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Motivated by growing evidence of agents’ mistakes in strategically simple
environments, we propose a solution concept—robust equilibrium—that
requires only an asymptotically optimal behavior. We use it to study large
random matching markets operated by applicant-proposing deferred ac-
ceptance. Although truth telling is 2 dominant strategy, almost all appli-
cants may be nontruthful in robust equilibrium; however, the outcome
must be arbitrarily close to the stable matching. Our results imply that
one can assume truthful agents to study deferred acceptance outcomes the-
oretically or counterfactually. However, to estimate the preferences of mis-
taken agents, one should assume stable matching but not truth telling.

I. Introduction

Strategy-proofness and stability are two important desiderata in market
design for two-sided matching (Abdulkadiroglu and Sonmez 2003).

This paper largely supersedes another paper of ours, entitled “Strategic Mistakes: Implica-
tions for Market Design Research.” We thank Xingye Wu, who has provided excellent research
assistance for the theory part, and Julien Grenet for his generous help with the Monte Carlo
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One describes agents’ optimal behavior, and the other is a property of a
matching outcome. Strategy-proofness—making it a weakly dominant
strategy to truthfully reveal one’s own preferences—minimizes the scope
for mistakes and thus levels the playing field. It also aids empirical re-
search by making agents’ choices easy to interpret. Stability—ensuring
that each agent is matched with her favorite partner among those who
are willing to match with her—is crucial for the long-term sustainability
of a mechanism (see, e.g., Roth 1991) and the fairness of matching, par-
ticularly in the context of centralized college admissions and school
choice (Abdulkadiroglu and Sonmez 2003).

These two desiderata are satisfied under one of the most popular
mechanisms in practice, deferred acceptance (DA): it is strategy-proof
for agents on one side of the market, and the matching outcome is always
stable when agents report truthfully. Alarmingly, there is growing evi-
dence that nontruthful behaviors, which are called strategic mistakes in
the literature, are common in DA.' Laboratory experiments (see, e.g.,
Chen and Sonmez 2002) and studies of high-stakes real-life matching
markets (Rees-Jones 2017; Chen and Pereyra 2019; Artemov, Che, and
He 2020; Hassidim, Romm, and Shorrer 2020; Shorrer and Sévago
2020) show that a significant fraction of participants misreport their pref-
erences. When agents make mistakes, DA no longer guarantees stability.

Mistaken agents may pose a broad challenge to both theoretical and
empirical market design research. Most theoretical studies on strategy-
proof mechanisms assume that agents play their unique dominant strategy,
truth telling (TT), which guarantees a stable matching under DA. A natural
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Hitotsubashi University, Higher School of Economics, Game Theory and Management Con-
ference, Massachusetts Institute of Technology, National Bureau of Economic Research Mar-
ket Design Group Meeting, Public Economic Theory Conference, Workshop “Matching in
Practice,” Paris School of Economics, Stony Brook Conference on Game Theory, University
of California Irvine, University of Queensland, and Waseda University for their comments,
and we thank the editor and the referees for their suggestions. We acknowledge support from
the Australian Research Council (DP160101350) and the University of Melbourne (Artemov),
the National Research Foundation of Korea (NRF-2020S1A5A2A03043516, Che), and the Na-
tional Science Foundation (SES-1851821, Che; SES-1730636, He). Code replicating the fig-
ures and tables in section V and appendix E can be found in the Harvard Dataverse:
https://doi.org/10.7910/DVN/2DQTWI. This paper was edited by Eduardo Azevedo.

! The literature uses the term “mistake” to refer to the play of a weakly dominated strategy,
regardless of whether it entails an actual payoff loss (which depends on other individuals’
actions). We call a mistake payoff relevant when it leads to a payoff loss for an agent; i.e., her
truthful reporting of preferences would have matched her with a more preferred partner,
given other agents’ actions.
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question is: Do the documented mistakes—that is, nontruthful behaviors—
imply that the theoretical predictions about DA outcomes in the literature
are incorrect? Moreover, much of the empirical literature relies on assump-
tions that ignore mistakes. Does it mean that the estimates from that litera-
ture are biased? These are the questions that our paper aims to answer.

We examine agent behavior and outcome in many-to-one matching econ-
omies operated by DA. Participants on one side, which are labeled colleges,
use priority scores to strictly rank those on the other side, whom we call ap-
plicants. Each applicant knows her own score when applying to colleges. This
setting captures many practices in the field. For example, the markets with
mistaken agents mentioned above fit this description and cover admissions
to secondary schools, universities, or postgraduate programs in four different
countries. In these settings, priority scores may be a measure of an appli-
cant’s academic performance, such as scores from entrance exams. We
define a college as feasible to an applicantif herscore is above the college’s
cutoff, which is the lowest score among the college’s accepted appli-
cants. When each applicant is matched with her favorite feasible col-
lege, the matching is stable. Therefore, a stable matching can be char-
acterized by a set of market clearing cutoffs (Azevedo and Leshno 2016).

An important empirical finding from the literature is that although
mistakes are frequent, only a small fraction of them have payoff conse-
quences; that is, unilaterally correcting a mistake changes the assign-
ment for only few applicants. In general, mistakes are difficult to identify
in the field because applicant preferences are unknown to researchers.
Some recent studies (Artemov, Che, and He 2020; Hassidim, Romm, and
Shorrer 2020; Shorrer and Sévago 2020) focus on pairs of education pro-
grams that differ only in a financial component (e.g., scholarship vs. no
scholarship), and hence an applicant’s preference order between the
two in a pair can be unambiguously determined. As summarized in ta-
ble 1, 17%—35% of applicants in these studies make an identifiable mis-
take: when reporting their ordinal preferences to the mechanism, they
rank a program without a scholarship above the identical program with
a scholarship (col. 3). However, among the applicants with an identified
mistake, only 1%-20% would have a different assignment if each appli-
cant’s mistake is corrected unilaterally (cols. 5, 7).

Motivated by such an empirical pattern—a significant presence of mis-
takes but largely of little payoff consequences—we employ a new solution
concept, which we call robust equilibrium, that relaxes Bayesian Nash equi-
librium to allow for mistakes with small payoff consequences. We oper-
ationalize the payoff smallness by studying a sequence of DA-run match-
ing economies that grow large in both the number of applicants and the
number of seats per college, with a fixed number of colleges. Along the
sequence, applicant types—that is, their preferences and their priority
scores at colleges—are randomly drawn from a well-behaved distribution
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(to be made precise later). This random sampling maintains a certain
tractability while at the same time approximating applicants’ uncertainty
about the types of other applicants in real life. We define a strategy profile
as a (possibly asymmetric) function that maps randomly drawn types to the
rank order lists (ROLs) submitted by each applicant. While TT is a weakly
dominant strategy under DA, our concept allows for possible mistakes or
deviations from TT. Specifically, robust equilibrium is a strategy profile in
which, for any e > 0, each applicant obtains within e of their highest pos-
sible payoff in a sufficiently large economy.

Recall that one of our research questions is about the empirical liter-
ature that assumes no mistakes by agents. In DA, such an assumption im-
plies TT. Our first main result (theorem 1) says that this assumption is
not justified in a robust equilibrium, as all but a vanishing fraction of ap-
plicants may submit untruthful ROLs. To the extent that robust equilib-
rium captures applicants’ behavior, this result suggests that we should
not be surprised by the documented mistakes. Furthermore, our theo-
rem does not impose any structure on mistakes: applicants may omit
their more preferred colleges or flip the order of colleges in their ROLs
as long as the probability of admission to these colleges is low. Both of
these behaviors are consistent with the evidence reported in table 1.

In contrast, regarding our other research question, we obtain a positive
answer: the theoretical predictions about stable matching under DA are
generally valid, at least in large economies. Despite the behavioral multi-
plicity and ambiguity, under mild conditions, all robust equilibria yield a
virtually unique outcome in a sufficiently large economy (theorem 2).
The outcome is asymptotically stable—the fraction of applicants who ob-
tain their favorite feasible college converges to 1-—and converges to the
outcome that would arise from TT. In other words, even if applicants
make mistakes, the outcome is well approximated by the outcome that
would arise with fully rational applicants (corollary 2).

At first glance, asymptotic stability may appear to be an unsurprising
consequence of robust equilibrium. One may conjecture that as payoff
losses vanish, fewer applicants suffer a loss, which would imply that most
applicants must obtain their favorite feasible college. However, a robust
equilibrium allows everyone to have a vanishing loss, so a possibility re-
mains that an arbitrarily large number of applicants do not obtain their
favorite feasible college. In other words, robustness does not conceptu-
ally imply asymptotic stability.

Alternatively, one may expect asymptotic stability to result from appli-
cants becoming price takers in a large economy; namely, every applicant
may simply perceive the colleges’ admission cutoffs as fixed and unaf-
fected by her unilateral deviation. While acting optimally against fixed
cutoffs might lead to a stable matching, such a price-taking hypothesis
cannot be taken for granted even in an arbitrarily large economy.
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The lack of price taking can be illustrated using a version of an exam-
ple from Roth (1982). There are three applicants, («, 3, y), and three
colleges, (a, b, c), with one seat each. Applicant preferences and college
priority rankings are as follows:

Applicant preferences: a: b-a-c f§: a-b-c vy: a-b-c.
College priority ranking: a: o=y-8 b: B-y-a c: arbitrary.

An unstable matching (a-b, 8-a, y-c) is a Nash equilibrium outcome un-
der DA, with « and 8 adopting TT and + listing only ¢ in her ROL. Appli-
cant y’s deviation to TT, her best possible deviation, is unprofitable, as it
activates a chain of rejections that leaves y’s assignment unchanged. Spe-
cifically, v knocks off 8 from a, who knocks off « from b, who knocks off y
from a to c. There is a failure of price taking here. To see this, recall that
colleges rank applicants by scores. Suppose that o’s scores at colleges a
and b are 1 and 0, respectively; 8’s scores are 0 and 1; and v’s scores
are 0.5 at both colleges. In the unstable equilibrium matching, the cutoffs
of colleges a and b are zero, determined by their matched applicant.
When vy deviates to TT, the outcome will be the unique stable matching,
(c-a, B-b, y-¢), and the cutoffs of colleges a and b both jump to 1. Thus,
price taking is not satisfied.” Example 1 in section IV will show that merely
increasing the size of the economy does not restore price taking.

The key step to our results is to reestablish the price-taking behavior
(proposition 1), which presents a major challenge compared with the lit-
erature (see, e.g., Abdulkadiroglu, Che, and Yasuda 2015; Azevedo and
Leshno 2016; Agarwal and Somaini 2018; Fack, Grenet, and He 2019;
Grigoryan 2022). Those papers often study a fixed strategy, which allows
them to impose conditions directly on the demand induced by that strat-
egy. In our setting, such an approach would amount to imposing condi-
tions on possible deviations, which is not justified. Instead, we impose
conditions on the model primitives by assuming the full support of appli-
cant types. To maintain full support when applicants adopt a strategy, we
restrict ourselves to study regular strategies that require TT being played
with some arbitrarily low probability.” Intuitively, these two restrictions
make it unlikely that a unilateral deviation triggers a massive rejection chain.

* Although in a different setting, this example may also help to illuminate theorems 1 and 2.
The stable matching (a-b, 8-a, y-c) is an equilibrium outcome even when applicants do not
adopt TT, asin theorem 1, e.g., by ranking their matched colleges first. In contradiction to the-
orem 2, the matching (a-b, f-a, y-c) is an equilibrium outcome but unstable. Both a and b have
a zero cutoff below vy’s score (which is 0.5) and are therefore feasible to y. Applicant v is as-
signed her least preferred college, ¢, among her feasible colleges, violating stability. In theo-
rem 2, we find conditions that eliminate unstable equilibrium outcomes.

* The full support assumption can be readily relaxed to allow for unidimensional appli-
cant scores, as in serial dictatorship. Regularity can also be weakened to mean that there is
a positive mass of applicants who report truthfully with some probability.
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Without assumptions on demand, we develop novel proof techniques that
use the lattice structure of stable matching and the properties of DA (for
both sides). We establish that demand curves are well behaved in that an in-
finitesimal change in demand can happen only if there is an infinitesimal
change in cutoffs. Last, we show that unilateral deviations do not signifi-
cantly change demand or cutoffs faced by applicants in large economies.

The above arguments lead us to proposition 1, stating that any (possi-
bly non-robust equilibrium) strategy profile must admit a subsequence
of random cutoffs that converge uniformly almost surely to a vector of
fixed cutoffs with respect to any possible unilateral deviation by appli-
cants. This uniform convergence is of independent interest, as it general-
izes the existing large economy convergence results. When applicants
employ symmetric strategies—a special case of which is TT—our result
implies uniform almost sure convergence of cutoffs to the cutoffs of the
unique stable matching in the limit economy.

This proposition is the key to proving theorems 1 and 2. As the econ-
omy grows, the uncertainty about cutoffs vanishes and the set of feasible
colleges becomes apparent to applicants. For their ROL, applicants then
know which colleges they can safely omit (hence theorem 1) and which
colleges they must include (hence theorem 2). With the price-taking be-
havior restored, robust equilibrium behavior along each converging sub-
sequence ensures that stability must hold asympotically, and all such out-
comes must converge to the unique stable matching in the limit.

Our theorems 1 and 2 are reassuring news for the theoretical literature
on DA. To the extent that outcomes are more important than applicant
behavior, the existing results that rely on applicants’ truthful behavior are
largely robust to applicants’ mistakes, at least in large economies.

Our results also yield important implications for empirical research.
Strategy-proofness is sometimes taken literally in interpreting applicants’
ROL:s and leads to the assumption of weak truth telling (WTT); see, for
example, Hallsten (2010) and Kirkebgen (2012). WTT hypothesizes that
an applicant ranks her most preferred colleges truthfully but may not
rank all acceptable colleges. Theorem 1 calls such an approach into ques-
tion. When an applicant omits a more preferred out-of-reach college,
WTT infers that that college is less preferred than any college listed in
the applicant’s ROL, leading to biased estimates. At the same time, an al-
ternative approach that assumes stability of the matching is justified in
large enough economies by theorem 2. This approach makes inference
about feasible colleges only but refuses to infer any preferences over in-
feasible ones. We illustrate the empirical implications of our theorems
in Monte Carlo simulations. WI'T estimates have low variance but are sub-
stantially biased when applicants omit out-of-reach colleges.

Even though our results advise caution in relying on TT for prefer-
ence estimation, they support using TT for the counterfactual analysis
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of policies. That is, our theorem 2 justifies the approach that uses esti-
mated applicant preferences—for example, based on the stability hy-
pothesis—but simply assumes TT in simulating the outcome as long as
preference estimates are consistent. Despite the fact that applicants may
make mistakes, the counterfactual outcome is well approximated by the
outcome with TT applicants.

