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We consider a dynamic model of Bayesian persuasion in which infor-
mation takes time and is costly for the sender to generate and for the
receiver to process, and neither player can commit to their future ac-
tions. Persuasion may totally collapse in a Markov perfect equilibrium
of this game. However, for persuasion costs sufficiently small, a version
of a folk theorem holds: outcomes that approximate Kamenica and
Gentzkow’s sender-optimal persuasion as well as full revelation and ev-
erything in between are obtained in Markov perfect equilibrium as the
cost vanishes.

I. Introduction

Persuasion is a quintessential form of communication in which one individ-
ual (the sender) pitches an idea, a product, a political candidate, a point of
view, or a course of action to another individual (the receiver). Whether the
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receiver ultimately accepts that pitch—or is persuaded—depends on the
underlying truth (the state of the world) but, importantly, also on the infor-
mation the sender manages to communicate. In remarkable elegance and
generality, Kamenica and Gentzkow (2011; henceforth KG) show how the
sender should communicate information in such a setting, when she can
perform any (Blackwell) experiment instantaneously, without any cost in-
curred by her or by the receiver. This frictionlessness gives full commitment
power to the sender, as she can publicly choose any experiment and reveal
its outcome, all before the receiver can act.

In practice, however, persuasion is rarely frictionless. Imagine a salesper-
son pitching a product to a potential buyer. The buyer may have an interest
in buying the product but requires some evidence that it matches his
needs. To convince the buyer, the salesperson might demonstrate certain
features of the product or marshal customer testimonies and sales records,
any of which takes real time and effort. Likewise, to process information,
the buyer must pay attention, which is costly. Clearly, these features are pres-
ent in other persuasion contexts, such as a prosecutor seeking to convince
juries or a politician trying to persuade voters.

In this paper, we study the implications of these realistic frictions. Im-
portantly, if information takes time to generate but the receiver can act
at any time, the sender no longer automatically enjoys full commitment
power. Specifically, she cannot promise to the receiver what experiments
she will perform in the future, effectively reducing her commitment
power to a current flow experiment. Given the lack of commitment by
the sender, the receiver may stop listening and take an action if he does
not believe that the sender’s future experiments are worth waiting for.
The buyer in the example above may walk away at any time when he be-
comes sufficiently pessimistic about the product or about the prospect of
the salesperson eventually persuading him. We will examine to what ex-
tent and in what manner the sender can persuade the receiver in this en-
vironment with limited commitment. As we will demonstrate, the key
challenge facing the sender is to instill the belief that she is worth listen-
ing to, namely, to keep the receiver engaged.

We develop a dynamic version of the canonical persuasion model: the
state is binary, L or R, and the receiver can take a binary action, £ or r. The
receiver prefers to match the state by taking action / in state L and r in
state R, while the sender prefers action r regardless of the state. Time is
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continuous and the horizon is infinite. At each point in time, unless the
game has ended, the sender may perform some flow experiment. In re-
sponse, the receiver either takes an action and ends the game or simply
waits and continues the game. Both the sender’s choice of experiment
and its outcome are publicly observable. Therefore, the two players al-
ways share a common belief about the state.

The sender has a rich class of Poisson experiments at her disposal. Spe-
cifically, we assume that at each instant, the sender can generate a collec-
tion of Poisson signals. The possible signals are flexible in their direction-
alities: a signal can be either good news (inducing a posterior above the
current belief) or bad news (inducing a posterior below the current be-
lief). In addition, the news can be of arbitrary accuracy: the sender can
choose any target posterior, although more accurate signals (with targets
closer to 0 or 1) arrive at a lower rate. Our model generalizes the existing
Poisson models in the literature, which considered either a good news or a
bad news Poisson experiment of given accuracy (e.g., Keller, Rady, and
Cripps 2005; Keller and Rady 2015; Che and Mierendorff 2019).

Any experiment, regardless of its accuracy, requires a flow cost ¢ > 0 (per
unit of time) for the sender to perform and for the receiver to process.
That the cost is the same for both players is a convenient normalization,
with no material consequence (see n. 8). Our model of information allows
for the flexibility and richness of Kamenica and Gentzkow (2011) but adds
the friction that information takes time to generate. This serves to isolate
the effects of the friction.

We may interpret the model in the canonical communication context,
such as a salesperson pitching a product to a buyer. The former is trying
to persuade the latter that the product fits his needs, an event denoted by
R. Once inside the store, the buyer is deciding whether to listen to the pitch
(wait), leave the store (action /), or purchase the product (action r). We in-
terpret the series of pitches made by the salesperson as experiments. A sales-
person’s pitches may include the types of product features demonstrated
as well as her manner, tone, and body language with which her messages
are delivered. Hence, the pitches can reveal alotabout what she is intending
to say, not just what she is saying, consistent with public observability of ex-
periments assumed in our model. Meanwhile, whether the pitches succeed
depends on the buyer’s idiosyncratic needs and is uncertain from the
salesperson’s perspective. Itis also reasonable that an experienced salesper-
son could get feedback on her pitch directly or indirectly from the buyer’s
reactions, which would make the outcome of the experiment public. As in
our model, the key issue is whether the buyer believes the salesperson’s
pitches to be worth listening to. Our analysis will focus on this issue.

We study Markouv perfect equilibria (MPEs) of this game, that is, subgame per-
fect equilibrium strategy profiles that prescribe the sender’s flow experiment
and the receiver’s action (¢, 1, or wait) at each belief p, the probability that the
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state is R. We are particularly interested in the equilibrium outcomes when
the frictions are sufficiently small (i.e., in the limit as the flow cost ¢ converges
to zero). In addition, we investigate the persuasion dynamics, or the type of
pitch the sender uses to persuade the receiver in equilibria of this game.

Is persuasion possible? If so, to what extent?>—Whether the sender can per-
suade the receiver depends on whether the receiver finds her worth listen-
ing to—or, more precisely, on his belief that the sender will provide enough
information to justify his listening costs. This belief depends on the sender’s
future experimentation strategy, which in turn rests on what the receiver
will do if the sender betrays her trust and reneges on her information pro-
vision. The multitude of ways in which the players can coordinate on these
choices yields a folk theorem-like result. There is an MPE in which no per-
suasion occurs. When the cost ¢ becomes arbitrarily small, however, we also
obtain a set of persuasion equilibria that ranges from ones that approximate
Kamenica and Gentzkow’s (2011) sender-optimal persuasion to ones that
approximate full revelation; we show that any sender (receiver) payoff be-
tween these two extremes is attainable in the limit as ¢ tends to zero.

In the no-persuasion equilibrium, the receiver is pessimistic about the
sender generating sufficientinformation, so he simply takes an action with-
out waiting for information. Facing this pessimism, the sender becomes
desperate and maximizes her chance of once-and-for-all persuasion involv-
ing minimal information, which turns out to be the sort of strategy that the
receiver would not find worth waiting for, justifying his pessimism.

In a persuasion equilibrium, by contrast, the receiver expects the sender
to deliver sufficient information to compensate his listening costs. This op-
timism in turn motivates the sender to deliver on her promise of informa-
tive experimentation; if she reneges on her experimentation, the ever op-
timistic receiver would simply wait for experimentation to resume an
instant later instead of taking the action that the sender would like him
to take. In short, the receiver’s optimism fosters the sender’s generosity
in information provision, which in turn justifies this optimism. As we will
show, equilibria with this virtuous cycle of beliefs can support a wide range
of outcomes from Kamenica and Gentzkow’s (2011) optimal persuasion to
full revelation, as the flow cost ¢ tends to zero.!

Persuasion dynamics—Our model informs us of what kind of pitch the
sender should make at each point in time; how long it takes for the
sender to persuade the receiver, if ever; and how long the receiver listens

! The mechanism using a virtuous cycle of beliefs to support cooperative behavior in a
dynamic environment has been utilized in other economic contexts. Among others, Che
and Sdkovics (2004) show how this mechanism can be used to overcome the holdup prob-
lem. In fact, the main tension in our dynamic persuasion problem can be interpreted as a
holdup problem: the receiver wants to avoid incurring listening costs if the sender will be-
have opportunistically and not provide sufficient information. However, the current paper
differs in other crucial aspects; in particular, the rich choice of information structures is
unique here and has no analog in Che and Sakovics (2004).
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to the sender before taking an action. The dynamics of the persuasion
strategy adopted in equilibrium involves rich behavioral implications that
are absent in the static persuasion model.

In our MPEs, the sender optimally makes use of the following three strat-
egies: (1) confidence building, (2) confidence spending, and (3) confi-
dence preserving. The confidence-building strategy involves a bad news Pois-
son experiment that induces the receiver’s belief (that the state is R) to
either drift upward or jump to zero. Under this strategy, the belief moves
upward for sure when the state is R and quite likely even when the state is L;
in fact, this strategy minimizes the probability of bad news by insisting that
the news be conclusive. The sender finds it optimal to use this strategy
when the receiver’s belief is already close to the persuasion target (i.e.,
the belief that will trigger him to choose r).

The confidence-spending strategy involves a good news Poisson experiment
that generates an upward jump to some target belief, either one inducing
the receiver to choose r or at least one inducing him to listen to the sender.
Such a jump arises rarely, however, and absent this jump, the receiver’s be-
lief drifts downward. In this sense, this strategy is a risky one that spends the
receiver’s confidence over time. This strategy is used when the receiver is
already quite pessimistic about R, so that either the confidence-building
strategy would take too long, or the receiver would simply not listen. In par-
ticular, itis used as a “last ditch” effort, when the sender is close to giving up
on persuasion or when the receiver is about to choose /.

The confidence-preserving strategy combines the above two strategies—
namely, a good news Poisson experiment inducing the belief to jump to
a persuasion target and a bad news Poisson experiment inducing the belief
to jump to zero. This strategy is effective if the receiver is sufficiently skep-
tical relative to the persuasion target so that the confidence-building strat-
egy will take too long. Confidence spending could expedite persuasion for
arange of beliefs but would run down the receiver’s confidence in the pro-
cess. Hence, at some point, the sender finds it optimal to switch to the
confidence-preserving strategy, which prevents the receiver’s belief from
deteriorating further. The belief where the sender switches to this strategy
constitutes an absorbing point of the belief dynamics; from then on, the
belief does not move, unless either a sudden persuasion breakthrough
or breakdown occurs.

The equilibrium strategy of the sender combines these three strategies
in different ways under different economic conditions, thereby exhibit-
ing rich and novel persuasion dynamics. Our characterization in section V
describes precisely how the sender uses them in different equilibria.

Related literature—This paper primarily contributes to the Bayesian
persuasion literature that began with Kamenica and Gentzkow (2011) by
studying the problem in a dynamic environment. Several recent papers
also consider dynamic models (e.g., Brocas and Carrillo 2007; Kremer,
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Mansour, and Perry 2014; Au 2015; Ely 2017; Renault, Solan, and Vieille
2017; Che and Horner 2018; Henry and Ottaviani 2019; Ely and Szydlowski
2020; Orlov, Skrzypacz, and Zryumov 2020; Marinovic and Szydlowski
2020; Bizzotto, Riidiger, and Vigier 2021). Our focus is different from most
of these papers since we consider gradual production of information and
assume that there is no commitment.?

Two papers closest to ours in this regard are Brocas and Carrillo (2007)
and Henry and Ottaviani (2019), who restrict the set of feasible experi-
ments so that information arrives gradually. The former considers a binary
signal in a discrete-time setting, and the latter employs a drift-diffusion
model in a continuous-time setting.”> Unlike our model, the receiver in
their models cannot stop listening and take an action at any time: he
can move only after the sender stops experimenting (Brocas and Carrillo
2007) or applies for approval (Henry and Ottaviani 2019). This modeling
difference reflects interests in different economic problems/contexts; for
example, Henry and Ottaviani (2019) focus on regulatory approval, while
we study persuasive communication. However, the difference leads to very
different persuasion outcomes: in their models, complete persuasion fail-
ure never occurs, and there exists a unique equilibrium.* Another impor-
tant difference is that the sender in their models does not enjoy the rich-
ness and control of information structures: in both papers, the sender

? Orlov, Skrzypacz, and Zryumov (2020) characterize an equilibrium that resembles
some aspects of our equilibrium in a model where the sender (agent) faces no constraint
in the release of information. In particular, they show that the sender may pipet informa-
tion—release information gradually—in a way that resembles our confidence-building (R-
drifting) strategy. The resemblance is more apparent than fundamental, however. In their
main model, the sender intrinsically prefers the receiver to delay exercise of a real option;
i.e., the delay of the receiver’s action per se is desired by the sender. She can fully reveal the
state instantaneously but chooses to delay release of information in order to incentivize the
receiver to wait longer. In our model, the sender has no intrinsic preferences for delay and
provides information only to persuade the receiver to take a particular final action.

* McClellan (2022) and Escudé and Sinander (2023) also study dynamic persuasion in
drift-diffusion models. McClellan (2022) characterizes the optimal dynamic approval
mechanism under full commitment. Escudé and Sinander (2023) consider a sender dy-
namically optimizing against a receiver who chooses a series of actions myopically.

* Henry and Ottaviani (2019) consider three regimes that differ in the players’ commit-
ment power. Their informer authority regime corresponds to the sender-optimal dynamic
outcome, in that the sender stops as soon as the belief reaches the minimal point at which
the receiver is willing to take action r (approves the project). It is easy to show that in this case,
if the receiver could reject/accept the project unilaterally at any time and discounted his fu-
ture payoff or incurred a flow cost as in our model, he would take an action immediately with-
outlistening, and persuasion would fail completely. Their no-commitment regime is similar to
our model but with the crucial difference that the sender does not have the option to pass, i.e.,
to stop experimenting without abandoning the project. This feature allows the receiver (e.g., a
drug approver) to force the sender to keep experimenting, resulting in the receiver-optimal
persuasion as the unique equilibrium outcome. If passing were an available option, as we as-
sume in our model, multiple equilibria supported by virtuous cycles of beliefs would arise even
in their drift-diffusion model, producing a range of persuasion outcomes and ultimately lead-
ing to the same kind of result as our theorem 2 (see n. 18). Finally, their evaluator authority
case is obtained when the receiver can commit to an acceptance threshold.
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decides simply whether to continue and has no influence over the type of
information generated.

