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Abstract

We investigate the following inverse problem: starting from the acoustic wave equation,
reconstruct a piecewise constant passive acoustic source from a single boundary temporal
measurement without knowing the speed of sound. When the amplitudes of the source are
known a priori, we prove a unique determination result of the shape and propose a level set
algorithm to reconstruct the singularities. When the singularities of the source are known a
priori, we show unique determination of the source amplitudes and propose a least-squares
fitting algorithm to recover the source amplitudes. The analysis bridges the low-frequency
source inversion problem and the inverse problem of gravimetry. The proposed algorithms
are validated and quantitatively evaluated with numerical experiments in 2D and 3D.

Keywords Inverse gravimetry - Acoustic source imaging - Inversion of sound speed -
Level-set method - Inverse problem

Mathematics Subject Classification 65N21 - 65N06 - 15A23 - 65F50 - 65R10

Dedicated to Prof. Stan Osher on the occasion of his 80th birthday.

P4 Jianliang Qian
jqian@msu.edu

Guanghui Huang
guanghui.huang @pgs.com

Yang Yang
yangy5 @msu.edu
I Petroleum Geo-Services, Houston, TX 77079, USA
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

Department of Computational Mathematics, Science and Engineering, Michigan State University,
East Lansing, MI 48824, USA

Published online: 29 August 2023 ) Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-023-00291-9&domain=pdf
http://orcid.org/0000-0003-3058-0096

Communications on Applied Mathematics and Computation

1 Introduction

Passive acoustic source imaging is an exploration technique that uses naturally generated
acoustic signals to image the interior of objects of interest. This technique has broad appli-
cation in the areas of seismic and medical imaging. In seismology, passive seismic sources
such as micro-earthquakes provide crucial information for reservoir monitoring and struc-
tural imaging. For instance, the localization of micro-seismic events is useful for under-
standing the extension of hydraulic fracturing [20]. In medical imaging, emerging cou-
pled-physics modalities such as Photo-Acoustic Tomography (PAT) and Thermo-Acoustic
Tomography (TAT) enable high-contrast high-resolution in-vivo imaging by triggering
internal passive acoustic sources [51].

This paper concerns the inverse problem of imaging a passive acoustic source from a
single measurement of the temporal wave field in a medium where the speed of sound
information is unavailable. Specifically, letting f(x) be a spatially varying function, we
consider the acoustic wave propagation described by the following equation in the weak
sense:

1 0%t x)

Ax) o2 A, x) = §(nf(x) in RXR", (1)

(e, %), = 0. )

Here &1 = (2, x) denotes the acoustic wave field generated by the spatially-varying source
f(x), c(x) is the speed of sound (SOS), and 6(¢) is the temporal Dirac-delta function. This
equation models the propagation of acoustic waves generated by the instantaneous source f
in the free space RY. Let £ be the object of interest to be imaged. We assume that the wave
is measured by transducers placed everywhere along the boundary 02 to yield the tempo-
ral data

{i(t,z): (t,2) € R X 02}. 3)

We are interested in imaging the source f from the data (3) in the absence of knowledge
of the SOS c. This inverse problem arises naturally in PAT and TAT; see Remark 1 for
detailed discussion.

Other Works Inverse problems in passive acoustic source imaging have been exten-
sively studied in the literature of seismic and medical imaging. The strategies can be clas-
sified into two categories based on the knowledge of SOS. When the SOS is known, this is
a linear inverse problem and has been well understood. In particular, under a non-trapping
condition for the SOS, it has been established that the source can be uniquely and stably
determined [41]. In this case, effective numerical methods have been developed for source
reconstruction. Typical algorithms include time reversal [2, 3, 5, 11, 19], Neumann series
[6, 37, 41], and least squares fitting [40] with multi-frequency marching [4]. These meth-
ods rely on the knowledge of the SOS in an essential way to back propagate the boundary
wave traces to retrieve the source.