One may be tempted to use an alternative approach to counterfactual
analysis in which one skips the estimation step and assumes that an appli-
cant submits the same ROL in both regimes, given that DA is strategy-
proof. If applicants play robust equilibrium, this assumption is not theoret-
ically justified: if previously out-of-reach colleges become within reach for
an applicant under the counterfactual, we should not expect her to submit
the same ROL. This possibility is not just of academic interest but of signif-
icant policy importance, as it arises under many reforms aiming at expand-
ing access by disadvantaged students to high-quality schools. Counterfac-
tual analyses using observed ROLs or using WI'T-based estimates are likely
to underestimate the impact of such policy by misinferring their preferences
for high-quality schools that are out of reach under the prereform regime.
Our Monte Carlo simulations illustrate this point: assuming the same
ROLs across two regimes can mispredict the assignment of 40% of the ap-
plicants, and the WT'T-based estimates mispredict 25%. In contrast, the
misprediction rate is merely 4.5% when we use the stability-based esti-
mates to simulate counterfactual outcomes.

Other related literature—Our paper is the first to provide a theoretical
foundation for stable matching in the presence of mistaken agents and
hence lends strong support for using stability in theoretical and empirical
studies. There is a long line of theoretical research recognizing that
agents may not report truthfully even in a strategically straightforward
environment (e.g., Li 2017; Dreyfuss, Heffetz, and Rabin 2019; Fack,
Grenet, and He 2019; Meisner and von Wangenheim 2022).* Each of
these papers offers a specific explanation for such behaviors, often main-
taining the assumption that agents are rational in a certain sense. In
contrast, we only postulate that the higher the payoff consequences of
a mistake are, the rarer the mistake is in equilibrium.” Our approach to
accommodating mistakes is consonant with the previous literature on

* Our results do not apply to strategically complex environments, such as those using
the immediate acceptance (IA) mechanism. IA is not strategy-proof, which implies that
TT is not necessarily the optimal strategy. How an applicant’s sophistication in IA affects
her outcome has been studied theoretically (see, e.g., Miralles 2008; Pathak and Sonmez
2008; Abdulkadiroglu, Che, and Yasuda 2011) and empirically (see, e.g., He 2017; Agarwal
and Somaini 2018; Calsamiglia, Fu, and Guell 2020).

® This is consistent with the evidence reported in table 1 that shows that payoff-relevant
mistakes are a small fraction of all identified mistakes. Furthermore, Shorrer and S6vago
(2020) find that mistakes are more common when their expected utility cost is lower.
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deviations from optimal behavior, for example, rational inattention (Sims
2003; Matejka and McKay 2015) and quantal response equilibria
(McKelvey and Palfrey 1995). While based on similar ideas, our solution
concept is designed for a different goal. We are interested in the impli-
cations of mistakes and therefore are agnostic about why agents make
mistakes. Compared with these existing concepts, robust equilibrium im-
poses less structure—and is thus more permissive—on the types of mis-
takes allowed. At the same time, it is more tractable for our large economy
analysis and admits a sharp prediction.’

Among the papers cited in the above paragraph, only Fack, Grenet, and
He (2019) study how nontruthful behaviors affect the stability of DA out-
come. They assume fully rational agents and introduce application costs in
DA. Deviations from TT occur when the probability of admission to a col-
lege is so low that it is not worth paying the application cost. Fack, Grenet,
and He (2019) therefore cannotaccommodate mistakes that have real pay-
off consequences. Even though our model is more general than theirs and
thus requires new proof techniques, our prediction with respect to equilib-
rium outcome is sharper: theorem 2 shows that every regular robust equi-
librium leads to asymptotic stability; in contrast, Fack, Grenet, and He
(2019) show that there exists one such sequence of equilibria.

Aswe are interested in studying the implications of strategic mistakes for
stable matching, our motivation and results are similar to Kalai (2004) and
Deb and Kalai (2015). They also study approximate Bayesian equilibrium
and show that it implies hindsight stability. Critically, they assume that the
effect any participant can unilaterally have on an opponent’s payoff is uni-
formly bounded and decreases with the number of participants in the
game. This assumption is tantamount to assuming price-taking behavior
and does not hold in our setting even in an arbitrarily large economy (ex-
ample 1). Instead, we derive the result endogenously through elaborate
asymptotics of large random economies.

Our setting of random economies is similar to section IV.B of Azevedo
and Leshno (2016). They assume that colleges are overdemanded (i.e.,
the total college capacity is less than the total number of applicants) and
that the gradient of demand is invertible. These assumptions may not hold
in our setting, and our results do not rely on them.” Further, Azevedo and
Leshno (2016) perform price theory analysis of stable matchings without

® The rational inattention model and quantal response equilibria, as formalized in the
papers cited above, are generally intractable for a rich choice environment like matching,
where a choice takes the form of an ROL.

7 When studying convergence for purposes different from ours, some other papers also
relax these conditions. For example, Agarwal and Somaini (2018) do not require overde-
mandness while maintaining some restrictions on demand; Grigoryan (2022) relaxes both
conditions and studies the asymptotics of DA when there may be multiple stable matchings
in the limit.



STABLE MATCHING WITH MISTAKEN AGENTS 279

a game theoretic framework. Yet when applicants are allowed to make mis-
takes, in accord with the evidence, they may not be price takers even in a
large economy. A richer game theoretical setup makes some of the key re-
sultsin Azevedo and Leshno (2016) inapplicable. For instance, because ap-
plicants can adopt asymmetric strategies and make unilateral deviations,
the induced submitted ROLs will not be independently and identically dis-
tributed (i.i.d.), while Azevedo and Leshno (2016) require i.i.d. draws of
ordinal preferences. We also allow mixed strategies, so the measure of sub-
mitted ROLs—which needs to be well defined in Azevedo and Leshno
(2016) and here depends on both strategies and the measure of types—re-
quires a law of large numbers on the limit economy to be well defined.
That has usual conceptual difficulties (see, e.g., Judd 1985). We thus use
anovel technique, exploiting the lattice structure of stability and the prop-
erties of DA. As such, we are able to study the effects of any unilateral de-
viation by applicants, which is an innovative and necessary ingredient in
our analysis.

The rest of the paper is organized as follows. We first describe the model
primitives in section II. Section III presents the analysis of applicant behav-
ior and outcome under our solution concept. In section IV, we provide a
sketch of the proofs and highlight the asymptotics of cutoffs with unilateral
deviations. The implications of our results for market design are discussed
in section V. We conclude in section VI.

II. Model Primitives

Consider an economy, F*, in which k applicants compete for admissions
to a finite set of colleges, C = {ac, ..., ¢cc}, C =2, under the applicant-
proposing DA algorithm (Gale and Shapley 1962). Throughout, we refer
to this algorithm simply as DA. A formal definition of DA can be found
in appendix A.

Each applicant has a type 0 = (u,s) € ©® = [u, 4] x [0, 1], with u < @
and > 0. u = (w,..., uc) is a vector of von Neumann—Morgenstern
utilities of attending colleges, and s = (si, ..., s¢) is a vector of scores rep-
resenting the colleges’ priorities, such that an applicant with a higher
score has a higher priority at a college. We assume that being unas-
signed, or taking an outside option, gives an applicant a zero utility. Note
that u can be positive or negative. If u < 0, an applicant an be assigned to
a college with a negative utility and thus incur some loss relative to her
outside option. A vector u induces ordinal preferences over colleges,
denoted by an ROL p(6), of colleges with positive utilities of length
up to C.

Colleges rank applicants by their scores; college capacities are a C-vector
k-S" = [k-S],where § = (S,,...,S),0<S, <1 forall ¢ is a fixed vector
and [x] is the vector of integers nearest to x (rounded down in case of a tie).



280 JOURNAL OF POLITICAL ECONOMY MICROECONOMICS

The economy F*is random in that applicant types are drawn identically
and independently according to a full-support probability measure 5
over ©;® the resulting empirical measure is denoted 75"

In this matching game, applicant types are private information, while
7 and all other information about the economy is common knowledge.
Such a specification corresponds to the matching games summarized in
table 1 as well as many others in which admissions are based on scores
(for more examples, see table 1 in Fack, Grenet, and He 2019).°

We are interested in applicant behaviors and outcomes in sufficiently
large economies and thus study the asymptotics of behaviors and outcomes
in a sequence of random economies {F"},.. As k — oo, the number of ap-
plicants and college capacities increase proportionally, while the number
of colleges is fixed. The sequence of economies {I*} converges in the sense
that n* converges in probability to  and that §* converges to S. It is there-
fore convenient but not crucial to view (7, §) as the description of the con-
tinuum economy that approximates the large finite economies.

Throughout, we assume that colleges are passive and rank applicants ac-
cording to theirscores. By contrast, we allow applicants not to rank colleges
truthfully. In each random economy, an applicant’s action is to choose an
ROL from the set of possible ROLs, R. Applicant 7’s strategyis a measurable
function o;: ® » A(R). One example is TT, 0;(8) = p(6), which is a domi-
nantstrategy under DA (Dubins and Freedman 1981; Roth 1982). A strategy
profilefor { '}, denoted by o, is an infinite vector of individual strategies
o = (03, 0, ...), with the interpretation that an agent i participates in all
economies k > i, with a fixed strategy o,. That is, applicant #’s identity is de-
termined by her strategy, o;. Such a strategy profile enables us to keep track
of a given applicant as the economy grows. By letting each applicant
choose a different strategy, we allow for the possibility of an asymmetric
strategy profile. We say o is regular if there exists y > 0 such that for each
iand each § € O, 0,(f) assigns probability of at least y to playing p(6)."
We denote the truncation of a strategy profile for the economy F* which
omits the strategies of applicants not in F*, by ¢* = (o3, ..., 0}).

s Technicall}/, we can weaken this condition. First, we need only positive density on 6 €
[max{u, 0}, u]° x [0,1]° € ©. That is, any truthful ROL of length C can be realized. Second,
we allow for an important special case where colleges’ scores are unidimensional, i.e.,
§| = ... = S¢, as in the serial dictatorship. In that case, the fullsupport assumption holds with
areduced dimensionality of support; applicants’ scores are one-dimensional numbers in [0, 1].

? In these settings, applicants know their scores but do not know the scores or prefer-
ences of other applicants. Applicants may form a belief about the typical distribution of
scores and preferences (captured by ) but are also aware that the particular distribution
they face, »*, may differ from the typical distribution. Note that our model does not apply
to the setting where priorities are induced by lotteries, such as school choice in New York
City (Abdulkadiroglu, Pathak, and Roth 2009; Abdulkadiroglu, Agarwal, and Pathak 2017;
Che and Tercieux 2019).

' A regular strategy need not mean that every applicant reports truthfully with some probability.
We can purify it by defining a richer type space, with a truthful type who always adopts TT.
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DA uses applicants’ submitted ROLs, their scores, and college capaci-
ties to calculate an outcome. An outcome, or a matching, is defined as a map-
ping p: CU®—2° U (C U O) satisfying the usual two-sidedness and
consistency requirements. A stable matching is also defined in the usual
way to satisfy individual rationality and no blocking."' When all applicants
are TT (i.e., submitting p(0)) under DA, the resulting matching is stable
(Gale and Shapley 1962).

Given an outcome p, we define a cutoff vector, p = ()¢, such that
college ¢’s cutoff p, is the lowest score among ¢’s matched applicants,
w(c), if its capacity is reached and zero otherwise. When an applicant’s
score at college ¢, s, satisfies s, > p,, the college is feasible to her. An out-
come is stable if everyone is matched with her most preferred feasible
college. DA ensures stability with respect to submitted ROLs as well as
market clearing in the sense that no college admits more applicants than
its capacity. When we consider a random economy I'* operated by DA,
the cutoffs—which depend on applicants’ realized types via ¢*—are ran-
dom. We denote random cutoffs in F* by P* = (P})."”

III. Analysis of Robust Equilibria

To accommodate the types of dominated strategies documented in em-
pirical studies, we introduce the following solution concept:"

DeriNITION 1. A strategy ¢ forms a robust equilibrium if, for any e > 0,
there exists K € N such that for each k > K, ¢*is an interim e-Bayes Nash
equilibrium of a krandom economy F*—namely, ¢ gives each applicant
within e of the highest possible (supremum) payoff she can receive from
any strategy when all the others employ o.

Note that robust equilibrium relaxes the exact Bayesian Nash solution
concept by allowing for mistakes that are payoff insignificant in a large
economy.'* Such relaxation is necessary to accommodate mistakes in a

" Individual rationality requires that no participant (an applicant or a college) receives
an unacceptable match. No blocking means that no applicant-college pair exists such that
the applicant prefers the college over her match and the college either has a vacant posi-
tion or admits another applicant whom the college ranks below that applicant.

'# Our analysis will also consider any arbitrary, nonrandom cutoff vector, p, that need not
clear the market. We then let applicants demand their highest-ranked feasible colleges, given
such p in their ROLs.

¥ A number of authors adopted a similar e-based solution concept to analyze approxi-
mate equilibrium behavior (see, e.g., Kalai 2004; Deb and Kalai 2015; Azevedo and Budish
2018; Che and Tercieux (2019).

'* In this sense, our concept of robustness differs from another notion of robustness, or
incentives in the large (see, e.g., Che and Kojima 2010; Liu and Pycia 2016; Azevedo and
Budish 2018; Che and Tercieux 2019; Pycia 2019). This latter concept refers to the prop-
erty of a mechanism (rather than a solution concept) that provides asymptotic incentives
for agents to report truthfully, even though TT may not be an exact equilibrium behavior
in a finite economy. By contrast, the current notion permits possible deviations from TT
even when it is a dominant strategy.
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finite economy. If cutoffs were known with certainty, a non-TT strategy—
such as ranking only the most preferred feasible college with respect to
the known cutoffs—may do just as well as TT in the continuum economy.
However, such a strategy may not be optimal in a finite random economy
because cutoffs are random, and a non-TT strategy may result in a payoff
loss with a positive probability."” Hence, we instead require the equilib-
rium strategies to entail insignificant payoff loss in any sufficiently large
but finite economies.

Below we investigate the implications of this relaxation. In particular,
we ask: Does the robustness concept imply that most applicants report
their preferences truthfully? Our first result shows that this is not the
case. In fact, a robust equilibrium need not satisfy an even weaker notion
of TT, WTT, which allows applicants to truncate their truthful ROL p(0)
from below. To show that WI'T may not hold, we construct a robust equi-
librium in which all but a vanishing fraction of applicants adopt non-
WTT strategies.

To begin, we define a stable response strategy (SRS) against an arbitrary,
nonrandom cutoff vector p as any strategy whereby an applicant de-
mands the most preferred feasible college given p (i.e., she ranks that
college ahead of all other feasible colleges). The set of SRSs is typically
large. She could skip infeasible colleges, rank them ahead of feasible
ones, or flip their order relative to her true preferences. For a specific
example, suppose that C = {1,2, 3,4}, an applicant’s true preference
order is 1-2-3-4, and 2, 3, and 4 are feasible for her. Then, out of the
65 ROLs she can choose from, 21 are SRS, including ROLs 2-4-3-1, 2-
4-1-3, 2-1-4-3, 1-2-4-3, and 2-4-3, which do not even respect the true pref-
erence order among the ranked colleges. For each type § = (u, s), there
exists at least one SRS that violates WTT."