The receiver’s problem in our paper involves a stopping problem, which
has been studied extensively in the single agent context, beginning with
Wald (1947) and Arrow, Blackwell, and Girshick (1949). In particular,
Nikandrovaand Pancs (2018), Che and Mierendorff (2019), and Mayskaya
(2020) study an agent’s stopping problem when she acquires information
through Poisson experiments.” Che and Mierendorff (2019) introduced
the general class of Poisson experiments adopted in this paper. However,
the generality is irrelevant in their model, because unlike here, the deci-
sion maker optimally chooses only between two conclusive experiments
(i.e., never chooses a nonconclusive experiment).

The paper is organized as follows. Section II introduces the model.
Section III illustrates the main ideas of our equilibria. Sections IV and
V characterize our MPE strategies and study their payoff implications.
Section VI concludes.

II. Model

We consider a game in which a sender (she) wishes to persuade a receiver
(he). There is an unknown state w that can be either L (left) or R (right).
The receiver ultimately takes a binary action £ or r, which yields the follow-
ing payoffs:

PAYOFFS FOR THE SENDER AND RECEIVER

STATES/ACTIONS l r
L (0, u) (v, )
R (0, u) (v, )

The receiver gets u¢ if he takes action a € {{,r} when the state is
w € {L,R}. The sender’s payoff depends only on the receiver’s action:
she gets v if the receiver takes r and zero otherwise. We assume uy >
max{u, 0} and «* > max{u}, 0}, so that the receiver prefers to match
the action with the state, and also v > 0, so that the sender prefers action
r to action £. Both players begin with a common prior p, that the state is
R and use Bayes’s rule to update their beliefs.

KG benchmark.—By now, it is well understood how the sender optimally
persuades the receiver if she can commit to an experiment without any
restrictions. For each a € {/, r}, let U,(p) denote the receiver’s expected

> The Wald stopping problem has also been studied with drift-diffusion learning (e.g.,
Moscarini and Smith 2001; Fudenberg, Strack, and Strzalecki 2018; Ke and Villas-Boas
2019) and in a model that allows for general endogenous experimentation (see Zhong
2022).
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payoff when he takes action a with belief p. In addition, let p denote the
belief at which the receiver is indifferent between actions ¢ and 1, that is,
U(p) = U(p).°

If the sender provides no information, then the receiver takes action r
when p, > p. Therefore, persuasion is necessary only when p, < p. In this
case, the KG solution prescribes an experiment that induces only two
posteriors, ¢ = 0 and ¢, = ﬁ The former leads to action ¢, while the
latter results in action r. This experiment is optimal for the sender, be-
cause p is the minimum belief necessary to trigger action 1, and setting
¢- = 0 maximizes the probability of generating f) and thus action r.
The resulting payoff for the sender is py v/}), as given by the dashed line
in the left panel of figure 1. The flip side is that the receiver enjoys no
rents from persuasion; his payoff is U(p) = max{U,(p), U.(p)}. the
same as if no information were provided, as depicted in the right panel
of figure 1.

Dynamic model—We consider a dynamic version of the above Bayesian
persuasion problem. Time flows continuously starting at 0. Unless the
game has ended, at each point in time ¢ > 0, the sender may perform an
experiment at a constant flow cost ¢ from a feasible set, which will be de-
scribed precisely below, or pass—not running any experiment and not in-
curring the flow cost ¢.” Just as it is costly for the sender to produce infor-
mation, it is also costly for the receiver to process it. Specifically, if the
sender experiments, then the receiver also pays the same flow cost and ob-
serves the experiment and its outcome. After that, he decides whether to
take an irreversible action (£ or r) or to wait and listen to the information
provided by the sender in the next instant. The former ends the game,
while the latter lets the game continue.

There are two notable modeling assumptions. First, the receiver can stop
listening to the sender and take a game-ending action atany pointin time.
This is the fundamental difference from Kamenica and Gentzkow (2011),
wherein the receiver is allowed to take an action only after the sender fin-
ishes her information provision. Second, the players’ flow costs are assumed

® Specifically, for each p € [0,1], U/(p) = put + (1—p)uy and U (p) = pw + (1 — p)ut.
Therefore, p = (uf — u¥)/(u} — u® + u} — u!), which is well defined in (0, 1) under our as-
sumptions on the receiver’s payoffs.

7 Passing enables the sender to stop experimenting at no cost. As will be seen, the exper-
imentation always costs ¢ > 0 even at low intensity (informativeness). While this involves a
form of discontinuity, it is largely for analytic convenience. Our results remain unchanged
even if the cost is proportional to the intensity of the experiment (see Che, Kim, and
Mierendorff 2021). One may also wonder what would happen if passing incurs the same
cost ¢ as experimentation—a natural assumption if ¢ is interpreted as the waiting cost rather
than the experimentation cost. Our main results would still go through under this assump-
tion, except for some details of the equilibrium characterization. Without the sender being
able to freely stop experimenting, she would never give up on persuading, so the lower bound-
ary of the experimentation region, denoted by py later, is always determined by the receiver’s
incentives, as in proposition 2.
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F1G. 1.—Payoffs from static persuasion. Solid lines, payoffs without persuasion (informa-
tion). Dashed line, sender’s expected payoff in KG solution. Dash-dotted lines, payoffs under a
fully revealing experiment.

to be the same. This is, however, just a normalization that allows us to di-
rectly compare the players’ payoffs, and all subsequent results can be rein-
terpreted as relative to each player’s individual flow cost.®

Feasible experiments—We consider a general class of experiments whose
informativeness per unit time is bounded in a proper way. Formally, we
let p,denote the belief that w = R at time ¢and represent an experiment
by a regular martingale process (p)—that is, a cadlag martingale process
over X := [0, 1] that is progressively measurable with respect to its natu-
ral filtration {F,}—with countably many discontinuities and a determin-
istic continuous path at each point in history. Its martingale property fol-
lows from the law of iterated expectations (or Bayes plausibility). We let
P denote the set of all regular martingale processes.”

For any ¢ # p- =limg,pe, let N(q, pi-) = lima—oPp = qlpr-a, 0|/ di
denote the rate at which the belief changes from p,- to ¢ in state w. The
set of feasible experiments is then defined as

Pr=a(p)eP: D N(q p-) — N(g, p-)] < Nforall tand p,
#p-

% Suppose that the sender’s cost is given by ¢, while that of the receiver is . Such a model
is equivalent to our normalized one in which ¢/ = ¢ = ¢ and v = v(¢/¢). When solving
the model for a fixed set of parameters (u, v, ¢, N), this normalization does not affect
the results. If we let ¢ tend to zero, we are implicitly assuming that the sender’s and receiver’s
(unnormalized) costs, ¢ and ¢, converge to zero at the same rate. See n. 26 for a relevant
discussion.

¢ The requirement of a deterministic continuous path means that 2 does not include dif-
fusion processes such as Brownian motion. But the class P encompasses a large class of jump
(Poisson) processes. The implications of relaxing this requirement for our results (i.e.,
whether the sender would prefer a belief process failing this requirement to Poisson pro-
cesses we allow in our model) remain an open question.
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F16. 2.—Aurrival rates of feasible Poisson experiments.

The set P* includes all Poisson processes whose state-contingent jump
rates (A", A®) satisfy |[\" — A¥| <\ at each point in history; the feasible
arrival rates are depicted by the shaded area in figure 2. It also includes
all mixtures of those Poisson experiments.

In fact, any information in our class can be generated by diluting a con-
clusive Poisson signal arriving at rate N. Consider a conclusive signal that
arrives in state R at rate N (black circle in fig. 2). One can then add a white
noise arriving in both states at some rate p to this conclusive signal. The
resulting signal (white circle in fig. 2) then arrives more frequently at
rates (u, N + p) but is less precise, moving the belief only to posterior
q=pN+p)/[(1 = p)p+ p(N+ p)](< 1). The constant bound for the ar-
rival rate differences means that the constraint on flow information is in-
dependent of a prior, or experimental, as defined by Denti, Marinacci, and
Rustichini (2022); this stands in contrast to other models, such as rational
inattention, which assumes (prior-dependent) Shannon information cost
or capacity.

LeEmMA 1. An experiment (p,) is feasible (i.e., (p) € P*) if and only
if the following property holds at each point in history: there exists
a:[0,1] —[0, 1] such that 2 ,,a(q) < 1;

a. for any g # p, the arrival rate of posterior belief ¢ given p,- = p is
equal to

Mp(1 — p)
)=

and
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b. conditional on no jump, the belief drifts according to

p=—|2Zalg) — Salq) |Np(1 = p).

(4 <P

Proof—See appendix A.

Lemma 1 shows that a feasible flow experiment can be represented by
the shares o of a unit capacity allocated to Poisson experiments that trigger
jumps to alternative posterior beliefs ¢ at rates a(q)Ap(1 — p)/|q — pl.
The jump rate in part a simplifies to an expression familiar from the exist-
ing literature when the sender triggers a single jump with a(¢) = 1 to
conclusive news with either ¢ = 0 or ¢ = 1. For instance, conclusive R-
evidence (¢ = 1) is obtained at the rate of Ap, as is assumed in good news
models (see, e.g., Keller, Rady, and Cripps 2005). Likewise, conclusive L-
evidence (¢ = 0) is obtained at the rate of AN(1 — p), as is assumed in bad
news models (see, e.g., Keller and Rady 2015). Our model allows for such
conclusive news, but it also allows for arbitrary nonconclusive news with
q € (0, 1) as well as any arbitrary mixture among such experiments. Fur-
ther, our information constraint captures the intuitive idea that more accu-
rate information takes longer to generate. For example, if we assume ¢ > p,
the arrival rate increases as the news becomes less precise (g falls), and it
approaches infinity as the news becomes totally uninformative (i.e., as ¢
tends to p). Last, limited arrival rates capture an important feature of
our model that any meaningful persuasion takes time and requires delay.

Part b describes the law of motion governing the drift of beliefs when
no jump occurs. Strikingly, the drift rate depends only on the difference
between the fractions of the capacity allocated to right versus left Poisson
signals. Thatis, the rate does not depend on the precision ¢ of the news in
the individual experiments. The reason is that the precision of news and
its arrival rate offset each other, leaving the drift rate unaffected.'’ This
feature makes the analysis tractable while at the same time generalizing
conclusive Poisson models in an intuitive way.

Among many feasible experiments, the following three (visualized in
fig. 3) will prove particularly relevant for our purposes. They formalize
the three modes of persuasion discussed in section I.

¢ R-drifting experiment (confidence building): «(0) = 1. The sender
devotes all her capacity to a Poisson experiment with (posterior)
jump target ¢ = 0. In the absence of a jump, the posterior drifts to
the right at rate p = Ap(1 — p).

1 Suppose ¢ > p. This means that the sender has chosen a rate A for the informative sig-
nal and p > 0 for the noise. It is clear that p does not affect the updating of the state since
the noise arrives at the same rate in both states.
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R-drifting, targeting 0: 0/\'\ |
0

p 1

L-drifting, targeting ¢: m !

P q 1
Stationary, targeting 0 and ¢: m !
0 P q 1

F16. 3.—Three prominent feasible experiments.

¢ L-drifting experiment (confidence spending): a(¢) = 1 for some
g > p. The sender devotes all her capacity to a Poisson experiment
with jumps targeting some posterior ¢ > p. The precise jump target
g will be specified in our equilibrium construction. In the absence
of a jump, the posterior drifts to the left at rate p = —Ap(1 — p)

* Stationary experiment (confidence preserving): a(0) = a(q) = 1/2
for some ¢ > p. The sender assigns an equal share of her capacity to
an experiment targeting 0 and one targeting ¢. Absent jumps, the pos-
terior remains unchanged.

Solution concept—We study (pure-strategy) MPEs of this dynamic game
in which both players’ strategies depend only on the current belief p."!
Formally, a profile of Markov strategies specifies, for each p € [0, 1], a flow
experiment ¢°(p) = (a(q; p)),c0n chosen by the sender and an action
o*(p) € {¢, r, wait} chosen by the receiver. Given ¢ = (¢*, 6%) and prior
belief p, let p, denote the belief at time ¢ induced by the strategy profile
and 7 denote the stopping time at which the receiver takes action ¢ or r.
Then, the sender’s expected payoff is given by

V() = o Plo*(p) —rm]—r[EU {Satep) >o}dt|po],

while the receiver’s expected payoft is given by

U () = E[Upg(p) o] — ¢E

J Sa(gp) >0 d’f'i’*’]

P

" Naturally, this solution concept limits the use of (punishment) strategies depending
on the payoff-irrelevant part of the histories and serves to discipline strategies off the equi-
librium path. For non-Markov equilibria, see our discussion in sec. VI.



KEEPING THE LISTENER ENGAGED 1809

A strategy profile ¢ = (0%, 0®) is admissible if the law of motion governing
the belief evolution is well defined (see app. B for details) and the stop-
ping time 7is also well defined. Let £ denote the set of all admissible strat-
egy profiles.

DeriNiTION 1 (Markov perfect equilibrium). A strategy profile o =
(6%, 0%) € £ is an MPE if

i. Vo(p) = Vo(p) forall p € [0,1] and 6 = (&% o") € Z;
ii. U°(p)=>U’(p)forall pe[0,1]and 6 = (¢° 6*) € X; and
iii. for any p such that the receiver stops (i.e., 6®(p) € {{,r}):

p(1 — p)

S )\ o
o (p) argrgf}f;a(% iy (V (¢) = l{um:r}v) = Lsatgmrop &

Whereas properties i and ii are obvious equilibrium requirements, prop-
erty iil imposes a restriction that captures the spirit of perfection in our
continuous-time framework. To see its role clearly, suppose that the receiver
would choose action £ unless the sender changes the belief significantly
by running a flow experiment. In discrete time, the sender would simply
choose a flow experiment that maximizes her expected payoff. In con-
tinuous time, however, the sender’s strategy at such a point is inconse-
quential for her payoff; with probability 1, the game would end with the
receiver taking action £. With no further restriction on the sender’s strategy,
this continuous time peculiarity leads to severe but uninteresting equilib-
rium multiplicity (see n. 15). Property iii enables us to avoid the problem
by requiring the sender to choose a strategy that maximizes her instanta-
neous payoff normalized by dt in the stopping region; it can be seen as
selecting an MPE that is robust to a discrete-time approximation.

