterministic continuous pathmeans thatP does not include dif-
fusion processes such as Brownianmotion. But the classP encompasses a large class of jump
(Poisson) processes. The implications of relaxing this requirement for our results (i.e.,
whether the sender would prefer a belief process failing this requirement to Poisson pro-
cesses we allow in our model) remain an open question.
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The set P* includes all Poisson processes whose state-contingent jump
rates (lL, lR) satisfy jlL 2 lRj ≤ l at each point in history; the feasible
arrival rates are depicted by the shaded area in figure 2. It also includes
all mixtures of those Poisson experiments.
In fact, any information in our class can be generated by diluting a con-

clusive Poisson signal arriving at rate l. Consider a conclusive signal that
arrives in state R at rate l (black circle in fig. 2). One can then add a white
noise arriving in both states at some rate m to this conclusive signal. The
resulting signal (white circle in fig. 2) then arrives more frequently at
rates (m, l 1 m) but is less precise, moving the belief only to posterior
q 5 pðl 1 mÞ=½ð1 2 pÞm 1 pðl 1 mÞ�ð< 1Þ. The constant bound for the ar-
rival rate differences means that the constraint on flow information is in-
dependent of a prior, or experimental, as defined by Denti, Marinacci, and
Rustichini (2022); this stands in contrast to other models, such as rational
inattention, which assumes (prior-dependent) Shannon information cost
or capacity.
Lemma 1. An experiment hpti is feasible (i.e., hpti ∈ P*) if and only

if the following property holds at each point in history: there exists
a :½0, 1�→ ½0, 1� such that oq≠paðqÞ ≤ 1;

a. for any q ≠ p, the arrival rate of posterior belief q given pt2 5 p is
equal to

aðqÞ lpð1 2 pÞ
q 2 pj j ;

and
FIG. 2.—Arrival rates of feasible Poisson experiments.
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b. conditional on no jump, the belief drifts according to

_p 5 2 o
q>p

aðqÞ 2o
q<p

aðqÞ
 !

lpð1 2 pÞ:
Proof.—See appendix A.
Lemma 1 shows that a feasible flow experiment can be represented by

the sharesa of a unit capacity allocated to Poisson experiments that trigger
jumps to alternative posterior beliefs q at rates aðqÞlpð1 2 pÞ=jq 2 pj.
The jump rate in part a simplifies to an expression familiar from the exist-
ing literature when the sender triggers a single jump with aðqÞ 5 1 to
conclusive news with either q 5 0 or q 5 1. For instance, conclusive R-
evidence (q 5 1) is obtained at the rate of lp, as is assumed in good news
models (see, e.g., Keller, Rady, and Cripps 2005). Likewise, conclusive L-
evidence (q 5 0) is obtained at the rate of lð1 2 pÞ, as is assumed in bad
news models (see, e.g., Keller and Rady 2015). Our model allows for such
conclusive news, but it also allows for arbitrary nonconclusive news with
q ∈ ð0, 1Þ as well as any arbitrary mixture among such experiments. Fur-
ther, our information constraint captures the intuitive idea that more accu-
rate information takes longer to generate. For example, if we assume q > p,
the arrival rate increases as the news becomes less precise (q falls), and it
approaches infinity as the news becomes totally uninformative (i.e., as q
tends to p). Last, limited arrival rates capture an important feature of
our model that any meaningful persuasion takes time and requires delay.
Part b describes the law of motion governing the drift of beliefs when

no jump occurs. Strikingly, the drift rate depends only on the difference
between the fractions of the capacity allocated to right versus left Poisson
signals. That is, the rate does not depend on the precision q of the news in
the individual experiments. The reason is that the precision of news and
its arrival rate offset each other, leaving the drift rate unaffected.10 This
feature makes the analysis tractable while at the same time generalizing
conclusive Poisson models in an intuitive way.
Among many feasible experiments, the following three (visualized in

fig. 3) will prove particularly relevant for our purposes. They formalize
the three modes of persuasion discussed in section I.

• R-drifting experiment (confidence building): að0Þ 5 1. The sender
devotes all her capacity to a Poisson experiment with (posterior)
jump target q 5 0. In the absence of a jump, the posterior drifts to
the right at rate _p 5 lpð1 2 pÞ.
10 Suppose q > p. This means that the sender has chosen a rate l for the informative sig-
nal and m ≥ 0 for the noise. It is clear that m does not affect the updating of the state since
the noise arrives at the same rate in both states.
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• L-drifting experiment (confidence spending): aðqÞ 5 1 for some
q > p. The sender devotes all her capacity to a Poisson experiment
with jumps targeting some posterior q > p. The precise jump target
q will be specified in our equilibrium construction. In the absence
of a jump, the posterior drifts to the left at rate _p 5 2lpð1 2 pÞ.

• Stationary experiment (confidence preserving): að0Þ 5 aðqÞ 5 1=2
for some q > p. The sender assigns an equal share of her capacity to
an experiment targeting0 andone targeting q. Absent jumps, the pos-
terior remains unchanged.

Solution concept.—We study (pure-strategy) MPEs of this dynamic game
in which both players’ strategies depend only on the current belief p.11

Formally, a profile ofMarkov strategies specifies, for each p ∈ ½0, 1�, a flow
experiment jSðpÞ 5 ðaðq; pÞÞq∈½0,1� chosen by the sender and an action
jRðpÞ ∈ f‘, r, waitg chosen by the receiver. Given j 5 ðjS, jRÞ and prior
belief p0, let pt denote the belief at time t induced by the strategy profile
and t denote the stopping time at which the receiver takes action ‘ or r.
Then, the sender’s expected payoff is given by

V jðp0Þ 5 v  P jRðptÞ 5 rjp0½ � 2 cE

ð
t

0

1fo
q≠p

aðq;ptÞ > 0gdtjp0
" #

,

while the receiver’s expected payoff is given by

U jðp0Þ 5 E UjRðptÞðptÞjp0
� �

2 cE

ðt
0

1fo
q≠p

aðq;ptÞ > 0gdtjp0
" #

:

FIG. 3.—Three prominent feasible experiments.
11 Naturally, this solution concept limits the use of (punishment) strategies depending
on the payoff-irrelevant part of the histories and serves to discipline strategies off the equi-
librium path. For non-Markov equilibria, see our discussion in sec. VI.
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A strategy profile j 5 ðjS, jRÞ is admissible if the law of motion governing
the belief evolution is well defined (see app. B for details) and the stop-
ping time t is also well defined. Let Σ denote the set of all admissible strat-
egy profiles.
Definition 1 (Markov perfect equilibrium). A strategy profile j 5

ðjS, jRÞ ∈ Σ is an MPE if

i. V jðpÞ ≥ V ĵðpÞ for all p ∈ ½0, 1� and ĵ 5 ðĵS, jRÞ ∈ Σ;
ii. U jðpÞ ≥ U ĵðpÞ for all p ∈ ½0, 1� and ĵ 5 ðjS, ĵRÞ ∈ Σ; and
iii. for any p such that the receiver stops (i.e., jRðpÞ ∈ f‘, rg):

jSðpÞ ∈ argmax
að�;pÞoq aðq, pÞ

lpð1 2 pÞ
q 2 pj j V jðqÞ 2 1 jRðpÞ5rf gv

� �
2 1 oaðq;pt Þ>0f gc:
Whereas properties i and ii are obvious equilibrium requirements, prop-
erty iii imposes a restriction that captures the spirit of perfection in our
continuous-time framework. To see its role clearly, suppose that the receiver
would choose action ‘ unless the sender changes the belief significantly
by running a flow experiment. In discrete time, the sender would simply
choose a flow experiment that maximizes her expected payoff. In con-
tinuous time, however, the sender’s strategy at such a point is inconse-
quential for her payoff; with probability 1, the game would end with the
receiver taking action ‘.Withno further restriction on the sender’s strategy,
this continuous time peculiarity leads to severe but uninteresting equilib-
riummultiplicity (see n. 15). Property iii enables us to avoid the problem
by requiring the sender to choose a strategy that maximizes her instanta-
neous payoff normalized by dt in the stopping region; it can be seen as
selecting an MPE that is robust to a discrete-time approximation.
III. Illustration: Persuading the Receiver to Listen
We begin by illustrating the key issue facing the sender: persuading the re-
ceiver to listen. To this end, consider any prior p0 < p̂ so that persuasion is
not trivial and suppose that the sender repeatedly chooses R-drifting ex-
periments with jumps targeting q 5 0 until the posterior either jumps to
zero or drifts to p̂, as depicted on the horizontal axis in figure 4. This strat-
egy exactly replicates the KG solution (in the sense that it yields the same
probabilities of reaching the two posteriors, 0 and p̂), provided that the re-
ceiver listens to the sender for a sufficiently long time.
But will the receiver wait until the belief reaches 0 or p̂? The answer is

no. The KG experiment leaves no rents for the receiver without listening
costs, and thus with listening costs the receiver will be strictly worse off
than if he picks ‘ immediately. In figure 4, the receiver’s expected gross
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payoff from the static KG experiment is U‘ðp0Þ. Because of the listening
costs, the receiver’s expected payoff under the dynamic KG strategy,
denoted here by U(p0), is strictly smaller than U‘ðp0Þ. In other words,
the dynamic strategy implementing the KG solution cannot persuade
the receiver to wait and listen, so it does not permit any persuasion.12 In-
deed, this problem leads to the existence of a no-persuasionMPE, regard-
less of the listening cost.
Theorem 1 (Persuasion failure). For any c > 0, there exists an MPE

in which no persuasion occurs; that is, for any p0, the receiver immediately
takes either action ‘ or r.
Proof. Consider the following strategy profile: the receiver chooses ‘

for p < p̂ and r for p ≥ p̂, and the sender chooses the L-drifting experi-
ment with jump target p̂ for all p ∈ ½p̂‘L, p̂Þ and passes for all p ∉
½p̂‘L, p̂Þ, where the cutoff p̂‘L is the belief at which the sender is indiffer-
ent between the L-drifting experiment and stopping (followed by ‘).13
FIG. 4.—Replicating KG outcome through R-drifting experiments.
12 The KG outcome can also be replicated by other dynamic strategies. For instance, the
sender could repeatedly choose a stationary strategy with jumps targeting 0 and p̂ until ei-
ther jump occurs. However, this (and, in fact, any other) strategy would not incentivize the
receiver to listen, for the same reason as in the case of repeating R-drifting experiments.

13 Specifically, p̂‘L equates the sender’s flow cost c to the instantaneous benefit from the
L-drifting experiment:

c 5
lp̂‘Lð1 2 p̂‘LÞ

p̂ 2 p̂‘L

v,

where the right-hand side is the sender’s benefit v from persuasion multiplied by the rate
at which the rightward jump to p̂ occurs (under the L-drifting experiment) at belief p̂‘L.
Solving the equation yields
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In order to show that this strategy profile is indeed an equilibrium, first
consider the receiver’s incentives given the sender’s strategy. If p /∈ ½p̂‘L, p̂Þ,
then the sender never provides information, so the receiverhas no incentive
to wait and will take an action immediately. If p ∈ ½p̂‘L, p̂Þ, then the sender
never moves the belief into the region where the receiver strictly prefers to
take action r (i.e., strictly above p̂). This implies that the receiver’s expected
payoff is equal to U‘ðp0Þminus any listening cost she may incur. Therefore,
again, it is optimal for the receiver to take an action immediately.
Now consider the sender’s incentives given the receiver’s strategy. If

p ≥ p̂, then it is trivially optimal for the sender to pass. Now suppose that
p < p̂.Our refinement (property iii in definition1) requires that the sender
choose a flow experiment that maximizes her instantaneous payoff,
which is given by14

max
að�;pÞoq≠paðq; pÞl

pð1 2 pÞ
q 2 pj j 1 q≥p̂f gv 2 1

o
q≠p
aðq; pÞ > 0

( )c subject to o
q≠p
aðq; pÞ ≤ 1:

If the sender chooses any nontrivial experiment, its jump target must be
q 5 p̂. Hence the sender’s best response is either to maximize the jump
rate to p̂ (i.e., aðp̂; pÞ 5 1) or to pass. The former is optimal if and only
if lpð1 2 pÞ=ðp̂ 2 pÞv ≥ c, or equivalently, p ≥ p̂‘L.15 QED
Theno-persuasion equilibriumconstructed in the proof showcases a total

collapse of trust between the two players. The receiver does not trust the
sender to convey valuable information (i.e., to choose an experiment target-
ing q > p̂), so he refuses to listen to her. This attitudemakes the sender des-
perate for a quick breakthrough; she tries to achieve persuasion by targeting
just p̂, which is indeed not enough for the receiver to be willing to wait.
Can trust be restored? In other words, can the sender ever persuade

the receiver to listen to her? She certainly can, if she can commit to a dy-
namic strategy, that is, if she can credibly promise to provide more infor-
mation in the future. Consider the following modification of the dynamic
KG strategy discussed above: the sender repeatedly chooses R-drifting ex-
periments with jumps targeting zero until either the jump occurs or the
14 The objective function follows from the fact that under the given strategy profile, the
sender’s value function is V ðpÞ 5 v if p ≥ p̂ and V ðpÞ 5 0 otherwise; and when the target
posterior is q, a Poisson jump occurs at rate lpð1 2 pÞ=jq 2 pj.