Next, we consider a set of applicant types:

O°(p) = {(u,s) €O|F je Cs.t.|s;, — p| < 6}

Although we define this set for arbitrary cutoffs p, we are interested in
©@°(p), where p are the cutoffs in the limit economy when all applicants

'» The distinction between fixed cutoffs and the cutoffs of a large but finite economy mat-
ters. Indeed, suppose that an applicant’s score at her best feasible college ¢ is precisely this
college’s fixed cutoff p.. Then the applicant can submit an ROL that contains only ¢and still
suffer no payoffloss. Yet no matter how large the economy is, submitting only cwould entail a
loss because ¢’s cutoff is random and can be above her score with positive probability.

' This can be shown as follows. If an applicant’s most preferred college is infeasible (i.e.,
its cutoff at p is above the applicant’s score at that college), then she can simply drop that
college and rank order the remaining colleges truthfully. The resulting strategy is SRS but
fails WTT. If an applicant’s most preferred college is feasible, then she can rank that col-
lege at the top of her ROL but rank the remaining colleges untruthfully (in relative
rankings). Again, the resulting strategy is an SRS but violates WTT.
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report truthfully; we formally define p in appendix Cl. ®°(p) collects all
applicants whose score is close to p for at least one college. These appli-
cants are required to be TT, but all other applicants—an arbitrarily large
fraction of applicants for small 6—adopt non-WTT SRSs against p with
an arbitrarily high probability. Theorem 1 below shows that these strate-
gies constitute a robust equilibrium. When the cutoffs in the sequence of
random economies where applicants play such strategies converge to p,
the loss from adopting the SRSs vanishes, hence theorem 1. It turns out
that proving cutoff convergence is nontrivial, which we will revisit in sec-
tion IV.

TueoreM 1. There exists p € [0, 1] such that for any arbitrarily small
(8,7) € (0, 1) the following strategy forms a robust equilibrium: in each
krandom economy,

+ all applicants with types § € ®°(p) play TT and

« all applicants with types 0£0°(p) randomize between TT (with
probability 7) and an SRS strategy against p that violates both
WTT and TT (with probability 1 — 7).

Since (6, vy) is arbitrary, the following striking conclusion emerges.

CoroLLARY 1. There exists a robust equilibrium in which every ap-
plicant plays a non-WTT strategy (hence, a non-TT strategy) with proba-
bility arbitrarily close to one.

To the extent that a robust equilibrium is a reasonable solution con-
cept, theorem 1 implies that we should not be surprised to observe a
nonnegligible fraction of participants making mistakes—more precisely,
playing dominated strategies—even in a strategy-proof environment. Im-
portantly, even among the colleges that an applicant includes in her
ROL, the order may not respect her true preferences. This result raises
some concerns about the empirical methods relying on WI'T—any par-
ticular strategy relying on ROL data for that matter—as an identifying
restriction.

If strategic mistakes undermine the prediction of applicant behavior,
do they also undermine the stability of the outcome? This is an impor-
tant question on two accounts. First, if mistakes jeopardize stability in
a significant way, the rationale for using DA—to ensure a stable match-
ing—should be called into question. Second, stability is widely used as
an empirical identification assumption (e.g., see Fox 2009; Fox and
Bajari 2013; Agarwal 2015; Chiappori and Salanié 2016; Fack, Grenet,
and He 2019; He, Sinha, and Sun 2021). Our second theorem shows that
mistakes captured by robust equilibrium leave the stability property of
DA largely unscathed. We begin by defining a notion of approximate sta-
bility in large economies.
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DEFINITION 2. A strategy o is asymptotically stable if the fraction of ap-
plicants matched with their most preferred feasible colleges (given the
realized cutoffs) in economy F* under ¢* converges in probability to 1
as k— 0.7

We now state the main theorem:

THEOREM 2. Any regular robust equilibrium is asymptotically stable.

While theorem 2 already provides some justification for stability as an
identification assumption for a sufficiently large economy, a question
arises as to whether the concept of robust equilibrium would predict
the same outcome as would emerge had all applicants reported their
preferences truthfully. Our answer is in the affirmative:'®

COROLLARY 2. For a sequence of economies {F*},, consider two se-
quences of outcomes: {u!},, generated by any regular robust equilib-
rium strategy o, and {p4;},, generated by TT. The fraction of applicants
who receive their TT outcome while adopting ¢ (i.e., ui() = ph(0))
converges in probability to 1.

Although theorem 1 questions TT as a behavioral prediction, corollary 2
supports TTas a means for predicting an outcome. In this sense, the cor-
ollary validates the vast theoretical literature on DA that assumes TT.
This result also suggests that when one evaluates the outcome of a coun-
terfactual scenario involving DA, one can simply assume that applicants
report their preferences truthfully in that scenario, as we will do in sec-
tion V.

Taken together, our two theorems provide very different implications
for the behavior and outcome under DA. On the one hand, the behav-
ioral prediction exhibits multiplicity and possibly a drastic departure
from TT. On the other hand, the prediction in terms of outcome is vir-
tually unique, and the outcome is virtually the same as if all applicants
reported their preferences truthfully. This latter finding should ulti-
mately be reassuring about the performance of DA.

Section IV describes proof sketches of theorems 1 and 2 and high-
lights the challenges in proving asymptotic stability. We also present
novel results on cutoff convergence that significantly extends the exist-
ing results in Azevedo and Leshno (2016) and may be of interest in their
own right. A reader who is more interested in an in-depth discussion of
the implications for empirical studies may skip to section V.

7 More formally, we require that for any e > 0, there exists K € N such that in any kArandom
economy with k > K, with probability of at least 1 — ¢, at least a fraction 1 — € of all appli-
cants are matched with their most preferred feasible colleges, given the equilibrium cut-
offs P*.

'* This result is reminiscent of the upper hemicontinuity of Nash equilibrium corre-
spondence (see, e.g., Fudenberg and Tirole 1991). The current result is slightly stronger,
however, since it implies that a sequence of e BNE (which is weaker than BNE) converges to
an exact BNE as the economy grows large.
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IV. Proof Sketches: Cutoff Convergence
and Asymptotic Stability

To prove theorems 1 and 2, we need to establish that the cutoffs in random
economies—with applicants being able to unilaterally deviate—are still
concentrated around those arising from TT. A crucial step toward this goal
is to reestablish applicants’ price taking in large economies. Before sketch-
ing out our proof, we present an example to illustrate that such price taking
cannot be taken for granted, even in arbitrarily large economies.

ExampLE 1. We return to the example discussed in section I. Recall
that there are three applicants, (o, 8, ), and three colleges, (a, b, c),
with one seat each and that applicant preferences and college priority
rankings are as follows:

Applicant preferences: a: b-a-c f: a-b-c vy: a-b-c.

College priority ranking: a: o-y-8 b: B-y-o« c¢: arbitrary.

Applicanta’s score are 0 ataand 1 atb; 8’s scoresare 1 and 0, respectively;
and y’s scores are 0.5 at both. To recap, we have shown that there is a Nash
equilibrium where « and 8 adopt TT and « submits ¢ only. The DA out-
come is (a-b, B-a, y-c), which is unstable. Yet applicant y’s deviation to
TT activates a rejection chain that leads to no change in ’s assignment
but a change in the cutoffs of a and b; hence, there is no price taking.
One may hope that applicants become price takers in a sufficiently large
economy. It is not necessarily the case. To see this, we consider («, 8, y) as
applicant types and replicate the economy kfold so that we have k appli-
cants of each type and % seats at each college. Consistent with the baseline
economy, at each college, the top-ranked applicant types have scores in [2/
3, 1], the middle-ranked types are in [1/3, 2/3), and the bottom-ranked
types are in [0, 1/3). Within each applicant type, the scores are drawn in-
dependently. Note that this construction violates the full support condition
assumed for our random k-economy I**, a point we will return to later.
Consider as before a candidate equilibrium in which applicants with
types o and 8 adopt TTand applicants with type v list only ¢ in their ROLs.
The outcome is again unstable: this is seen by the fact that the cutoffs for
colleges « and S lie below 1/3 and converge to 1/3 as k— c and thus
are well below the scores type vy applicants have for these colleges. Yet
the unstable outcome is supported as—exact and hence robust—equilibrium
no matter how large kis. To see this, suppose that a type v applicant de-
viates to TT. It will knock off the type 8 applicant with the lowest score at a
from a, who will then knock off the type o applicant with the lowest score at
b from b. The latter in turn knocks off a type 8 applicant with the second-
lowest score ata from a, who then knocks off the second-lowest score type «
applicant, and so on. The rejection chain continues until all applicants
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with types o and 3 are knocked off from their top choices, and the deviat-
ing type v applicant ends up with c. The process illustrates the failure of
price taking in a spectacular manner, as a single applicant’s deviation trig-
gers discontinuous jumps of cutoffs from below 1/3 to values above 2/3.
QED

One expects that this failure of price-taking behavior can be avoided
with a sufficient smoothness in the economy. This is indeed the case with
our economy where 5 has full support and the types in #*are i.i.d. from 7.
Given this, any regular strategy profile leads to the necessary smoothness
in cutoff responses when an applicant deviates to TT unilaterally. Al-
though this seems intuitive, it is not trivial to establish the price-taking
behavior formally.

To this end, we consider any arbitrary regular strategy profile ¢. For
any random k-economy F*, the truncated profile ¢* induces random cut-
offs denoted by P}, (s) € [0,1]“. Now suppose that each applicant i € N
unilaterally deviates to TT. The corresponding truncated profile for /%,
denoted of,, induces another set of random cutoffs P}, (¢) € [0,1]."

To establish the price-taking behavior in large economies, one needs
to show that the cutoff profiles P{, (o) for each i € N become arbitrarily
close to P{, () uniformly with high probability as k — co. Since ¢ could
be asymmetric across all applicants, each profile ¢f, is potentially dis-
tinct, making the resulting cutoff profiles Pé“i) distinct across all
i € N U {0}. Hence, price-taking behavior in a sequence of economies
would hold if the infinite family of cutoffs (Pé‘i))ieNu{O} converges uniformly
almost surely to some cutoff vector p. It turns out that such convergence
may not hold for an arbitrary asymmetric ¢: the example in appendix B
shows that the cutoffs cycle across distinct values (instead of converging).
Nevertheless, we can show that there is always a subsequence of economies
such that the cutoffs induced by ¢ in that subsequence converge to some
deterministic vector. This turns out to be sufficient for our purposes. On
the other hand, if ¢ is symmetric, all our results can be stated for the whole
sequence of economies.

ProrosiTION 1. Let ¢ be any y-regular strategy profile. Then there
exists a subsequence {F*}, such that

sup ||Pf; (o) — p(o)]| > 0 as £ — oo,

ieNU{0}
where ||:|| denotes the sup norm; that is, for any x, x’ € [0, l]w, [lx —
®| = sup,|x. — «|. If ¢ is symmetric across all applicants, then the uni-

form almost sure convergence holds for the entire sequence of econo-
; k
mies {F*},..

' Note that if iis not in the keconomy F*, i.e., i > k, then ¢, = ¢" and P{;(0) = P{, (o).



STABLE MATCHING WITH MISTAKEN AGENTS 287

Proposition 1 is interesting in its own right as it generalizes Azevedo
and Leshno’s (2016) result on cutoff convergence with TT applicants
(part 2 of their proposition 3). First, while the existing literature shows
convergence of cutoffs when applicants adopt TT, the second part of
proposition 1 establishes convergence for any regular symmetric strate-
gies. We also allow for unilateral deviations and show that convergence
of cutoffs is uniform over an infinite family of cutoffs resulting from such
deviations. This will prove useful for our analysis. In fact, the first part
establishes the same uniform convergence albeit on a subsequence of
economies. Second, we do not require that 32,8, <1 (overdemanded
systems); dropping this requirement may be practically important, as
many matching markets, such as school choice, are not overdemanded.
We also do not need that dD(p(o)) is invertible, as was required by
Azevedo and Leshno (2016), where D(p(o)) is the vector of demand
for colleges at cutoffs p(o), which is to be formally defined below. It is
not clear whether this property holds under an arbitrary regular symmet-
ric strategy o.

Theorem 1 builds on the second part of proposition 1. Recall that the
strategy profile we construct for the theorem is regular and symmetric
across all applicants. Hence, the cutoffs resulting from the constructed
strategies as well as those resulting from the most profitable unilateral
deviation (namely, to TT) all converge to some deterministic cutoff vec-
tor p. Further, the constructed strategies guarantee that all applicants
adopt SRS against p with high probability as the economy grows large.
This means that the constructed strategies must form a robust equilib-
rium, and in that equilibrium, with high probability, all applicants must
obtain their stable matches. Since our limit economy admits a unique
stable matching, this means that p = p(p), the cutoffs that would emerge
in the limit if all applicants employed TT. In other words, the cutoffs
from the constructed strategy profile converge to p(p), even though al-
most no one employs TT. These observations lead to theorem 1.

Meanwhile, theorem 2 crucially uses the first part of proposition 1,
namely, the uniform convergence on a subsequence of economies. Fix
any regular robust equilibrium ¢. Suppose by way of contradiction that
¢ is not asymptotically stable. Then, there must be a subsequence of
economies such that with nonvanishing probability, a nonvanishing pro-
portion of applicants do not get their favorite feasible colleges, given the
prevailing cutoffs along that subsequence. Proposition 1 then ensures
that there is a cutoff vector p(g) and a further subsequence (of the sub-
sequence) of economies such that the cutoffs induced by ¢ converge to
p(0) along that subsubsequence. Given the asymptotic instability, we can
then easily identify a set of applicants who would suffer discrete payoff
losses from their matches given p(o). Recall further from uniform con-
vergence that if any such applicant were to deviate to TT, it will not alter
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the cutoffs much. This in turn implies that the applicant would enjoy a
discrete payoff gain from the deviation. Then, ¢ could not have been a
robust equilibrium, delivering a desired contradiction.

We close this section by sketching the proof of proposition 1. Recall
that the cutoffs are defined to clear markets. Hence, to study how such
cutoffs behave in large economies, we must first study how the demand
system behaves in large economies. To this end, we consider the empir-
ical demand induced by ¢ for each college ¢ at any fixed cutoffs p:

k
Dk 72 {feargmax{f € C:syv > po }}

W.r.t

N‘

where arg max, ., r picks the highestranked college in R;from the set of
feasible colleges {c € C:s;0 > ps} and I{-} is an 1nd1cator function. In
words, Df(p) is the fraction of applicants in economy F* for whom ¢ is
the best feasible college, given a fixed strategy ¢, which we suppress in
the notation below, and fixed cutoffs p. These cutoffs are not necessarily
market clearing. The demands for all colleges form the vector D*(p), or
Df,(p). We are interested in an infinite family of demand systems
{D{,(p)}nugo}» which also include the demand vectors that result from
a unilateral deviation of applicant i to TT.

Note that the demand system thus defined is random, but for each p,
as the economy grows large, Dy, (p) converges pointwise to its expecta-
tion Df,(p) (McDiarmid 1989). Meanwhile, the (deterministic) func-
tions Df, (p) are Lipschitz continuous, and by the Arzela-Ascoli theorem,
there is a subsequence D[ (p) that converges to some Lipschitz contin-
uous function D(p). Then, using an argument in the spirit of the
Glivenko-Cantelli theorem, we show that the random demands Df",-)(-)
converge uniformly (with respect to both its argument and i) to D(-) al-
most surely. Note that if ¢ is symmetric, the above convergence results
apply to the whole sequence.