III. Ilustration: Persuading the Receiver to Listen

We begin by illustrating the key issue facing the sender: persuading the re-
ceiver to listen. To this end, consider any prior p, < f) so that persuasion is
not trivial and suppose that the sender repeatedly chooses R-drifting ex-
periments with jumps targeting ¢ = 0 until the posterior either jumps to
zero or drifts to p, as depicted on the horizontal axis in figure 4. This strat-
egy exactly replicates the KG solution (in the sense that it yields the same
probabilities of reaching the two posteriors, 0 and ), provided that the re-
ceiver listens to the sender for a sufficiently long time.

But will the receiver wait until the belief reaches 0 or p? The answer is
no. The KG experiment leaves no rents for the receiver without listening
costs, and thus with listening costs the receiver will be strictly worse off
than if he picks £ immediately. In figure 4, the receiver’s expected gross
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Fic. 4.—Replicating KG outcome through R-drifting experiments.

payoff from the static KG experiment is U[(po). Because of the listening
costs, the receiver’s expected payoff under the dynamic KG strategy,
denoted here by U(p), is strictly smaller than l]g(po). In other words,
the dynamic strategy implementing the KG solution cannot persuade
the receiver to wait and listen, so it does not permit any persuasion.'? In-
deed, this problem leads to the existence of a no-persuasion MPE, regard-
less of the listening cost.

THEOREM 1 (Persuasion failure). For any ¢ > 0, there exists an MPE
in which no persuasion occurs; that is, for any f,, the receiver immediately
takes either action £ or r.

Proof.  Consider the following strategy profile: the receiver chooses ¢
for p < p and r for p > p, and the sender chooses the L-drifting experi-
ment with jump target f) for all p e [T, j}) and passes for all p &
[7u, p), where the cutoff 7, is the belief at which the sender is indiffer-
ent between the L-drifting experiment and stopping (followed by ¢)."

¥ The KG outcome can also be replicated by other dynamic strategies. For instance, the
sender could repeatedly choose a stationary strategy with jumps targeting 0 and } until ei-
ther jump occurs. However, this (and, in fact, any other) strategy would not incentivize the
receiver to listen, for the same reason as in the case of repeating R-drifting experiments.

% Specifically, 7, equates the sender’s flow cost ¢ to the instantaneous benefit from the
L-drifting experiment:

_ M (1 — 7a) Y
27 — T
where the right-hand side is the sender’s benefit v from persuasion multiplied by the rate

at which the rightward jump to p occurs (under the L-drifting experiment) at belief ..
Solving the equation yields

c
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In order to show that this strategy profile is indeed an equilibrium, first
consider the receiver’s incentives given the sender’s strategy. If p& [7,1, }1),
then the sender never provides information, so the receiver has no incentive
to wait and will take an action immediately. If p € [, i)), then the sender
never moves the belief into the region where the receiver strictly prefers to
take action r (i.e., strictly above p). This implies that the receiver’s expected
payoff is equal to Us(p) minus any listening cost she may incur. Therefore,
again, it is optimal for the receiver to take an action immediately.

Now consider the sender’s incentives given the receiver’s strategy. If
p = p, then it is trivially optimal for the sender to pass. Now suppose that
$ < p. Ourrefinement (propertyiii in definition 1) requires that the sender
choose a flow experiment that maximizes her instantaneous payoff,
which is given by'*

¢subject to Da(q; p) < 1.

a(3h) lg — E}a(q;l') > 0} pors
=

max> a(g; P))\p—(l 2) Lippo — 1

* gl {
If the sender chooses any nontrivial experiment, its jump target must be
q = p. Hence the sender’s best response is either to maximize the jump
rate to p (i.e., a(p; p) = 1) or to pass. The former is optimal if and only
if Ap(1 = p)/(p — p)v = ¢, or equivalently, p > 7y.' QED

The no-persuasion equilibrium constructed in the proof showcases a total
collapse of trust between the two players. The receiver does not trust the
sender to convey valuable information (i.e., to choose an experiment target-
ing ¢ > p), so he refuses to listen to her. This attitude makes the sender des-
perate for a quick breakthrough; she tries to achieve persuasion by targeting
just f?, which is indeed not enough for the receiver to be willing to wait.

Can trust be restored? In other words, can the sender ever persuade
the receiver to listen to her? She certainly can, if she can commit to a dy-
namic strategy, that is, if she can credibly promise to provide more infor-
mation in the future. Consider the following modification of the dynamic
KG strategy discussed above: the sender repeatedly chooses R-drifting ex-
periments with jumps targeting zero until either the jump occurs or the

N 1 ¢ (1 ¢ )2 cp
T = ot - -t -
2 2\ 2 2\ v

" The objective function follows from the fact that under the given strategy profile, the
sender’s value function is V(p) = vif p > pand V(p) = 0 otherwise; and when the target
posterior is ¢, a Poisson jump occurs at rate Np(1 — p)/|q — p|.

'» Absent point iii in definition 1, there are many additional equilibria in which, in the
stopping region, the sender may simply refuse to experiment or adopt an arbitrary Poisson
experiment with jumps targeting beliefs other than p within the same stopping region.
None of these alternative equilibria survive in the corresponding discrete-time setting.
Our refinement allows us to select the continuous-time limit of the unique discrete-time
no-persuasion equilibrium, and theorem 1 holds despite this refinement.
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Fic. b.—Persuasive R-drifting experiments.

belief reaches p* > p. If the receiver waits until the belief either jumps to
zero or reaches p, then her expected payoff is equal to'®

Ui(p) = —5—w < Up lo o +1 = .

Importantly, if p* is sufficiently large relative to ¢, then Ux(p) (dashed
line in fig. 5) stays above max{U,(p), U(p)} (solid kinked line) while p
drifts toward p", so the receiver prefers to wait. Intuitively, unlike in the
KG solution, this “more generous” persuasion scheme promises the receiver
enough rents that make it worth listening to.

If cis sufficiently small, the required belief target p” need not exceed p
by much. In fact, p* can be chosen to converge to p as ¢— 0. In this
fashion, a dynamic persuasion strategy can be constructed to approxi-
mate the KG solution when ¢ is sufficiently small.

'* To understand this explicit solution, first notice that under the prescribed strategy
profile, the receiver takes action ¢ when p jumps to zero, which occurs with probability
(p* — p)/p*, and action r when p reaches p", which occurs with probability p/p*. The last
term captures the total expected listening cost. The length of time 7 it takes for p to reach
#" absent jumps is derived as follows:

_ b 1y 1-p
Tpra-per T xl°g<1—/f“ b >

Hence, the total listening cost is equal to

1 — :
(1- p)j,Ctd(l —eM) A+ (p+ A —=peN)er = (plog(l f[)* Tp> +1 - l%) )i\

p*

7
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At first glance, this strategy seems unlikely to work without the sender’s
commitment power. How can she credibly continue her experiment even
after the posterior has risen past p? Why not simply stop at the posterior
p—the belief that should have convinced the receiver to choose r? Surpris-
ingly, however, the strategy works even without commitment. This is be-
cause the equilibrium beliefs generated by the Markov strategies themselves
can provide a sufficient incentive for the sender to continue beyond p. We
already argued that with a suitably chosen p* > f), the receiver is incentiv-
ized to wait past p because of the optimistic equilibrium belief that the sender
will continue to experiment until a much higher belief [)* is reached. Cru-
cially, this optimism in turn incentivizes the sender to carry out her strat-
egy:‘7 were she to deviate and, say, pass at ¢ = ﬁ, the receiver would simply
wait (instead of choosing r), believing that the sender will shortly resume
her R-drifting experiments after the unexpected pause. Given this re-
sponse, the sender cannot gain from deviating: she cannot convince
the receiver to prematurely choose r. To summarize, the sender’s strategy
instills optimism in the receiver that makes him wait and listen, and this
optimism—or the power of beliefs—in turn incentivizes the sender to carry
out the strategy.

The power of beliefs logic extends beyond the Poisson model we employ
here,' but it does depend on subtle details of the model. For example,
consider a variation of the model in which the sender becomes unable
to provide further information at some (Poisson distributed) random
time. If the event is also observable to the receiver, then the above logic ap-
plies unchanged. Ifit is unobservable to the receiver, however, the logic no
longer holds: no matter how unlikely the event is, the sender will stop pro-
viding information as soon as the belief rises above p, unraveling any per-
suasion equilibrium. Likewise, with a deadline at which the receiver should
take an action, the power of beliefs logic survives if the arrival of the dead-
line is stochastic but fails if the deadline is deterministic. See section VI for
discussions on a few other relevant features.

7 We will show in sec. V.B that under certain conditions, using R-drifting experiments is not
just better than passing but also the optimal strategy (best response), given that the receiver
waits. Here, we illustrate the possibility of persuasion for this case. The logic extends to other
cases where the sender optimally uses different experiments to persuade the receiver.

* Consider Henry and Ottaviani’s (2019) model in which the belief, as expressed by the
log likelihood ratio s = In(p/(1 — p)), follows a Brownian motion with a drift given by the
state. In keeping with our model, suppose at each point in time that the sender either ex-
periments or passes and the receiver chooses /, 1, or wait, with the flow cost ¢ incurred on
both sides if the sender experiments and the receiver waits. As noted in n. 4, this model is
similar to Henry and Ottaviani’s (2019) no-commitment regime, except that our sender
has the option to pass without ending the game and the receiver incurs a flow cost. An
MPE is then characterized by two stopping bounds, s, <§: = In(p/(1 — p)) and s* >3,
such that the sender experiments and the receiver waits if and only if s € (s, s*). Our power
of beliefs argument would imply that a range of persuasion targets s* are supported as MPE
for ¢ > 0 sufficiently low, and that range would span the entire (5, ©) as ¢ — 0.
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IV. Persuasion Equilibria

The equilibrium logic outlined in section III applies not just to strategy
profiles that approximate the KG solution but also to other strategy pro-
files with a persuasion target p* € (p, 1). Building upon this observation,
we establish a folk theorem-like result: any sender (receiver) payoff be-
tween the KG solution and full revelation can be supported as an MPE
payoff in the limit as ¢ tends to zero.

THEOREM 2. Fix any prior p, € (0, 1).

a. For any sender payoff V € (pyu, min{py/p, 1}v), if ¢ is sufficiently
small, there exists an MPE in which the sender obtains V.

b. For any receiver payoff U € (U(p), pour + (1 — po)wy), if ¢ is suffi-
ciently small, there exists an MPE in which the receiver achieves U.

The proof of theorem 2 follows from the equilibrium constructions of
propositions 2 and 3 in section V.B. The main argument for the proof is
outlined below.

Figure 6 depicts how the set of implementable payoffs for each player
varies according to , in the limitas ¢ tends to zero. Theorem 2 states that any
payoffs in the shaded areas can be implemented in an MPE, provided that ¢
is sufficiently small. In the left panel, the upper bound for the sender’s pay-
off is given by the KG-optimal payoff min{p,/p, 1}v, and the lower bound is
given by the sender’s payoff from full revelation p,v. For the receiver, by con-
trast, full revelation defines the upper bound pyu® + (1 - po)u}‘, whereas
the KG payoff, which leaves no rent for the receiver, is given by U(p).

Note that theorem 2 is silent about payoffs in the dotted region. In the
static KG environment, these payoffs can be achieved by the (sender-
pessimal) experiment that splits the prior p into two posteriors, 1 and
q € [0, p]. The following theorem shows that the sender’s payoffs in this
region cannot be supported as an MPE payoff for a sufficiently small
¢ > 0 (even without invoking our refinement).

Sender Receiver

1 0 Po P p* 1

Fic. 6.—Implementable payoff set for each player at each p,.
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THEOREM 3. If py < f), then the sender’s payoff in any MPE is either
equal to 0 or at least pyv — 2¢/N\. If py > p, then the sender’s payoff in any
MPE is at least pyv — 2¢/\.

Proof. Fix py < j), and consider any MPE. If the receiver’s strategy is to
wait at p, then the sender can always adopt the stationary strategy with
jump targets 0 and 1, which will guarantee her a payoff of pyv — 2¢/N."°
If the receiver’s strategy is to stop at p, then the receiver takes action £ im-
mediately, in which case the sender’s payoff is equal to 0. Therefore, the
sender’s expected payoff is either equal to 0 or above v — 2¢/\.

Now suppose p, > p, and consider any MPE. As above, if , belongs to
the waiting region, then the sender’s payoff must be at least v — 2¢/\.
If p belongs to the stopping region, then the sender’s payoff is equal to v.
In either case, the sender’s payoff is at least pyv — 2¢/N. QED

We prove theorem 2 by constructing MPEs with a particularly simple
structure:

DeriNiTION 2. An MPE is a simple MPE (SMPE) if there exist p. €
(0, p) and p* € (p, 1) such that the receiver chooses action £ if p < p,
waits if p € (p«, p*), and chooses action r if p > p*.*

In other words, in an SMPE, the receiver waits for more information
if p € W and takes an action ¢ or r otherwise, where W = (ps, p*) or
W = [p«, p*) denotes the waiting region:

14 wait

| P P
=0 1

While this is the most natural equilibrium structure, we do not exclude
possible MPEs that violate this structure. Whether such MPEs exist is ir-
relevant for our results. While we construct SMPEs to establish theorem 2,
theorem 3 is valid for all MPEs. Finally, we continue to require our refine-
ment with SMPEs.

To prove theorem 2, we begin by fixing p* € (p, 1). Then, for each ¢suf-
ficiently small, we identify a unique value of p.. for which an SMPE can be
constructed. We then show that as ¢ — 0, p, approaches zero as well (see
propositions 2 and 3 in sec. V.B). This implies that given ", the limit SMPE
spans the sender’s payoffs on the line segment that connects (0, 0) and ( p*,
v)—the dashed line in the left panel of figure 6—and the receiver’s payoffs

¥ In order to understand this payoff, notice that the strategy fully reveals the state, and
thus the sender gets v only in state R. In addition, in each state, a Poisson jump occurs at
rate /2, and thus the expected waiting time equals 2/\, which is multiplied by ¢ to obtain
the expected cost.