When the SOS is unknown, joint reconstruction of the source and SOS pair (c, f) has
been proposed in the literature. This problem raises more challenges, as the data (3)
is nonlinear and non-convex as a functional of the SOS c. In the context of PAT and
TAT, the linearized joint reconstruction problem is shown to be unstable in any scale of
Sobolev spaces at sufficiently smooth pairs (c, f) [42]. For nonlinear joint reconstruction,

@ Springer



Communications on Applied Mathematics and Computation

unique determination has been shown only for special pairs when T = oo. These include
radially symmetric SOS’s in odd dimensions [8], and sources and/or SOS’s that depend
on fewer degrees of freedom [21, 30]. Numerical algorithms based on least-squares fit-
ting have been developed for the joint reconstruction problem [12, 33, 38, 43, 48, 55].
A majority of these algorithms make use of non-convex optimizations to alternatively
update the source and SOS. In each iteration, the SOS is updated via the full waveform
inversion using the estimated source, and then the source is updated based on the esti-
mated SOS using time reversal or back-propagation. On the other hand, a recent algo-
rithm in [38] takes a different data-splitting approach for the joint reconstruction. The
idea is to first isolate the information of the SOS from the source by taking the imagi-
nary part of the data in the frequency domain. This results in a sourceless Helmholtz
equation with known boundary data, in which the full waveform inversion is exploited
to reconstruct the SOS; the source then can be acquired from time reversal or back-
propagation. More results regarding joint reconstruction using other approaches can be
found in [1, 39, 45, 53, 54]. See [9, 22-24] for recovering SOS by Eikonal-based travel-
time tomography and [27] for recovering SOS and mass density contrast by joint inver-
sion of traveltime and gravity data.

Our Contribution In this paper, we attempt to tackle the source imaging problem in
a way different from the joint reconstruction: we are interested in recovering the source
in the absence of the SOS information; that is, we consider passive acoustic source
imaging in an unknown medium, where the spatial distribution of SOS is either inac-
cessible or costly to acquire. Scenarios where this situation occurs include earthquake
localization and PAT/TAT in complex environment where the medium parameters are
not fully available. In these applications, the objective is to identify the source but not
the SOS. While using the SOS improves the accuracy of source imaging, it unavoid-
ably gives rise to additional computational overhead, making source imaging less effi-
cient. In contrast, the proposed method separates information of the source from that of
the SOS, allowing standalone reconstruction of the source. See [38] for a related work.
It is worth mentioning that our theoretical analysis shows that certain SOS’s can be
recovered independent of the source as well. This leads to new constructive methods for
joint reconstruction. However, the resulting SOS inversion is less stable than the source
inversion, posing more challenges to numerical implementations.

The sources of primary interest in this paper are the piecewise constant ones. Given
the amplitudes of such a source, we prove that the singularities (hence the source itself)
are uniquely determined. In this case, an algorithm based on the level set method [34,
35] is proposed for singularity reconstruction. Although our proof and numerical algo-
rithm are based on the low-frequency assumption, the imaging resolution maybe high,
which is not limited to the well-known diffraction limit (half of wavelength). This is
mainly because we rely on the level-set representation of unknown objects, leading
to a nonlinear geometric-domain inverse problem which may achieve high resolution.
In addition, our algorithm is very stable with respect to the random noise. Numerical
experiments are conducted in 2D and 3D to quantitatively evaluate the feasibility of
the algorithm. On the other hand, given the singularities, we prove that the amplitudes
(hence the source itself) are uniquely determined. These proofs provide a link to bridge
the multi-frequency source inversion problem and another celebrated inverse problem
known as the inverse gravimetry problem.

Paper Organization The paper is organized as follows. Section 2 discusses the
formulation of the problem in the frequency domain, where we apply the low fre-
quency asymptotics of the Helmholtz fundamental solution to obtain an expansion of
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the gradient of the forward wave solution. Section 3 utilizes the expansion to estab-
lish connections with the inverse problem of gravimetry, and consequently proves the
unique identifiability of piecewise constant sources and SOS’s. Reconstruction algo-
rithms based on the level set method are proposed and analyzed. Section 4 is devoted
to the implementation and validation of the proposed reconstruction algorithms. Sev-
eral numerical experiments in 2D and 3D are demonstrated to quantitatively evaluate
the algorithmic accuracy and effectiveness using data from simulated photoacoustic
tomography.

2 Frequency Domain Formulation and Low Frequency Asymptotics

While the problem formulation (1) and (3) is in the time domain, our method is designed
in the frequency domain. Thus, we will take the temporal Fourier transform of the acoustic
equation (1) to obtain the Helmholtz equation. The transformed data (3) will yield bound-
ary data of the Helmholtz solution at all frequencies. A low-frequency asymptotic expan-
sion is then exploited to isolate the source f from the SOS. We remark that the idea of using
low-frequency asymptotic expansion to jointly determine multiple wave parameters goes
back to [30]; see also [21].
We will make the following assumptions on the unknown parameters.