Having established the convergence of random demand functions, we
then show by induction on the steps of DA that the random cutoffs Pk‘,),
which clear random demands Dj(-), converge to p, which clears D(-). To
this end, we view Pf;) and p, respectively, as the limiting outcomes of the
monotonic cutoff adjustment processes that occur in the DA algorithms
of random-k and the continuum economies. Specifically, each step m of
the DA proposal /acceptance adjusts CutoffP " or p" to clear the market
tentatively. We are interested in the cutoffs arlsmg in each step of the ad-
justment process because (1) they converge respectively to cutoffs PE‘;)
and p, the two key objects in proposition 1, and (2) we can bound the
difference between the cutoffs from each step. We obtain the upper and
lower bounds by defining this adjustment process for both the applicant-
and college-proposing versions of DA and using the lattice structure of
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cutoffs and uniqueness of stable matching in the limit economy (by the-
orem 1 in Azevedo and Leshno 2016).

We show that for large enough k,, the difference between Pf}’)’" and p”is
arbitrarily small in each step of DA using an induction argument. For the
step m = 1, the argument relies on the full-support assumption and the
regularity of ¢. For m > 1, the argument uses the convergence of random
demands to limit demand and the Lipschitz continuity of limit demand
in cutoffs.

Summarizing the arguments in the previous two paragraphs, we have
established that the difference between Pf’,’)’” and p” is small for all m
and that the former converges to P, while the latter converges to p.
Taken together, the difference between P and p is small, delivering the
proposition.

The argument tracking the monotonic tatonnement process—which
allows us to prove the uniform convergence without imposing restrictive
assumptions—is new in the large market asymptotic analysis and will be
useful beyond the current context.

V. Implications for Market Design Research

Our theoretical results along with existing field evidence suggest that
nontruthful behavior may be widespread but it rarely leads to significant
payoff consequences. This observation has implications for empirical
market design. In simulated data, we illustrate these implications for
two exercises that are common in the literature: (1) estimation of appli-
cant preferences and (2) analysis of a counterfactual policy.

A, Estimating Applicant Preferences

There are two typical identifying assumptions in the literature for the es-
timation of applicant preferences.

The first is WI'T (Héllsten 2010; Kirkebgen 2012). Recall that appli-
cant ¢ is WI'T if her submitted ROL ranks her most preferred colleges
according to her true preferences, while every unranked college is less
desirable to ¢ than any ranked college. Let >-; denote the inferred prefer-
ence relation of «. As an example, consider an applicant whose submitted
ROL is ¢;-¢;, while there are four colleges available, {¢, ¢, ¢, ¢.}. WIT in-
fers that ¢; >; ¢ >; ¢, ¢4.

The second assumption is stability (Akyol and Krishna 2017; Bucarey
2018; Fack, Grenet, and He 2019; Combe, Tercieux, and Terrier 2022). An
outcome is stable if every applicant is matched with her most preferred col-
lege among the feasible ones. Suppose that the aforementioned applicant has
6 and ¢, feasible and is matched with ¢. Stability infers ¢; >; ¢. In contrast to
WTT, stability does not make any inference about infeasible colleges, ¢; and ¢,.
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According to our theorem 1, in a robust equilibrium, applicant i may not
be WTT, in which case preference inference would be incorrect. For exam-
ple, she may rank more desirable but infeasible ¢, arbitrarily. Stability makes
inference only about feasible colleges and, according to our theorem 2, is
satisfied asymptotically. Moving from WTT to stability, we gain robustness
to untruthfulness but utilize less information. Therefore, the estimation
based on stability will be less efficient than WTT yet less likely to be biased
because it uses fewer possibly incorrectly inferred preference relations.

1. Monte Carlo Simulations

We evaluate the performance of WI'T and stability in simulated data that
resemble the typical college admissions studied in the previous sections.
There are 12 colleges and 1,800 applicants. This matching market is op-
erated by a serial dictatorship, a special case of DA, in which colleges
rank applicants by an ex ante known score. Applicant preferences follow
a conditional logit model. Specifically, applicant ¢’s utility from being
matched with college ¢ is as follows:*’

U, =P1-ct+Bo-d,+ 0y -T;-A + By Small, + ¢,V iand ¢, (1)

where 3, - ¢ is college ¢’s baseline quality, d;, is the distance from appli-
cant ¢’s location to college ¢, T; € {0, 1} is applicant 7’s type (e.g., disad-
vantaged or not), A, € {0, 1} is college ¢’s type (e.g., known for resources
for disadvantaged applicants), Small, = 1 if college ¢ has a small capacity
and 0 otherwise, and ¢, is a type I extreme value and i.i.d. across i and c.

In the simulations, 7;is equal to 1 for two-thirds of the applicants whose
scores are below the median, and we thus call them disadvantaged.

We consider three data-generating processes (DGPs). The first is truth
telling (TT): every applicant truthfully ranks all colleges. The other two
DGPs rely on a simulated cutoff distribution that we calculate from
1,000 simulation samples with TT applicants. Specifically, the second
DGP is payoff irrelevant mistakes (PIM): a fraction of applicants skip col-
leges with which they would never be matched according to the simulated
cutoff distribution. Those never-matched colleges for an applicant are
likely to be almost always out of reach to her. Hence, PIM approximates
the documented behavior that applicants choose not to apply to colleges

* We keep our Monte Carlo setting as simple as possible to illustrate our main points. It

therefore ignores some potential challenges in practice. For example, in a real-life setting,
factors affecting an applicant’s priority scores may directly enter their preferences. This is
true if priority scores depend on an applicant’s distance to colleges or academic ability.
This may cause issues in the nonparametric identification of applicant preferences when
one assumes stability; see Fack, Grenet, and He (2019) for a detailed discussion on suffi-
cient conditions for identification.
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at which they have a close to zero chance. We expect that stability is satis-
fied in both TT and PIM. The last DGP is payoff relevant mistakes (PRM): in
addition to skipping those never-matched colleges, applicants may skip
some colleges with which they have a low match probability according
to the simulated cutoff distribution, leading to some PRM or violations
of stability. According to our theory, such PRM, although rare, can hap-
pen in a robust equilibrium of a finite economy. The three DGPs, each
of which has 150 simulation samples, are summarized in table 2.

With the simulated data, we estimate the four unknown parameters,
(B1, ..., B4), in equation (1). We apply a rank-ordered logit model when
assuming WTT and a conditional logit model when assuming stability to
estimate four parameters. Appendix E provides more details.

2. Bias-Variance Trade-Off

Figure 1 illustrates several patterns in the estimation for one of the pa-
rameters, 8; = 0.3. When applicants report truthfully, WI'T and stability
are both consistent but WI'T is more efficient (fig. 1A). However, WI'T
leads to a biased estimator whenever some applicants are not truthful,
that is, under the PIM and PRM DGPs (fig. 1B, 1C). In contrast, stability
performs well when there are no or just a few PRM. These results illus-
trate a bias-variance trade-off: from WTT to stability, the variance of
the estimator increases, while the bias decreases whenever it exists.

3. Misestimated Preferences

A direct consequence of an inconsistent estimator is the misestimation of
applicant preferences. As an example, let us consider colleges 10 and 11.
For a disadvantaged applicant (7; = 1) with an equal distance to these
two colleges, the true probability that she prefers college 11 to college 10

TABLE 2
ROLS AND MISTAKES IN MONTE CARLO SIMULATIONS

DGPs wiTH DIFFERENT APPLICANT STRATEGIES

TT PIM PRM
Average length of submitted ROLs 12 7.34 6.58
WTT (%)* 100 50 44
Matched with favorite feasible college (%)" 100 100 97

NotEe.—Each entry in the table is an average over the 150 simulation samples for a given
DGP. In each sample, there are 1,800 applicants and 12 colleges with a total of 1,500 seats.

* An applicant is WTT if she truthfully ranks her top K; (1 < K; < 12) preferred colleges,
where K; is the observed number of colleges ranked by i. Omitted colleges are always less
preferred than any ranked college.

" A college is feasible to an applicant if the applicant’s score is above the college’s ex
post admission cutoff.
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Fic. 1.—Distribution of estimates based on WTT or stability (6, = 0.3). The figure fo-
cuses on the estimates of one parameter (8; = 0.3) from two approaches, WIT (solid line)
and stability (dotted line). Each panel uses the 150 simulation samples given a DGP and
reports an estimated density of the estimates based on a normal kernel function. See table 2
for more details on the three DGPs.

is 0.91 (dashed line in fig. 2). Using the logit formula, we calculate the same
probability on the basis of the two sets of estimates, and figure 2 presents the
average across the 150 samples given an estimation approach and a DGP.
Clearly, WI'T produces significant biases in PIM and PRM, while stability
leads to only a small bias in PRM.

B.  Counterfactual Analysis

Making policy recommendations on the basis of counterfactual analysis
is one of the main objectives of market design research. Our theoretical
results have some implications for this objective too.

The literature has two types of approaches to counterfactual analysis.
The first is based on submitted ROLs. See, for example, the analysis of the
National Resident Matching Program by Roth and Peranson (1999) and
kindergarten allocation in Estonia by Veski et al. (2017). It is assumed
that submitted ROLs under the existing policy are true ordinal prefer-
ences and that an applicant will submit the same ROL under the coun-
terfactual policy. Our theorem 1 implies that this assumption need not
hold in a robust equilibrium.

In the second type of approaches, the researcher uses estimated pref-
erences and lets every applicant submit a truthful ROL under the coun-
terfactual policy. Assuming TT in the counterfactual is justified by corol-
lary 2, as any regular robust equilibrium leads to an asymptotically stable
matching that is well approximated by the stable matching from truthful
reporting. However, this approach crucially relies on the preference es-
timates being unbiased, because biased estimates will only lead to a mis-
leading prediction about the counterfactual. Section V.A has presented
the two possible assumptions for preference estimation, WI'T and stabil-
ity. It is therefore important to choose the appropriate one.
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F16. 2.—True and estimated probabilities that applicant prefers college 11 to college 10.
The figure presents the probability that a disadvantaged applicant (7; = 1), with an equal
distance to both colleges, prefers college 11 to college 10. The true value is 0.91 (dashed
line). With the logit formula, we calculate the probability on the basis of the WI'T-based
estimates, and the solid line presents the average over the 150 simulation samples in each
DGP. Similarly, the dotted line describes those from the stability-based estimates.

As an illustration, we use the Monte Carlo simulations in section V.A
and consider a counterfactual policy in which applicants with 7; = 1
are given priority over those with 7; = 0, while applicants of the same
type are still ranked according to their scores. The mechanism is still
DA in which everyone can rank all colleges.

1. Performance in Monte Carlo Simulations

Recall that we have 150 samples in the simulations for each DGP (TT,
PIM, or PRM). Additionally, for each DGP, we generate the true outcome
under the counterfactual as a benchmark. That is, we assume that appli-
cants potentially make mistakes under the counterfactual policy as they
do under the current policy.

We focus on the three approaches to counterfactual analysis: submit-
ted ROLs, the WI'T-based estimation, and the stability-based estimation.
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We calculate how each approach performs in terms of predicting the
new policy’s effects on outcomes and on welfare.

2. Mispredicted Cutoffs

An informative statistic of an outcome is college cutoffs. Figure 3 shows,
given each DGP, how the three approaches mispredict cutoffs under the
counterfactual policy. For each college, indexed from 1 to 12, we calcu-
late the average difference between the predicted cutoffs and the true
cutoffs across the 150 simulation samples.

In figure 34, the DGP is TT, and thus the submitted ROLs coincide
with true ordinal preferences. Consequently, the predicted cutoffs from
the submitted ROLs approach are the true ones. The other two approaches
also lead to almost the same cutoffs.

In figure 3B, which corresponds to the DGP PIM, only the stability-based
estimation is consistent, and indeed it has the smallest mispredictions rel-
ative to the other two. As applicants tend to omit popular colleges—which
have higher indices in our setting—from their submitted ROLs in this
DGP, the approaches based on WTI'T and submitted ROLs systematically
underestimate the demand for these colleges and thus their cutoffs.

When the DGP contains PRM (fig. 3C), none of the approaches is un-
biased. However, the stability-based estimates seem to have a negligible
misprediction compared with the other two.

3. Mispredicted Matches

Figure 4A further shows the extent to which each of the three approaches
mispredicts individual outcomes for applicants with 7; = 1. Recall that the

A DGP: TT B DGP: PIM C DGP: PRM

=}
o
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o
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]
S
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o ===+ Stability Estimates
£-02 -0.2
2 4 6 8 10 12
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Fic. 3.—Comparison of three approaches: biases in predicted cutoffs. In a given DGP,

each panel presents how the predicted cutoffs from each approach differ from the true
ones that are simulated on the basis of the actual behavior (i.e., the true preferences with
possible mistakes). Given a DGP, we simulate the colleges’ cutoffs following each approach
and calculate the mean deviation from the true ones.
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F16. 4.—Three approaches to counterfactual analysis: disadvantaged applicants 7; = 1.
The figure shows the averages among 7; = 1 applicants across the 150 samples in each
DGP. On average, there are 599 such applicants in a sample. Given a DGP, we simulate
an outcome under the counterfactual policy and compare it with the truth from the actual
behavior (i.e., the true preferences with possible mistakes). A shows the average mispre-
diction rates. B shows the predicted welfare effects by each approach. It is measured by
the difference between the fractions of winners and losers. See table E2 for more details.

counterfactual policy is intended to help those applicants. The stability-
based approach incorrectly predicts the match for 4.5% of applicants on
average in DGPs TTand PIM. Even in PRM, its misprediction rate is merely
7.7%. The WT'T-based approach has a lower misprediction rate in DGP TT
but underperforms relative to stability in the other two DGPs. The submit-
ted ROLs approach has the highest misprediction rates in all DGPs except
TT. Among the applicants with 7; = 0, figure E2 shows that the compari-
son of the approaches follows the same pattern.

4. Mispredicted Welfare Effects

We now investigate the welfare effects on the 7; = 1 applicants of the
counterfactual policy. Given a simulation sample and a DGP, we com-
pare the outcomes of each applicant under the two policies. If the appli-
cant is matched with a more preferred college according to the true/es-
timated preferences, she is a winner; she is a loser if she is matched with a
less preferred one.”

I Because each approach to counterfactual analysis estimates applicant preferences in a
unique way, an applicant’s utility associated with a college can differ across the approaches.
Therefore, the measured welfare effects of the counterfactual policy may differ even when
an applicant is matched with the same college.



296 JOURNAL OF POLITICAL ECONOMY MICROECONOMICS

Figure 4B shows the difference between the fractions of winners and
losers, averaged across the 150 samples.” Among the 7; = 1 applicants,
the stability-based estimates are almost identical to the truth, even in the
DGP with PRM. In contrast, the other two approaches’ predictions are
close to the true value only in DGP TT; both tend to be biased toward a
zero effect when applicants make mistakes (DGPs PIM and PRM). The
reason for the bias is clear. Under WTT, the preferences for popular col-
leges are underestimated. Meanwhile, the submitted ROLs approach ig-
nores the likely changes in ROLs under the new policy. In particular, dis-
advantaged applicants find previously out of reach colleges now within
reach, so they may include these colleges in their ROLs.