* We do not restrict the receiver’s decision at the lower bound p,, so that the waiting
region can be either (p,, p*) or [p,, p*). Requiring W = (px, p*) can lead to nonexistence
of an SMPE in proposition 2. Requiring W = [p,, p*) can lead to nonadmissibility of the
sender’s best response in proposition 3.
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on the line segment that connects (0, ;) and (p*, U,.(p*)) in the right
panel. By varying p* from p to 1, we can cover the entire shaded areas in
figure 6. Note that with this construction and the uniqueness claims in
propositions 2 and 3, we also obtain a characterization of feasible payoff
vectors (V, U) for the sender and receiver that can arise in an SMPE in
the limit as ¢ tends to zero. We state this in the following corollary.

CorOLLARY 1. For any prior p, € [0, 1], in the limit as ¢ tends to zero,
the set of SMPE payoff vectors (V, U) is given by

{03y e maxgn v =Bov = Bugn + Lo,
with the addition of the no-persuasion payoff vector (0, U(p,)) for py < p.

V. Persuasion Dynamics

In this section, we provide a full description of SMPE strategy profiles
and illustrate the resulting equilibrium persuasion dynamics. We first
explain why the sender optimally uses the three modes of persuasion dis-
cussed in sections I and II. Then, using them as building blocks, we con-
struct full SMPE strategy profiles.

A.  Modes of Persuasion

Fix an SMPE with two threshold beliefs p, and p*, where p. < p < p*. We
investigate the sender’s optimal persuasion/experimentation behavior
at any belief p € (0, 1) in that equilibrium.

Suppose that the sender runs a flow experiment that targets ¢ # p
when the current belief is p. Then, by lemma 1, the belief jumps to ¢
atrate A\p(1 — p)/|q — p| and, absent jumps, moves continuously accord-
ing to p = —sgn(q — p)Ap(1 — p), where sgn(x) denotes the signum
function. Therefore, her flow benefit is given by

v(p; q) = %[H (V(g) = V(p)) — sgn(q — p)Ap(1 = p)V'(p),
where V(-) is the sender’s value of playing the candidate equilibrium
strategy.”' Specifically, for ¢ > p, the flow benefit consists of the value in-
crease from a breakthrough that arises at rate Ap(1 — p)/|q — p| (the first
term) and the decay of value in its absence (the second term). For ¢ < p,
the first term captures the value decrease from a breakdown, while the sec-
ond term represents the gradual appreciation in its absence.

*' Note that the sender’s value function may not be everywhere differentiable. We ignore
this here to give a simplified argument illustrating the properties of the optimal strategy for
the sender. The formal proofs can be found in app. C.



KEEPING THE LISTENER ENGAGED 181 7

At each point in time, the sender can choose any countable mixture
over experiments. Therefore, at each p, her flow benefit from optimal
persuasion is equal to

v(p) = maxXa(g; p)o(ps q) subject to Yag p) < 1. (1)
’ q q

The function v(p) represents the gross flow value from experimentation.
It plays an important role in characterizing the sender’s strategy in the
stopping region as well as in the waiting region. If p > p*, then the receiver
takes action r immediately, and thus V(p) = v for all p > p*. It follows
that v(p) = 0 < ¢, so it is optimal for the sender to pass, which is intui-
tive. If p < p,, then the sender has only one instant to persuade the re-
ceiver, and therefore she experiments only when v(p) > ¢: if v(p) <,
persuasion is so unlikely that she prefers to pass or, more intuitively, gives
up on persuasion.

In the waiting region p € (p., p*), the sender must have an incentive to
experiment, which suggests that v(p) > ¢.* In particular, when the send-
er’s equilibrium strategy involves experimentation, her value function is
characterized by the Hamilton-Jacobi-Bellman (HJB) equation, which
means that V(p) is adjusted so that v(p) = ¢ holds.

The following proposition simplifies the potentially daunting task of
characterizing the sender’s optimal experiment at each belief in (1) to
searching among a small subset of feasible experiments.

ProrosiTiON 1.  Consider an SMPE where the receiver’s strategy is

given by p. < p < p*.

a. Forall p € (0, 1), there exists a best response that involves at most
two distinct Poisson jumps, one to ¢ (> p) at rate oy = a(qi; p) and
the other to ¢(< p) at rate o = ag; p).

b. Suppose that V(-) is nonnegative, increasing, and strictly convex
over (ps, p'1 and V(ps)/ps < V'(ps). Then, the best response in
part a has

i. for p € (ps, p*), o + aw = 1 with ¢ = p* and ¢ = 0;
ii. for p < ps, either the sender passes or oy = 1 and ¢ = ps or
q = p*; and
iii. for p > p*, the sender passes.

For part a of proposition 1, notice that the right-hand side in equation (1)
is linear in each a(g; p) and the constraint Z,a(q; p) <1 is also linear.
Therefore, by the standard linear programming logic, there exists a

2 Suppose that v(p) < ¢. Then, the sender strictly prefers passing forever to conducting
any experiment at p followed by the optimal continuation. This implies that the value func-
tion must be V(p) = 0, the value of passing forever. Hence, we must have v(p) > ¢ when-
ever V(p) > 0, which holds if p € W.
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p* 1
F1c. 7.—Optimal Poisson jump targets for different values of p. The solid curve repre-
sents the sender’s value function in an SMPE with p, and p".

solution that makes use of at most two experiments, one below p and the
other above p.* This result implies that
Vig) = V(p) V(p) = V(g)

u(p) = (mmﬁw)\p(l = )| e (e =) V(p)|, (2

subjectto oy + v < 1 and ¢ < p < ¢q.

Part b of proposition 1 states that if V{(-) satisfies the stated properties,
which will be shown to hold in equilibrium later, then there are only
three candidates for optimal Poisson jump targets—0, p., and p*—re-
gardless of p € (0, p*). As illustrated in figure 7, the righthand side of
(2) boils down to choosing ¢ > p to maximize the slope of V between
qi and p (i.e., the first fraction) or choosing ¢ < p to minimize the slope
of Vbetween ¢, and p (i.e., the second fraction). In the waiting region,
the former strategy leads to ¢ = p*, whereas the latter strategy leads
to ¢, = 0 (see ps and the dashed lines in fig. 7).** Similarly, if p < px, then
¢ = 0is optimal and ¢, is either p, (see p» and the dotted line) or p* (see
1 and the dash-dotted line).

Proposition 1 implies that the sender makes use of the following three
modes of persuasion at each p < p*.

* One may wonder why we allow for two experiments. In fact, linearity implies that there
exists a maximizer that puts all weight on a single experiment. But to obtain an admissible
Markov strategy, using two experiments is sometimes necessary. For example, if p is an ab-
sorbing belief, then admissibility requires that the stationary strategy be used at that belief,
requiring two experiments. See app. B for details.

** Note that ¢ > p* yields a lower slope than ¢ = p*; intuitively, the sender would be
wasting her persuasion rate if she targets above p*. Meanwhile, when p € (p,, p*),
¢ = p. yields a higher slope than ¢ = 0, given V(p,.)/pe < V'(ps).
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* Confidence building: R-drifting experiment with jump target 0.

* Confidence spending: L-drifting experiment with jump target ¢, =
p* or possibly ¢ = py if p < p.

* Confidence preserving: stationary experiment with jump targets
q = p*and ¢ = 0.

Two aspects determine the sender’s choice over these experiments in
her optimal strategy. First, strategies may differ in the distributions over
final posteriors they induce. In particular, they may differ in the proba-
bility of persuasion (i.e., of the belief reaching p"). Second, and more
interestingly, they may differ in the time it takes for the sender to con-
clude persuasion. While the former feature has been studied extensively
by the static persuasion models, the latter feature is novel here and is
crucial for shaping the precise persuasion dynamics.

To be concrete, compare the confidence-building strategy that uses the
R-drifting experiment (with jump target 0) until the belief reaches p" with
the confidence-preserving strategy that uses the stationary experiment
(with jump targets ¢ = p* and ¢, = 0) until a jump occurs. Starting from
any belief p € (p«, p*), both strategies eventually lead to a posterior of 0 or
p*, with identical probabilities. Hence they yield the same outcome for the
two players, except for the time it takes for the persuasion process to con-
clude. Clearly, the sender wishes to minimize that time, which explains her
choice between the two modes of persuasion. Intuitively, if the current be-
lief is close to the persuasion target $*, then confidence building (i.e., R-
drifting) takes less time on average than confidence preserving (i.e., sta-
tionary), since the former concludes persuasion within a short period of
time, whereas the latter may take a long time and thus proves costly.*
The opposite is true, however, if the current belief is significantly away from
the persuasion target . Intuitively, seeking persuasion by an immediate
success is more useful than slowly building up the receiver’s confidence
in that case.

The confidence-spending strategy (which uses the L-drifting experi-
ment with jump target p*) offers a similar trade-off as confidence pre-
serving vis-a-vis confidence building. If the current belief is far away from
the persuasion target p*, confidence spending involves less time than

25

The expected persuasion costs associated with R-drifting and stationary strategies,
which can be computed as illustrated in n. 16 and 19, are given by, respectively,

¢ rr1-p P 2c(p* — p)
C+(;*):—(10< - >+1*7 and G(p) = .
PEIN\P\T— 3 SRRVATEY)
It can be shown that C. (p*; p*) = Gs(p*) and 2C. (p*; p*) = Ci(p*) < 0; i.e., as p tends to
p", the expected persuasion cost converges to zero faster under R-drifting than under sta-
tionary strategy.
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confidence building. However, there is another difference. If a success
does not arise before the belief falls to [)*, persuasion stops and the receiver
chooses ¢ before the belief reaches zero. By the familiar logic from (static)
Bayesian persuasion, this leads to a suboptimal distribution over posteri-
ors. To avoid this, the sender may in some cases prefer the confidence-
building strategy or, in other cases, switch from the L-drifting experiment
to the confidence-preserving strategy before reaching p.. As will be seen,
the confidence-spending strategy is also used in the stopping region
p < ps+ as a Hail Mary pitch when the receiver is about to choose ¢ an in-
stant later.

B.  Equilibrium Characterization

We now explain how the sender’s equilibrium strategy deploys the three
modes of persuasion introduced in section V.A and provide a full de-
scription of the unique SMPE strategy profile for each set of parameter
values and persuasion target .

The structure of SMPE depends on two conditions. The first condition
concerns how demanding the persuasion target p” is:

P < n~0.943. (Cond1)

This condition determines whether the sender always prefers the R-
drifting strategy to the stationary strategy. The constant 7 is the largest
value of p* such that the sender prefers the former strategy to the latter
forall p < p* (see app. C1 for a formal definition). Notice that this con-
dition holds for p* not too large relative to }7; for instance, this is the case
when the sender’s equilibrium strategy approximates the KG solution
(as long as p < ).

The structure of the sender’s equilibrium strategy also depends on the
following condition:

v> U (p*) — U(p"). (Cond?2)

The left-hand side quantifies the sender’s gains when she successfully
persuades the receiver and induces action 1, while the right-hand side
represents the corresponding gains for the receiver.* If (Cond2) holds,
then the sender has a stronger incentive to experiment than the receiver

** As explained in sec. II (see n. 8), the payoffs of the two players are directly compara-
ble, because their flow cost ¢ is normalized to be the same. With different flow costs,
(Cond2) has to be stated using each player’s payoff relative to their flow cost. In the ex-
treme case when the sender’s cost is zero but the receiver’s is not, (Cond2) necessarily
holds, and the equilibria characterized in proposition 2 below always exist. However, the
sender is indifferent over all strategies that yield the same (ex post) distribution of poste-
riors. Therefore, the claim of uniqueness in proposition 2 no longer holds.
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has to listen, so the belief p. below which some player wishes to stop is
determined by the receiver’s incentives. Conversely, if (Cond2) fails,
then the sender is less eager to experiment, and thus p. is determined
by the sender’s incentives.

We first provide an equilibrium characterization for the case where
(Cond2) is satisfied.

ProrosITION 2. Fix p* € (p, 1) and suppose that v > U,(p*) — U(p*).
For each ¢ > 0 sufficiently small, there exists a unique SMPE such that
the waiting region has upper bound p*. The waiting region is
W = [p, p*) for some p. < p, and the sender’s equilibrium strategy is
as follows:*’

a. Suppose that the belief is in the waiting region with p € [ps, p*).

i. If p* € (p,n), then the sender plays the R-drifting strategy with
left-jumps to zero for all p € [py, p*).

ii. If p* € (9,1),” then there exist cutoffs p. < £ < Tx < p* such
that for p € [p«, &) U (Tir, p*), the sender plays the R-drifting
strategy with leftjumps to zero; for p = &, she uses the station-
ary strategy with jumps to zero and p*; and for p € (&, Tx], she
adopts the L-drifting strategy with rightjumps to p".

b. Suppose that the belief is outside the waiting region with p < p.
There exist cutoffs 0 < my, < m, < ps such that for p < my, the
sender passes; for p € (7, mo), she uses the L-drifting strategy with
jumps to ¢ = p*; and for p € [m, ps), she uses the L-drifting strat-
egy with jumps to ¢ = ps.

The lower bound p. of the waiting region converges to zero as ¢ — 0.
Figure 8 summarizes the sender’s SMPE strategy in proposition 2, de-
pending on whether p* < 7. If p* € (p,7), then the sender uses only R-
drifting experiments in the waiting region [py, p*), as depicted in the
top panel of figure 8. If p* > 5, then the sender employs other strategies
as well, as described in the bottom panel of figure 8. For low beliefs close
to ps, she starts with R-drifting (confindence-building) experiments but
switches to the stationary experiment when the belief reaches &. For beliefs

7 We set W = [p,, p*) to be a half-open interval, since for beliefs p < p, close to p,, the
sender’s best response is to target ¢ = p... Hence, existence of the best response requires
ps € W.