Al: the source fis compactly supported inside £2; we denote the support by £2, C £2.
A2:the SOS c differs from a constant background SOS ¢, only on a compact subset of €.
In other words, if we define the relative squared slowness contrast function

2

rX) 1= % 1, 4)

Ax)

and denote its support by £2,, then 2, C Q.
A3:the SOS c is sufficiently regular so that the forward problem (1) and (2) is well-posed.

2.1 Frequency Domain Formulation

In (1), we take the temporal Fourier transform of u(w, x) := f_t:o fi(t, x)ei®'dz. The inverse

Fourier transform is given by #i(f,x) = 2—111 /72 (@, x)e'do. The acoustic wave equa-
tion (1) becomes the Helmholtz equation:

—w—zu—Au—f(x) in R? 5)
(%) '
subject to the Sommerfeld condition |X|%] <$u - i((‘;)u> — 0 as |x|] = +o0. Under the
€o

Fourier transform, the temporal data (3) is transformed to the frequency-domain data
{ulw,z): w €ER, z € 02}. (6)

The inverse problem formulated in the frequency domain seeks to image f in (5) from the
multi-frequency data (6).
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We can utilize the boundary value (6) to obtain the full Cauchy data on d€2. Indeed, as
S(x) and ¢(x) — ¢((x) are compactly supported in €2, the Helmholtz equation (5) restricted
to the exterior domain R?\ 2 reads

?

3

u—Au=0 in RA\Q

subject to the Sommerfeld condition at infinity. Given the data (6), we can solve the bound-
ary value problem in R?\Q to obtain the boundary gradient data:

{(Vyu(w,z): w €R, z € 002}. @)

From now on, we will assume the availability of both the boundary data (6) and the bound-
ary gradient (7), which put together are equivalent to the Cauchy data at 042.

Remark 1 An application of the inverse problem in consideration is to PAT and TAT.
PAT and TAT are emerging multi-wave modalities that combine multiple types of waves
to achieve high-contrast, high-resolution imaging. In PAT/TAT, electromagnetic radiation
such as laser/microwave is sent to illuminate biological tissue to generate instantaneous
acoustic sources inside biological tissue through the photoacoustic effect. Let p(t, x) be the
acoustic pressure at time 7 and location x, and the variation of the acoustic pressure in PAT
and TAT satisfies the equation [49, 50, 52]:
L PrX _ Ap(rx) =0 in (0, +00) X RY,

c2(x) of
P(O: X) = Po(X)’ (8)
£(0,x) = 0.

Here py(x) is the spatial distribution of the instantaneous acoustic source. The PAT and
TAT measurement is

{p(t,z): (t,z) € [0,T] X 082}, 9)

where T > 0 is the duration of measurement. The inverse problem in PAT and TAT aims to
image the initial source p, from the boundary measurement (9).

We can transform the PAT/TAT model (8) and data (9) as follows. First, defining
2(t,x) 1= [ p(r,x)dz, ¥ satisfies

1 0MEX) A s _ . d
S o —ANLX) =0 in (0, +00) X R,

fng, x) =0, (10)
£10,%) = py.

Next, let &t = ii(t, x) be the zero extension of » to R x R?. Integration by parts using (10)
shows that i1 satisfies the conditions (1)-(2) in the weak sense with f(x) := i% As a
result, our method provides a numerical algorithm to image the ratio of the source p, and

the underlying velocity ¢ in PAT/TAT in the absence of knowledge of p, and c.

Introduce the reference wave number k := (2 and write the Helmholtz equation (5) as
0
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(A + K= —f — K*ru.

Recall that the supports of f and r (see (4) for the definition of r) are denoted by €2, and
£, respectively, with £, C £ and 2, C . The celebrated Lippmann-Schwinger equation
gives

u(k,x) = / G(x Y (y)dy + k* / G (%, V)r(yuk, y)dy, x € R\, U LQ,). (11)
Q Q,

Here G,(x,y) is the fundamental solution of the Helmholtz equation, that is, (A + k%)
‘Gr(X,y) = —6y(x) in R<. It can be explicitly represented as

THDkix—y|) in2D,
G,(x,y) = { 4eik|qu\ . (12)
por— in 3D,

where H(()l) is the Hankel function of the first kind of order 0. The solution u is known as
the scattering wave in literature.