Despite being shown in simulations, these findings may provide im-
portant implications for policy making, especially in public education.
For example, many recent policy initiatives are designed to increase ac-
cess to high-quality colleges and schools by traditionally disadvantaged
students. Such an affirmative action policy precisely changes popular
schools from out of reach to within reach for disadvantaged students.
To predict the effects of such a policy, only the stability-based estimates
can perform well if students may have chosen not to apply to some out of
reach schools in the regime without affirmative action.

V1. Conclusion

Motivated by field evidence on nontruthful behavior in strategy-proof
environments, we theoretically argue, using a robust equilibrium con-
cept, that an outcome of DA can be reliably predicted but not partici-
pants’ behavior. Moreover, in a sufficiently large economy, the outcome
approximates well the one that would have emerged if every participant
plays the dominant strategy. While this result justifies the vast theoretical
literature that assumes truthful reporting behavior to analyze outcomes
of DA, it calls into question empirical methods that take truthful report-
ing as a literal behavioral prediction. Our theory suggests that the alter-
native approach focusing on the stability property of the outcome may
be robust to applicant mistakes. These implications are relevant to the
estimation of participant preferences and counterfactual analysis.

Our paper focuses on environments where applicants know their
scores according to which colleges rank them. However, the general in-
sights can be extended to other settings, for example, where applicants
are ranked by colleges according to a postapplication lottery. Che, Hahm,
and He (2022), an ongoing project, provide such an extension.

2 The outcome does not change for 9%-28% of applicants. See table E2 for more de-
tailed summary statistics.
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Appendix A
Definition of the DA Mechanism

The applicant-proposing DA mechanism uses each college’s capacity and rank-
ing over applicants as well as applicants’ submitted ROLs to calculate a match-
ing. It proceeds as follows:

Round 1.—FEvery applicant applies to her first choice. Each college holds the
highest-ranked applicants up to its capacity and rejects the rest, if any.

Generally, in

Round m > 1.—Every applicant who is rejected in round (m — 1) applies to the
next choice college on her ROL if there is one. Each college pools together new
applicants and those held from round (m — 1); it holds the highest-ranked ap-
plicants up to its capacity and rejects the rest, if any.

The process terminates after any round m when no rejections are issued. Each
college is then matched with the applicants it is currently holding.

Appendix B
An Example of Nonconvergent Cutoffs

In this appendix, we construct a sequence of economies that satisfies the condi-
tions of proposition 1, in particular, full support of types, yet the sequence of cut-
offs induced by a regular strategy does not converge. Note that this regular strat-
egy is not a robust equilibrium.

In the example, we will use -1 and | -] to denote ceiling and floor functions.
Consider a market with k applicants and two colleges, a and 4. Each college has
capacity | k/4 ). Applicants draw their types independently and uniformly from
{a—b,b—a} x[0,1]".

We will consider two strategies: p, which is TT, and &, which prescribes submitting
an empty ROL with probability 1 — v and TT with probability y, where v is close to
zero. Let ky,, = [ 1,000/ 1for m € N (note thaty*"is y to the power of 2m). The
strategy profile o is constructed as follows. Applicants from 1 to &, play ¢. For any m,
applicants from ks, + 1 to ks, play p, and applicants from k,,, + 1 to ks, play 0.

We consider two subsequences of economies: {F*}, o and {F*"}, 4.

For any economy I from the first subsequence, applicants with indices between
kon—1 + 1 and ks, play TT. Their total number is [1,000/4*"1—=11,000/y*""1>
L 1,000(1 — ) /4*" I. As there are other applicants with lower indices who play TT,
the fraction of applicant who are TT is more than (1 — 7). Given the type distribution
and capacities, when the economy size grows, in this subsequence, the cutoff at each
college tends to be no less than (1 — +)/2, with probability close to 1.

For any economy F* in the second subsequence, applicants with indices between
ks, + 1 and ky,,+ constitute (1 — v) fraction of all applicants. They submit an empty
ROL with probability 1 — +. Thus, there are fewer than | k/4 | applicants at each col-
lege, with probability close to 1. Thus, with probability close to 1, Pi = P = 0.

Given that, for these two subsequences, the cutoffs are either above (1 — v)/2
or equal to 0 with probability close to 1, the sequence of cutoffs P* does not con-
verge in probability. Note that there is a convergent subsequence, in line with
proposition 1. This example also illustrates why Azevedo and Leshno’s (2016)
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result cannot be applied. In particular, this setting does not have a symmetric
strategy or an overall excess demand, given the strategy profile.

Appendix C
Preliminary Theoretical Results

Consider the continuum economy E = [y, §] with the full support assumption
(1/C)(@ — max{u,0})y(0) > & for all 6 € [max{0, u}, #] x [0,1]° C © and for
some £ > 0.

We now reiterate and give the formal definitions of demands and cutoffs intro-
duced in section IV. Fix ¢. The strategy profile ¢" induces a random ROL, R), for
each applicant j € {1, ..., k}. For any p € [0, 1]°, we define a per capita profile
of (random) demands for colleges—henceforth, simply called demand—
D'(p; o) = (D!(p; 0)).cc; the demand for college ¢ is given by

w.r.t.

1.+
Di(p; o) = %E]I{c € arg maﬁ{c’ eC:sp > p(./}},
J=1 !

where arg max,,, . picks the highestranked college in R from the set of feasible
colleges {¢' € C: s,/ > p,} and I{-} is an indicator function. Similarly, we define a
demand profile Df;(p; 6) = (D}, (p;9)).c that arises when applicant i employs
truthful reporting p and all other applicants j # ¢ continue to use o; For nota-
tional convenience, we use D, (p; 0) = D'(p; o) to denote the demand arising
from the original strategy o". Let Df, (p; o) = E[D{, (p; 0)], where the expectation
is taken over the random draws of applicants’ types and the random ROLs aris-
ing from ¢f, being (possibly) mixed.

Random cutoffs P{, (¢) € [0, 1], defined by DA with ROLs prescribed by o, clear
the (random) demand system Df, (p; o). Cutoffs p(e) clear the (nonrandom) de-
mand system D(p; ). Section C1 provides an argument that p(¢) exists for any reg-
ular strategy. When there is no ambiguity, we use p instead of p(o). We omit ¢ from
the expression of the demands in the following. By construction, Df; .(p) are non-
increasing in p, and nondecreasing in p_, foranyc € Cand 0 < i < k.

We now formally describe the outcome of an applicant-proposing DA algo-
rithm in the kArandom economy by defining the DA cutoffs of krandom economy,
P" = lim,, .. (P}, ..., Pt"), where P** = (0, ...,0) and for m > 1,

P o= sup{]) € [0,1]: Di(p, PEI) = ka}’v c€C,

if the set is nonempty and P = 0 otherwise. Note that the iterative steps of de-
fining the cutoffs correspond to the iterative steps of DA. Initially, the applicants
who prefer college ¢ most apply to ¢, and ¢ tentatively accepts applicants from
among them in the descending order of score s, up to its capacity. That s, for ¢ €
C, D0, ..., 0) is the measure of applicants to cand S/ is the capacity of ¢, so P!
becomes the cutoff for ¢ in step 1. More generally, in step m, a measure
DI(PFm=1, Phr7!) of applicants apply to ¢, and the same process determines the
cutoff P for college ¢.* Because of the property of D*(p) observed above,

% The measure D! (P!, P4?"") includes applicants retained from the previous round.
The description we provide is a slight modification to the usual DA: applicants who have
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P = (PFm), is monotone nondecreasing, and the limit P* is well defined. Im-
portantly, the cutoffs at each step, and thus P*, are random since D" is random.

Even though we are interested in the outcome of applicant-proposing DA, it
is useful to define the cutoffs that arise from college-proposing DA (CPDA).
Let the CPDA culoffs be defined by Q" = lim,,_..(Q"", ..., Q¢"), where Q" =
(1,...,1) and for m > 1,

Q" = sup{pe[0,1]:D.(p,Q"""") = S!},V c e C,

if the set is nonempty and Q" = 0 otherwise. Similar to before, we observe that
Q" = (Q}m), are monotone nonincreasing in m, so Q" is well defined.

Finally, the standard lattice property of stable matchings and the extremality
of DA and CPDA matchings imply that P* < Q".*

Next, suppose that ;unilaterally deviates to TT (p). We an define the resulting
DA and CPDA cutoffs analogously and denote them respectively by P{, and Qf,
and observe P, < Qf,. Itis notationally convenient to define the cutoffs when no
one deviates from ¢" by P, = P* and Qf, = Q".

Our goal (proposition 1) is to establish a desirable limit behavior of (Pf,»)),-eN“ as
k— oo, where N, = N U 0. We accomplish this goal in section Cl. To this end,
however, we need to establish a few preliminary results on demands. We will first
establish almost sure convergence of random demands to their expectation
(lemma 1). We then establish that the expectation is Lipschitz continuous
(lemma 2) and converges to a Lipschitz continuous function D (lemma 3).
These two results help us establish the key result that the family of random de-
mands converges almost surely to nonrandom D (lemma 4). For an asymmetric
strategy, we establish it only for a subsequence, because the whole sequence may
not converge at all. The appropriate smoothness of random demands is what will
help us establish the convergence of cutoffs.

Our first step is to establish a probabilistic bound for the distance between Df;
and its expectation. For i € N, and p € [0,1], recall D}, (p) = E[D{,(p)], where
the expectation is taken over the random draws of applicants’ types (when F* is
constructed) and the randomness in the ROLs arising from 6f; being (possibly)
mixed. Because ¢ may be asymmetric, some lemmas below requlre selecting a
subsequence of economies {F*}, to deal with asymmetric strategies; all these
lemmas can be stated for the whole sequence of economies I™* if strategies are
symmetric. Recall that we use [|-|| throughout to denote the sup norm; that is,
for any x, & € [0, 1], || x — &' || = sup,|x — x].

Lemma 1. Fix any strategy ¢, any p € [0, 1]°, and any i € N,. Then, for any
a>0,

Pr[||Dly(p) — Dl (p)ll > «] < [C] - e 3

never been rejected by a college and have a score below P! do not apply to college ¢
in round m. These applicants would have been rejected if they applied. Like the standard
DA, the algorithm converges in at most Ck steps.

A useful Perspectlve is to view P*and Q" as the smallest and largest fixed points of a self
map @: [0, 1] — [0, 1]°, defined by @.(p) = sup{p, € [0, 1]: D.(p., p-.) = S} if the set is
nonempty cmd otherwise @,(p) = 0. The monotonicity of ® means that by Tarski’s fixed
point theorem, the fixed points of ® form a complete lattice, admitting extremal points.
Such extremal fixed points are obtained via the iterative steps we have defined.
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Proof. By McDiarmid’s inequality (McDiarmid 1989), for each ¢ € C,
Pr{| Dl (p) — Dl (p)] > ) < ¢,

since for each ¢e C, |D}) (p; R, ..., Ry) — Dfy (p Ri, ..., Ri)| < 1/k whenever

ROLs (R, ..., R) and (R, ..., R}) differ in only one component (recall that de-

mands depend on ROLs, although ROLs are usually suppressed in the notation).
It then follows that

Pr[|| D, (p) = D (P > a]
= Pr[3 ce Cs.t|D)).(p) — Diy.(p)]| > o]

S Pr (| Df.(p) — Dl (p))> a] < C-e,

ceC

IA

QED

Lemma 1 implies almost sure convergence via the first Borel-Cantelli lemma.
In this sense, it can be thought of as an extension of a strong law of large num-
bers to a special case of non—i.i.d. random variables. When strategy o is symmet-
ric and ¢ = 0, the almost sure convergence can be readily obtained from the
strong law of large numbers because demands are just a sample average of
bounded random variables. The next two lemmas establish Lipschitz continuity
of expected demands.

Lemma 2. For any strategy ¢ and each (k, i) € N x Ny, the function Df,(p) is
Lipschitz continuous with a constant L that is independent of (£,2).

Proof. Let p and p' be two arbitrary cutoff vectors in [0,1]¢. Define

0, = {(u,s) €©®:3 ceCsuchthatp, <s <p or p.<s <p}.

Since 7 is absolutely continuous with respect to Lebesgue measure, we have
7(0,,) < L||p — p|, where L is an upper bound for the density for all § € ©.
Then,

I D (p) — Dty (p) |l
= Sup“Ee,cr DJ r(p/) el)f(p)H

i Sgpn =Tt ci 20N )

- S}e? SRR — I{c € arg max,,, x{c € C:s5. > p.}}
H{ce wrenid € Cisip > pr
B T B AL
eC ReR - ]I{c € arg maxwvr,l,R{c eC:s0 > pﬁf}}
1k
< L 2b [1{6; € O }]
j=1

= E[I{0, € 0, }] = 1(0s) = LI —pl.
where the expectation [y, is over applicant types and mixed strategies, [E, is an
expectation over applicant types, and P(0;(6,) = R) is the probability that applicant
jof type 6; submits Ras prescribed by mixed strategy 0,(0,) (with an abuse of notation,
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we denote 7's strategy by o, even though i deviates to TT). The first inequality follows
from Jensen’s inequality, and the second inequality holds since the two sets,
{¢ eC:s,>plland {¢ € C:5;, > p,}, are identical when O, & ©,,. QED

LEmMMa 3. There exists a subsequence of economies F* such that
sup,, | D (p) — D(p)|| — 0 as £ — o. Function D(p) is Lipschitz continuous with
the same constant L as Lipschitz continuous functions Df;) (p).

Proof.  The sequence of functions {D*(p) };-, defined on a compact set [0, 1]¢
is uniformly bounded and uniformly equicontinuous (which follows from their
Lipschitz property with a uniform constant L, as shown in lemma 2). By the
Arzela-Ascoli theorem, we an find a subsequence {D*(p)},, which converges
uniformly to Lipschitz continuous function D(p) with the same constant L, since
the Lipschitz property is preserved in the limit.

Now consider any i # 0. For any p € [0,1] and i € N,

19},(8) ~ D) = (DY, (p) — D (p)] | = E[IDS,(p) — D (D] = - -

J
since changing the strategy from " to af’i) can change the demand for any college
at most by 1/k. Note that the upper bound of the difference, 1/k;, in the last in-
equality depends on neither i nor p, implying uniform convergence.

Combining this result with the earlier observation, we conclude that there ex-
ists a subsequence in the sequence {Df,(p)}i_, that converges uniformly to the
same D(p) for all i € Ny and p. QED

Lemma 3 is stated for a subsequence of economies F* because the convergence
of demands is not guaranteed for the whole sequence when strategies are asym-
metric; if we consider only symmetric strategies, the lemma could claim a uniform
convergence of the whole sequence of expected demands rather than a subse-
quence. Several of the results below are shown for a subsequence of economies
described in lemma 3 and its associated strategy profile. It is useful to introduce
a specific name for such subsequences.

DEFINITION 3. A subsequence {F",o"}, that induces a subsequence of
Lipschitz continuous demands {Df, (p) },0<i<y with the same constant Lis expected
demand convergent if there exist Lipschitz continuous demands D(p) with the same
constant L such that sup,, || Df,(p) — D(p) || — 0 as £ — co.