15 Absent point iii in definition 1, there are many additional equilibria in which, in the
stopping region, the sender may simply refuse to experiment or adopt an arbitrary Poisson
experiment with jumps targeting beliefs other than p̂ within the same stopping region.
None of these alternative equilibria survive in the corresponding discrete-time setting.
Our refinement allows us to select the continuous-time limit of the unique discrete-time
no-persuasion equilibrium, and theorem 1 holds despite this refinement.

p̂‘L 5
1

2
1

c

2lv
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1

c

2lv

� �2

2
cp̂

lv
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:



1812 journal of political economy
belief reaches p* > p̂. If the receiver waits until the belief either jumps to
zero or reaches p*, then her expected payoff is equal to16

URðpÞ 5 p* 2 p

p*
uL
‘ 1

p

p*
Urðp*Þ 2 p log

p*

1 2 p*
1 2 p

p

� �
1 1 2

p

p*

� �
c

l
:

Importantly, if p* is sufficiently large relative to c, then UR(p) (dashed
line in fig. 5) stays above maxfU‘ðpÞ,  UrðpÞg (solid kinked line) while p
drifts toward p*, so the receiver prefers to wait. Intuitively, unlike in the
KG solution, this “more generous” persuasion scheme promises the receiver
enough rents that make it worth listening to.
If c is sufficiently small, the required belief target p* need not exceed p̂

by much. In fact, p* can be chosen to converge to p̂ as c → 0. In this
fashion, a dynamic persuasion strategy can be constructed to approxi-
mate the KG solution when c is sufficiently small.
FIG. 5.—Persuasive R-drifting experiments.
16 To understand this explicit solution, first notice that under the prescribed strategy
profile, the receiver takes action ‘ when p jumps to zero, which occurs with probability
ðp* 2 pÞ=p*, and action r when p reaches p*, which occurs with probability p=p*. The last
term captures the total expected listening cost. The length of time t it takes for p to reach
p* absent jumps is derived as follows:

p* 5
p

p 1 ð1 2 pÞe2lt
⇔ t 5

1

l
log

p*

1 2 p*
1 2 p

p

� �
:

Hence, the total listening cost is equal to

ð1 2 pÞ
ð
t

0

ctd 1 2 e2lt
	 


1 p 1 ð1 2 pÞe2lt
	 


ct 5 p log
p*

1 2 p*
1 2 p

p

� �
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� �
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:
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At first glance, this strategy seems unlikely to work without the sender’s
commitment power. How can she credibly continue her experiment even
after the posterior has risen past p̂? Why not simply stop at the posterior
p̂—the belief that should have convinced the receiver to choose r? Surpris-
ingly, however, the strategy works even without commitment. This is be-
cause the equilibriumbeliefs generatedby theMarkov strategies themselves
can provide a sufficient incentive for the sender to continue beyond p̂. We
already argued that with a suitably chosen p* > p̂, the receiver is incentiv-
ized towait past p̂ becauseof theoptimistic equilibriumbelief that the sender
will continue to experiment until a much higher belief p* is reached. Cru-
cially, this optimism in turn incentivizes the sender to carry out her strat-
egy:17 were she to deviate and, say, pass at q 5 p̂, the receiver would simply
wait (instead of choosing r), believing that the sender will shortly resume
her R-drifting experiments after the unexpected pause. Given this re-
sponse, the sender cannot gain from deviating: she cannot convince
the receiver to prematurely choose r. To summarize, the sender’s strategy
instills optimism in the receiver that makes him wait and listen, and this
optimism—or the power of beliefs—in turn incentivizes the sender to carry
out the strategy.
The power of beliefs logic extends beyond the Poissonmodel we employ

here,18 but it does depend on subtle details of the model. For example,
consider a variation of the model in which the sender becomes unable
to provide further information at some (Poisson distributed) random
time. If the event is also observable to the receiver, then the above logic ap-
plies unchanged. If it is unobservable to the receiver, however, the logic no
longer holds: nomatter how unlikely the event is, the sender will stop pro-
viding information as soon as the belief rises above p̂, unraveling any per-
suasion equilibrium.Likewise, with a deadline at which the receiver should
take an action, the power of beliefs logic survives if the arrival of the dead-
line is stochastic but fails if the deadline is deterministic. See section VI for
discussions on a few other relevant features.
17 We will show in sec. V.B that under certain conditions, using R-drifting experiments is not
just better than passing but also the optimal strategy (best response), given that the receiver
waits. Here, we illustrate the possibility of persuasion for this case. The logic extends to other
cases where the sender optimally uses different experiments to persuade the receiver.

18 Consider Henry and Ottaviani’s (2019) model in which the belief, as expressed by the
log likelihood ratio s 5 lnðp=ð1 2 pÞÞ, follows a Brownian motion with a drift given by the
state. In keeping with our model, suppose at each point in time that the sender either ex-
periments or passes and the receiver chooses ‘, r, or wait, with the flow cost c incurred on
both sides if the sender experiments and the receiver waits. As noted in n. 4, this model is
similar to Henry and Ottaviani’s (2019) no-commitment regime, except that our sender
has the option to pass without ending the game and the receiver incurs a flow cost. An
MPE is then characterized by two stopping bounds, s* ≤ ŝ : 5 lnðp̂=ð1 2 p̂ÞÞ and s* ≥ ŝ,
such that the sender experiments and the receiver waits if and only if s ∈ ðs*, s*Þ. Our power
of beliefs argument would imply that a range of persuasion targets s* are supported as MPE
for c > 0 sufficiently low, and that range would span the entire (ŝ, ∞) as c → 0.
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IV. Persuasion Equilibria
The equilibrium logic outlined in section III applies not just to strategy
profiles that approximate the KG solution but also to other strategy pro-
files with a persuasion target p* ∈ ðp̂, 1Þ. Building upon this observation,
we establish a folk theorem–like result: any sender (receiver) payoff be-
tween the KG solution and full revelation can be supported as an MPE
payoff in the limit as c tends to zero.
Theorem 2. Fix any prior p0 ∈ ð0, 1Þ.

a. For any sender payoff V ∈ ðp0v, minfp0=p̂, 1gvÞ, if c is sufficiently
small, there exists an MPE in which the sender obtains V.

b. For any receiver payoff U ∈ ðUðp0Þ, p0uR
r 1 ð1 2 p0ÞuL

‘ Þ, if c is suffi-
ciently small, there exists an MPE in which the receiver achieves U.
The proof of theorem 2 follows from the equilibrium constructions of
propositions 2 and 3 in section V.B. The main argument for the proof is
outlined below.
Figure 6 depicts how the set of implementable payoffs for each player

varies according to p0 in the limit as c tends to zero. Theorem2 states that any
payoffs in the shaded areas can be implemented in anMPE, provided that c
is sufficiently small. In the left panel, the upper bound for the sender’s pay-
off is given by the KG-optimal payoff minfp0=p̂, 1gv, and the lower bound is
given by the sender’s payoff from full revelation p0v. For the receiver, by con-
trast, full revelation defines the upper bound p0uR

r 1 ð1 2 p0ÞuL
‘ , whereas

the KG payoff, which leaves no rent for the receiver, is given by Uðp0Þ.
Note that theorem 2 is silent about payoffs in the dotted region. In the

static KG environment, these payoffs can be achieved by the (sender-
pessimal) experiment that splits the prior p into two posteriors, 1 and
q ∈ ½0, p̂�. The following theorem shows that the sender’s payoffs in this
region cannot be supported as an MPE payoff for a sufficiently small
c > 0 (even without invoking our refinement).
FIG. 6.—Implementable payoff set for each player at each p0.
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Theorem 3. If p0 ≤ p̂, then the sender’s payoff in any MPE is either
equal to 0 or at least p0v 2 2c=l. If p0 > p̂, then the sender’s payoff in any
MPE is at least p0v 2 2c=l.
Proof. Fix p0 ≤ p̂, and consider any MPE. If the receiver’s strategy is to

wait at p0, then the sender can always adopt the stationary strategy with
jump targets 0 and 1, which will guarantee her a payoff of p0v 2 2c=l.19

If the receiver’s strategy is to stop at p0, then the receiver takes action ‘ im-
mediately, in which case the sender’s payoff is equal to 0. Therefore, the
sender’s expected payoff is either equal to 0 or above p0v 2 2c=l.
Now suppose p0 > p̂, and consider any MPE. As above, if p0 belongs to

the waiting region, then the sender’s payoff must be at least p0v 2 2c=l.
If p belongs to the stopping region, then the sender’s payoff is equal to v.
In either case, the sender’s payoff is at least p0v 2 2c=l. QED
We prove theorem 2 by constructing MPEs with a particularly simple

structure:
Definition 2. An MPE is a simple MPE (SMPE) if there exist p* ∈

ð0, p̂Þ and p* ∈ ðp̂, 1Þ such that the receiver chooses action ‘ if p < p*,
waits if p ∈ ðp*, p*Þ, and chooses action r if p ≥ p*.20

In other words, in an SMPE, the receiver waits for more information
if p ∈ W and takes an action ‘ or r otherwise, where W 5 ðp*, p*Þ or
W 5 ½p*, p*Þ denotes the waiting region:

j
p50

------------------------zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{‘

p*------------------------
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{wait

p*------------------zfflfflfflfflfflffl}|fflfflfflfflfflffl{r

j
1

:

While this is the most natural equilibrium structure, we do not exclude
possible MPEs that violate this structure. Whether such MPEs exist is ir-
relevant for our results. While we construct SMPEs to establish theorem 2,
theorem 3 is valid for all MPEs. Finally, we continue to require our refine-
ment with SMPEs.
To prove theorem 2, we begin by fixing p* ∈ ðp̂, 1Þ. Then, for each c suf-

ficiently small, we identify a unique value of p* for which an SMPE can be
constructed. We then show that as c → 0, p* approaches zero as well (see
propositions 2 and 3 in sec. V.B). This implies that given p*, the limit SMPE
spans the sender’s payoffs on the line segment that connects (0, 0) and (p*,
v)—the dashed line in the left panel of figure 6—and the receiver’s payoffs
19 In order to understand this payoff, notice that the strategy fully reveals the state, and
thus the sender gets v only in state R. In addition, in each state, a Poisson jump occurs at
rate l=2, and thus the expected waiting time equals 2=l, which is multiplied by c to obtain
the expected cost.

20 We do not restrict the receiver’s decision at the lower bound p*, so that the waiting
region can be either (p*, p

*) or [p*, p
*). Requiring W 5 ðp*, p*Þ can lead to nonexistence

of an SMPE in proposition 2. Requiring W 5 ½p*, p*Þ can lead to nonadmissibility of the
sender’s best response in proposition 3.
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on the line segment that connects (0, uL
‘ ) and (p*, Ur(p*)) in the right

panel. By varying p* from p̂ to 1, we can cover the entire shaded areas in
figure 6. Note that with this construction and the uniqueness claims in
propositions 2 and 3, we also obtain a characterization of feasible payoff
vectors (V, U ) for the sender and receiver that can arise in an SMPE in
the limit as c tends to zero. We state this in the following corollary.
Corollary 1. For any prior p0 ∈ ½0, 1�, in the limit as c tends to zero,

the set of SMPE payoff vectors (V, U ) is given by

ðV ,U Þj ∃ p* ∈ max p0, p̂f g, 1½ � : V 5
p0
p*

v,U 5
p0
p*

Urðp*Þ 1 p* 2 p0
p*

uL
‘

� 

,

with the addition of the no-persuasion payoff vector (0, U(p0)) for p0 < p̂.
V. Persuasion Dynamics
In this section, we provide a full description of SMPE strategy profiles
and illustrate the resulting equilibrium persuasion dynamics. We first
explain why the sender optimally uses the three modes of persuasion dis-
cussed in sections I and II. Then, using them as building blocks, we con-
struct full SMPE strategy profiles.
A. Modes of Persuasion
Fix an SMPE with two threshold beliefs p* and p*, where p* < p̂ < p*. We
investigate the sender’s optimal persuasion/experimentation behavior
at any belief p ∈ ð0, 1Þ in that equilibrium.
Suppose that the sender runs a flow experiment that targets q ≠ p

when the current belief is p. Then, by lemma 1, the belief jumps to q
at rate lpð1 2 pÞ=jq 2 pj and, absent jumps, moves continuously accord-
ing to _p 5 2sgnðq 2 pÞlpð1 2 pÞ, where sgn(x) denotes the signum
function. Therefore, her flow benefit is given by

vðp; qÞ ≔ l
pð1 2 pÞ
q 2 pj j ðV ðqÞ 2 V ðpÞÞ 2 sgnðq 2 pÞlpð1 2 pÞV 0ðpÞ,

where V(⋅) is the sender’s value of playing the candidate equilibrium
strategy.21 Specifically, for q > p, the flow benefit consists of the value in-
crease from a breakthrough that arises at rate lpð1 2 pÞ=jq 2 pj (the first
term) and the decay of value in its absence (the second term). For q < p,
the first term captures the value decrease from a breakdown, while the sec-
ond term represents the gradual appreciation in its absence.
21 Note that the sender’s value functionmay not be everywhere differentiable. We ignore
this here to give a simplified argument illustrating the properties of the optimal strategy for
the sender. The formal proofs can be found in app. C.
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At each point in time, the sender can choose any countable mixture
over experiments. Therefore, at each p, her flow benefit from optimal
persuasion is equal to

vðpÞ ≔max
að�;pÞoq aðq; pÞvðp; qÞ subject to oq aðq; pÞ ≤ 1: (1)

The function v(p) represents the gross flow value from experimentation.
It plays an important role in characterizing the sender’s strategy in the
stopping region as well as in the waiting region. If p ≥ p*, then the receiver
takes action r immediately, and thus V ðpÞ 5 v for all p ≥ p*. It follows
that vðpÞ 5 0 < c, so it is optimal for the sender to pass, which is intui-
tive. If p < p*, then the sender has only one instant to persuade the re-
ceiver, and therefore she experiments only when vðpÞ ≥ c: if vðpÞ < c,
persuasion is so unlikely that she prefers to pass or, more intuitively, gives
up on persuasion.
In the waiting region p ∈ ðp*, p*Þ, the sender must have an incentive to

experiment, which suggests that vðpÞ ≥ c.22 In particular, when the send-
er’s equilibrium strategy involves experimentation, her value function is
characterized by the Hamilton-Jacobi-Bellman (HJB) equation, which
means that V(p) is adjusted so that vðpÞ 5 c holds.