Remark 2 Note that the above derivation for d = 3 extends easily to higher dimensions
d > 3; see [30]. The discussion in this paper is restricted to d = 2,3 so as to be consistent
with the computational work shown in later sections.

2.2 Low Frequency Asymptotics

We will study the asymptotic expansion of u(k,x) in (11) near k = 0. This is motivated by
the observation that only the first integral in (11) involves O(1) and O(k)-terms, and thus
can be utilized to isolate information regarding fin the absence of knowledge of c.

Henceforth, we write G (X, y) for the fundamental solution of the Laplace equation, that
is, AGy(x,y) = —6,(x) in R“. The explicit representation is

1 .

——In(|lx—y|) in2D,

Gy(x,y) = { T 3D (13)
4nfx—yl| ’

Then the integral representation of the Laplace solution with the source function f(x)
is given by uy(x) = /IRd Gy(x,y)f(y)dy. It is well known that uy(X) serves as an approxi-
mate solution of the scattering solution to (5) at the zero frequency k = 0 (or equivalently,
o = 0). Next, in order to find higher order approximations, we will derive the asymptotic
expansion of the scattering solution u(k, X) near k = 0 using its analyticity with respect to
the frequency k.

Lemma 1 Let u(k,x) be the scattering solution of (5) with k = Cﬂ For a sufficiently small
0
wave number k, we have the following low frequency expansion:

Vo (X) + k2 (V. (%) + iV 1 (X)) + O(k* In(k)) in 2D,

V. it(%) + K2V, (%) + iV, x) + 0k in3p, 1Y)

V,uk,x) = {

which holds uniformly for X € 0£2. Here the functions u, -+ ,u3 can be explicitly repre-
sented in terms of f and c. In particular, we have in 2D,
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nm@=/vamwwm (15)

2
Vitty(x) = —% /Q (x = y)f (y)dy + u, /Q Vi Go(x. )r(y)dy. (16)

' ,
In 3D, we have

mmm:/Vﬁwwﬂwm (17)

2
Vyu3(x) = —é /Q (x =y (ydy + u, /!2 Vi Go(x, y)r(y)dy. (18)

, ,

Proof We first consider the three dimensional case. Suppose the scattering solution u(k, x)
admits an expansion

(@, X) = ug(X) + ik (X) + k215 (X) + i35 (x) + - (19)

As the fundamental solution G (x, y) has the following expansion [7]:
1 K2 ik
G (x, =—(1+'k -yl - =x-y* - —|x- 3>+0k4,
(X, y) yrE— iklx -yl = 5 Ix=yI" = =[x -l &, (20)

we can insert these expansions of # and G, into the Lippmann-Schwinger equation (11) and
compare the orders of k to obtain

up(x) = /Q Go(x, y)f (y)dy, Q1)
f
u®=i/ﬂMy
1 i Jo ; (22)
uy(X) = - L / Ix —ylf(y)dy + / Go(X, y)r(y)uy(y)dy, (23)
8 Q Q,

uy(x) = —ﬁ /Q f Ix — yI’f(y)dy + /Q r Go(x, Y)r(y)u,(y)dy + ﬁ /Q , F(Y)ug(y)dy.

(24)
Taking the gradient of these functions yields the desired expansion in 3D as well as the
representations (17)—(18). Note that V,u, = 0 since u, is constant.
Next, we consider the two dimensional case. Let the scattering solution u(w, X) be of the
form
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u(k, x) = iio(x) + iku, (X) + k215 (X) + -~ . (25)

In 2D, the fundamental solution G,(x, y) has the following expansion [7]:

. . .
G(x,y) = — ﬂ(ln(lx —yD+In 7+ C) + 411 _ %kﬂx —yP
26)
2lx — |2 (
+ [x -yl

<ln(|x —yh+mEsc - 1) + O k),
8w 2

where C, = 0.577 211 --- is Euler’s constant. Similar to the three dimensional case, we plug
both (25) and (26) into (11) to yield