Lemma 4. Consider any expected demand—convergent subsequence {F*, ¢" },.
Then, for any € > 0,

Pr{}gn; sup D}, (p) — D(p)]| > } =o.
: ip

Proof. Since D is Lipschitz continuous, thus continuous, we can partition the
space of p’s into finite intervals of the form Z(k) = [[.[p., p+1], where k =
(k.), € {0, ..., n}* for some n € N, such that for each ¢,
€

2

forallp, p' € Z(k), V k = (k,).. There are n°such intervals. Note that these intervals

ID.(p) = D.p)] <

* Naturally, we have p, = 0 and p,, = 1.



302 JOURNAL OF POLITICAL ECONOMY MICROECONOMICS

partition the whole space of p’s and do not consider deviations of applicants; thus,
they do not depend on specific (4, p).
Consider any p and ¢. Let k be the index of the interval such that p € Z(x). Let

D = (Patts oo s Persts Pes Pt oo Prosr)
Do = (Pas ooos Pss Pt Prvs oo s Poc)-

The demand for ¢, D,(+), is the highest at p, and the lowest at p), among the prices
in Z(k). Consider a randomly drawn economy F* and the correspondent de-
mand for ¢ Df;)'[(p). Then,*

L0 - D+ 5 e
Suppose that the event {|| Df; (p) — D(p) || > €} occurs for some p and i. Then,
since || D ([)) Dp) || = sup(|D (p) — D,(p)\, there must exist ¢ such that
|D"’ (p) = D,(p)| > €. From (Cl), there is pe € {pl, p} such that \D,N(]JK)
D.(px)| = € /2. Since Dfy (p) converges to D,(p) in sup norm by lemma 3, there
exists N' such that for all > N, sup,;|Dfs . (p) — D.(p)| < e /4. Consequently,
for £> N’ and py, we must have

D6 (p) = D.(p)| < max{|Df.(pl) — D.(pi)],

2

‘Dlm *) - D(}Z),[(P:)

NE

Combining the arguments so far, we conclude the following:

Pr{szp | D, (p) — D(p) || > 6}

= Pr{3 (p. 1) s.t. | Dy(p) — D(p) || > €}

< 3 Pr{3 cand pl s Df, (p) — D, (0] = 5
i=0

< 22 2 Pr{|D" (pe) — Dfy..(px)| zi}
i=0c=1ke{0,..

=<

ke
C — ke /8
n"Cye </
i=0

n C(k + 1)e "/® - 0as £ — oo,

where the last inequality follows from McDiarmid inequality (see lemma 1).
Note that

ZPr{sup | D}, (p) — D(p) || > e} < nCe X (ke + 1)e " < oo,
ip ke
Hence, by the first Borel-Cantelli lemma, Df; (p) almost surely converges to D(p)

uniformly over (i, p). QED

* This inequality follows from an argument used for the proof of the Glivenko-Cantelli
theorem extended to a multidimensional case.
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CI1.  Asymptotics of Cutoffs for a Regular Strategy

We are now ready to establish, for a regular strategy, the uniform almost sure con-
vergence of cutoffs Pf‘l.) to some deterministic cutoffs as £ — o along any expected
demand—convergent subsequence. In fact, we show that the limit cutoffs are the
cutoffs defined by the limit demand system (i.e., D(p)). Specifically, let
p = (pr,....pc) be the DA cutoffs defined by p, := lim,_.p", where p’ =
(0,...,0) and for m > 1, and p" = (p"). is given by

p =sup{pe[0,1]:D.(p,p".") = S}V ce C,
if the set is nonempty, and p = 0 otherwise.

Similarly, let ¢ = (@, ... , gc) be the CPDA cutoffs defined by ¢, = lim,,_,,.,q" for
each ¢, where ¢" = (1,...,1) and for m > 1, and g" = (g"). is given by

g =sup{p < [0,1]:D(p,q".") = S}V ceC,

if the set is nonempty and ¢ = 0 otherwise. The interpretation is the same as
the applicant-proposing DA cutoffs.

We note that D,(p., p_.) is nonincreasing in p, and nondecreasing in p_.. This
is because this property—which holds for each realization of the krandom econ-
omy—is preserved when one takes expectation to obtain D" and takes a limit
along a subsequence. It then follows that p” is a monotone nondecreasing se-
quence and ¢" is a monotone nonincreasing sequence, and their limits are well
defined. Moreover, g > p.

Since o is y-regular, ROL p () is chosen by an applicant of type 6 with probabil-
ity at least y. The full support of E = [, §] implies that there is a positive lower
bound on the density of § on the original limit economy. Thus, the resulting limit
economy induced by ¢ is full support in terms of ordinal preferences and scores.
Then, theorem 1, part 1, of Azevedo and Leshno (2016) guarantees that the in-
duced limit economy has a unique stable matching, which in turn implies that

p=gq
C2. Proof of Proposition 1

Consider an arbitrary expected demand convergence subsequence {F*, 6" },. Re-
call that there exists at least one such sequence (lemma 3).
Fix € > 0. We will show that for some N € N, for all /> N,

Pr{ sup || Pl —pl <e} =1

ieNU{0}

To begin, let M be such that forall m > M, max{||p — p" ||| p — q" ||} <e€/2.
Such an M exists because of the convergence of p” and ¢” to p (where the latter
uses the fact that ¢ = p). We next observe that for each ¢, for any p, p' € [0, 1],

IDAp, p-0) = D(p. p-I = &P = pl.Y p- € [0, 1] (€C2)

To obtain (C2), we first note that |D.(p,p_.) — D.(p,p_.)| = |D.(p, 0)—
D.(p, 0)|, where |D,.(p/, 0) D.(p, 0)| is the mass of applicants for whom ¢ is top
ranked by ¢ and whose scores at ¢ are between p and §. Assuming, without loss
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of generality, that p > p, we have

ID4.0) = D(p.0)| =+ 1(6)d0
(u,5)€0 : u>u, Vd'#e,u>0,5.€[p.p']
tC ,
= (@ — max{0, u})° ® p)LM e .,>oldu] e de
& - p)

Recall that 7 is the lower bound on the probability of TT and that £ determines
the lower bound on density 7.’

Similarly, recall from lemma 2 that one can find L > 0 such that |D,(p, p_.)—
D(p,p ) <L|p.—p.| for all ¢ Let N:=max{l,L/vE 1/L} and » =
(1/2MA\")e.

It follows from lemma 4 and the convergence of $* — S that for any » > 0,
there exists N(v) such that for any £ > N(»), we have

sup 1D (p) = D(p) | + 11 8* = S| <»

with probability 1. Below, we fix any such ¢ > N(») and condition on the event
& = {sup,, | D}, (p) — D(p) | + || §* — S| < »}. Hence, the probability of having
event £is 1

Consider a random economy F. We argue inductively that for each step of DA
m=1,.., M*|Ply" — pI'| < mN"v for each college c. Fix any college ¢. Consider
any m, assuming that the result holds true up to step m — 1. There are two pos-
sibilities. Suppose first that P > p > 0. Then,

0= (P)i, m kvm 1) bh
< D(Plr, Py =S +v
< D(PLLp"") = S+ v+ LRGP — (PR |
< D.(Py", p".") — S+V+L(m—1)>\'“
< D.(Pl", p2") — D(pr, ptc') + v + Lim — 1Ny

D(P, p".") — f(P P'” D+ (1 Lim = DNy,

where the first equality follows from the definition of DA cutoff at step m and
upon noting that P;” > 0 (meaning that the set over which sup is taken is well
defined and the condmon is an equality at P('j.’)’f,,”); the first inequality follows as
we are conditioning on event &; the second inequality follows from the Lipschitz
bound of L for D; the third inequality follows from the induction hypothesis that
[Pl = pe | < (m — 1)N"'vforany ¢ € C;* and the fourth inequality follows
from the definition of cutoff for the limit economy at step m (which implies

D.(pr, p"') < 8.).

# In the case of serial dictatorship, in which the full-support assumption holds with a
reduced dimensionality of support, the same inequality holds. As other elements of the
proof do not invoke full support, all our results hold for this mechanism.

* Recall that M is defined so that for all m > M, max{||p — p" |. | p — " ||} <e€/2.

* Note that P = p.* = 0, and hence the inequality holds for m = 1
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Rewrite the string of inequalities and use (C2) to obtain
(14 Lm = Ny = D(p!', p" ") = D(PGLL p21) = vE(PY = pi),
which in turn implies that

A+ Lm—=1)N"") (1= LN+ Lm\"™")

073 043

Recall that N = max{1, L/v¢,1/L}.
Suppose next that p!" > P[;" > 0. Then,

Pl = pl < y < m\"v.  (C3)

02 Di (PG P = St

> D(PGLPG) — S —

v

D((P(’j.’)"j,[ﬂ) S, —v—Lm—1N\N""»
DR p") = D(pl p") — v — Lim = N\
= D.PGL ) = DAl p ) — (14 Lim = Ny,
which follows analogously to the earlier string of inequalities except that the first
line is an inequality because we need to allow for P(;” = 0 and the fourth line is

an equality because p" > 0.
As above, we use (C2) to obtain

(14 L{m = ON"")w = D(PGT p2.) — DR, p2.) = vE(p! = P,
which in turn implies that

(1+ L(m—=1)N" ")

[m _ kl m < < m)\'”v. (C4)
b vE
Combining (C3) and (C4), we have
[Pl = pr| < mN"v. (C5)
Since this result holds for all m = 1, ..., M, we now conclude that for each ¢,
P(kf),[ k) :1 > PW MMy > ﬁ — MMy — %, (C6)

where the first inequality follows from the fact that P, is the limit of a monotone
nondecreasing sequence (Pf"), as m — o, the second inequality follows from
(CH), and the third follows from the definition of M.

The exact same argument works for the CPDA process. Namely, for each ¢,
|Ql" = q'| < mN"v for m = 1, ..., M so that we have

Q. < Q< g+ MN'y < g+ MMy + o (c7)
Combining (C6) and (C7), recalling p, = g. and QZ),( > P(’j)’(, ¥V ¢, we obtain

sup || Pf‘;> —pl £ MANy + %,
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for all i e N U {0} and for an arbitrary random economy F*. Recall that v =
(1/2M)\M)8, where M, N\, and e do not depend on either % or the random econ-
omy F}. Then, in the event &, for all £ > N(»), where N(v) € N is defined above,
we have

sup || P~ ] < e

ieNU{0}
Recall that event £ occurs with probability 1, which completes the first part of the
proposition.

The second part of the proposition follows immediately once we observe that

o = (0,0,...); hence, the whole sequence {F", ¢", is expected demand conver-
gent. QED

Appendix D
Proofs of Theorems
D1.  Proof of Theorem 1

Let p = p(p), where p(p) is the unique market clearing cutoff for the limit de-
mand system induced by TT. In this proof, we refer to p(p) simply as p.
Recall that

O’ (p) = {(u,s)€®| IjeCst|s—p| < o}

is the set of types whose score for some college is 6-close to its market clearing
cutoff in the limit demand system.

For each type § = (u, s), there exists at least one SRS strategy against p that vi-
olates WTT (see n. 16); denote this strategy by R(6). The applicants with types
6 € ©(p) play p(8) and the applicants with types 8 & @°(p) randomize between
p(0) (with probability y) and R(G) (with probability 1 — 7).

Fix any ¢ > 0. Take any ¢ > 0 such that ¢’ u < ¢. By proposition 1, there exists
K e Nsuch thatfor all k> K, Pr{|| P}, — p|| <8} > 1 — ¢, where Pj; is the vec-
tor of cutoffs associated with the matching in /* under the prescribed strategy
with at most one applicant deviating to TT. Let £ denote the event where
| Piy — pll <6 holds. We now show that the prescribed strategy profile forms
an interim e-Bayesian Nash equilibrium for each krandom economy for k > K.

First, for any type 6 € @°(p), the prescribed strategy, p(), is trivially optimal
given the strategy-proofness of DA. Consider an applicant with any type 0 & ©°(p),
and suppose that all other applicants employ the prescribed strategy. Now condi-
tion on event &£ Recall that the set of feasible colleges is the same for type
0 & ©(p) whether the cutoffs are P}, or p, provided that | Pf, — p| < 6. Hence,
given event £, strategy R(0) is a best response, and the prescribed mixed strategy
attains the maximum payoff for type 6 & @°(p).

Of course, the event £ may not occur, but that probability is no greater than &
for k > K, and the maximum payoff loss in that case from failing to play her best
response is % (if an applicant becomes unmatched). Hence, the payoff loss she
incurs by playing the prescribed mixed strategy is at most

’—

eu<e
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This proves that the strategy profile forms a robust equilibrium. QED

D2.  Proof of Theorem 2

Fix any y-regular robust equilibrium strategy profile ¢ for any arbitrary vy € (0, 1].
Suppose to the contrary that ¢ is not asymptotically stable. Then, by definition,
there exists ¢ > 0 and a subsequence of finite economies {F*}; such that for all k;

Pr(The fraction of applicants playing SRS against P" isatleast 1 —¢) <1 — ¢, (D8)

where the applicants play 6", a krtruncation of o.

By lemma 4, there exists a subsubsequence {D* }, that converges to D uniformly
and almost surely. By proposition 1, Pf;) converges to p uniformly over ¢ almost
surely, where p is the deterministic cutoffs defined by the limit of demands.

Define a set of applicants, for 0 <6 < ,

0 = {(u,5):|u. — u,| > dforall ¢ # ¢} N {(w,s):]s. — p| > 6 forall c}.

These are the applicants whose payoffs from two distinct colleges (or from being
matched and unmatched) differ by at least 6 and whose score at each college ¢
differs from its limit economy cutoff p, by at least é.

Take 6 to be small enough such that7(®) > (1 — £)"”. This can be done since 7
is absolutely continuous.

By the weak law of large numbers (WLLN), we know that 7 (®) converges to

7(0) in probability, and therefore there exists L, such that for all £ > L;, we have
Pr(n" (@) > (1 —¢)"*) > (1 — &) (D9)

Consider the event

A= {31113 PG —pll < 5}-

Since Pfj>ﬂf’[z uniformly over i € N, there exists L, such that for all £ > L,, we
have

Pr(A") > max{(1 — )", 1 - (1 —¢)"*[1 — )" = (1 —&)"*] }. (D10)

Since ¢ forms a robust equilibrium, there exists L such that for all ¢ > L, 6% is
ad[(1 —¢)"° — (1 — &)"/*]-BNE for economy F%.

By WLLN, there exists I. € N such that L i.i.d. Bernoulli random variables
with parameter p = (1 — ¢)"* have a sample mean greater than (1 — &)"* with
probability no less than (1 —¢)"’. Next, let L, be such that £> L, implies
(1~ )"k > L.

Now let us fix an arbitrary £ > max{L;, L, L, L;}. We wish to show that in
economy I,

Pr(The fraction of applicants playing SRS against P" isno less than 1 —¢) > 1 — ¢,

which would contradict (D8) and complete the proof.
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We first prove that in economy F", an applicant with § € c) plays SRS against p
with probability no less than (1 — ¢)"/*. To see this, suppose to the contrary that
there exists some applicant i and some type 6 € © such that

Pr(0;(0) plays SRS against p) < (1 —¢)"”.