The following proposition simplifies the potentially daunting task of
characterizing the sender’s optimal experiment at each belief in (1) to
searching among a small subset of feasible experiments.
Proposition 1. Consider an SMPE where the receiver’s strategy is

given by p* < p̂ < p*.

a. For all p ∈ ð0, 1Þ, there exists a best response that involves at most
two distinct Poisson jumps, one to q1ð> pÞ at rate a1 ≔ aðq1; pÞ and
the other to q2ð< pÞ at rate a2 ≔ aðq2; pÞ.

b. Suppose that V(⋅) is nonnegative, increasing, and strictly convex
over (p*, p

*] and V ðp*Þ=p* ≤ V 0ðp*Þ. Then, the best response in
part a has
i. for p ∈ ðp*, p*Þ, a1 1 a2 5 1 with q1 5 p* and q2 5 0;
ii. for p < p*, either the sender passes or a1 5 1 and q1 5 p* or

q1 5 p*; and
iii. for p > p*, the sender passes.
For part a of proposition 1, notice that the right-hand side in equation (1)
is linear in each a(q; p) and the constraint oqaðq; pÞ ≤ 1 is also linear.
Therefore, by the standard linear programming logic, there exists a
22 Suppose that vðpÞ < c. Then, the sender strictly prefers passing forever to conducting
any experiment at p followed by the optimal continuation. This implies that the value func-
tion must be V ðpÞ 5 0, the value of passing forever. Hence, we must have vðpÞ ≥ c when-
ever V ðpÞ > 0, which holds if p ∈ W .
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solution that makes use of at most two experiments, one below p and the
other above p.23 This result implies that

vðpÞ 5 max
ða1 ,q1Þ,ða2 ,q2Þ

lpð1 2 pÞ a1

V ðq1Þ 2 V ðpÞ
q1 2 p

2 a2

V ðpÞ 2 V ðq2Þ
p 2 q2

2 ða1 2 a2ÞV 0ðpÞ
� �

, (2)

subject to a1 1 a2 ≤ 1 and q2 < p < q1.
Part b of proposition 1 states that if V(⋅) satisfies the stated properties,

which will be shown to hold in equilibrium later, then there are only
three candidates for optimal Poisson jump targets—0, p*, and p*—re-
gardless of p ∈ ð0, p*Þ. As illustrated in figure 7, the right-hand side of
(2) boils down to choosing q1 > p to maximize the slope of V between
q1 and p (i.e., the first fraction) or choosing q2 < p to minimize the slope
of V between q2 and p (i.e., the second fraction). In the waiting region,
the former strategy leads to q1 5 p*, whereas the latter strategy leads
to q2 5 0 (see p3 and the dashed lines in fig. 7).24 Similarly, if p < p*, then
q2 5 0 is optimal and q1 is either p* (see p2 and the dotted line) or p* (see
p1 and the dash-dotted line).
Proposition 1 implies that the sender makes use of the following three

modes of persuasion at each p < p*.
FIG. 7.—Optimal Poisson jump targets for different values of p. The solid curve repre-
sents the sender’s value function in an SMPE with p* and p*.
23 Onemay wonder why we allow for two experiments. In fact, linearity implies that there
exists a maximizer that puts all weight on a single experiment. But to obtain an admissible
Markov strategy, using two experiments is sometimes necessary. For example, if p is an ab-
sorbing belief, then admissibility requires that the stationary strategy be used at that belief,
requiring two experiments. See app. B for details.

24 Note that q1 > p* yields a lower slope than q1 5 p*; intuitively, the sender would be
wasting her persuasion rate if she targets above p*. Meanwhile, when p ∈ ðp*, p*Þ,
q2 5 p* yields a higher slope than q2 5 0, given V ðp*Þ=p* ≤ V 0ðp*Þ.
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• Confidence building: R-drifting experiment with jump target 0.
• Confidence spending: L-drifting experiment with jump target q1 5
p* or possibly q1 5 p* if p < p*.

• Confidence preserving: stationary experiment with jump targets
q1 5 p* and q2 5 0.

Two aspects determine the sender’s choice over these experiments in
her optimal strategy. First, strategies may differ in the distributions over
final posteriors they induce. In particular, they may differ in the proba-
bility of persuasion (i.e., of the belief reaching p*). Second, and more
interestingly, they may differ in the time it takes for the sender to con-
clude persuasion. While the former feature has been studied extensively
by the static persuasion models, the latter feature is novel here and is
crucial for shaping the precise persuasion dynamics.
To be concrete, compare the confidence-building strategy that uses the

R-drifting experiment (with jump target 0) until the belief reaches p* with
the confidence-preserving strategy that uses the stationary experiment
(with jump targets q1 5 p* and q2 5 0) until a jump occurs. Starting from
any belief p ∈ ðp*, p*Þ, both strategies eventually lead to a posterior of 0 or
p*, with identical probabilities. Hence they yield the same outcome for the
two players, except for the time it takes for the persuasion process to con-
clude. Clearly, the sender wishes tominimize that time, which explains her
choice between the two modes of persuasion. Intuitively, if the current be-
lief is close to the persuasion target p*, then confidence building (i.e., R-
drifting) takes less time on average than confidence preserving (i.e., sta-
tionary), since the former concludes persuasion within a short period of
time, whereas the latter may take a long time and thus proves costly.25

The opposite is true, however, if the current belief is significantly away from
the persuasion target p*. Intuitively, seeking persuasion by an immediate
success is more useful than slowly building up the receiver’s confidence
in that case.
The confidence-spending strategy (which uses the L-drifting experi-

ment with jump target p*) offers a similar trade-off as confidence pre-
serving vis-à-vis confidence building. If the current belief is far away from
the persuasion target p*, confidence spending involves less time than
25 The expected persuasion costs associated with R-drifting and stationary strategies,
which can be computed as illustrated in n. 16 and 19, are given by, respectively,

C1ðp; p*Þ 5 c

l
p log

p*

1 2 p*
1 2 p

p

� �
1 1 2

p

p*

� �
 and CSðpÞ 5 2cðp* 2 pÞ

lp*ð1 2 pÞ :

It can be shown that C1ðp*; p*Þ 5 CSðp*Þ and 2C 0
1ðp*; p*Þ 5 C 0

Sðp*Þ < 0; i.e., as p tends to
p*, the expected persuasion cost converges to zero faster under R-drifting than under sta-
tionary strategy.
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confidence building. However, there is another difference. If a success
does not arise before the belief falls to p*, persuasion stops and the receiver
chooses ‘ before the belief reaches zero. By the familiar logic from (static)
Bayesian persuasion, this leads to a suboptimal distribution over posteri-
ors. To avoid this, the sender may in some cases prefer the confidence-
building strategy or, in other cases, switch from the L-drifting experiment
to the confidence-preserving strategy before reaching p*. As will be seen,
the confidence-spending strategy is also used in the stopping region
p < p* as a Hail Mary pitch when the receiver is about to choose ‘ an in-
stant later.
B. Equilibrium Characterization
We now explain how the sender’s equilibrium strategy deploys the three
modes of persuasion introduced in section V.A and provide a full de-
scription of the unique SMPE strategy profile for each set of parameter
values and persuasion target p*.
The structure of SMPE depends on two conditions. The first condition

concerns how demanding the persuasion target p* is:

p* ≤ h ≈ 0:943: (Cond1)

This condition determines whether the sender always prefers the R-
drifting strategy to the stationary strategy. The constant h is the largest
value of p* such that the sender prefers the former strategy to the latter
for all p < p* (see app. C1 for a formal definition). Notice that this con-
dition holds for p* not too large relative to p̂; for instance, this is the case
when the sender’s equilibrium strategy approximates the KG solution
(as long as p̂ ≤ h).
The structure of the sender’s equilibrium strategy also depends on the

following condition:

v > Urðp*Þ 2 U‘ðp*Þ: (Cond2)

The left-hand side quantifies the sender’s gains when she successfully
persuades the receiver and induces action r, while the right-hand side
represents the corresponding gains for the receiver.26 If (Cond2) holds,
then the sender has a stronger incentive to experiment than the receiver
26 As explained in sec. II (see n. 8), the payoffs of the two players are directly compara-
ble, because their flow cost c is normalized to be the same. With different flow costs,
(Cond2) has to be stated using each player’s payoff relative to their flow cost. In the ex-
treme case when the sender’s cost is zero but the receiver’s is not, (Cond2) necessarily
holds, and the equilibria characterized in proposition 2 below always exist. However, the
sender is indifferent over all strategies that yield the same (ex post) distribution of poste-
riors. Therefore, the claim of uniqueness in proposition 2 no longer holds.
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has to listen, so the belief p* below which some player wishes to stop is
determined by the receiver’s incentives. Conversely, if (Cond2) fails,
then the sender is less eager to experiment, and thus p* is determined
by the sender’s incentives.
We first provide an equilibrium characterization for the case where

(Cond2) is satisfied.
Proposition 2. Fix p* ∈ ðp̂, 1Þ and suppose that v > Urðp*Þ 2 U‘ðp*Þ.

For each c > 0 sufficiently small, there exists a unique SMPE such that
the waiting region has upper bound p*. The waiting region is
W 5 ½p*, p*Þ for some p* < p̂, and the sender’s equilibrium strategy is
as follows:27

a. Suppose that the belief is in the waiting region with p ∈ ½p*, p*Þ.

i. If p* ∈ ðp̂, hÞ, then the sender plays the R-drifting strategy with
left-jumps to zero for all p ∈ ½p*, p*Þ.

ii. If p* ∈ ðh, 1Þ,28 then there exist cutoffs p* < y < �pLR < p* such
that for p ∈ ½p*, yÞ [ ð�pLR, p*Þ, the sender plays the R-drifting
strategy with left-jumps to zero; for p 5 y, she uses the station-
ary strategy with jumps to zero and p*; and for p ∈ ðy, �pLR�, she
adopts the L-drifting strategy with right-jumps to p*.

b. Suppose that the belief is outside the waiting region with p < p*.
There exist cutoffs 0 < p‘L < p0 < p* such that for p ≤ p‘L, the
sender passes; for p ∈ ðp‘L, p0Þ, she uses the L-drifting strategy with
jumps to q 5 p*; and for p ∈ ½p0, p*Þ, she uses the L-drifting strat-
egy with jumps to q 5 p .
*

The lower bound p* of the waiting region converges to zero as c → 0.
Figure 8 summarizes the sender’s SMPE strategy in proposition 2, de-

pending on whether p* < h. If p* ∈ ðp̂, hÞ, then the sender uses only R-
drifting experiments in the waiting region [p*, p

*), as depicted in the
top panel of figure 8. If p* > h, then the sender employs other strategies
as well, as described in the bottom panel of figure 8. For low beliefs close
to p*, she starts with R-drifting (confindence-building) experiments but
switches to the stationary experiment when the belief reaches y. For beliefs
27 We set W 5 ½p*, p*Þ to be a half-open interval, since for beliefs p < p* close to p*, the
sender’s best response is to target q 5 p*. Hence, existence of the best response requires
p* ∈ W .