* Notice that in the knife-edge case when p* = 7, there are two SMPEs, one as in 2a(i)
and another as in 2a(ii). In the latter, however, 7 = £ and the L-drifting strategy is not
used in the waiting region. The two equilibria are payoff-equivalent but exhibit very differ-
ent dynamic behavior when p, € [p,, £].
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Fic. 8.—Sender’s SMPE strategies in proposition 2, thatis, when v > U, (p*) — U/(p*).

above & but below g, she employs L-drifting (confidence-spending) ex-
periments and also switches to the stationary experiment when the belief
reaches &.

To understand these different patterns, recall from section V.A that the
R-drifting experiment is particularly useful if it does not take too long to
build the receiver’s confidence and move the belief to p*. This explains
the use of R-drifting experiments when p is rather close to p* for
p € [Tx, p*) if p* > n and for all p in the waiting region if p* < y. If p* is
above 7, then for p below 7r, other experiments become optimal. For
p < &, the sender starts by building confidence, but instead of continuing
with this strategy until p* is reached, she cuts it short and switches to the
stationary strategy when £ is reached. At £, the arrival rate of a jump to
#" in the stationary experiment is sufficiently high to yield a faster persua-
sion (on average) than it would take to gradually build confidence to p*
using the R-drifting strategy. For beliefs p € (£, Tix), a jump to " arrives
at a higher rate, so that it becomes optimal to spend confidence and use
only the L-drifting experiment rather than preserving confidence with
the stationary experiment.

For an economic intuition, consider a salesperson courting a potentially
interested buyer. If the buyer needs only a bit more reassurance to buy the
product, then the salesperson should carefully build up the buyer’s confi-
dence until the belief reaches p". The salesperson may still slip off and lose
the buyer (i.e., p jumps down to zero). But most likely, the salesperson
weathers that risk and moves the buyer over the last hurdle (i.e., ¢ = p*
is reached). This is exactly what our equilibrium persuasion dynamics de-
scribes when p is close to p*. When the buyer does not require a high de-
gree of confidence to be persuaded (p* < 7), building up confidence is the
optimal strategy for the salesperson whenever the buyer is initially willing
to listen (i.e., iy is in the waiting region). By contrast, when p* > 7, the buyer
requires a lot of convincing and there are beliefs where the buyer is rather
uninterested (as in a cold call). Then, the salesperson’s optimal strategy de-
pends on how skeptical the buyer is initially. If g, € [Tix, p*), then itisstill an
optimal strategy for the salesperson to build up the buyer’s confidence until
P If py € (ps, £), the salesperson first tries to build confidence. If the
buyer is still listening when the belief reaches &, the seller becomes more
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convinced that the buyer can be persuaded, and she starts using a big pitch
that would move the belief to p*. For higher beliefs, she is even more con-
vinced that the buyer can be persuaded quickly, so she spends confidence
and concentrates all her efforts on quickly persuading the receiver.

(Cond2) means that the lower bound p. of the waiting region is de-
termined by the receiver’s incentive: p, is the point at which the receiver
is indifferent between taking action ¢ immediately and waiting (i.e.,
Uips) = U(ps), where U(p) is the receiver’s payoff from experimenta-
tion). Intuitively, (Cond2) suggests that the receiver gains less from ex-
perimentation—and is thus less willing to continue—than the sender.
Therefore, at the lower bound p., the receiver wants to stop, even though
the sender wants to continue persuading the receiver (i.e., V(p:) > 0).

When p < p., the sender plays only L-drifting experiments unless she
prefers to pass (i.e., when p < ). This is intuitive, because the receiver
takes action ¢ immediately unless the sender generates an instantaneous
jump, forcing the sender to effectively make a Hail Mary pitch. Itis intrigu-
ing, though, that the sender’s target posterior can be either p, or [)*, de-
pending on how close pis to p,: in the sales context used above, if the buyer
is fairly skeptical, then the salesperson needs to use a big pitch. But, de-
pending on how skeptical the buyer is, she may try to get enough atten-
tion only for the buyer to stay engaged (targeting ¢ = p.) or use an even
bigger pitch to convince the buyer to buy outright (targeting ¢ = p*). If
pisjustbelow p. (see ppin fig. 7), then the sender can jump into the waiting
region at a high rate: recall that the arrival rate of a jump to p.. grows to
infinity as p tends to p.. In this case, it is optimal to target p,, thereby max-
imizing the arrival rate of Poisson jumps: the salesperson is sufficiently op-
timistic about her chance of grabbing the buyer’s attention, so she aims
only to make the buyer stay. If pis rather far away from p.. (below m,, such
as py in fig. 7), then the sender does not enjoy a high arrival rate. In this
case, it is optimal to maximize the sender’s payoff conditional on Poisson
jumps, which she gets by targeting p": the salesperson tries to sell her prod-
uct right away, and if it does not succeed, then she just lets it go.

Next, we provide an equilibrium characterization for the case when
(Cond2) is violated.

PrOPOSITION 3.  Fix p* € (p, 1) and assume that v < U, (p*) — U(p*).
For each ¢ > O sufficiently small, there exists a unique SMPE such that the
waiting region has upper bound p". The waiting region is W = (px, p*)
for some p;. < p, and the sender’s equilibrium strategy is as follows:*

» We set W = (., p*) to be an open interval, since the sender uses the L-drifting strat-
egy for beliefs close to p,. Including p, would not lead to a well-defined stopping time and
therefore violates admissibility.
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a. Suppose that the belief is in the waiting region with p € (ps, p*).

i. If p* € (p,m), then there exists a cutoff Tz € W such that for
pe (i, p*), the sender uses the R-drifting strategy with left-
jumps to zero, and for p € (p«, Tix), she uses the L-drifting
strategy with rightjumps to p".

ii. If p* € (n,1), then there exist cutoffs p,. < Mg < & < Tp < p*
such that for p € [Tx, £) U [Tir, p*), the sender plays the R-
drifting strategy with leftjumps to zero; for p = £, she adopts
the stationary strategy with jumps to zero or p"; and for p €
(pe, Tix) U (€, Tir), she uses the L-drifting strategy with right-
jumps to p".

b. If the belief is outside the waiting region, the sender passes.

The lower bound of the waiting region p.. converges to zero as ¢ tends to zero.

Figure 9 describes the persuasion dynamics in proposition 3. There
are two main differences from proposition 2. First, if p < ps, then the
sender simply passes, whereas in proposition 2, the sender uses L-drifting
experiments when p € (T, p*). Second, when pis justabove p., the sender
adopts L-drifting experiments, and thus the game may stop at p.. By
contrast, in proposition 2, the sender always plays R-drifting experiments
just above p., and the game never ends with the belief reaching p.. Both
of these differences are precisely due to the failure of (Cond2): if v <
U.(p*) — U(p*), then the sender is less willing to continue than the re-
ceiver, and thus p. is determined by the sender’s participation constraint
(i.e., V(p«) = 0). Therefore, the sender has no incentive to experiment
once p falls below p.

When p s just above p, the sender goes for a big pitch by targeting p*
with L-drifting experiments. The sender does not mind losing the buy-
er’s confidence in the process, since the violation of (Cond2) means that
as the belief nears p., she has very little motivation left for persuading
the receiver even though the latter remains willing to listen. By contrast,
when (Cond2) holds (as in proposition 2), as the belief nears p,, the re-
ceiver loses interest in listening, but the sender still sees a significant value

P e@n): | Pri— T g P
0 1
pass L-drifting, jump:p* R-drifting, jump:0 pass
p*enl): | Pat— T p—r—————— § ———<—Trp—r———p* |
0 N e’ S~~~ 1

pass jump:p* jump:0 stationary  jump:p* jump: 0 pass

Fic. 9.—Sender’s SMPE strategy in proposition 3, that is, when v < U, (p*) — U(p*).



KEEPING THE LISTENER ENGAGED 1825

Sender Receiver

plofp | )

]
LY

0 Po pT D 1

F1G. 10.—Payoffs from static persuasion when there is a middle action, M. Solid lines, pay-
offs without persuasion (information). Dashed line, sender’s expected payoff in KG solution.

in staying in the game. Hence, the sender tries to build—instead of run-
ning down—the receiver’s confidence in that case.

VI. Concluding Discussions

We conclude by discussing how our results depend on several modeling
assumptions and suggesting a few directions for future research.

Binary actions and states—We have considered the canonical Bayesian
persuasion problem with two states and two actions. Some of our results
clearly depend on specific features of the problem. However, our main eco-
nomic insights hold more generally. In fact, it is often straightforward to
modify our technical analysis for other persuasion problems.

To be concrete, consider an extension in which the receiver has one ad-
ditional action M and the players’ payoffs are as depicted in figure 10. Spe-
cifically, M is the receiver’s optimal action when the belief belongs to the
intermediate range [p/, f)], and the sender earns v if the receiver takes ac-
tion M. Assume ¥ < piv/p, so that the KG solution still induces two poste-
riors, 0 and p, whenever py, < p.

An important change from our baseline environment is that the receiver
does enjoy rents from the KG solution; observe that in the right panel of
figure 10, the dashed line strictly exceeds the solid line whenever
p € (0, p). In this case, it is possible to construct an SMPE exactly imple-
menting the KG solution with p* = p for ¢ sufficiently small. More impor-
tantly, theorem 1 no longer holds: if ¢is sufficiently small, then the receiver
prefers to wait when the sender plays an L-drifting experiment targeting p
at (< p).* Meanwhile, theorem 2 remains valid: for ¢ sufficiently small

* A tempting conjecture may be that the no-persuasion equilibrium is unsustainable if
the KG solution offers strictly positive rents to the receiver. This need not be the case. If p, is
slightly below #/, then it becomes credible (in the sense of satisfying our refinement) that
the receiver stops immediately and the sender uses the L-drifting experiment with jump
target ' (and not p").



1826 JOURNAL OF POLITICAL ECONOMY

and [)* exceeding f), the SMPE we construct for our baseline environment
in section V continues to be an SMPE in this extended problem. There-
fore, our arguments in section IV apply unchanged.

Relaxing the binary state assumption raises a few significant challenges—
such as defining the set of feasible experiments and analyzing a system of
partial differential equations—which prevents us from providing a tight
and comprehensive equilibrium characterization. Nevertheless, at least con-
ceptually, it is not hard to see how our main insights would extend to the
environment with more than two states. The no-persuasion equilibrium
in theorem 1 would exist if and only if the receiver never earns strictly pos-
itive (instantaneous) rents from the sender’s optimal flow experiment. By
contrast, if there is a (lump-sum) Blackwell experiment that strictly benefits
both players, then the resulting outcome would be approximated by equi-
libria of the dynamic Persuasion model.

Other features of the model—We have restricted attention to MPEs, which
by definition do not rely on incentives provided by off-path punish-
ments. Certainly, other (non-Markov) equilibria could be used so as to
enlarge the set of sustainable payoffs.*’ Then, it seems plausible that as
the players’ persuasion costs vanish, one could implement all individually
rational payoffs, including the dotted region in figure 6. For prior beliefs
o < p, this is indeed the case, because the no-persuasion equilibrium in
theorem 1 can be used to most effectively control the sender’s incentives.
For prior beliefs p, > }J, however, no clear punishment equilibrium is avail-
able; note that for p, > ﬁ, the no-persuasion equilibrium maximizes the
sender’s payoff. This suggests that our construction of MPEs cannot be re-
placed by arguably more complex constructions that rely on off-path pun-
ishments. Indeed, we conjecture that for p, > j), theorem 2 and corollary 1
characterize the full set of equilibrium payoffs.

Our model assumes flow persuasion costs rather than discounting.
This assumption simplifies the analysis mainly by additively separating
persuasion benefits from persuasion costs. Still, it has no qualitative im-
pact on our main results. Specifically, if we include both flow costs and
discounting in the analysis, then the resulting SMPEs would converge
to those of our current model as discounting becomes negligible. If we
consider only discounting (without flow costs), then the persuasion dy-
namics needs some modification. Among other things, the sender has
no reason to voluntarily stop experimentation, and thus the persuasion
dynamics will be similar to that of proposition 2 (as opposed to that of
proposition 3).** Still, our main economic lessons will continue to apply:

* As is well known, it is technically challenging to define a game in continuous time
without Markov restrictions (see, e.g., Simon and Stinchcombe 1989). Our subsequent dis-
cussion should be understood as referring to the limit of discrete-time equilibria.

* Specifically, the lower bound p,. of the waiting region will be determined by the receiver’s
incentives. In addition, at the lower bound p., so as to stay within the waiting region, the sender
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all three theorems in section IV would continue to hold.?® Furthermore,
the relative advantages of the three main modes of persuasion remain un-
changed, so the persuasion dynamics are in many cases similar to those
described in section V.

Our continuous-time game has a straightforward discrete-time analog
and can be interpreted as its limit. In a discrete-time model, however, it
becomes important whether the receiver’s per-period listening cost is in-
dependent of the amount of information the sender generates or pro-
portional to it. In the former (independent) case, our power of beliefs
logic no longer holds: if the current belief p is just below the persuasion
target p*, then the receiver’s gains from waiting one more period are
close to zero, in which case she would prefer to stop at p < p*. Thus,
any equilibrium with persuasion target p* > p would unravel, leaving
p* = pas the only feasible persuasion target. In our baseline model, this
renders the no-persuasion equilibrium the unique SMPE. However, if
the KG solution provides positive rents for the receiver, as exemplified
in the case with three actions depicted in figure 10, any persuasion target
p* > p can still be supported as SMPE as ¢ tends to zero. Meanwhile, if
the receiver’s listening cost is proportional to the amount of new infor-
mation, he would still be willing to wait, no matter how close p is to p".
Then, all our analysis and results continue to hold in the discrete-time
analog even in the baseline model.**

Our model focuses on generalized Poisson experiments to accommo-
date rich and flexible information choice. By contrast, an alternative
such as the drift-diffusion model does not allow for such richness. For
example, in Henry and Ottaviani (2019), the sender samples from a
fixed exogenous process without choosing the type of experiment. Nev-
ertheless, the logic that gives rise to our theorem 2—namely, the incen-
tivizing power of equilibrium beliefs—applies equally well to such mod-
els (see n. 18).