Suppose now the applicant i deviates to TT. By doing so, she will do weakly
better in all circumstances (since TT is a dominant strategy) and strictly so by
at least § (since 6 € @) conditional on the deviation changing her match. Her
match would change (at least) whenever she was not playing SRS against p under
0:(0) and event A% occurs. This is because in event A%, the strategy o,(f) is SRS
against Pf"0'> if and only if 0,(0) is SRS against p for type 0 6, and deviating to
truthful reporting would produce a stable match against p for such a type. In
sum, applicant i with type 6 € ® would gain from deviation by at least

& - Pr(o;(0) is not SRS against p and event A* occurs)
> §[Pr(A") — Pr(0,(0) plays SRS against p)]
>68[(1 - e — (1 - 8)1/3}.

The above inequalities contradict the construction of L;.*” Therefore, in econ-
omy I, for each applicant ¢ = 1, ..., k, and each 6 € O, we have

Pr(0;(0) plays SRS against p | 1" ©) > (1 - 8)1/2)
(D11)
= Pr(0,(®) plays SRS against p) > (1 — )",

where the first equality holds because applicant ¢'s choice of a mixed strategy
is independent of random draws of the applicants’ types.”'
It then follows that

The fraction of applicants with § € c) R .
Pr @)= (1 —¢)”
playing SRS against p is no less than (1 — &)"/*

7%(®) - k; i.i.d. Bernoulli random variables with R .
>Pr . 7" (@)= (1 —¢)”
p = (1 — £)"” have a sample mean no less than (1 — ¢)"* (D12)

1/2

L ii.d. Bernoulli random variables with p = (1 — )"’
have a sample mean no less than (1 — ¢)

>(1- 8)1,/3’

where the first inequality follows from (D11) and the fact that 0,(6)’s are inde-
pendent across applicants, and the second inequality holds since ¢> L, and
since, by the definition of Ly, for any such £, 7(®) > (1 — ¢)"* implies 5" () -
k> L.

% Recall that L; was defined so that £ > I; means that the strategy profile o' is a
8[(1 — &) = (1 — ¢)'*]-BNE for the economy F*

* In other words, how a fixed type plays in equilibrium does not depend on how many
of them are drawn.
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Comparing the finite economy random cutoffs P% with the deterministic limit
cutoffs p yields

The fraction of applicants with § € e} N )
pr r@=a o
playing SRS against P is no less than (1 — &)'/*

The fraction of applicants with § € o

> Pr| playing SRS against  is no less than (1 — &)"/* |7" ©)>(1—¢)"”

k,
and event A occurs

The fraction of applicants with § € e} o e
> Pr B L (@)= (1 =) (D13)
playing SRS against p is no less than (1 — &)"/

— Pr(A" does not occurly" ©)>(1 - 5)1/2)
1 — Pr(Ab)
Pr(n*(©) = (1 —¢)'")

s (1= -9 - (1-9"]
(1 - 8)1/2

>(1- e —

>(1—e)

—(1-¢)"
where the first inequality follows since in event A%, the strategy o;(6) is SRS
against P% if and only if ¢,(9) is SRS against p for type 6 € ©; the third inequality
follows from (D12); and the fourth inequality follows from (D10).

We finally have in economy I

Pr(The fraction of applicants playing SRS against P" is no less than 1 — ¢)
- Pr(At least a fraction (1 — £)"* of applicants with 0 € © play SRS against P" )
B and 7" (0) > (1 — ¢)'*
= Pr(n"(0) > (1 — ¢)'*)

at least a fraction (1 — €)"/* of applicants
x Pr

7" (©) > (1 — e)l/2>

with 6 € @ play SRS against P"
> (1 _ e)1/2 i (1 _ 6)1/2
=1—¢,

where the second inequality follows from the construction of L; (see [D9]) and from
(D13). Therefore, we have obtained a contradiction to (D8). QED

Appendix E

Monte Carlo Simulations

Complementing section V, this appendix provides additional details on the Monte
Carlo simulations that we perform to assess the implications of our theoretical
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results. Section E1 specifies the environment, section E2 describes the DGPs, sec-
tion E3 presents the estimation and the results, and section E4 presents some ad-
ditional results on the counterfactual analysis.

E1. Simulated Environment

We consider a finite economy in which £ = 1,800 applicants compete for admis-
sion to C = 12 colleges. The vector of college capacities is specified as follows:

{S.}2, = {150, 75, 150, 150, 75, 150, 150, 75, 150, 150, 75, 150}.

Setting the total capacity of colleges (1,500 seats) to be strictly smaller than the
number of applicants (1,800) ensures that each college has a strictly positive cut-
off in equilibrium.

The economy is located in an area within a circle of radius 1. The applicants
are uniformly distributed across the area, and the colleges are evenly located on
a circle of radius 1/2 around the centroid. The Cartesian distance between ap-
plicant i and college ¢ is denoted by d;,.

Applicants are matched with colleges through a serial dictatorship, a special
case of DA. Applicants are asked to submit an ROL of colleges, and there is
no limit on the number of choices to be ranked. Without loss of generality, col-
leges have a priority structure such that all colleges rank applicant i ahead of ¢ if
¢ < ¢. One may consider the order being determined by certain test scores.

To represent applicant preferences over colleges, we adopt a parsimonious ran-
dom utility model without an outside option. As is traditional and more conve-
nient in empirical analysis, we now let the applicant utility functions take any value
on the real line; we continue to use u as a notation for utility functions. That is, ap-
plicant #’s utility from being matched with college ¢ is specified as follows:

w, =B -c+tPo-d,+PBs-Ti-A + By Small, + €,V iand ¢, (E14)

where 8, - ¢is college ¢’s baseline quality, d;, is the distance from applicant ¢’s lo-
cation to college ¢, T; = 1 or 0 is applicant ’s type (e.g., disadvantaged or not),
A, = 1 or0is college ¢’s type (e.g., known for resources for disadvantaged appli-
cants), Small, = 1if college cis small and 0 otherwise, and ¢;,is a type I extreme
value and i.i.d. across ¢and c.

The type of college ¢, A, is 1 if ¢is an odd number; otherwise, A, = 0. The type
of applicant i, T}, is 1 with probability 2/3 among the lowerranked applicants
(2<900); T; = 0 for all > 900. This way, we may consider those with 7; = 1
as the disadvantaged.

The coefficients of interest are (3, 8., Bs, B4), which are fixed at (0.3, —1, 2, 0)
in the simulations. By this specification, colleges with larger indices are of higher
quality, and Small, does not affect applicant preference. The purpose of estima-
tion is to recover these coefficients and therefore the distribution of preferences.

E2.  Data-Generating Processes

Each simulation sample contains an independent preference profile obtained by
randomly drawing {d;, €, J. and T; for all ¢ from the distributions specified above.
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In all samples, applicant scores, college capacities, and college types (A,) are kept
constant.

We first simulate the joint distribution of the 12 colleges’ cutoffs by letting every
applicant submit an ROL, ranking all colleges truthfully. After running the serial
dictatorship, we calculate the cutoffs in each simulation sample. Figure E1 shows
the marginal distribution of each college’s cutoff from the 1,000 samples. Note
that colleges with smaller capacities tend to have higher cutoffs. For example,
college 11, with 75 seats, often has the highest cutoff, although college 12, with
150 seats, has the highest baseline quality.

To generate data on applicant behaviors and outcomes, we simulate another
150 samples with new independent draws of {d;,, €, }, and T; for all i. These sam-
ples are used for the estimation and counterfactual analysis, and in each of them
we consider three types of DGPs with different applicant strategies.

1. TT.—Every applicant submits an ROL of 12 colleges according to her true
preferences. Because everyone finds every college acceptable, this is TT as
defined in our theoretical model.”

2. PIM.—A fraction of applicants omit from their ROLs some of the colleges
with which they are never matched according to the simulated distribution
of cutoffs. For a given applicant, an omitted college may have a high (ex-
pected) cutoff and thus be out of reach; alternatively, an omitted college
may have a low cutoff, but the applicant is always accepted by one of her
more preferred colleges. There are 55% of applicants who omit at least
one college. As applicants with 7; = 1 have lower scores, they are more likely
to omit than those with 7; = 0:61% of T; = 1 drop atleast one college com-
pared with 51% of 7; = 0. Among applicants who are never matched with
any college, we randomly choose some colleges for them to include in their
ROLs.

3. PRM.—Taking the data generated under PIM, we let more applicants to
omit never-matched colleges and also let some of them make PRM. That
is, some applicants omit some of the colleges with which they have a chance
of being matched lower than 30% according to the simulated distribution
of cutoffs. Recall that the joint distribution of cutoffs is only simulated once
under the assumption that everyone is TT. On average, 60% of applicants
drop at least one college.

To summarize, for each of the 150 samples, we simulate the matching game
three times: TT, PIM, and PRM. See table 2 for summary statistics.
E3.  Estimation and Results

With the simulated data, the random utility model described by equation (E14)
is estimated under two different identifying assumptions.

* This is equivalent to the definition of strict TT in Fack, Grenet, and He (2019) when
there are no unacceptable colleges.
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We first rewrite the random utility model (eq. [E14]) as follows:

Ui = Bi-c+ B di,r + 65T - A + By - Small, + €ic
=V, +te,Vi=1,,kandc=1,..,C;

we also define X; = ({d;,, A,, Small},, T;) to denote the observable applicant
characteristics and college attributes; and (8 is the vector of coefficients, 8 =
(B1, Bz, Bs, Ba).

The key for each estimation approach is to characterize the choice probability
of each ROL or each college, where the uncertainty originates from ¢,,, because
the researcher does not observe its realization. In contrast, we do observe the re-
alization of X, submitted ROLs, and outcomes.

E3.1. WIT

Naturally, one may start by a TT assumption, in which every applicant truthfully
ranks every college in her ROL. The fact that applicants rarely rank all available
colleges motivates a weaker version of TT. WI'T can be considered as a truncated
version of TT, entailing two assumptions: (1) the observed number of choices
ranked in any ROL is exogenous to applicant preferences, and (2) every appli-
cant ranks her top preferred colleges according to her preferences, although
she may not rank all colleges. Although WTT is weaker than TT, it is still suscep-
tible to untruthful ROLs from our robustness perspective: the robust equilibrium
constructed in theorem 1 fails WTT.

The submitted ROLs specify a rank-ordered logit model that can be estimated
by maximum likelihood estimation (MLE). We define this as the WTT-based
estimator.

The probability of applicant i submitting R = r' —»* — ... —+fl e R is

Pr(o,(u;,s;) = R | X;;8)
= Pr(w, > o > wpn > w,,V o & {r', 7"} | X85 |oi(ui,s1)| = |R)
x Pr(|o;(u;, s;)| = |R| | Xi;8) .
Under the assumptions that |o;(w;, s;)| is orthogonal to w;, for all cand thate,, is

a type I extreme value, we can focus on the choice probability conditional on
|o;(w, s;)| and obtain

Pr(oi(u;,s;) = R | X;;8; |oi(u;, s:)] = |R|)
= Pr(w, > . > wpe > w, Voo & {r', 7™ | X s |ou(ui, s)| = |R))

11 (L(V))
15{7‘,... ,)"} Ef/hf eXp(Vt}r') ’

where ¢ ,c indicates that ¢’ is not ranked before ¢ in R, which includes c¢ itself
and the colleges not ranked in R.

With a location normalization (e.g., V;; = 0), the model can be estimated by
MLE with the following log-likelihood function:



STABLE MATCHING WITH MISTAKEN AGENTS 313

In Ler(ﬁ | X, {lol(ui’ s")|}i)

=3 > Vi — é > . ln( > exp(V”r))

i=1¢ranked in o, (u,,s;) i=1c¢ranked in o, & o (us)

The WTTbased estimator, 8", is the solution to maxsIn Lyrr(B | X,

{loi(ui, s:)[ ).

E3.2. Stability

The assumption of stability implies that every applicant is matched with her favor-
ite feasible college given the ex post cutoffs. The random utility model can be es-
timated by MLE based on a conditional logit model, where each applicant’s
choice setis restricted to the ex post feasible colleges and where the matched col-
lege is the favorite among all her feasible colleges. If applicants play a regular ro-
bust equilibrium, stability is satisfied asymptotically according to theorem 2. We
define this estimator as the stability-based estimator.

Suppose that the matching is p, which leads to a vector of cutoffs P. With in-
formation on how colleges rank applicants, we can find a set of colleges that are
ex post feasible to i, C(s;, P).

The conditions specified by the stability of u imply the likelihood of applicant ¢
matching with ¢* in C(s;, P):

Pr| ¢* = p(i) = arg max w,, [X;,C(s;, P); 8 | .
ceC(s.P)

Given the parametric assumptions on utility functions, the corresponding
(conditional) log-likelihood function is

k k
InLe(B | X,C(s5:, P)) = > Viuy — Eln( > exp(‘/},#)).
i=1 i=1 ¢eC(s;,P)
The stability-based estimator, B, is the solution to max; In Ly (B | X,C(s;, P)).
A key assumption of this approach is that the feasible set C(s;, P) is exogenous
to 4. It is satisfied when the mechanism is the serial dictatorship.

E3.3. Estimation Results

Table E1 provides summary statistics on the estimates from the WI'T and stability
approaches.

E4. Counterfactual Analysis

We now provide some details on the counterfactual analysis. Recall that we con-
sider the following counterfactual policy: applicants with 7; = 1 are given priority
over those with 7; = 0, while within each type, applicants are still ranked accord-
ing to theirindices. That is, given 7; = T}, iis ranked higher than 7 by all colleges
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if and only if ¢ > 7. The matching mechanism is still the serial dictatorship in
which everyone can rank all colleges.

E4.1. Effects of the Counterfactual Policy

The effects of the counterfactual policy are evaluated by the following four
approaches.

1. Actual behavior (the truth).—We use the true coefficients in utility functions
to simulate counterfactual outcomes. They will be used as a benchmark
against which alternative approaches will be evaluated. In keeping with
our DGPs above, the actual behavior ranges from TT to untruthful report-
ing (see sec. E2). Specifically, DGP TT requires everyone to submit a truth-
ful 12-college ROL; in DGP PIM, some applicants omit their never-matched
colleges; and in DGP PRM, some applicants omit some colleges with which
they have a low chance of being matched.

2. Submitted ROLs—One assumes that the submitted ROLs under the exist-
ing policy are true ordinal preferences and that applicants will submit the
same ROLs even when the existing policy is replaced by the counterfactual.

3. WIT.—One assumes that the submitted ROLs represent top preferred col-
leges in true preference order, and therefore applicant preferences can be
estimated from the data with WITas the identifying assumption. Under the
counterfactual policy, we simulate applicant preferences based on the esti-
mates and let applicants submit truthful 12-college ROLs.

4. Stability—We estimate applicant preferences from the data with stability as
the identifying assumption. Under the counterfactual policy, we simulate
applicant preferences based on the estimates and let applicants submit
truthful 12-college ROLs.