28 Notice that in the knife-edge case when p* 5 h, there are two SMPEs, one as in 2a(i)
and another as in 2a(ii). In the latter, however, �pLR 5 y and the L-drifting strategy is not
used in the waiting region. The two equilibria are payoff-equivalent but exhibit very differ-
ent dynamic behavior when p0 ∈ ½p*, y�.
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above y but below �pLR, she employs L-drifting (confidence-spending) ex-
periments and also switches to the stationary experiment when the belief
reaches y.
To understand these different patterns, recall from section V.A that the

R-drifting experiment is particularly useful if it does not take too long to
build the receiver’s confidence and move the belief to p*. This explains
the use of R-drifting experiments when p is rather close to p* for
p ∈ ½�pLR, p*Þ if p* ≥ h and for all p in the waiting region if p* < h. If p* is
above h, then for p below �pLR, other experiments become optimal. For
p < y, the sender starts by building confidence, but instead of continuing
with this strategy until p* is reached, she cuts it short and switches to the
stationary strategy when y is reached. At y, the arrival rate of a jump to
p* in the stationary experiment is sufficiently high to yield a faster persua-
sion (on average) than it would take to gradually build confidence to p*

using the R-drifting strategy. For beliefs p ∈ ðy, �pLRÞ, a jump to p* arrives
at a higher rate, so that it becomes optimal to spend confidence and use
only the L-drifting experiment rather than preserving confidence with
the stationary experiment.
For an economic intuition, consider a salesperson courting a potentially

interested buyer. If the buyer needs only a bit more reassurance to buy the
product, then the salesperson should carefully build up the buyer’s confi-
dence until the belief reaches p*. The salespersonmay still slip off and lose
the buyer (i.e., p jumps down to zero). But most likely, the salesperson
weathers that risk and moves the buyer over the last hurdle (i.e., q 5 p*

is reached). This is exactly what our equilibrium persuasion dynamics de-
scribes when p0 is close to p*. When the buyer does not require a high de-
gree of confidence to bepersuaded (p* ≤ h), building up confidence is the
optimal strategy for the salesperson whenever the buyer is initially willing
to listen (i.e., p0 is in the waiting region). By contrast, when p* > h, the buyer
requires a lot of convincing and there are beliefs where the buyer is rather
uninterested (as in a cold call). Then, the salesperson’s optimal strategy de-
pends onhow skeptical the buyer is initially. If p0 ∈ ½�pLR, p*Þ, then it is still an
optimal strategy for the salesperson to build up the buyer’s confidence until
p*. If p0 ∈ ðp*, yÞ, the salesperson first tries to build confidence. If the
buyer is still listening when the belief reaches y, the seller becomes more
FIG. 8.—Sender’s SMPE strategies in proposition 2, that is, when v > Urðp*Þ 2 U‘ðp*Þ.
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convinced that the buyer can be persuaded, and she starts using a big pitch
that would move the belief to p*. For higher beliefs, she is even more con-
vinced that the buyer can be persuaded quickly, so she spends confidence
and concentrates all her efforts on quickly persuading the receiver.
(Cond2) means that the lower bound p* of the waiting region is de-

termined by the receiver’s incentive: p* is the point at which the receiver
is indifferent between taking action ‘ immediately and waiting (i.e.,
U‘ðp*Þ 5 U ðp*Þ, where U(p) is the receiver’s payoff from experimenta-
tion). Intuitively, (Cond2) suggests that the receiver gains less from ex-
perimentation—and is thus less willing to continue—than the sender.
Therefore, at the lower bound p*, the receiver wants to stop, even though
the sender wants to continue persuading the receiver (i.e., V ðp*Þ > 0).
When p < p*, the sender plays only L-drifting experiments unless she

prefers to pass (i.e., when p < p‘L). This is intuitive, because the receiver
takes action ‘ immediately unless the sender generates an instantaneous
jump, forcing the sender to effectivelymake aHailMary pitch. It is intrigu-
ing, though, that the sender’s target posterior can be either p* or p

*, de-
pending on how close p is to p*: in the sales context used above, if the buyer
is fairly skeptical, then the salesperson needs to use a big pitch. But, de-
pending on how skeptical the buyer is, she may try to get enough atten-
tion only for the buyer to stay engaged (targeting q 5 p*) or use an even
bigger pitch to convince the buyer to buy outright (targeting q 5 p*). If
p is just below p* (see p2 in fig. 7), then the sender can jump into the waiting
region at a high rate: recall that the arrival rate of a jump to p* grows to
infinity as p tends to p*. In this case, it is optimal to target p*, thereby max-
imizing the arrival rate of Poisson jumps: the salesperson is sufficiently op-
timistic about her chance of grabbing the buyer’s attention, so she aims
only to make the buyer stay. If p is rather far away from p* (below p0, such
as p1 in fig. 7), then the sender does not enjoy a high arrival rate. In this
case, it is optimal to maximize the sender’s payoff conditional on Poisson
jumps, which she gets by targeting p*: the salesperson tries to sell her prod-
uct right away, and if it does not succeed, then she just lets it go.
Next, we provide an equilibrium characterization for the case when

(Cond2) is violated.
Proposition 3. Fix p* ∈ ðp̂, 1Þ and assume that v ≤ Urðp*Þ 2 U‘ðp*Þ.

For each c > 0 sufficiently small, there exists a unique SMPE such that the
waiting region has upper bound p*. The waiting region is W 5 ðp*, p*Þ
for some p* < p̂, and the sender’s equilibrium strategy is as follows:29
29 We set W 5 ðp*, p*Þ to be an open interval, since the sender uses the L-drifting strat-
egy for beliefs close to p*. Including p* would not lead to a well-defined stopping time and
therefore violates admissibility.
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a. Suppose that the belief is in the waiting region with p ∈ ðp*, p*Þ.

i. If p* ∈ ðp̂, hÞ, then there exists a cutoff pLR ∈ W such that for
p ∈ ðpLR, p*Þ, the sender uses the R-drifting strategy with left-
jumps to zero, and for p ∈ ðp*, pLRÞ, she uses the L-drifting
strategy with right-jumps to p*.

ii. If p* ∈ ðh, 1Þ, then there exist cutoffs p* < pLR < y < �pLR < p*

such that for p ∈ ½pLR, yÞ [ ½�pLR, p*Þ, the sender plays the R-
drifting strategy with left-jumps to zero; for p 5 y, she adopts
the stationary strategy with jumps to zero or p*; and for p ∈
ðp*, pLRÞ [ ðy, �pLRÞ, she uses the L-drifting strategy with right-
jumps to p*.

b. If the belief is outside the waiting region, the sender passes.

The lower boundof thewaiting region p converges to zero as c tends to zero.
*
Figure 9 describes the persuasion dynamics in proposition 3. There

are two main differences from proposition 2. First, if p < p*, then the
sender simply passes, whereas in proposition 2, the sender uses L-drifting
experimentswhen p ∈ ðp‘L, p*Þ. Second, when p is just above p*, the sender
adopts L-drifting experiments, and thus the game may stop at p*. By
contrast, in proposition 2, the sender always plays R-drifting experiments
just above p*, and the game never ends with the belief reaching p*. Both
of these differences are precisely due to the failure of (Cond2): if v ≤
Urðp*Þ 2 U‘ðp*Þ, then the sender is less willing to continue than the re-
ceiver, and thus p* is determined by the sender’s participation constraint
(i.e., V ðp*Þ 5 0). Therefore, the sender has no incentive to experiment
once p falls below p*.
When p is just above p*, the sender goes for a big pitch by targeting p*

with L-drifting experiments. The sender does not mind losing the buy-
er’s confidence in the process, since the violation of (Cond2) means that
as the belief nears p*, she has very little motivation left for persuading
the receiver even though the latter remains willing to listen. By contrast,
when (Cond2) holds (as in proposition 2), as the belief nears p*, the re-
ceiver loses interest in listening, but the sender still sees a significant value
FIG. 9.—Sender’s SMPE strategy in proposition 3, that is, when v ≤ Urðp*Þ 2 U‘ðp*Þ.
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in staying in the game. Hence, the sender tries to build—instead of run-
ning down—the receiver’s confidence in that case.
VI. Concluding Discussions
We conclude by discussing how our results depend on several modeling
assumptions and suggesting a few directions for future research.
Binary actions and states.—We have considered the canonical Bayesian

persuasion problem with two states and two actions. Some of our results
clearly depend on specific features of the problem. However, our main eco-
nomic insights hold more generally. In fact, it is often straightforward to
modify our technical analysis for other persuasion problems.
To be concrete, consider an extension in which the receiver has one ad-

ditional actionM and the players’ payoffs are as depicted in figure 10. Spe-
cifically, M is the receiver’s optimal action when the belief belongs to the
intermediate range [py, p̂], and the sender earns v if the receiver takes ac-
tionM. Assume v < pyv=p̂, so that the KG solution still induces two poste-
riors, 0 and p̂, whenever p0 < p̂.
An important change from our baseline environment is that the receiver

does enjoy rents from the KG solution; observe that in the right panel of
figure 10, the dashed line strictly exceeds the solid line whenever
p ∈ ð0, p̂Þ. In this case, it is possible to construct an SMPE exactly imple-
menting the KG solution with p* 5 p̂ for c sufficiently small. More impor-
tantly, theorem 1 no longer holds: if c is sufficiently small, then the receiver
prefers to wait when the sender plays an L-drifting experiment targeting p̂
at p0ð< p̂Þ.30 Meanwhile, theorem 2 remains valid: for c sufficiently small
FIG. 10.—Payoffs from static persuasion when there is a middle action,M. Solid lines, pay-
offs without persuasion (information). Dashed line, sender’s expected payoff in KG solution.
30 A tempting conjecture may be that the no-persuasion equilibrium is unsustainable if
the KG solution offers strictly positive rents to the receiver. This need not be the case. If p0 is
slightly below py, then it becomes credible (in the sense of satisfying our refinement) that
the receiver stops immediately and the sender uses the L-drifting experiment with jump
target py (and not p*).
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and p* exceeding p̂, the SMPE we construct for our baseline environment
in section V continues to be an SMPE in this extended problem. There-
fore, our arguments in section IV apply unchanged.
Relaxing the binary state assumption raises a few significant challenges—

such as defining the set of feasible experiments and analyzing a system of
partial differential equations—which prevents us from providing a tight
and comprehensive equilibrium characterization. Nevertheless, at least con-
ceptually, it is not hard to see how our main insights would extend to the
environment with more than two states. The no-persuasion equilibrium
in theorem 1 would exist if and only if the receiver never earns strictly pos-
itive (instantaneous) rents from the sender’s optimal flow experiment. By
contrast, if there is a (lump-sum) Blackwell experiment that strictly benefits
both players, then the resulting outcome would be approximated by equi-
libria of the dynamic Persuasion model.
Other features of the model.—We have restricted attention toMPEs, which

by definition do not rely on incentives provided by off-path punish-
ments. Certainly, other (non-Markov) equilibria could be used so as to
enlarge the set of sustainable payoffs.31 Then, it seems plausible that as
the players’ persuasion costs vanish, one could implement all individually
rational payoffs, including the dotted region in figure 6. For prior beliefs
p0 < p̂, this is indeed the case, because the no-persuasion equilibrium in
theorem 1 can be used to most effectively control the sender’s incentives.
For prior beliefs p0 > p̂, however, no clear punishment equilibrium is avail-
able; note that for p0 > p̂, the no-persuasion equilibrium maximizes the
sender’s payoff. This suggests that our construction of MPEs cannot be re-
placed by arguably more complex constructions that rely on off-path pun-
ishments. Indeed, we conjecture that for p0 > p̂, theorem 2 and corollary 1
characterize the full set of equilibrium payoffs.
Our model assumes flow persuasion costs rather than discounting.

This assumption simplifies the analysis mainly by additively separating
persuasion benefits from persuasion costs. Still, it has no qualitative im-
pact on our main results. Specifically, if we include both flow costs and
discounting in the analysis, then the resulting SMPEs would converge
to those of our current model as discounting becomes negligible. If we
consider only discounting (without flow costs), then the persuasion dy-
namics needs some modification. Among other things, the sender has
no reason to voluntarily stop experimentation, and thus the persuasion
dynamics will be similar to that of proposition 2 (as opposed to that of
proposition 3).32 Still, our main economic lessons will continue to apply:
31 As is well known, it is technically challenging to define a game in continuous time
without Markov restrictions (see, e.g., Simon and Stinchcombe 1989). Our subsequent dis-
cussion should be understood as referring to the limit of discrete-time equilibria.

32 Specifically, the lower bound p* of the waiting region will be determined by the receiver’s
incentives. In addition, at the lower bound p*, so as to stay within the waiting region, the sender
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all three theorems in section IV would continue to hold.33 Furthermore,
the relative advantages of the threemainmodes of persuasion remain un-
changed, so the persuasion dynamics are in many cases similar to those
described in section V.
Our continuous-time game has a straightforward discrete-time analog

and can be interpreted as its limit. In a discrete-time model, however, it
becomes important whether the receiver’s per-period listening cost is in-
dependent of the amount of information the sender generates or pro-
portional to it. In the former (independent) case, our power of beliefs
logic no longer holds: if the current belief p is just below the persuasion
target p*, then the receiver’s gains from waiting one more period are
close to zero, in which case she would prefer to stop at p < p*. Thus,
any equilibrium with persuasion target p* > p̂ would unravel, leaving
p* 5 p̂ as the only feasible persuasion target. In our baseline model, this
renders the no-persuasion equilibrium the unique SMPE. However, if
the KG solution provides positive rents for the receiver, as exemplified
in the case with three actions depicted in figure 10, any persuasion target
p* > p̂ can still be supported as SMPE as c tends to zero. Meanwhile, if
the receiver’s listening cost is proportional to the amount of new infor-
mation, he would still be willing to wait, no matter how close p is to p*.
Then, all our analysis and results continue to hold in the discrete-time
analog even in the baseline model.34

Our model focuses on generalized Poisson experiments to accommo-
date rich and flexible information choice. By contrast, an alternative
such as the drift-diffusion model does not allow for such richness. For
example, in Henry and Ottaviani (2019), the sender samples from a
fixed exogenous process without choosing the type of experiment. Nev-
ertheless, the logic that gives rise to our theorem 2—namely, the incen-
tivizing power of equilibrium beliefs—applies equally well to such mod-
els (see n. 18).
Directions for future research.—The key features of ourmodel are that real

information takes time to generate and that neither the sender nor the
receiver has commitment power over future actions. There are several av-
enues along which one could vary these features. For example, one may
33 The proofs of theorems 1 and 3 can be readily modified. For theorem 2, it is easy to
show that the main economic logic behind it (namely, the power of beliefs explained at the
end of sec. III) holds unchanged with discounting.