Directions for future research.—The key features of our model are that real
information takes time to generate and that neither the sender nor the
receiver has commitment power over future actions. There are several av-
enues along which one could vary these features. For example, one may

will play either R-drifting experiments or the stationary strategy. This latter fact implies that if
the game starts from p, € [p*, p*), then it will end only when the belief reaches either 0 or p*,
and thus the persuasion probability will always be equal to p,/p*.

* The proofs of theorems 1 and 3 can be readily modified. For theorem 2, it is easy to
show that the main economic logic behind it (namely, the power of beliefs explained at the
end of sec. III) holds unchanged with discounting.

* The same logic applies when there is discounting in terms of the period length A. If A
is independent of the amount of new information, then all persuasive SMPEs with p* > p
unravel. However, if A is proportional to the amount of information—a sensible assump-
tion if A describes information processing time—then such unraveling does not occur,
and our analysis goes through unchanged.



1828 JOURNAL OF POLITICAL ECONOMY

consider a model in which the sender faces the same flow information
constraint as in our model but has full commitment power over her dy-
namic strategy: given our discussion in section III, it is straigh tforward that
the sender can approximately implement the KG outcome. However, it is
nontrivial to characterize the sender’s optimal dynamic strategy. Alterna-
tively, one could further relax the commitment power by allowing the re-
ceiver to observe only the outcome of the flow experiment but not the ex-
periment itself.

More broadly, the rich persuasion dynamics found in our model owe a
great deal to the general class of Poisson experiments we allow for. At
first glance, allowing for the information to be chosen from such a rich
class of experiments at each point in time might appear extremely com-
plex to analyze, and a clear analysis might seem unlikely. Yet the model
produced a remarkably precise characterization of the sender’s optimal
choice of information—namely, not just when to stop providing infor-
mation but, more importantly, what type of information to generate.
This modeling innovation may fruitfully apply to other dynamic settings.

Appendix A
Further Characterization on Feasible Experiments

This appendix formally proves lemma 1 and also provides an alternative belief-
based characterization for the set P* of feasible experiments.

Proof of lemma 1. Fix (p,) € P*and any t € R,. For each ¢ # p, let y(q, p) de-
note the unconditional arrival rate of posterior belief ¢ given p,- = p. For these
values to be well defined, it is necessary and sufficient that the associated condi-
tional likelihoods (N“(g, p), N*(¢, p)) satisfy

.- PN (g, p)
(1= pIN(q,p) + PN(g, )

Solving this system of equations, we obtain

and y(q, p) = pN(g, p) + (1 = pIN“(¢, p).

R _ q L _ 1—yq
N(g.p) = 7((1,17); and N(q, p) = v(¢: p) 7—, r
Then, our information constraint can be written as
R L 1- |‘] - [7|
N(g,p) = (g, p)| = : 1——7': )L P <N (Al
%\<qm (¢ )l %wqmb = %qupu—p) (AD)

For each ¢, define a(q) = v(q, p)lg — pI/INp(1 — p)]. Then, the above constraint
can be equivalently written as 2,.,a(¢) < 1, and the arrival rate of posterior ¢ given
pis given by ¥(q. p) = a(g)Ap(1 — p)/lq — .

Let p denote the instantaneous change of (p,) conditional on no jump. Since
(p) is a martingale, =,.,v(q, p)(¢ — p) + p = 0, so p satisfies
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p= —Ev(q,;b)(q =) =27 (g—p) —Zv(g. p)qg—p)
=P q<p
= (g plg = pl + (g p)lg — pl
>p q<p
= —Sa(gAp(1 — p) + Da(g)p(1 — p)
>p q<p

—(Ea - 2alg >M¢ (1=p)
7P 7<p
QED

Next, we provide an additional characterization of P* based on a measure of
information. Let (p) denote a regular martingale process in P. For each ¢
pi-=limy,py, and g # p,, let y(¢q, p-) denote the rate at which the belief jumps
from p,_ to ¢ formally,

T P[Ih = 6]|Pz—4ﬂ
(g pi-) = lim ——— .

We measure the amount of flow information of (p,) at each point in history by

= 27(q p-)lp = pi-l-
e
In other words, our information measure Z(p-) quantifies the total absolute
change of the belief process at each point in time.
By (Al) in the proof of lemma 1, our information constraint can be written as

SN 1)~ N(g. )| = Sl )AL L < N 1) < M1 - )
#p q#p p( p)

This implies that the set P* of feasible experiments can be equivalently defined
as

P={(p)eP:I(p-) < Np—(1 — p-) forall ¢ and p,-}.

In other words, we consider belief processes whose aggregate change at each
point in history is bounded by Ap,- (1 — p,-); note that p(1 — p) is equal to the
variance of the Bernoulli random variable p. The bound’s dependence on p,-
is natural, given that p- € [0, 1] and p- = 0, 1 represents perfect information
from which no belief change should be feasible; more generally, it captures an
intuitive idea that the sender can move the receiver’s belief more, the more un-
certain the state is.

Appendix B
Admissible Strategies

This appendix completes the definition of our continuous-time game by defin-
ing admissible strategies for the sender. We note that this appendix is similar to
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F1G6. 11.—Left, case where integral equation (B1) does not have a solution. Right, case
where (B1) has multiple solutions.

appendix B.1 of Klein and Rady (2011): the two models have the same underly-
ing technical issues and natural resolutions to them.*

Recall that the sender’s strategy is a measurable function ¢° that assigns a flow
experiment ¢*(p) = (a(q; p)),c01 to each belief p € [0, 1]. As noted, the strategy
induces a belief process satisfying

b= =B (1 = p), (BI)

where

B(p) = Zalg:p) — Zealg: p).
Pp 7<p
Note that p, moves leftward if B(p;) > 0 and rightward if 8(p,) < 0.

DEFINITION 3. A measurable function ¢° is an admissible strategy for the
sender if for all p, € [0, 1], there exists a solution to (B1).

To see the role of definition 3, first observe that for ¢° with a relatively simple
structure, we can find an explicit solution to (B1). For example, if the sender
plays only the R-drifting experiment, then 6([7) = —1 for all p, in which case
b= poe /(e + 1 — ). If the sender plays only the stationary experiment,
then B(p) = 0 for all p, in which case p, = p. Of course, the differential equa-
tion (B1) cannot be solved explicitly in general. One may utilize a sufficient con-
dition on (B(-): for example, it suffices that B(-) is continuous or satisfies
Carathéodory conditions (see Goodman 1970). For our purpose, however, im-
posing such a sufficient condition is unnecessarily restrictive. Therefore, we re-
quire only that there is a solution to (B1). More precisely, we shall require a cou-
ple of conditions, one of which is necessary and the other is of no material
consequence. This approach is valid, since the equilibrium with these weaker
conditions will ensure that (B1) is well defined for all p € [0, 1].

To explain the necessary condition that is relevant for our context, consider,
for example, a strategy such that the sender plays the R-drifting experiment tar-
geting 0 (so B(p) = —1) whenever p < p, and the L-drifting experiment target-
ing 1 (so B(p) = 1) whenever p > p,. As depicted in the left panel of figure 11,
the belief moves toward p whether it is below or above p, so () = —1 results

* The difference is that the technical problems arise in their model because the evolu-
tion of beliefs is jointly controlled by two players, while in our model, it is because the sender
can choose from a large set of Poisson experiments.
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in (B1) being ill defined at p,. In fact, p, should stay constant if starting from p,.
Hence, admissibility requires ¢°(p,) to satisfy B(p) = 0.

We next consider a condition that is not necessary for (B1) to be well defined but
is sensible as a selection rule when (B1) admits multiple solutions. Consider, for ex-
ample, a strategy such that the sender plays the L-drifting experiment targeting 1
(so B(p) = 1) whenever p < p, and the R-drifting experiment targeting 0 (so
B(p) = —1) whenever p > p, (see the right panel of fig. 11). Since the former case
includes f, itis natural that starting from p,, the belief moves leftward according to

_ pef)\l
b= Y] 1— .
pe ™+ (1-p)
However, since p, = f only when ¢ = 0, the following is also a solution to (B1):
_ pe
P =gy

Whenever this multiplicity arises, we select the most natural one that would be ob-
tained from the discrete-time approximation. This selection, however, is inconse-
quential for our equilibrium characterization, because at a point where this selec-
tion issue arises (such as T or Ty in propositions 2 and 3), we can arbitrarily
specify the sender’s strategy; the selection forces us to adopt a particular belief
path but does not restrict the sender’s strategy in any way.

Appendix C
Proofs of Propositions 2 and 3

The proofs are presented in several sections. Throughout, we take p* € (p, 1) as
given and construct the corresponding equilibria. Section C1 constructs the value
functions that correspond to the equilibrium strategies in propositions 2 and 3.
Sections C2 and C3 verify the sender’s and the receiver’s incentives, respectively.
Uniqueness of SMPE is proven in the supplemental material. A brief sketch is pro-
vided in section C4.

Cl.  Constructing Equilibrium Value Functions

We first compute the players’ value functions under alternative persuasion strat-
egies; they will be used to compute the players’ equilibrium payoffs. In what fol-
lows, we take it for granted that the receiver takes an action immediately if the
belief reaches either 0 or p".

We also assume that the receiver waits while the sender plays each persuasion
strategy in this section.

Ordinary differential equations (ODEs) for R-drifting and L-drifting—TFor any
p € (0, p*), let N,(p) denote a small open neighborhood of p. Suppose that for
any belief in N,(p), the sender plays the R-drifting experiment with jump target
0. Then, the sender’s value function V.(p) and the receiver’s value function
U. (p) satisfy the following ODEs:*

* The ODEs can be obtained heuristically in the same way as the Hamilton-Jacobi-
Bellman equation. The subscripts + and — represent the direction of belief drifting in
the absence of Poisson jumps.
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c=n - (P v)) wa =m0 - p( S vg). o

Similarly, suppose that for any belief in N,(p), the sender plays the L-drifting
experiment with jump target p*. Then, the players’ value functions, V_(p) and

U_(p), satisty

v— V_(p) U(p*) — U-(p) _
P pop

R-drifting strategy.—Suppose that the sender plays R-drifting experiments until
the belief reaches p*. In this case, the players’ payoffs are obtained as the solu-
tions to (C1) with boundary conditions V. (p*) = vand U.(p*) = U.(p*), respec-
tively. We obtain

L
,’b*
where C. (p: ¢) = [plog([g/(1 — )][(1 = p)/p]) + 1~ (b/g))(¢/N) represents the
expected cost of using R-drifting experiments until the belief moves from p to
either 0 or ¢.

Stationary strategy—Suppose that the sender uses the stationary experiment
with jump targets 0 and p" at p. Then, the players’ value functions, Vs(p) and
Us(p), are respectively given by

) = Lo - apand up) =L+ Lugn) - ap). ()
p p p
where Gi(p) = 2¢(p* — p)/[Np*(1 — p)] represents the expected cost of playing
the stationary strategy.”

RS strategy (R-drifting followed by stationary)—Suppose that the sender plays the
R-drifting strategy until ¢(> p) and then switches to the stationary strategy. Then,
the players’ value functions solve (C1) with boundary conditions V. (¢q) = Vs(q)
and U, (q) = Us(q), yielding

c= w1 - - v ) and e = w1 = ) ). )

v — C.(p; p*) and Ue(p) = L = Lo +]%Ur(p*) — G ),

Ve(p) =

Valpi ) = Jzv = C(prg) = (g ana
[y 2 4 " p
Urs(p3 = * ,+_*[]r — Ci(ps —=Glg).
(5 q) P (") (3 9) p (9)

Note that p/ ¢ is the probability that the belief moves from p to ¢ (whereupon the
sender switches to the stationary strategy).

LS strategy (L-drifting followed by stationary)—Suppose that the sender plays the
L-drifting strategy until ¢(< p) and then switches to the stationary strategy. Then,
the players’ value functions solve (C2) with boundary conditions V_(¢q) = Vs(g)
and U_(¢) = Us(q), resulting in

* Under the stationary strategy, the total arrival rate of Poisson jumps is equal to

As(p) = (N2)(1 = p) + (N2)p(L = p)/(p* = p) = N2)p*(1 = p)/(p* — p). G(p) is equal

to ¢ times the expected arrival time 1/Xs(p).
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b, r—pr
Vis(ps = ; Gs(g) and
(#rg) = jzo= Clprg) — G, Glg)an
r-po. P pr=p
Uis (s = i+ 5 U Gs
prq) = = w + FUOT) — Cprg) = GLa),
where
_u(l 174, -y lﬁ—q)
Cpig) == m—m \Ples—, + ( ﬁ)ogp %8 )%

denotes the expected cost of playing L-drifting experiments until the belief
drifts down from p to ¢(< p).
Crossing lemma—The following lemma provides potential crossing patterns
among the value functions and plays a crucial role in the subsequent analysis.
LEmMA 2 (Crossing lemma). Let Vi (p) and V_(p) be solutions to (CI1) and
(C2), respectively.

a. Let p* <8/9.Forall p < p*,if V.(p) = Vs(p), then VL(p) < V{(p). Similarly,
it V-(p) = Ws(p), then V(p) < Vi(p). ‘
b. Let p*>8/9, and define £, : = 3p*/4 —+/(3p*/4)° — (p*/2) and
2= 3pF /44 \/(3p7/4) — (p°/2).

i. For all p<p*, if V.(p) = Vs(p), then Vi(p) = V{(p) if and only if
pe{&, &}, and VI(p) > V{(p) if and only if p € (£, &).

ii. For all p<p*, if V_(p) = Vs(p), then V' (p) = V{(p) if and only if
pe{&, &} and VI(p) > V(p) if and only if p € (&, &,).

c. Forall p < p* if V.(p) = V_(p), then sign(VL(p) — V. (p)) = sign(V_(p) —
Vs(p))-
All parts also hold for the receiver’s value functions U.(-), U-(-), and Us(:).
Proof.  We focus on the sender’s value functions, as the same proofs apply to

the receiver. From (C1)—(C3), we can obtain expressions for V/(p), V.(p), and
V{(p). Combining these with V. (p) = Vs(p) and V_(p) = Vis(p), we obtain

o(2p* = 3p*p + p*)
A p(1 = p)’

AV

Vi(p) = Vs(p) = Vi(p) — Vs(p) = — 0

e =29+ 8p"p — p 20.
For p* < 8/9, the quadratic expression in the last inequality is always negative,
which proves part a. For p* > 8/9, the quadratic expression has two real roots,
£, and &, and is positive if and only if p € (&, £,). This proves part b.
Similarly, using V. (p) = V_(p), we have

! d — p*
which leads to part c. QED
Construction of §.—While £ is part of the equilibrium only for p* > 5, we define
it generally. For p* > 8/9, we set £ := £, and for p* < 8/9, we set £ = p*. We de-
fine it in this way to ensure that Vis(p; £) meets Vs(p) from above at p = £ (as p
rises toward £). In particular, together with the crossing lemma 2b, this means
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that for any p < &, Vis(p; £) is above Vi(p), and for p* > 8/9, these two functions
have the same slope at p = §. This will play a crucial role later.