Note that we assume truthful reporting in the counterfactual in the last two ap-
proaches. This is necessary because none of these approaches estimates how ap-
plicants choose ROLs, while we have to specify applicant behavior in counterfac-
tual analysis. This assumption of truthful reporting in the counterfactual analysis
is justified by corollary 2.%

When simulating counterfactual outcomes, we use the same 150 simulated
samples for estimation. In particular, we use the same simulated {e, }. when con-
structing preference profiles after preference estimation. By holding constant
{€;}., we isolate the effects of different estimators.

To summarize, for each of the 150 simulation samples, we conduct 12 differ-
ent counterfactual analyses: 3 (DGPs: TT, PIM, and PRM) x 4 (actual behavior
and three counterfactual approaches: submitted ROLs, WTT, and stability).

* Corollary 2 rests on the uniqueness of stable matching in £ = [n, S, guaranteed by
the full support assumption on 5. While the current priority structure violates full support,
serial dictatorship produces a unique stable outcome and thus validates the corollary for
the current environment.
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E4.2. Performance of the Approaches in Counterfactual Analysis

Taking the counterfactual outcomes based on the actual behavior as our bench-
mark, we evaluate the three approaches from two perspectives: predicting the
policy’s effects on outcomes and on welfare.

Complementing figure 4 for applicants with T; = 1, figure E2 shows the
mispredicted match and predicted welfare effects for applicants with 7; = 0.
The general patterns are the same as in figure 4: WI'T and submitted ROLs pro-
duce biased predictions whenever some applicants are not truthful, while stability
performs well in all DGPs.

Moreover, table E2 (panel A for applicants with 7; = 1 and panel B for those
with 7; = 0) presents detailed statistics on the fractions of applicants being
worse off, better off, and indifferent on the basis of different approaches.
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Fic. E1.—Simulated distribution of cutoffs when everyone is TT. Assuming everyone is
TT, we calculate the cutoffs of all colleges in each simulation sample. The figure shows the
marginal distribution of each college’s cutoff in terms of percentile rank (between 0 [low-
est] and 1 [highest]). Each curve is an estimated density based on a normal kernel func-
tion. A solid line indicates a small college with 75 seats instead of 150. The simulation sam-
ples for cutoffs use independent draws of {d;,, €;} and T
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Fic. E2.—Three approaches to counterfactual analysis: applicants 7; = 0. This figure
shows the averages among 7; = 0 applicants across the 150 samples in each DGP. On av-
erage, there are 1,201 such applicants in a sample. Given a DGP, we simulate an outcome
under the counterfactual policy and compare it with the truth from the actual behavior
(i.e., the true preferences with possible mistakes). A shows the average misprediction rates.
B shows the predicted welfare effects by each approach. It is measured by the difference
between the fractions of winners and losers. See table E2 for more details.

TABLE E1
EsTIMATION USING DIFFERENT APPROACHES: MONTE CARLO RESULTS

QUALITY DisTANCE ~ INTERACTION  SMALL COLLEGE
=3 , = —1 L= -0
DGP AND IDENTIFYING B ) (B. ) (Bs = 2) (Bs )

ASSUMPTION Mean SD Mean SD Mean SD Mean SD

A. Both Approaches Are Consistent

TT:
WTT 30 .00 2.00 .03 —1.00 .03 .00 .02
Stability 30 .01 201 12 -—1.00 .09 .00 .07
B. Only Stability Is Consistent
PIM:
WTT A8 .00 1.22 .04 —-.64 .04 —.07 .02
Stability 30 .01 201 12 —1.00 .09 .00 .07
PRM:
WIT A7 .00 112 .04 —.60 .04 —.06 .02
Stability 29 .02 192 21 -97 .09 —.02 .10
Note.—The table presents estimates (mean and standard deviation across 150 samples)

of the random utility model described in eq. (E14). The true values are (83, B2, 83, 8s) =
(0.3, —1,2,0). The table shows results in the three DGPs with two identifying assumptions,
WTT and stability.
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TABLE E2
WELFARE E¥FrFECTS OF COUNTERFACTUAL PoLICY (PERCENTAGE POINTS)

WOoRsE OFF  BETTER OFF  INDIFFERENT

DGP AND APPROACHES TO COUNTERFACTUAL Mean SD Mean SD Mean SD

A. Applicants with 7, = 1

TT:
Submitted ROLs 0 0 91 1 9 1
WTT 0 0 91 1 9 1
Stability 0 0 91 1 9 1
Actual behavior (truth) 0 0 91 1 9 1
PIM:
Submitted ROLs 0 0 78 2 22 2
WTT 0 0 88 1 12 1
Stability 0 0 91 1 9 1
Actual behavior (truth) 0 0 91 1 9 1
PRM:
Submitted ROLs 0 0 72 2 28 2
WTT 0 0 87 1 13 1
Stability 0 0 91 1 9 1
Actual behavior (truth) 0 0 91 1 9 1
B. Applicants with 7; = 0
TT:
Submitted ROLs 68 2 0 0 32 2
WTT 68 2 0 0 32 2
Stability 67 2 1 0 32 2
Actual behavior (truth) 68 2 0 32 2
PIM:
Submitted ROLs 56 2 0 0 44 2
WTIT 53 2 9 1 37 2
Stability 67 2 1 0 32 2
Actual behavior (truth) 68 2 0 0 32 2
PRM:
Submitted ROLs 52 2 1 0 47 2
WTT 52 2 10 1 38 2
Stability 66 3 1 1 32 2
Actual behavior (truth) 67 2 0 0 32 2

Note.—The table presents the estimated effects of the counterfactual policy (giving
T; = 1 applicants priority in admission) on applicants with 7; = 1 (panel A) and those
with 7; = 0 (panel B). On average, there are 599 applicants with 7; = 1 (SD = 14) and
1,201 applicants with 7; = 0 (SD = 14) in each simulation sample. The table shows results
in the three DGPs with four approaches. The one using submitted ROLSs assumes that sub-
mitted ROLs represent applicant true ordinal preferences, WI'T assumes that every appli-
cant truthfully ranks her top K; (1 < K; < 12) preferred colleges (K;is observed), and sta-
bility implies that every applicant is matched with her favorite feasible college, given the ex
post cutoffs. The truth is simulated with the possible mistakes in each DGP. The welfare
change of each applicant is calculated in the following way: we first simulate the counter-
factual match and investigate whether a given applicant is better off, worse off, or indiffer-
ent by comparing the two matches according to estimated/assumed/true ordinal prefer-
ences. In each simulation sample, we calculate the percentage of different welfare
change; the table then reports the mean and standard deviation of the percentages across
the 150 simulation samples.

317



318 JOURNAL OF POLITICAL ECONOMY MICROECONOMICS

References

Abdulkadiroglu, A., N. Agarwal, and P. A. Pathak. 2017. “The Welfare Effects of
Coordinated Assignment: Evidence from the New York City High School
Match.” A.E.R. 107 (12): 3635-89.

Abdulkadiroglu, A., Y.-K. Che, and Y. Yasuda. 2011. “Resolving Conflicting Pref-
erences in School Choice: The ‘Boston Mechanism’ Reconsidered.” A.E.R.
101 (1): 399-410.

. 2015. “Expanding ‘Choice’ in School Choice.” American Econ. J. Microeco-
nomics 7:1-42.

Abdulkadiroglu, A., P. A. Pathak, and A. E. Roth. 2009. “Strategy-Proofness versus
Efficiency in Matching with Indifferences: Redesigning the NYC High School
Match.” A.E.R. 99 (5): 1954-78.

Abdulkadiroglu, A., and T. Sonmez. 2003. “School Choice: A Mechanism Design
Approach.” A.E.R. 93:729-47.

Agarwal, N. 2015. “An Empirical Model of the Medical Match.” A.E.R. 105 (7):
1939-78.

Agarwal, N., and P. Somaini. 2018. “Demand Analysis Using Strategic Reports:
An Application to a School Choice Mechanism.” Econometrica 86 (2): 391-444.

Akyol, S. P, and K. Krishna. 2017. “Preferences, Selection, and Value Added: A
Structural Approach.” European Econ. Rev. 91:89-117.

Artemov, G., Y.-K. Che, and Y. He. 2020. “Strategic Mistakes: Implications for Mar-
ket Design Research.” Working paper.

Azevedo, E. M., and E. Budish. 2018. “Strategy-Proofness in the Large.” Rev. Econ.
Studies 86 (1): 81-116.

Azevedo, E. M., and J. D. Leshno. 2016. “A Supply and Demand Framework for
Two-Sided Matching Markets.” J.P.E. 124:1235-68.

Bucarey, A. 2018. “Who Pays for Free College? Crowding out on Campus.” Work-
ing paper.

Calsamiglia, C., C. Fu, and M. Giiell. 2020. “Structural Estimation of a Model of
School Choices: The Boston Mechanism versus Its Alternatives.” JP.E. 128 (2):
642-80.

Che, Y-K., D. Hahm, and Y. He. 2022. “Leveraging Uncertainties to Infer Prefer-
ences: Robust Analysis of School Choice.” Working paper.

Che, Y-K., and F. Kojima. 2010. “Asymptotic Equivalence of Probabilistic Serial
and Random Priority Mechanisms.” Econometrica 78 (5): 1625-72.

Che, Y-K,, and O. Tercieux. 2019. “Efficiency and Stability in Large Matching
Markets.” [PE. 127 (5): 2301-42.

Chen, L., and J. S. Pereyra. 2019. “Self-Selection in School Choice.” Games and
Econ. Behavior 117:59-81.

Chen, Y,, and T. Sonmez. 2002. “Improving Efficiency of On-Campus Housing:
An Experimental Study.” A.E.R. 92:1669-86.

Chiappori, P-A., and B. Salanié. 2016. “The Econometrics of Matching Models.”
J. Econ. Literature 54 (3): 832—61.

Combe, J., O. Tercieux, and C. Terrier. 2022. “The Design of Teacher Assign-
ment: Theory and Evidence.” Rev. Econ. Studies 89 (6): 3154-222.

Deb, J., and E. Kalai. 2015. “Stability in Large Bayesian Games with Heteroge-
neous Players.” J. Econ. Theory 157:1041-55.

Dreyfuss, B., O. Heffetz, and M. Rabin. 2019. “Expectations-Based Loss Aversion
May Help Explain Seemingly Dominated Choices in Strategy-Proof Mecha-
nisms.” Working paper.

Dubins, L. E., and D. A. Freedman. 1981. “Machiavelli and the Gale-Shapley Al-
gorithm.” American Mathematical Monthly 88:485-94.




STABLE MATCHING WITH MISTAKEN AGENTS 319

Fack, G, J. Grenet, and Y. He. 2019. “Beyond Truth-Telling: Preference Estima-
tion with Centralized School Choice and College Admissions.” American Econ.
Rev. 109 (4): 1486-529.

Fox, J. T. 2009. “Structural Empirical Work Using Matching Models.” New Pal-
grave Dictionary Econ.

Fox,]. T., and P. Bajari. 2013. “Measuring the Efficiency of an FCC Spectrum Auc-
tion.” American Econ. J. Microeconomics 5 (1): 100-146.

Fudenberg, D., and J. Tirole. 1991. Game Theory. Cambridge, MA: MIT Press.

Gale, D., and L. S. Shapley. 1962. “College Admissions and the Stability of Mar-
riage.” American Mathematical Monthly 69:9-15.

Grigoryan, A. 2022. “On the Convergence of Deferred Acceptance in Large
Matching Markets.” Working paper.

Hillsten, M. 2010. “The Structure of Educational Decision Making and Conse-
quences for Inequality: A Swedish Test Case.” American J. Sociology 116 (3):
806-54.

Hassidim, A., A. Romm, and R. I. Shorrer. 2020. “The Limits of Incentives in Eco-
nomic Matching Procedures.” Management Sci. 67 (2): 951-63.

He, Y. 2017. “Gaming the Boston School Choice Mechanism in Beijing.” Working
paper.

He, Y., S. Sinha, and X. Sun. 2021. “Identification and Estimation in Many-to-
One Two-Sided Matching without Transfers.” Working paper.

Judd, K. L. 1985. “The Law of Large Numbers with a Continuum of IID Random
Variables.” J. Econ. Theory 35 (1): 19-25.

Kalai, E. 2004. “Large Robust Games.” Econometrica 72:1631-65.

Kirkebgen, L. J. 2012. “Preferences for Lifetime Earnings, Earnings Risk and
Nonpecuniary Attributes in Choice of Higher Education.” Discussion Paper
no. 725, Statistics Norway.

Li, S. 2017. “Obviously Strategy-Proof Mechanisms.” A.E.R. 107 (11): 3257-87.

Liu, Q., and M. Pycia. 2016. “Ordinal Efficiency, Fairness, and Incentives in
Large Markets.” Working paper.

Matejka, F., and A. McKay. 2015. “Rational Inattention to Discrete Choices:
A New Foundation for the Multinomial Logit Model.” A.E.R. 105 (1): 272—
98.

McDiarmid, C. 1989. “On the Method of Bounded Differences.” In Surveys in
Combinatorics, 1989: Invited Papers at the Twelfth British Combinatorial Conference,
edited by J. Siemons, 148-88. Cambridge: Cambridge Univ. Press.

McKelvey, R., and T. Palfrey. 1995. “Quantal Response Equilibria for Normal
Form Games.” Games and Econ. Behavior 10:6-38.

Meisner, V., and J. von Wangenheim. 2022. “Loss Aversion in Strategy-Proof
School-Choice Mechanisms.” Working paper.

Miralles, A. 2008. “School Choice: The Case for the Boston Mechanism.” Work-
ing paper.

Pathak, P. A., and T. Sonmez. 2008. “Leveling the Playing Field: Sincere and So-
phisticated Players in the Boston Mechanism.” A.E.R. 98 (4): 1636-52.

Pycia, M. 2019. “Evaluating with Statistics: Which Outcome Measures Differenti-
ate among Matching Mechanisms?” Working paper, Univ. Zurich.

Rees-Jones, A. 2017. “Suboptimal Behavior in Strategy-Proof Mechanisms: Evi-
dence from the Residency Match.” Games and Econ. Behavior 108:317-30.

Roth, A. E. 1982. “The Economics of Matching: Stability and Incentives.” Math-
ematics of Operations Res. 7:617-28.

. 1991. “A Natural Experiment in the Organization of Entry-Level Labor

Markets: Regional Markets for New Physicians and Surgeons in the United

Kingdom.” A.E.R. 81 (3): 415—40.




320 JOURNAL OF POLITICAL ECONOMY MICROECONOMICS

Roth, A. E., and E. Peranson. 1999. “The Redesign of the Matching Market
for American Physicians: Some Engineering Aspects of Economic Design.”
A.E.R. 89 (4): 748-80.

Shorrer, R. L., and S. Sévagé. 2020. “Obvious Mistakes in a Strategically Simple
College-Admissions Environment.” Working paper.

Sims, C. A. 2003. “Implications of Rational Inattention.” J. Monetary Econ. 50 (3):
665-90.

Veski, A., P. Bir6, K. Poder, and T. Lauri. 2017. “Efficiency and Fair Access in Kin-
dergarten Allocation Policy Design.” J. Mechanism and Inst. Design 2 (1): 57—
104.