34 The same logic applies when there is discounting in terms of the period length Δ. If Δ
is independent of the amount of new information, then all persuasive SMPEs with p* > p̂
unravel. However, if Δ is proportional to the amount of information—a sensible assump-
tion if Δ describes information processing time—then such unraveling does not occur,
and our analysis goes through unchanged.

will play either R-drifting experiments or the stationary strategy. This latter fact implies that if
the game starts from p0 ∈ ½p*, p*Þ, then it will end only when the belief reaches either 0 or p*,
and thus the persuasion probability will always be equal to p0=p*.
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consider a model in which the sender faces the same flow information
constraint as in our model but has full commitment power over her dy-
namic strategy: given our discussion in section III, it is straightforward that
the sender can approximately implement the KG outcome. However, it is
nontrivial to characterize the sender’s optimal dynamic strategy. Alterna-
tively, one could further relax the commitment power by allowing the re-
ceiver to observe only the outcome of the flow experiment but not the ex-
periment itself.
More broadly, the rich persuasion dynamics found in our model owe a

great deal to the general class of Poisson experiments we allow for. At
first glance, allowing for the information to be chosen from such a rich
class of experiments at each point in time might appear extremely com-
plex to analyze, and a clear analysis might seem unlikely. Yet the model
produced a remarkably precise characterization of the sender’s optimal
choice of information—namely, not just when to stop providing infor-
mation but, more importantly, what type of information to generate.
This modeling innovation may fruitfully apply to other dynamic settings.
Appendix A

Further Characterization on Feasible Experiments

This appendix formally proves lemma 1 and also provides an alternative belief-
based characterization for the set P* of feasible experiments.

Proof of lemma 1. Fix h pt i ∈ P* and any t ∈ R1. For each q ≠ p, let g(q, p) de-
note the unconditional arrival rate of posterior belief q given pt2 5 p. For these
values to be well defined, it is necessary and sufficient that the associated condi-
tional likelihoods (lL(q, p), lR(q, p)) satisfy

q 5
plRðq, pÞ

ð1 2 pÞlLðq, pÞ 1 plRðq, pÞ  and gðq, pÞ 5 plRðq, pÞ 1 ð1 2 pÞlLðq, pÞ:

Solving this system of equations, we obtain

lRðq, pÞ 5 gðq, pÞ q
p
 and lLðq, pÞ 5 gðq, pÞ 1 2 q

1 2 p
:

Then, our information constraint can be written as

o
q≠p

jlRðq, pÞ 2 lLðq, pÞj 5 o
q≠p

gðq, pÞ q
p
2

1 2 q

1 2 p

����
���� 5 o

q≠p

gðq , pÞ q 2 pj j
pð1 2 pÞ ≤ l : (A1)

For each q, define aðqÞ ≔ gðq, pÞjq 2 pj=½lpð1 2 pÞ�. Then, the above constraint
can be equivalently written as oq≠paðqÞ ≤ 1, and the arrival rate of posterior q given
p is given by gðq, pÞ 5 aðqÞlpð1 2 pÞ=jq 2 pj.

Let _p denote the instantaneous change of hpti conditional on no jump. Since
hpti is a martingale, oq≠pgðq, pÞðq 2 pÞ 1 _p 5 0, so _p satisfies
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_p 5 2o
q≠p

gðq, pÞðq 2 pÞ 5 2o
q>p

gðq, pÞðq 2 pÞ 2o
q<p

gðq, pÞðq 2 pÞ

5 2o
q>p

gðq, pÞjq 2 pj 1o
q<p

gðq, pÞjq 2 pj

5 2o
q>p

aðqÞlpð1 2 pÞ 1o
q<p

aðqÞlpð1 2 pÞ

5 2 o
q>p

aðqÞ 2o
q<p

aðqÞ
 !

lpð1 2 pÞ:

QED
Next, we provide an additional characterization of P* based on a measure of

information. Let hpti denote a regular martingale process in P. For each t,
pt2 ≔ limt 0↑t pt 0 , and q ≠ pt2, let g(q, pt2) denote the rate at which the belief jumps
from pt2 to q; formally,

gðq, pt2Þ ≔ lim
dt → 0

P½pt 5 qjpt2dt �
dt

:

We measure the amount of flow information of hpti at each point in history by

Iðpt2Þ ≔ o
q≠pt2

gðq, pt2Þjpt 2 pt2j:

In other words, our information measure Iðpt2Þ quantifies the total absolute
change of the belief process at each point in time.

By (A1) in the proof of lemma 1, our information constraint can be written as

o
q≠p

lRðq, pÞ 2 lLðq, pÞj j 5 o
q≠p

gðq, pÞ q 2 pj j
pð1 2 pÞ ≤ l ⇔ IðpÞ ≤ lpð1 2 pÞ:

This implies that the set P* of feasible experiments can be equivalently defined
as

P* ≔ h pt i ∈ P : Iðpt2Þ ≤ lpt2ð1 2 pt2Þ for all t and pt2f g:
In other words, we consider belief processes whose aggregate change at each
point in history is bounded by lpt2ð1 2 pt2Þ; note that pð1 2 pÞ is equal to the
variance of the Bernoulli random variable p. The bound’s dependence on pt2
is natural, given that pt2 ∈ ½0, 1� and pt2 5 0, 1 represents perfect information
from which no belief change should be feasible; more generally, it captures an
intuitive idea that the sender can move the receiver’s belief more, the more un-
certain the state is.
Appendix B

Admissible Strategies

This appendix completes the definition of our continuous-time game by defin-
ing admissible strategies for the sender. We note that this appendix is similar to
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appendix B.1 of Klein and Rady (2011): the two models have the same underly-
ing technical issues and natural resolutions to them.35

Recall that the sender’s strategy is a measurable function jS that assigns a flow
experiment jSðpÞ 5 ðaðq; pÞÞq∈½0,1� to each belief p ∈ ½0, 1�. As noted, the strategy
induces a belief process satisfying

_pt 5 2bðptÞlptð1 2 ptÞ, (B1)

where

bðpÞ ≔ o
q>p

aðq; pÞ 2o
q<p

aðq; pÞ:

Note that pt moves leftward if bðptÞ > 0 and rightward if bðptÞ < 0.
Definition 3. A measurable function jS is an admissible strategy for the

sender if for all p0 ∈ ½0, 1�, there exists a solution to (B1).
To see the role of definition 3, first observe that for jS with a relatively simple

structure, we can find an explicit solution to (B1). For example, if the sender
plays only the R-drifting experiment, then bðpÞ 5 21 for all p, in which case
pt 5 p0elt=ðp0elt 1 1 2 p0Þ. If the sender plays only the stationary experiment,
then bðpÞ 5 0 for all p, in which case pt 5 p0. Of course, the differential equa-
tion (B1) cannot be solved explicitly in general. One may utilize a sufficient con-
dition on b(⋅): for example, it suffices that b(⋅) is continuous or satisfies
Carathéodory conditions (see Goodman 1970). For our purpose, however, im-
posing such a sufficient condition is unnecessarily restrictive. Therefore, we re-
quire only that there is a solution to (B1). More precisely, we shall require a cou-
ple of conditions, one of which is necessary and the other is of no material
consequence. This approach is valid, since the equilibrium with these weaker
conditions will ensure that (B1) is well defined for all p ∈ ½0, 1�.

To explain the necessary condition that is relevant for our context, consider,
for example, a strategy such that the sender plays the R-drifting experiment tar-
geting 0 (so bðpÞ 5 21) whenever p ≤ p0 and the L-drifting experiment target-
ing 1 (so bðpÞ 5 1) whenever p > p0. As depicted in the left panel of figure 11,
the belief moves toward p whether it is below or above p, so bðp0Þ 5 21 results
FIG. 11.—Left, case where integral equation (B1) does not have a solution. Right, case
where (B1) has multiple solutions.
35 The difference is that the technical problems arise in their model because the evolu-
tion of beliefs is jointly controlled by two players, while in our model, it is because the sender
can choose from a large set of Poisson experiments.
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in (B1) being ill defined at p0. In fact, pt should stay constant if starting from p0.
Hence, admissibility requires jS(p0) to satisfy bðp0Þ 5 0.

We next consider a condition that is not necessary for (B1) to be well definedbut
is sensible as a selection rule when (B1) admitsmultiple solutions. Consider, for ex-
ample, a strategy such that the sender plays the L-drifting experiment targeting 1
(so bðpÞ 5 1) whenever p ≤ p0 and the R-drifting experiment targeting 0 (so
bðpÞ 5 21) whenever p > p0 (see the right panel of fig. 11). Since the former case
includes p0, it is natural that starting from p0, the belief moves leftward according to

pt 5
pe2lt

pe2lt 1 ð1 2 pÞ :

However, since pt 5 p0 only when t 5 0, the following is also a solution to (B1):

pt 5
pelt

pelt 1 ð1 2 pÞ :

Whenever thismultiplicity arises, we select themost natural one that would be ob-
tained from the discrete-time approximation. This selection, however, is inconse-
quential for our equilibrium characterization, because at a point where this selec-
tion issue arises (such as pLR or �pLR in propositions 2 and 3), we can arbitrarily
specify the sender’s strategy; the selection forces us to adopt a particular belief
path but does not restrict the sender’s strategy in any way.

Appendix C

Proofs of Propositions 2 and 3

The proofs are presented in several sections. Throughout, we take p* ∈ ðp̂, 1Þ as
given and construct the corresponding equilibria. Section C1 constructs the value
functions that correspond to the equilibrium strategies in propositions 2 and 3.
Sections C2 and C3 verify the sender’s and the receiver’s incentives, respectively.
Uniqueness of SMPE is proven in the supplemental material. A brief sketch is pro-
vided in section C4.

C1. Constructing Equilibrium Value Functions

We first compute the players’ value functions under alternative persuasion strat-
egies; they will be used to compute the players’ equilibrium payoffs. In what fol-
lows, we take it for granted that the receiver takes an action immediately if the
belief reaches either 0 or p*.

We also assume that the receiver waits while the sender plays each persuasion
strategy in this section.

Ordinary differential equations (ODEs) for R-drifting and L-drifting.—For any
p ∈ ð0, p*Þ, let Nε(p) denote a small open neighborhood of p. Suppose that for
any belief in Nε(p), the sender plays the R-drifting experiment with jump target
0. Then, the sender’s value function V1(p) and the receiver’s value function
U1(p) satisfy the following ODEs:36
36 The ODEs can be obtained heuristically in the same way as the Hamilton-Jacobi-
Bellman equation. The subscripts 1 and 2 represent the direction of belief drifting in
the absence of Poisson jumps.
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c 5 lpð1 2 pÞ 2V1ðpÞ
p

1 V 0
1ðpÞ

� �
 and c 5 lpð1 2 pÞ uL

‘ 2 U1ðpÞ
p

1 U 0
1ðpÞ

� �
: (C1)

Similarly, suppose that for any belief in Nε(p), the sender plays the L-drifting
experiment with jump target p*. Then, the players’ value functions, V2(p) and
U2(p), satisfy

c 5 lpð1 2 pÞ v 2 V2ðpÞ
p* 2 p

2 V 0
2ðpÞ

� �
 and c 5 lpð1 2 pÞ Urðp*Þ 2 U2ðpÞ

p* 2 p
2 U 0

2ðpÞ
� �

: (C2)

R-drifting strategy.—Suppose that the sender plays R-drifting experiments until
the belief reaches p*. In this case, the players’ payoffs are obtained as the solu-
tions to (C1) with boundary conditions V1ðp*Þ 5 v and U1ðp*Þ 5 Urðp*Þ, respec-
tively. We obtain

VRðpÞ 5 p

p*
v 2 C1ðp; p*Þ and URðpÞ 5 p* 2 p

p*
uL
‘ 1

p

p*
Urðp*Þ 2 C1ðp; p*Þ,

where C1ðp; qÞ ≔ ½p logð½q=ð1 2 qÞ�½ð1 2 pÞ=p�Þ 1 1 2 ðp=qÞ�ðc=lÞ represents the
expected cost of using R-drifting experiments until the belief moves from p to
either 0 or q.

Stationary strategy.—Suppose that the sender uses the stationary experiment
with jump targets 0 and p* at p. Then, the players’ value functions, VS(p) and
US(p), are respectively given by

VSðpÞ 5 p

p*
v 2 CSðpÞ and USðpÞ 5 p* 2 p

p*
uL
‘ 1

p

p*
Urðp*Þ 2 CSðpÞ, (C3)

where CSðpÞ ≔ 2cðp* 2 pÞ=½lp*ð1 2 pÞ� represents the expected cost of playing
the stationary strategy.37

RS strategy (R-drifting followed by stationary).—Suppose that the sender plays the
R-drifting strategy until qð> pÞ and then switches to the stationary strategy. Then,
the players’ value functions solve (C1) with boundary conditions V1ðqÞ 5 VSðqÞ
and U1ðqÞ 5 USðqÞ, yielding

VRSðp; qÞ 5 p

p*
v 2 C1ðp; qÞ 2 p

q
CSðqÞ and 

URSðp; qÞ 5 p* 2 p

p*
uL
‘ 1

p

p*
Urðp*Þ 2 C1ðp; qÞ 2 p

q
CSðqÞ:

Note that p=q is the probability that the belief moves from p to q (whereupon the
sender switches to the stationary strategy).