Construction of n.—The parameter 5 is the value of p* >8/9 such that
Ve(£(p%)) = V&(£(p*)).® (We make the dependence of & on p* explicit here
and also note that the functions Vi(-) and Vs(-) depend on p* directly.) Solving
this equation yields p* = 5 ~ 0.943. We make the following observations for a
later purpose:

LEMMA 3.

a. If p* <=, then Vi(p) > Vs(p) for all p € (0, p*).

b. If p* = 5, then Vi(p) = Vs(p) for all p € (0, p*), with equality only when
p=E

c. If p* > 5, then VR(E) < Vs(i).

The same results hold for U(-) and Us(+).

Proof.  We focus on the sender’s value functions, as the same proofs apply to
the receiver. Using the explicit solutions of Vix(p) and Vs(p), we can see that
V5(0) < VR(0), Vs(p*) = Vi(p*), and V{(p*) > Vi(p*). Therefore, either Vs(p)
stays weakly below Vi(p) for all p < p* or Vs(p) crosses Vr(p) at least twice (from
below and then from above). By lemma 2b, the latter occurs only if Vs(p) crosses
Vr(p) from below at some p < £ and then second time from above at some
€ (£ &), which is equivalent to Vi (£) < Vs(£). The desired result follows since
VR (E(p*)) — Vs(&(p*)) changes the sign only once at p* = g (see n. 38). QED

Pasted strategies—Given &, we combine alternative strategies as follows. For any
p < p*, we define

Ves(p; §) if p <&, Us(p; €) if p <&,
Vip)=< W(§) ifp=¢ andU(p) =4 Us(§) ifp=¢,
Vis(ps §) if p € [&,p7], Us(p: &) if p e [£p7].

We next define V(p): = max{Vk(p), V(p)} and U(p) = max{U(p), U(p)}. We
make several useful observations in the following lemma.
LEmMmA 4.

a. Both V(p) and U(p) are strictly convex in p over [0, p"].

b. If p* <y, then V(p) = Vi(p) and U(p) = Uu(p) for all p € [0, p*].

c. If p* > 1, then there exists T € (£, p*) such that V(p) = V(p)and U(p) =
U(p) for p < mxand V(p) = Va(p) and U(p) = Uk(p) for p € [Tix, p*]-

d. V(p) = Vs(p) for all p < p*, and the inequality is strict for p # £.

Proof.  The same proof applies to both players, so we focus on the sender’s value
functions. Recall that for p* < 8/9, we have £ = p* so that V(p) = Vs(p; p*) =
Vi (p), which implies part b. Since Vi(p) is strictly convex, part a holds as well. In
what follows, we consider p* > 8/9, in which case V(p) # Va(p).

* To show that 7 is well defined, we can define a function g:(8/9,1) — R by g(p*) =
Vr(E(p*)) — Vs(£(p*)) so that g(n) = 0. It can be verified that g’(p*) > 0 for all p* € (8/9,1).
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a. Since V(p) is the upper envelope of two functions and Vi(p) is strictly con-
vex over [0, p*], it suffices to prove that V(p) is also strictly convex over [0, p*].
Both Vis(p; &) and Vis(p; £) are strictly convex over their respective supports, and
V(p) is continuously differentiable at the pasting point £. The latter holds be-
cause Vis(£ &) = Vis(£§) = Vi(§) implies Vis(£: §) = Vis(&; £) by lemma 2c.

b. If p* <1, Vas(& &) = Vs(€) < Va(€) by lemma 3a. Together with the fact that
both Vis(f; £) and Vi(p) satisfy the ODE (Cl1), this implies that V(p) = Vis(ps; £) <
Vr(p) forall p < £¥For p e (&, p*], observe that Vis(&; &) = Vs(£) < Vi (£) (lemma 3a),
Vis(p*; &) = Va(p*), and Vis(p*; £) > Vi(p*). Therefore, either V(p) = Vis(p; £) <
Vr(p) for all p € (&, p*) or Vis(; &) crosses Vi(+) from below at least once at some
p e (& p*). In the latter case, we must have Vi(p) = Vi(p) <V.(p) = Vis(p; §).
Then, by lemma 2c, Vi (p) = Vis(p; &) = V_(p) < Vs(p), contradicting lemma 3a.

The result for p* = 7 follows from a continuity argument: both V(p) and Vi(+)
change continuouslyin p". Since V(p) < Vi(p) forall p < p* whenever p* < 5, it must
be that V(p) < Vi(p) forall p < p* when p* = 7. This concludes the proof for part b.

For parts ¢ and d, the following claim is useful:

Cramv 1. Suppose p* > 8/9.

i. V(p) = Vi(p) forall p € (0, &), with strict inequality for p # £.
ii. Va(p) > Vs(p) for all p € [&, p*).

Proof. i. Consider first p < £(= &,). We have to show that V(p) = Vis(p; £) >
Vs(p). To see this, pick ¢ < £. Then by lemma 2b(i), Vis(p; ¢) stays above Vs(p)
for p < q and Vis(p; &) > Vis(p; ¢) for all ¢ < &. The same logic applies to Vis(p; £)
for p € (£, &,). For part ii, we check that Vi (p*) = Vs(p*) and VR (p*) < V(p*).
Lemma 2b(i) then implies that Vi(p) and Vs(p) cannot intersect at p > &,. QED

For part ¢, we first show that Vis(p; €) > Va(p) for p <& If p* >, then
Ves(£;£) = V&(£) > W(£) (lemma 3c¢), which immediately implies that V(p) =
Ves(p; €) > Vr(p) for all p<E&. Next, for p € (& p*], observe that Vis(&;€) =
Vo(E) > V(£): and Vig(pi£) < Va(p) for p = p — &, since Vis(p38) = V(p"),
and Vs(p*; &) > Vi(p*). This means that Vis(-; &) crosses Vi(-) at least once in
(£, ). To show that there is a unique crossing point 7, note that claim 1 im-
plies that at any crossing point p € (£, p*), Vis(p; £) = V(p) = Va(p) > Vs(p), and
hence by lemma 2c, Vi5(p; £) can cross Vx(p) only from above. Therefore, there is
a unique crossing point.

d. If p* < n, then the result is immediate from lemmas 3a and 4b. If p* > 5 the
result is immediate from lemma 4c and claim 1. QED

Cl.1. Equilibrium Payoffs and Construction of p, in Proposition 2

When (Cond2) holds, we define p, as the belief ¢ at which the receiver is indif-
ferent between waiting and stopping with action ¢; that is, we set p,. = ¢x, where
¢ is defined by"

% Tt is easy to see that (C1) satisfies the Lipschitz condition for uniqueness on (0, ).

“ To see that ¢ is well defined, observe that, whether p* < 5 or p* > n, lim,_,U(p) =
uf — ¢/N < = U(0), while U(p*) = U(p*) > Ui(p*) (because p* > p). In addition,
U(p) is strictly convex over [0, "] (lemma 4a), while Uy(p) is linear. Therefore, U(p) crosses
U,(p) from below only once.
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Uz(@k) = U(¢él{)~ (C4)

We focus on the case in which ¢is sufficiently small. In the limit as ¢ — 0, U(p) =
[(p* = p)/p*lur + (p/p*)U.(p*) > U(p) for all p. Therefore, there exists ¢ > 0
such that p,. = ¢ < }) for all ¢ < ¢;. We assume that ¢ < ¢ in the sequel. The
following lemma shows that the sender’s payoff is positive at p, if (Cond2)
holds.

Lemma 5. V(¢n) > 0 if and only if (Cond2) holds.

Proof. By (C4), we have

R

V(d)é‘R) = %U + U(@R)

where the first equality holds because both players incur the same costs, so that

V(p) = (p/p*)v = Up) = {[(p* = p)/p*]ub + (p/p*) U(p*)} whenever p € (0, p*].
The last expression is positive if and only if (Cond2) holds. QED
We set the players’ value functions as follows:

0 if pelf0,p), Ulp) if p € [0, ),
V(p) = V(p)if p € [pe p*), and U(p) = U(p) if p € [ps, p*),
v if p> Pt Ulp) it p=p*.

LemmA 6. When (Cond2) holds, V(p) is nonnegative and nondecreasing for
all p e [0,1].

Proof.  Since V(-) is convex on [0, ], V(0) = —¢/\,and V(p) > 0 bylemma 5,
‘7() is increasing on [p*,p*]. Hence V() is nondecreasing on [0, 1] and nonneg-

ative since V(0) = 0. QED

C1.2. Equilibrium Payoffs and Construction of p, in Proposition 3

When (Cond?2) fails, the same construction as above does not work; for example,
V(ps) < 0 by lemma 5. The right construction requires us to consider another
L-drifting strategy.

L0 strategy (L-drifting followed by passing)—Suppose that the sender continues to
play the L-drifting experiment until the belief reaches ¢(< p) and then she stops
experimenting altogether (passes). The resulting value functions are the solutions
to (C2) with boundary conditions V_(¢) = 0 and U-(¢) = U(q), which yield

Vio(ps q) = ;;__qu — C_(p; ¢q) and
P —p P—q "
Uo(piq) = 5—L () + L—Lup) — C_(ps ).
(13 q) p_qz(q) =g (") (3 )

Note that this strategy leads to ¢ with probability (p* — p)/(p* — ¢) and p” with
probability (p — ¢)/(p* — q)-
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Construction of p..—Let m, denote the lowest value of ¢ € (0, /) such that

Virlgi ) = 0 = %th@qun, §+%— (;+2A ) 2 (cs)
In words, 7 is the lowest belief at which the sender is willing to play the LO strategy
even for an instance. When (Cond2) fails, we set ps. = m,. Clearly, lim,_,,p. = 0.
We set ¢; > 0 such that p,, = my < i) for all ¢ < ¢ and assume ¢ < ¢ hereafter.

LeEMMA 7. Suppose that (Cond2) fails and p,. = .. There exists ¢; > 0 such
that for all ¢ < ¢:

a. ‘7([7*) <0
b. there exists Ty € (ps, min{p, £}) such that Vio(p; px) > V(p) if and only if
P = Txe

Proof.  For each p*, there exists ¢i > 0 such that p, < £ and V5() > 0 for all
¢ < ¢. In the sequel, we assume that ¢ < ¢ == min{d, G }, where ¢ is defined
in the proof for part b.

a. Suppose p* < n so that V(p) = V(p) for all p < p*. Since (C5) holds with
equality at ¢ = ma. = P, we can substitute Av/¢ in the explicit solution for
Vr(ps) and get

~ - - * - *
V) = ) <0 <o (£

Define fi(p) :=log([p*/(1 = p*)[[(1 = p)/p]) = (p* = p)/[p*(1 = p)]. The above in-
equality holds since f;(p*) = 0 and f/(p) < 0 forall p < p*. If p* >, then V(p) =
Ves(p; &) for all p < &. In this case,

7 2p(p* — §) ( ¢ 1_[7*) s P s
V(p) <00 Lol — 504 log(—5— e S e
=0 Gma—g i ) T T A e
Define
o 2 E) L (s 1—p) b Vb
=y e, ) T e A
The desired result (f(p.) > 0) holds, because f2(0) = 0, 4(£) > Oand £ is concave
over p € (0, &].

b. We begin by showing that there exists ¢ > 0 such that for ¢ < ¢, Vio(x; i) <
V(x), where x € {p, £}.Since V(p) = Vi(p) (lemma 4d), it suffices to show Vio(x; i) <
V(). Indeed, we have V(s ) = W) = {(x = p/ (5" = p) = /7))o +
Gs(x) — C_(x; ps) < Gs(x) — C_(x; ), since Gs(x)/c is independent of ¢ and
C(x; p*)/c—mo as c— 0.
By lemma 7a, we have Vi(pps) =0> V(p*). Since for ¢<d,
Vio(min{p, £}; p.) < V(min{p, £}), there exists an intersection of Vi,(p; p,) and
V(p) at some p € (P, min{p, £}). In the remainder of the proof, we show that
Vio(+; ps) can cross V( ) only from above, which establishes uniqueness of the in-
tersection on the whole interval (ps, p°).

1 This is because p, — 0 as ¢ — 0 so that for the L0 strategy, the expected waiting time
from any starting point x becomes infinite if the state is L.
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We first consider p* < 7. In this case, V(p) = Vi(p), and lemma 3 implies that
Vz(p) > Vs(p). Then, by lemma 2c¢, Vio(p; p.) can cross f/(p) only from above.

Second, consider p* > 7. Since f/([)) = Wis(p; &) for p € [§, Tir] and both Vi,
and Vs satisfy (C2), no intersection can occur in the interval [, mx]. Outside
this interval, V(p) satisfies (C1) and V(p) > Vs(p) by lemma 4d. Therefore, again
lemma 2c implies that V;,(f; p«) can cross V(p) only from above. QED

C1.2.1.  Equilibrium Payoffs. The equilibrium value functions are given as

follows:
0 ifpel0,p) Ul(p) if p €0, ps),
Vio(ps pe) 1f p € [po Tur), Uio(ps i) iE p € [pe Tin),
) = : and U(p) = N
V(p) if pe [T ), Ulp) if p € [mx, p"),
v if p> Pt U(p) ifpzp*

Lemma 8. When (Cond2) fails, V(-) is nonnegative and nondecreasing on
[0, p*] and strictly convex on [p., p'].