LS strategy (L-drifting followed by stationary).—Suppose that the sender plays the
L-drifting strategy until qð< pÞ and then switches to the stationary strategy. Then,
the players’ value functions solve (C2) with boundary conditions V2ðqÞ 5 VSðqÞ
and U2ðqÞ 5 USðqÞ, resulting in
37 Under the stationary strategy, the total arrival rate of Poisson jumps is equal to
lSðpÞ 5 ðl=2Þð1 2 pÞ 1 ðl=2Þpð1 2 pÞ=ðp* 2 pÞ 5 ðl=2Þp*ð1 2 pÞ=ðp* 2 pÞ. CS(p) is equal
to c times the expected arrival time 1=lSðpÞ.
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VLSðp; qÞ 5
p

p*
v 2 C2ðp; qÞ 2 p* 2 p

p* 2 q
CSðqÞ and

ULSðp; qÞ 5
p* 2 p

p*
uL
‘ 1

p

p*
Urðp*Þ 2 C2ðp; qÞ 2 p* 2 p

p* 2 q
CSðqÞ,

where

C2ðp; qÞ ≔ 2
p* 2 p

p* 1 2 p*ð Þ p* log
1 2 q

1 2 p
1 1 2 p*ð Þ log q

p
2 log

p* 2 q

p* 2 p

� �
c

l

denotes the expected cost of playing L-drifting experiments until the belief
drifts down from p to qð< pÞ.

Crossing lemma.—The following lemma provides potential crossing patterns
among the value functions and plays a crucial role in the subsequent analysis.

Lemma 2 (Crossing lemma). Let V1(p) and V2(p) be solutions to (C1) and
(C2), respectively.

a. Let p* < 8=9. For all p < p*, if V1ðpÞ 5 VSðpÞ, then V 0
1ðpÞ < V 0

SðpÞ. Similarly,
if V2ðpÞ 5 VSðpÞ, then V 0

2ðpÞ < V 0
SðpÞ.

b. Let p* ≥ 8=9, and define y1 : 5 3p*=4 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3p*=4Þ2 2 ðp*=2Þ

q
and

y2 ≔ 3p*=4 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3p*=4Þ2 2 ðp*=2Þ

q
.

i. For all p < p*, if V1ðpÞ 5 VSðpÞ, then V 0
1ðpÞ 5 V 0

SðpÞ if and only if
p ∈ fy1, y2g, and V 0

1ðpÞ > V 0
SðpÞ if and only if p ∈ ðy1, y2Þ.

ii. For all p < p*, if V2ðpÞ 5 VSðpÞ, then V 0
2ðpÞ 5 V 0

SðpÞ if and only if
p ∈ fy1, y2g, and V 0

2ðpÞ > V 0
SðpÞ if and only if p ∈ ðy1, y2Þ.
c. For all p < p*, if V1ðpÞ 5 V2ðpÞ, then signðV 0
1ðpÞ 2 V 0

2ðpÞÞ 5 signðV2ðpÞ2
VSðpÞÞ.

All parts also hold for the receiver’s value functions U1(⋅), U2(⋅), and US(⋅).
Proof. We focus on the sender’s value functions, as the same proofs apply to

the receiver. From (C1)–(C3), we can obtain expressions for V 0
1ðpÞ, V 0

2ðpÞ, and
V 0

SðpÞ. Combining these with V1ðpÞ 5 VSðpÞ and V2ðpÞ 5 VSðpÞ, we obtain

V 0
1ðpÞ 2 V 0

SðpÞ 5 V 0
2ðpÞ 2 V 0

SðpÞ 5 2
cð2p2 2 3p*p 1 p*Þ

lp*pð1 2 pÞ2 ⋛ 0

⇔ 22p2 1 3p*p 2 p* ⋛ 0:

For p* < 8=9, the quadratic expression in the last inequality is always negative,
which proves part a. For p* ≥ 8=9, the quadratic expression has two real roots,
y1 and y2, and is positive if and only if p ∈ ðy1, y2Þ. This proves part b.

Similarly, using V1ðpÞ 5 V2ðpÞ, we have

V 0
1ðpÞ 2 V 0

2ðpÞ 5 p*

pðp* 2 pÞ V2ðpÞ 2 VSðpÞð Þ,

which leads to part c. QED
Construction of y.—While y is part of the equilibrium only for p* > h, we define

it generally. For p* ≥ 8=9, we set y ≔ y1, and for p* < 8=9, we set y ≔ p*. We de-
fine it in this way to ensure that VRS(p; y) meets VS(p) from above at p 5 y (as p
rises toward y). In particular, together with the crossing lemma 2b, this means
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that for any p < y, VRS(p; y) is above VS(p), and for p* ≥ 8=9, these two functions
have the same slope at p 5 y. This will play a crucial role later.

Construction of h.—The parameter h is the value of p* ≥ 8=9 such that
VRðyðp*ÞÞ 5 VSðyðp*ÞÞ.38 (We make the dependence of y on p* explicit here
and also note that the functions VR(⋅) and VS(⋅) depend on p* directly.) Solving
this equation yields p* 5 h ≈ 0:943. We make the following observations for a
later purpose:

Lemma 3.

a. If p* < h, then VRðpÞ > VSðpÞ for all p ∈ ð0, p*Þ.
b. If p* 5 h, then VRðpÞ ≥ VSðpÞ for all p ∈ ð0, p*Þ, with equality only when

p 5 y.
c. If p* > h, then VRðyÞ < VSðyÞ.
The same results hold for UR(⋅) and US(⋅).
Proof. We focus on the sender’s value functions, as the same proofs apply to

the receiver. Using the explicit solutions of VR(p) and VS(p), we can see that
VSð0Þ < VRð0Þ, VSðp*Þ 5 VRðp*Þ, and V 0

Sðp*Þ > V 0
Rðp*Þ. Therefore, either VS(p)

stays weakly below VR(p) for all p < p* or VS(p) crosses VR(p) at least twice (from
below and then from above). By lemma 2b, the latter occurs only if VS(p) crosses
VR(p) from below at some p < y and then second time from above at some
p 0 ∈ ðy, y2Þ, which is equivalent to VRðyÞ < VSðyÞ. The desired result follows since
VRðyðp*ÞÞ 2 VSðyðp*ÞÞ changes the sign only once at p* 5 h (see n. 38). QED

Pasted strategies.—Given y, we combine alternative strategies as follows. For any
p ≤ p*, we define

V̂ ðpÞ ≔
VRSðp; yÞ if  p < y,

VSðyÞ if  p 5 y,

VLSðp; yÞ if  p ∈ ½y, p*�,
 and Û ðpÞ ≔

URSðp; yÞ if  p < y,

USðyÞ if  p 5 y,

ULSðp; yÞ if  p ∈ ½y, p*�:

8>><
>>:

8>><
>>:

We next define ~V ðpÞ : 5 maxfVRðpÞ, V̂ ðpÞg and ~U ðpÞ ≔ maxfURðpÞ, Û ðpÞg. We
make several useful observations in the following lemma.

Lemma 4.

a. Both ~V ðpÞ and ~U ðpÞ are strictly convex in p over [0, p*].
b. If p* ≤ h, then ~V ðpÞ 5 VRðpÞ and ~U ðpÞ 5 URðpÞ for all p ∈ ½0, p*�.
c. If p* > h, then there exists �pLR ∈ ðy, p*Þ such that ~V ðpÞ 5 V̂ ðpÞ and ~U ðpÞ 5

Û ðpÞ for p ≤ �pLR and ~V ðpÞ 5 VRðpÞ and ~U ðpÞ 5 URðpÞ for p ∈ ½�pLR, p*�.
d. ~V ðpÞ ≥ VSðpÞ for all p < p*, and the inequality is strict for p ≠ y.
Proof. The same proof applies to both players, so we focus on the sender’s value
functions. Recall that for p* < 8=9, we have y 5 p* so that V̂ ðpÞ 5 VRSðp; p*Þ 5
VRðpÞ, which implies part b. Since VR(p) is strictly convex, part a holds as well. In
what follows, we consider p* ≥ 8=9, in which case V̂ ðpÞ ≠ VRðpÞ.
38 To show that h is well defined, we can define a function g :ð8=9, 1Þ→R by g ðp*Þ ≔
VRðyðp*ÞÞ2VSðyðp*ÞÞ so that g ðhÞ5 0. It can be verified that g 0ðp*Þ > 0 for all p* ∈ ð8=9, 1Þ.
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a. Since ~V ðpÞ is the upper envelope of two functions and VR(p) is strictly con-
vex over [0, p*], it suffices to prove that V̂ ðpÞ is also strictly convex over [0, p*].
Both VRS(p; y) and VLS(p; y) are strictly convex over their respective supports, and
V̂ ðpÞ is continuously differentiable at the pasting point y. The latter holds be-
cause VRSðy; yÞ 5 VLSðy; yÞ 5 VSðyÞ implies V 0

RSðy; yÞ 5 V 0
LSðy; yÞ by lemma 2c.

b. If p* < h, VRSðy; yÞ 5 VSðyÞ < VRðyÞ by lemma 3a. Together with the fact that
both VRS(p; y) and VR(p) satisfy the ODE (C1), this implies that V̂ ðpÞ 5 VRSðp; yÞ <
VRðpÞ for allp ≤ y.39 Forp ∈ ðy, p*�, observe thatVLSðy; yÞ5VSðyÞ < VRðyÞ (lemma3a),
VLSðp*; yÞ 5 VRðp*Þ, and V 0

LSðp*; yÞ > V 0
Rðp*Þ. Therefore, either V̂ ðpÞ 5 VLSðp; yÞ <

VRðpÞ for all p ∈ ðy, p*Þ or VLS(⋅; y) crosses VR(⋅) from below at least once at some
p ∈ ðy, p*Þ. In the latter case, we must have V 0

RðpÞ 5 V 0
1ðpÞ <V 0

2ðpÞ 5 V 0
LSðp; yÞ.

Then, by lemma 2c, VRðpÞ 5 VLSðp; yÞ 5 V2ðpÞ < VSðpÞ, contradicting lemma 3a.
The result for p* 5 h follows from a continuity argument: both V̂ ðpÞ and VR(⋅)

change continuously in p*. Since V̂ ðpÞ < VRðpÞ for all p < p* whenever p* < h, itmust
be that V̂ ðpÞ ≤ VRðpÞ for all p < p* when p* 5 h. This concludes the proof for part b.

For parts c and d, the following claim is useful:
Claim 1. Suppose p* ≥ 8=9.

i. V̂ ðpÞ ≥ VSðpÞ for all p ∈ ð0, y2�, with strict inequality for p ≠ y.
ii. VRðpÞ > VSðpÞ for all p ∈ ½y2, p*Þ.
Proof. i. Consider first p < yð5 y1Þ. We have to show that V̂ ðpÞ 5 VRSðp; yÞ >
VSðpÞ. To see this, pick q < y. Then by lemma 2b(i), VRS(p; q) stays above VS(p)
for p < q and VRSðp; yÞ > VRSðp; qÞ for all q < y. The same logic applies to VLS(p; y)
for p ∈ ðy, y2�. For part ii, we check that VRðp*Þ 5 VSðp*Þ and V 0

Rðp*Þ < V 0
Sðp*Þ.

Lemma 2b(i) then implies that VR(p) and VS(p) cannot intersect at p ≥ y2. QED
For part c, we first show that VRSðp; yÞ > VRðpÞ for p ≤ y. If p* > h, then

VRSðy; yÞ 5 VSðyÞ > VRðyÞ (lemma 3c), which immediately implies that V̂ ðpÞ 5
VRSðp; yÞ > VRðpÞ for all p ≤ y. Next, for p ∈ ðy, p*�, observe that VLSðy; yÞ 5
VSðyÞ > VRðyÞ; and VLSðp; yÞ < VRðpÞ for p 5 p* 2 ε, since VLSðp*; yÞ 5 VRðp*Þ,
and V 0

LSðp*; yÞ > V 0
Rðp*Þ. This means that VLS(⋅; y) crosses VR(⋅) at least once in

(y, p*). To show that there is a unique crossing point �pLR, note that claim 1 im-
plies that at any crossing point p ∈ ðy, p*Þ, VLSðp; yÞ 5 V̂ ðpÞ 5 VRðpÞ > VSðpÞ, and
hence by lemma 2c, VLS(p; y) can cross VR(p) only from above. Therefore, there is
a unique crossing point.

d. If p* ≤ h, then the result is immediate from lemmas 3a and 4b. If p* > h the
result is immediate from lemma 4c and claim 1. QED

C1.1. Equilibrium Payoffs and Construction of p* in Proposition 2

When (Cond2) holds, we define p
*
as the belief f‘R at which the receiver is indif-

ferent between waiting and stopping with action ‘; that is, we set p* ≔ f‘R, where
f‘R is defined by40
39 It is easy to see that (C1) satisfies the Lipschitz condition for uniqueness on (0, p*).
40 To see that f‘R is well defined, observe that, whether p* ≤ h or p* > h, limp → 0

~U ðpÞ 5
uL
‘ 2 c=l < uL

‘ 5 U‘ð0Þ, while ~U ðp*Þ 5 Urðp*Þ > U‘ðp*Þ (because p* > p̂). In addition,
~U ðpÞ is strictly convex over [0, p*] (lemma 4a), while U‘ðpÞ is linear. Therefore, ~U ðpÞ crosses
U‘ðpÞ from below only once.
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U‘ðf‘RÞ 5 ~U ðf‘RÞ: (C4)

We focus on the case in which c is sufficiently small. In the limit as c → 0, ~U ðpÞ 5
½ðp* 2 pÞ=p*�uL

‘ 1 ðp=p*ÞUrðp*Þ > UrðpÞ for all p. Therefore, there exists c1 > 0
such that p* 5 f‘R < p̂ for all c ≤ c1. We assume that c ≤ c1 in the sequel. The
following lemma shows that the sender’s payoff is positive at p* if (Cond2)
holds.

Lemma 5. ~V ðf‘RÞ > 0 if and only if (Cond2) holds.
Proof. By (C4), we have

~V ðf‘RÞ 5 f‘R

p*
v 1 ~U ðf‘RÞ

2
p* 2 f‘R

p*
uL
‘ 1

f‘R

p*
Urðp*Þ

� �
5
ðC4Þ f‘R

p*
v 2 ðUrðp*Þ 2 U‘ðp*Þð Þ,

where the first equality holds because both players incur the same costs, so that
~V ðpÞ2 ðp=p*Þv 5 ~U ðpÞ2 f½ðp*2 pÞ=p*�uL

‘ 1 ðp=p*ÞUrðp*Þg whenever p ∈ ð0, p*�.
The last expression is positive if and only if (Cond2) holds. QED

We set the players’ value functions as follows:

V ðpÞ ≔
0 if  p ∈ ½0, p*Þ,

~V ðpÞ if  p ∈ ½p*, p*Þ,
v if  p ≥ p*,

 and U ðpÞ ≔
U‘ðpÞ if  p ∈ ½0, p*Þ,
~U ðpÞ if  p ∈ ½p*, p*Þ,
UrðpÞ if  p ≥ p* :

8>><
>>:

8>><
>>:

Lemma 6. When (Cond2) holds, V(p) is nonnegative and nondecreasing for
all p ∈ ½0, 1�.

Proof. Since ~V ð�Þ is convex on [0, p*], ~V ð0Þ 5 2c=l, and ~V ðp*Þ ≥ 0 by lemma 5,
~V ð�Þ is increasing on [p*, p

*]. Hence V(⋅) is nondecreasing on [0, 1] and nonneg-
ative since V ð0Þ 5 0. QED

C1.2. Equilibrium Payoffs and Construction of p* in Proposition 3

When (Cond2) fails, the same construction as above does not work; for example,
~V ðp*Þ < 0 by lemma 5. The right construction requires us to consider another
L-drifting strategy.

L0 strategy (L-drifting followed by passing).—Suppose that the sender continues to
play the L-drifting experiment until the belief reaches qð< pÞ and then she stops
experimenting altogether (passes). The resulting value functions are the solutions
to (C2) with boundary conditions V2ðqÞ 5 0 and U2ðqÞ 5 U‘ðqÞ, which yield

VL0ðp; qÞ ≔ p 2 q

p* 2 q
v 2 C2ðp; qÞ and 

UL0ðp; qÞ ≔ p* 2 p

p* 2 q
U‘ðqÞ 1 p 2 q

p* 2 q
Urðp*Þ 2 C2ðp; qÞ:

Note that this strategy leads to q with probability ðp* 2 pÞ=ðp* 2 qÞ and p* with
probability ðp 2 qÞ=ðp* 2 qÞ.
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Construction of p*.—Let p‘L denote the lowest value of q ∈ ð0, p̂Þ such that

V 0
L0ðq; qÞ ≥ 0 ⇔

lqð1 2 qÞ
p* 2 q

v ≥ c ⇔ q ≥ p‘L ≔
1

2
1

c

2lv
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1

c

2lv

� �2

2
cp*

lv

s
: (C5)

In words, p‘L is the lowest belief at which the sender is willing to play the L0 strategy
even for an instance. When (Cond2) fails, we set p* ≔ p‘L. Clearly, limc → 0p* 5 0.
We set c2 > 0 such that p* 5 p‘L < p̂ for all c ≤ c2 and assume c ≤ c2 hereafter.

Lemma 7. Suppose that (Cond2) fails and p* 5 p‘L. There exists c3 > 0 such
that for all c ≤ c3:

a. ~V ðp*Þ < 0;
b. there exists pLR ∈ ðp*, minfp̂, ygÞ such that VL0ðp; p*Þ ≥ ~V ðpÞ if and only if

p ≤ pLR.
Proof. For each p*, there exists c13 > 0 such that p* < y and VSðyÞ > 0 for all
c ≤ c13 . In the sequel, we assume that c < c3 ≔ minfc13 , c23g, where c23 is defined
in the proof for part b.

a. Suppose p* ≤ h so that ~V ðpÞ 5 VRðpÞ for all p ≤ p*. Since (C5) holds with
equality at q 5 p‘L 5 p*, we can substitute lv=c in the explicit solution for
VR(p*) and get

~V ðp*Þ 5 VRðp*Þ < 0 ⇔ log
p*

1 2 p*
1 2 p*
p*

� �
>

p* 2 p*
p*ð1 2 p*Þ

:

Define f1ðpÞ ≔ logð½p*=ð12 p*Þ�½ð12 pÞ=p�Þ2 ðp* 2 pÞ=½p*ð1 2 pÞ�. The above in-
equality holds since f1ðp*Þ 5 0 and f 0

1 ðpÞ < 0 for all p < p*. If p* > h, then ~V ðpÞ 5
VRSðp; yÞ for all p ≤ y. In this case,

~V ðp*Þ < 0 ⇔
2p*ðp* 2 yÞ
p*yð1 2 yÞ 1 p* log

y

1 2 y

1 2 p*
p*

� �
1 1 2

p*
y

>
p* 2 p*

p*ð1 2 p*Þ
:

Define

f2ðpÞ ≔ 2pðp* 2 yÞ
p*yð1 2 yÞ 1 p log

y

1 2 y

1 2 p

p

� �
1 1 2

p

y
2

p* 2 p

p*ð1 2 pÞ :

The desired result (f2ðp*Þ > 0) holds, because f2ð0Þ 5 0, f2ðyÞ > 0 and f2 is concave
over p ∈ ð0, y�.

b. We begin by showing that there exists c23 > 0 such that for c < c23 , VL0ðx; p*Þ <
~V ðxÞ, where x ∈ fp̂, yg. Since ~V ðpÞ ≥ VSðpÞ (lemma4d), it suffices to showVL0ðx; p*Þ <
VSðxÞ. Indeed, we have VL0ðx; p*Þ 2 VSðxÞ 5 fðx 2 p*Þ=ðp* 2 p*Þ 2 ðx=p*Þgv 1
CSðxÞ 2 C2ðx; p*Þ < CSðxÞ 2 C2ðx; p*Þ, since CSðxÞ=c is independent of c and
C2ðx; p*Þ=c →∞ as c → 0.41

By lemma 7a, we have VL0ðp*; p*Þ 5 0 > ~V ðp*Þ. Since for c < c23 ,
VL0ðminfp̂, yg; p*Þ < ~V ðminfp̂, ygÞ, there exists an intersection of VL0(p; p*) and
~V ðpÞ at some p ∈ ðp*, minfp̂, ygÞ. In the remainder of the proof, we show that
VL0(⋅; p*) can cross ~V ð⋅Þ only from above, which establishes uniqueness of the in-
tersection on the whole interval (p*, p

*).
41 This is because p* → 0 as c → 0 so that for the L0 strategy, the expected waiting time
from any starting point x becomes infinite if the state is L.
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We first consider p* < h. In this case, ~V ðpÞ 5 VRðpÞ, and lemma 3 implies that
VRðpÞ > VSðpÞ. Then, by lemma 2c, VL0(p; p*) can cross ~V ðpÞ only from above.

Second, consider p* ≥ h. Since ~V ðpÞ 5 VLSðp; yÞ for p ∈ ½y, �pLR� and both VL0

and VLS satisfy (C2), no intersection can occur in the interval [y, �pLR]. Outside
this interval, ~V ðpÞ satisfies (C1) and ~V ðpÞ > VSðpÞ by lemma 4d. Therefore, again
lemma 2c implies that VL0(p; p*) can cross ~V ðpÞ only from above. QED

C1.2.1. Equilibrium Payoffs. The equilibrium value functions are given as

follows:

V ðpÞ ≔

0 if  p ∈ ½0, p*Þ,
VL0ðp; p*Þ if  p ∈ ½p*, pLRÞ,

~V ðpÞ if  p ∈ ½pLR, p*Þ,
v if  p ≥ p*,

 and U ðpÞ ≔

U‘ðpÞ if  p ∈ ½0, p*Þ,
UL0ðp; p*Þ if  p ∈ ½p*, pLRÞ,

~U ðpÞ if  p ∈ ½pLR, p*Þ,
UrðpÞ if  p ≥ p*:

8>>>>><
>>>>>:

8>>>>><
>>>>>:

Lemma 8. When (Cond2) fails, V(⋅) is nonnegative and nondecreasing on
[0, p*] and strictly convex on [p*, p

*].
Proof. Lemma 7b implies that V ðpÞ 5 maxfVL0ðp; p*Þ, ~V ðpÞg over [p*, p

*].
This is strictly convex since it is the maximum of two strictly convex functions.
Strict convexity of VL0(⋅) on [p*, p

*] is routine to verify; we had already shown
convexity of ~V ðpÞ in lemma 4a. Finally, by (C5), V(p) is continuously differen-
tiable at p* 5 p‘L and therefore convex on [0, p*]. This also implies that V(p)
is nondecreasing. QED

C2. Verifying the Sender’s Incentives

We show that for each p*, the sender’s strategy is a best response if the buyer waits
if and only if p ∈ W .42 To this end, we must show that in the waiting region, the
sender’s equilibrium value function solves the Hamilton-Jacobi-Bellmann (HJB)
equation:43

max
að�;pÞo

q≠p

aðq; pÞvðp; qÞ 5 c, (HJB)

where v(p; q) is as defined in section V.A. Outside the waiting region, the send-
er’s value is independent of her strategy. Still, our refinement requires that her
strategy maximize her instantaneous payoff normalized by dt; that is, her choice
of experiment should solve

max
að�;pÞo

q≠p

aðq ; pÞvðp; qÞ 2 1 oaðq;pt Þ>0f gc: (Ref)

Proposition 1b implies that if V(p) meets certain conditions, then we can re-
strict attention to Poisson experiments with jump targets, 0, p*, and p*, which
42 Recall that W 5 ½p*, p*Þ in proposition 2 and W 5 ðp*, p*Þ in proposition 3.
43 More formally, since V(p) has kinks, we show that it is a viscosity solution of (HJB). To-

gether with V ðpÞ > 0, this is necessary and sufficient for optimality of the sender’s strategy.
For necessity, see theorem 10.8 in Oksendal and Sulem (2009). While we are not aware of a
statement of sufficiency that covers precisely our model, the arguments in Soner (1986)
can be easily extended to show sufficiency.
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greatly simplifies both (HJB) and (Ref). Here, we show that our equilibrium value
function V(⋅) satisfies all properties required by proposition 1b, namely, that it
is nonnegative, increasing, and strictly convex on (p*, p

*], and V ðp*Þ=p* ≤ V 0ðp*Þ.
If (Cond2) holds, the first two properties hold by lemma 6, while strict convexity of
V(p) follows from lemma 4a and V ðpÞ 5 ~V ðpÞ for p ∈ ½p*, p*�. The last property
also holds because ~V ðpÞ is convex and limp → 0

~V ðpÞ 5 2c=l < 0. If (Cond2) fails,
the first three properties follow from lemma 8 and V ðp*Þ=p* ≤ V 0ðp*Þ also holds,
because p* 5 p‘L > 0 and V ðp‘LÞ 5 V 0ðp‘LÞ 5 0.

Stopping region.—We first apply proposition 1b to the stopping region and ver-
ify (Ref). For p ≥ p*, the result is immediate from proposition 1b(iii). Now con-
sider p below p*. Proposition 1b(ii) implies that the sender has three choices: two
L-drifting experiments with jump target p* or p

* and simply passing. This reduces
(Ref) to

max
a*,a*≥0

lpð1 2 pÞ a*
V ðp*Þ
p* 2 p

1 a*
v

p* 2 p

� �
2 cða* 1 a*Þ subject to a* 1 a* ≤ 1:

i. Proposition 3: if (Cond2) fails, then V ðp*Þ 5 0 so that a* 5 0 is optimal.
The coefficient of a* is lvpð1 2 pÞ=ðp* 2 pÞ 2 c. By (C5), this is negative for
all p < p* 5 p‘L, so a* 5 0 is optimal. Therefore, for all p ∈ ½0, p*�, passing—
the sender’s strategy, as specified in proposition 3—satisfies (Ref).

ii. Proposition 2: if (Cond2) holds, then as discussed in section V.A and depicted
in figure 7, there exists a cutoff p0 < p* such that the coefficient of a* is greater
than the coefficient of a* if and only if p > p0.44 The following lemma shows that
p‘L < p0.

Lemma 9. If (Cond2) holds, then p‘L < p0.
Proof. Let p‘R be the value of p such that ~V ðpÞ 5 0. We show that p‘L <

p‘R < p0. The latter inequality is immediate from the strict convexity of V̂ ð�Þ
on [0, p*] (lemma 4a) and the definition of p0. For the former inequality, it suf-
fices to show that ~V ðp‘LÞ < 0, which is shown as in the proof of lemma 7a. QED

As in the case of proposition 3, passing satisfies (Ref) for p ≤ p‘L. Moreover, we
have shown that a* 5 1 satisfies (Ref) for p ∈ ðp‘L, p0Þ and a* 5 1 satisfies it for
p ∈ ½p0, p*Þ. Therefore, the sender’s strategy in proposition 2 satisfies (Ref) for
all p < p*.