Proof. Lemma 7b implies that V(p) = max{Vio(p; ps), ‘7([))} over [ps, p*].
This is strictly convex since it is the maximum of two strictly convex functions.
Strict convexity of Vio(-) on [p., [)*] is routine to verify; we had already shown
convexity of f/(p) in lemma 4a. Finally, by (C5), V(p) is continuously differen-
tiable at p, = my. and therefore convex on [0, p"]. This also implies that V(p)
is nondecreasing. QED

C2.  Verifying the Sender’s Incentives

We show that for each ", the sender’s strategy is a best response if the buyer waits
if and only if p € W.** To this end, we must show that in the waiting region, the
sender’s equilibrium value function solves the Hamilton-Jacobi-Bellmann (H]JB)
equation:*
maxya(q; p)o(ps q) = ¢ (HJB)
o) 4z
where v(p; ¢) is as defined in section V.A. Outside the waiting region, the send-
er’s value is independent of her strategy. Still, our refinement requires that her
strategy maximize her instantaneous payoff normalized by di; that is, her choice
of experiment should solve
H}%‘EO‘((]; po(p; q) — 1{211(1];1;‘)>0} c. (Ref)
P gp
Proposition 1b implies that if V(p) meets certain conditions, then we can re-
strict attention to Poisson experiments with jump targets, 0, p., and p*, which

2 Recall that W = [p,, p*) in proposition 2 and W = (p,, p*) in proposition 3.

** More formally, since V(p) has kinks, we show that it is a viscosity solution of (H]B). To-
gether with V(p) > 0, this is necessary and sufficient for optimality of the sender’s strategy.
For necessity, see theorem 10.8 in Oksendal and Sulem (2009). While we are not aware of a
statement of sufficiency that covers precisely our model, the arguments in Soner (1986)
can be easily extended to show sufficiency.
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greatly simplifies both (H]JB) and (Ref). Here, we show that our equilibrium value
function V(-) satisfies all properties required by proposition 1b, namely, that it
is nonnegative, increasing, and strictly convex on (ps, p*], and V(p.)/ps < V' (Ps)-
If (Cond2) holds, the first two properties hold by lemma 6, while strict convexity of

WV(p) follows from lemma 4a and V(p) = V(p) for p € [ps, p*]. The last property
also holds because V(p) is convex and lim, .,V (p) = —¢/\ < 0. If (Cond2) fails,
the first three properties follow from lemma 8 and V(py.)/p < V'(ps) also holds,
because p, = mq. > 0 and V(wy) = V'(7a) = 0.

Stopping region.—We first apply proposition 1b to the stopping region and ver-
ify (Ref). For p > p*, the result is immediate from proposition 1b(iii). Now con-
sider pbelow p.. Proposition 1b(ii) implies that the sender has three choices: two
L-drifting experiments with jump target p., or " and simply passing. This reduces
(Ref) to

v

max A\p(1 — p) | o Vip:) + o —
pe—p VP

i. Proposition 3: if (Cond?2) fails, then V(p,) = 0 so that e, = 0 is optimal.
The coefficient of o™ is Nup(1 — p)/(p* — p) — ¢. By (Cb), this is negative for
all p < p. = ma, so & = 0 is optimal. Therefore, for all p € [0, p.], passing—
the sender’s strategy, as specified in proposition 3—satisfies (Ref).

ii. Proposition 2: if (Cond2) holds, then as discussed in section V.A and depicted
in figure 7, there exists a cutoff m, < p, such that the coefficient of «, is greater
than the coefficient of o if and only if p > m,.* The following lemma shows that
T, < .

Lemma 9. If (Cond2) holds, then 7, < .

Proof. Let mx be the value of p such that V(p) = 0. We show that 7, <
Tk < m. The latter inequality is immediate from the strict convexity of V()
on [0, "] (lemma 4a) and the definition of m,. For the former inequality, it suf-
fices to show that V() < 0, which is shown as in the proof of lemma 7a. QED

As in the case of proposition 3, passing satisfies (Ref) for p < w,.. Moreover, we
have shown that o* = 1 satisfies (Ref) for p € (my, m) and o, = 1 satisfies it for
p € [mo, p«). Therefore, the sender’s strategy in proposition 2 satisfies (Ref) for

all p < p.
Waiting region—If we apply proposition 1b(i) to p € W, (HJB) simplifies to
-V 14
c=n = pmax|a T - (- B - a - vi)| Gy
Our goal is to show that the value function V(p) satisfies this equation at every p €
W. The key argument is the following unimprovability lemma:
LemMa 10 (Unimprovability).

— (o + &) subject to o, + & < 1.

a. If V.(p) satisfies (C1) and V. (p) = Vs(p) at p € [0, p*), then V. (p) satisfies
(HJB-S) at p. If V.. (p) > Vs(p), then o = 0 is the unique maximizer in (HJB-S).

* Specifically, m, satisfies

V(p) = Vim) _ V(p) - Vim) _ V) _ _ b pV)

<

v = x
pe — ™o P — o /J* - T l)* - To ! U= V(]J*)
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b. If V_(p) satisfies (C2) and V_(p) > Vs(p) at p € [0, p*), then V_(p) satisfies
(HJB-S) at p. If V_(p) > Vis(p), then « = 1 is the unique maximizer in
(HJB-S).

Proof.  a. If we substitute V'(p) = V/(p) from (C1), (HJB-S) simplifies to

P _
X = (V(p) = Vs(p)) | = 0.

If V(p) — Vs(p) = 0, « = 0is a maximizer, so the above condition holds. Further,
if V(p) > Vs(p), then a = 0 is the unique maximizer. The proof for part b is sim-
ilar. QED

By lemmas 4d and 7b, V(p) > Vi(p) holds for all p € (ps, p*). Therefore, the
unimprovability lemma 10 implies that V(p) satisfies (HJB) for all points where
it is differentiable. At the remaining points 7y and 7, the value function satis-
fies (C1) and (C2), respectively, if we replace V! by the right derivative and V’ by
the left derivative. As in the proof of the unimprovability lemma 10, this implies
that (H]JB) continues to hold if we insert directional derivatives. Using this obser-
vation together with the fact V(p) is convex at the points 7z and 7, where it has
kinks, we can show that V(p) is a viscosity solution of (HJB), which is sufficient for
optimality of the sender’s strategy in the waiting region (see n. 43).

C3.  Verifying the Receiver’s Incentives

We now prove the optimality of the receiver’s strategy for each belief p, taking as
given the sender’s strategy. If the sender passes, which occurs when p < 7, or
p = p*, then the receiver gains nothing from waiting. Since 7y < py, < p (assum-
ing ¢ <min{¢a, }) and p* > p, the receiver chooses ¢ if p < ;. and rif p > p*.

Consider next the region (w4, p*) on which the sender does not pass. For this
region, we prove that given the sender’s strategy, the receiver’s strategy solves her
optimal stopping problem in the dynamic programming sense. By standard ver-
ification theorems, it is sufficient for optimality that the receiver’s equilibrium
payoff U(p) satisfies the following HJB conditions for all p:*°

2301 ) |a) DI+ 1 - o) = a) - 0w,

and

U(p) z max{U(p), U(p)}, (R2)

* The receiver’s value function U(p) is not continuously differentiable at p, (in case
[Cond?2] holds), T, and r. At these nonsmooth points, we replace U'(p) in (R1) by
the right derivative U'(p,), which is the directional derivative in the direction of the belief
dynamics given by the sender’s strategy. With this modification, (R1) is well defined for all p.

By standard verification theorems, the conditions (R1) and (R2) are sufficient for opti-
mality if U(p) is continuously differentiable. To see that sufficiency also holds for the receiv-
er’s problem, note that we can verify the receiver’s strategy separately for intervals that are
closed under the belief dynamics given by the sender’s strategy. For example, if (Cond2)
holds and p* > 5, we can partition (wa, p*) into P = {(wa, ps), [Ps, Tir), [Tir, p*)}. If the
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and at least one condition holds with equality. Here, (a(p), ¢(p)) represents the
sender’s strategy as specified in propositions 2 and 3, respectively.*

Waiting region—Suppose p € W. For all points where the receiver’s equilib-
rium payoff function U(p) is differentiable, by construction, it satisfies (R1)
with equality.” Hence, it suffices to prove (R2). We first show that at p*, the slope
of U(p) is less than or equal to the slope of U,(p). To this end, observe

10 1o U *) — 4]7
U@p*) = G(p*) = (,bp)* -+ )\p*(lc— )
u — ur c

I

(S|

<
*
|

P ' (L= p7)
Since u; > uy, we have U'(p*) < U/(p*) whenever ¢ < ¢;: = (1 — p*)(wy — w).
i. Proposition 2: when (Cond2) holds, U(-) is convex on [ps, p*] since
U(p) = U(p) for p € [ps, p*) and U(-) is convex on [0, p] (lemma 4a). Together
with U'(p*) < U/(p*), this implies that U(p) > U,(p) for all p € [py, p*], provided
that ¢ < ¢;. We have argued in footnote 40 that U(p) > U,(p) for all p € [ps, p*].
Therefore, (R2) holds for all p € [ps, p*).
ii. Proposition 3: we begin by showing that Uy (p, p) > Us(p) forall p € (ps., p*).
Since Uig(ps, p) = Ui(ps), we have

U —Up) e UG -UR) v«
f’* = b )‘l’*(l - PA) B l’* = P l’* ~ P« )‘l’*(l - f’*)

where the inequality holds since (Cond2) fails, and the second equality follows
from (C5) and p,. = . Together with the fact that U, (-; p,) is convex on [p,
p*], this implies that Uy (p, p) > Ui(p) for all p € (p., p*).

For p € (ps, Mir), U(p) = Uo(p, p«). Bylemma 7b, T < p, provided that ¢ < ¢.
Hence U(p) < U(p) for p < Tx, and (R2) holds since U(p) = Uro(p, px) > Ui(p)
for p e (P*, TiR). ~

Next, suppose p € [Tx, p*). Here U(p) = U(p), and by the same arguments as
in part i, we have U(p) > U.(p). To show that U(p) > Us(p), it suffices to show that
U(p) — Uno(p; ps) > 0. Since the sender and the receiver incur the same cost for
each strategy, we can rewrite this difference as

Uy (ﬁk 8 ) =

p(p* — p)

U(p) = Uo(ps pi) = V(p) = Veo(ps p)

prior belief is in one of these intervals, the posterior will never leave it unless a Poisson
jump occurs, and the continuation value after a jump can be taken as fixed. This means
that we can verify the optimality of the receiver’s strategy separately for each interval; since
U(p) is continuously differentiable on each of the intervals, the standard verification the-
orems apply.

* Specifically, a(p) = 0 if the sender plays the R-drifting experiment, (a(p), ¢(p)) =
(1, q) if she plays the L-drifting experiment with jump target ¢ and («(p), ¢(p)) =
(1/2, p*) if she plays the stationary strategy.

7 At kinks, U(p) satisfies (R1) if U'(p) is replaced by U'(p.) (see n. 45).
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The inequality holds since by lemma 7b, V(p) — Vie(p; ps) = 0 for p > Tp, and
U.(p*) — U(p*) — v > 0 if (Cond?2) is violated.

The stopping region with p € (mu, p.)—If (Cond?2) fails, then p, = my, so this
case does not arise. The proof of proposition 3 is thus complete.

Now suppose that (Cond2) holds and p € (mg, p.). In this case, U(p) satisfies
(R2) with equality, so it suffices to show (R1). Consider first p € [m, p). For
these beliefs, the sender adopts the L-drifting experiment with jump target p,,
that is, (a(p), ¢(p)) = (1, p.). When we plug this into (R1) and use the fact that
U(p) = Ul(p) for all p < p,, the right-hand side of (R1) is equal to zero so that
(R1) is satisfied.

Finally, consider p € [my, m), at which the sender plays the L-drifting experi-
ment with jump target p*, so (a(p), ¢(p)) = (1, p*). Since U(p) = Ui(p) for all
p < P+, (R1) reduces to

e, )| =M

which is equivalent to p < ¢y, where ¢, is the unique value of p such that

1 —
ML ) - v =
The following lemma shows that ¢, > , if ¢ < ¢; for some ¢ > 0. It then follows
that if ¢ < min{q, ..., ;}, the receiver has no incentive to deviate from his pre-
scribed strategy in proposition 2, completing the proof.
Lemma 11. Suppose that (Cond2) holds. There exists ¢ > 0 such that if
¢ < ¢, then ¢, > 7.
Proof. Let AU = U, (p*) — U(p*). Since ¢4 is the lowest p such that

p(1 = pNAU/(p* — p) = ¢,

A1 = p) (L") = U(p") = o

. U DL YN (C6)
p' - Ty C

It suffices to show that this inequality holds in the limit as ¢ — 0. Recall that
V() v r <P-* ) A
=— o m=——(Fv—V = ———C(ps),

Fom P om R AV AT S

where C(ps) = (ps/p*)v — V(p:) denotes the total persuasion costs incurred
when p = p. = ¢x and (Cond2) holds. By the definition of V(p.), C(p.) can
be written as

N e w® L—p _ b P20 — @) €
Clps) = Co(pss ) + *® Glqw) = (ﬁ* 10g<1 — > +1 + >)\’

w @ p (1 q)

where g = p* if p* < nand g = £if p* > 9. Importantly, as c — 0, we have p. — 0,
C(p+) — 0, and C(p,)N/c— 1. It follows that my — 0 and mHN/¢c — p*/v, so

ml = m)d AUy
p — Ty C v

where the inequality is due to (Cond2). This completes the proof. QED
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C4.  SMPE Uniqueness Given p*

Fix any p*. To show that for ¢ sufficiently small, the strategy profiles in proposi-
tions 2 and 3 are the unique SMPEs, we prove that any other choice of .. than
specified in sections C1.1 and C1.2 (i.e., p. # ¢ if [Cond2] holds and p.. # 7y, if
[Cond?2] fails) cannot yield an SMPE. This requires a full characterization of the
sender’s optimal dynamic strategy, given any lower bound p,. and upper bound
$", and a thorough examination of the receiver’s incentives in the stopping re-
gion as well as in the waiting region. The former closely follows our construction
and analysis of the equilibrium value functions in sections C1 and C2, and the
latter follows closely section C3. We relegate the full proof to the supplemental
material.
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