Waiting region.—If we apply proposition 1b(i) to p ∈ W , (HJB) simplifies to

c 5 lpð1 2 pÞmax
a∈½0,1�

a
v 2 V ðpÞ
p* 2 p

2 ð1 2 aÞ V ðpÞ
p

2 2a 2 1ð ÞV 0ðpÞ
� �

: (HJB-S)

Our goal is to show that the value function V(p) satisfies this equation at every p ∈
W . The key argument is the following unimprovability lemma:

Lemma 10 (Unimprovability).

a. If V1(p) satisfies (C1) and V1ðpÞ ≥ VSðpÞ at p ∈ ½0, p*Þ, then V1(p) satisfies
(HJB-S) at p. If V1ðpÞ > VSðpÞ, then a 5 0 is the unique maximizer in (HJB-S).
44 Specifically, p0 satisfies

V ðp*Þ 2 V ðp0Þ
p* 2 p0

5
V ðp*Þ 2 V ðp0Þ

p* 2 p0

⇔
V ðp*Þ
p* 2 p0

5
v

p* 2 p0

⇔ p0 5
p*v 2 p*V ðp*Þ
v 2 V ðp*Þ

:



1840 journal of political economy
b. If V2(p) satisfies (C2) and V2ðpÞ ≥ VSðpÞ at p ∈ ½0, p*Þ, then V2(p) satisfies
(HJB-S) at p. If V2ðpÞ > VSðpÞ, then a 5 1 is the unique maximizer in
(HJB-S).
Proof. a. If we substitute V 0ðpÞ 5 V 0
1ðpÞ from (C1), (HJB-S) simplifies to

max
a∈½0,1�

2
p*

ðp* 2 pÞp ðV ðpÞ 2 VSðpÞÞ
� �

a 5 0:

If V ðpÞ 2 VSðpÞ ≥ 0, a 5 0 is a maximizer, so the above condition holds. Further,
if V ðpÞ > VSðpÞ, then a 5 0 is the unique maximizer. The proof for part b is sim-
ilar. QED

By lemmas 4d and 7b, V ðpÞ ≥ VSðpÞ holds for all p ∈ ðp*, p*Þ. Therefore, the
unimprovability lemma 10 implies that V(p) satisfies (HJB) for all points where
it is differentiable. At the remaining points pLR and �pLR, the value function satis-
fies (C1) and (C2), respectively, if we replace V 0

1 by the right derivative and V 0
2 by

the left derivative. As in the proof of the unimprovability lemma 10, this implies
that (HJB) continues to hold if we insert directional derivatives. Using this obser-
vation together with the fact V(p) is convex at the points pLR and �pLR where it has
kinks, we can show that V(p) is a viscosity solution of (HJB), which is sufficient for
optimality of the sender’s strategy in the waiting region (see n. 43).

C3. Verifying the Receiver’s Incentives

We now prove the optimality of the receiver’s strategy for each belief p, taking as
given the sender’s strategy. If the sender passes, which occurs when p ≤ p‘L or
p ≥ p*, then the receiver gains nothing from waiting. Since p‘L ≤ p* < p̂ (assum-
ing c ≤ minfc1, c2g) and p* > p̂, the receiver chooses ‘ if p ≤ p‘L and r if p ≥ p*.

Consider next the region ðp‘L, p*Þ on which the sender does not pass. For this
region, we prove that given the sender’s strategy, the receiver’s strategy solves her
optimal stopping problem in the dynamic programming sense. By standard ver-
ification theorems, it is sufficient for optimality that the receiver’s equilibrium
payoff U(p) satisfies the following HJB conditions for all p:45

c ≥ lpð1 2 pÞ aðpÞU ðqðpÞÞ 2 U ðpÞ
qðpÞ 2 p

1 ð1 2 aðpÞÞ u
L
‘ 2 U ðpÞ

p
2 2aðpÞ 2 1ð ÞU 0ðpÞ

� �
, (R1)

and

U ðpÞ ≥ max U‘ðpÞ,UrðpÞf g, (R2)
45 The receiver’s value function U(p) is not continuously differentiable at p
*
(in case

[Cond2] holds), pLR, and �pLR. At these nonsmooth points, we replace U 0(p) in (R1) by
the right derivative U 0(p1), which is the directional derivative in the direction of the belief
dynamics given by the sender’s strategy. With this modification, (R1) is well defined for all p.
By standard verification theorems, the conditions (R1) and (R2) are sufficient for opti-

mality if U(p) is continuously differentiable. To see that sufficiency also holds for the receiv-
er’s problem, note that we can verify the receiver’s strategy separately for intervals that are
closed under the belief dynamics given by the sender’s strategy. For example, if (Cond2)
holds and p* ≥ h, we can partition ðp‘L, p*Þ into P 5 fðp‘L, p*Þ, ½p*, �pLRÞ, ½�pLR, p*Þg. If the
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and at least one condition holds with equality. Here, (a(p), q(p)) represents the
sender’s strategy as specified in propositions 2 and 3, respectively.46

Waiting region.—Suppose p ∈ W . For all points where the receiver’s equilib-
rium payoff function U(p) is differentiable, by construction, it satisfies (R1)
with equality.47 Hence, it suffices to prove (R2). We first show that at p*, the slope
of U(p) is less than or equal to the slope of Ur(p). To this end, observe

U 0ðp*Þ 5 U 0
Rðp*Þ 5 Urðp*Þ 2 uL

‘

p*
1

c

lp*ð1 2 p*Þ
5 U 0

r ðp*Þ 2 uL
‘ 2 uL

r

p*
1

c

lp*ð1 2 p*Þ :

Since uL
‘ > uL

r , we have U 0ðp*Þ ≤ U 0
r ðp*Þ whenever c ≤ c4 : 5 ð1 2 p*ÞðuL

‘ 2 uL
r Þ.

i. Proposition 2: when (Cond2) holds, U(⋅) is convex on [p*, p*] since
U ðpÞ 5 ~U ðpÞ for p ∈ ½p*, p*Þ and ~U ð�Þ is convex on [0, p*] (lemma 4a). Together
with U 0ðp*Þ ≤ U 0

r ðp*Þ, this implies that U ðpÞ ≥ UrðpÞ for all p ∈ ½p*, p*�, provided
that c ≤ c4. We have argued in footnote 40 that U ðpÞ ≥ U‘ðpÞ for all p ∈ ½p*, p*�.
Therefore, (R2) holds for all p ∈ ½p*, p*Þ.

ii. Proposition 3: we begin by showing that UL0ðp, p*Þ > U‘ðpÞ for all p ∈ ðp*, p*Þ.
Since UL0ðp*, p*Þ 5 U‘ðp*Þ, we have

U 0
L0ðp*; p*Þ 5

Urðp*Þ 2 U‘ðp*Þ
p* 2 p*

2
c

lp*ð1 2 p*Þ
≥
U‘ðp*Þ 2 U‘ðp*Þ

p* 2 p*
1

v

p* 2 p*
2

c

lp*ð1 2 p*Þ

5
U‘ðp*Þ 2 U‘ðp*Þ

p* 2 p*
5 uR

‘ 2 uL
‘ 5 U 0

‘ ðp*Þ,

where the inequality holds since (Cond2) fails, and the second equality follows
from (C5) and p* 5 p‘L. Together with the fact that UL0(⋅; p*) is convex on [p*,
p*], this implies that UL0ðp, p*Þ > U‘ðpÞ for all p ∈ ðp*, p*Þ.

For p ∈ ðp*, pLRÞ,U ðpÞ 5 UL0ðp, p*Þ. By lemma 7b, pLR ≤ p̂, provided that c ≤ c3.
Hence UrðpÞ < U‘ðpÞ for p < pLR, and (R2) holds since U ðpÞ 5 UL0ðp, p*Þ > U‘ðpÞ
for p ∈ ðp*, pLRÞ.

Next, suppose p ∈ ½pLR, p*Þ. Here U ðpÞ 5 ~U ðpÞ, and by the same arguments as
in part i, we have ~U ðpÞ > UrðpÞ. To show that ~U ðpÞ > U‘ðpÞ, it suffices to show that
~U ðpÞ 2 UL0ðp; p*Þ > 0. Since the sender and the receiver incur the same cost for
each strategy, we can rewrite this difference as

~U ðpÞ 2 UL0ðp; p*Þ 5 ~V ðpÞ 2 VL0ðp; p*Þ 1
p*ðp* 2 pÞ
p*ðp* 2 p*Þ

Urðp*Þ 2 U‘ðp*Þ 2 vð Þ > 0:
46 Specifically, aðpÞ 5 0 if the sender plays the R-drifting experiment, ðaðpÞ, qðpÞÞ 5
ð1, qÞ if she plays the L-drifting experiment with jump target q, and ðaðpÞ, qðpÞÞ 5
ð1=2, p*Þ if she plays the stationary strategy.

47 At kinks, U(p) satisfies (R1) if U 0(p) is replaced by U 0(p1) (see n. 45).

prior belief is in one of these intervals, the posterior will never leave it unless a Poisson
jump occurs, and the continuation value after a jump can be taken as fixed. This means
that we can verify the optimality of the receiver’s strategy separately for each interval; since
U(p) is continuously differentiable on each of the intervals, the standard verification the-
orems apply.
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The inequality holds since by lemma 7b, ~V ðpÞ 2 VL0ðp; p*Þ ≥ 0 for p ≥ pLR, and
Urðp*Þ 2 U‘ðp*Þ 2 v > 0 if (Cond2) is violated.

The stopping region with p ∈ ðp‘L, p*Þ.—If (Cond2) fails, then p* 5 p‘L, so this
case does not arise. The proof of proposition 3 is thus complete.

Now suppose that (Cond2) holds and p ∈ ðp‘L, p*Þ. In this case, U(p) satisfies
(R2) with equality, so it suffices to show (R1). Consider first p ∈ ½p0, p*Þ. For
these beliefs, the sender adopts the L-drifting experiment with jump target p

*
,

that is, ðaðpÞ, qðpÞÞ 5 ð1, p*Þ. When we plug this into (R1) and use the fact that
U ðpÞ 5 U‘ðpÞ for all p ≤ p*, the right-hand side of (R1) is equal to zero so that
(R1) is satisfied.

Finally, consider p ∈ ½p‘L, p0Þ, at which the sender plays the L-drifting experi-
ment with jump target p*, so ðaðpÞ, qðpÞÞ 5 ð1, p*Þ. Since U ðpÞ 5 U‘ðpÞ for all
p ≤ p*, (R1) reduces to

lpð1 2 pÞ Urðp*Þ 2 U‘ðpÞ
p* 2 p

2 U 0
‘ ðpÞ

� �
5

lpð1 2 pÞ
p* 2 p

ðUrðp*Þ 2 U‘ðp*ÞÞ ≤ c,

which is equivalent to p ≤ f‘L, where f‘L is the unique value of p such that

lpð1 2 pÞ
p* 2 p

ðUrðp*Þ 2 U‘ðp*ÞÞ 5 c:

The following lemma shows that f‘L ≥ p0 if c ≤ c5 for some c5 > 0. It then follows
that if c ≤ minfc1, ::: , c5g, the receiver has no incentive to deviate from his pre-
scribed strategy in proposition 2, completing the proof.

Lemma 11. Suppose that (Cond2) holds. There exists c5 > 0 such that if
c ≤ c5, then f‘L ≥ p0.

Proof. Let ΔU ≔ Urðp*Þ 2 U‘ðp*Þ. Since f‘L is the lowest p such that
pð1 2 pÞlΔU =ðp* 2 pÞ ≥ c,

p0 ≤ f‘L  ⇔   
p0ð1 2 p0Þ
p* 2 p0

l

c
ΔU < 1: (C6)

It suffices to show that this inequality holds in the limit as c → 0. Recall that

V ðp*Þ
p* 2 p0

5
v

p* 2 p0

 ⇔ p0 5
p*

v 2 V ðp*Þ
p*
p*

v 2 V ðp*Þ
� �

5
p*

v 2 V ðp*Þ
~Cðp*Þ,

where ~Cðp*Þ 5 ðp*=p*Þv 2 ~V ðp*Þ denotes the total persuasion costs incurred
when p 5 p* 5 f‘R and (Cond2) holds. By the definition of ~V ðp*Þ, ~Cðp*Þ can
be written as

~Cðp*Þ 5 C1ðp*; qRÞ 1
p*
qR

CSðqRÞ 5 p* log
qR

1 2 qR

1 2 p*
p*

 !
1 1 2

p*
qR

1
p*
qR

2ðp* 2 qRÞ
p*ð1 2 qRÞ

 !
c

l
,

where qR ≔ p* if p* ≤ h and qR ≔ y if p* > h. Importantly, as c → 0, we have p* → 0,
~Cðp*Þ→ 0, and ~Cðp*Þl=c → 1. It follows that p0 → 0 and p0l=c → p*=v, so

p0ð1 2 p0Þ
p* 2 p0

l

c
ΔU →

ΔU

v
< 1,

where the inequality is due to (Cond2). This completes the proof. QED
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C4. SMPE Uniqueness Given p*

Fix any p*. To show that for c sufficiently small, the strategy profiles in proposi-
tions 2 and 3 are the unique SMPEs, we prove that any other choice of p* than
specified in sections C1.1 and C1.2 (i.e., p* ≠ f‘R if [Cond2] holds and p* ≠ p‘L if
[Cond2] fails) cannot yield an SMPE. This requires a full characterization of the
sender’s optimal dynamic strategy, given any lower bound p* and upper bound
p*, and a thorough examination of the receiver’s incentives in the stopping re-
gion as well as in the waiting region. The former closely follows our construction
and analysis of the equilibrium value functions in sections C1 and C2, and the
latter follows closely section C3. We relegate the full proof to the supplemental
material.
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