. 1 k
i (X) = uy(X) — > (ln >+ C,) /Q jf(y)dy, 27
u(x) = / f(y)dy, 28
1 4 Qf ( )

)
500 =/Qf DI (i =y +1n & + ¢, = 1)ray

I kx—yl | 29)
-/ (=57 + ) + 3rom oy,
i (x) = / XYy + / Go(% r¥uy (¥)dy
Q, 30)
- —(1n5+c ) [y + 5 [ rmmay
2\ 2 Q, ! 4 /o 0 ’

where uy(x) 1= /Qf Gy (x, y)f (y)dy = —i /Qf In(|x — y|)f (y)dy, and ) and u, denote the

real part and the imaginary part of u,, respectively. Taking the gradient of these functions
yields the desired expansion in 2D as well as the representations (15)—(16). Note that
Vg = Vil by the definition of .

Remark 3 Given the explicit forms of u,, u;, u,, and u;, the following conclusions are

straightforward in 3D.

i. We take the divergence of (17) to obtain

where y(£2() is the characteristic function of £2,. Consequently, if ¢ is a harmonic
function in €2, that is, Ag = 0 in £2, then

- / Pf)dx = / () Aty (x)dx = / (0@, 10(2) — 9, 9@ (@) ds
Q[ Q 02
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As the boundary values and normal derivatives of ¢ and u, are known, one can
determine the integral on the left-hand side. This recovers [30, Theorem 2.1].
ii. We take the divergence of (18) to obtain

1
Aus(x) = i / fydy — u r(x) = —u; (1 + r(x)).
TJo
Consequently, if @ is a harmonic function in £2, that is, A = 0 in £, then
—u, /(1 + r(x))p(x)dx = / PX)Aus(x)dx = / ((p(z)avu3(z) - dv(p(z)u3(z))dsz.
Q Q 00

As the boundary values and normal derivatives of ¢ and u; are known, one can deter-
mine the following integral if the constant u; # 0:

1
1+ rx x)dx = 2 x)ds,,
/Q( X)) 0/ch<x)(”( )ds,
where we have used the definition of r(x), (4). As the background constant velocity
¢ 18 known, this recovers [21, Theorem 1.1].
These results can be proved in 2D likewise when u;(X) is replaced by ué(x).

3 Uniqueness and Reconstruction of Piecewise Constant Sources
and Velocities

In the following sections, we will be concerned with reconstruction of piecewise constant
sources and velocities. For general sources and velocities (i.e., not necessarily piecewise
constant), we believe that the reconstruction may yield a piecewise constant approximation
that corresponds to the data due to some equivalent source, since the ultra-low frequency
assumption renders our current inverse problem close to the regime of inverse source
problems of gravimetry. This subtle point can be seen from some examples shown in [26,
32], which have treated data arising from the setup which does not satisfy the required
assumptions of uniqueness theorems; our experience in inverse source problems of gravim-
etry [32] and magnetics [26] indicates that our level-set based algorithms will yield some
reconstruction results corresponding to some equivalent sources which do satisfy the
assumptions needed for the uniqueness theorems to hold.

3.1 The Inverse Problem of Gravimetry

We recall the inverse problem of gravimetry in this subsection and point out its connection with
our problem. Let g(x) be a mass distribution that is compactly supported inside a domain £2,
and the gravitational field U(x) generated by g satisfies the Poisson equation (d = 2, 3)

AU(®X) = —g(X) in RY
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with the condition that U(x) — 0 as |x|] — oo. The inverse problem of gravimetry concerns
reconstruction of the distribution g(x) from the resulting gravitational force V,U(x) meas-
ured at the boundary 02. Using the fundamental solution G,(x,y) of the Laplacian, the
gravitational force admits the representation

V. U(x) = / Vi Go(x, y)g(y)dy.
Q

This problem was formulated by Laplace, and the first results were obtained by Stokes
in the 1860s and Herglotz in 1910s [10]. In general, g(x) cannot be uniquely determined
by the boundary gravitational force V, U|,q, as the former has more degrees of freedom
than the latter. On the other hand, uniqueness and stability results have been established for
some special classes of functions g(x) under suitable assumptions. Detailed analysis of the
problem and survey of more recent results are available in the books [15, 16].

In particular, we consider the function g(x) which is piecewise constant of the form

N
gx) =) gx(2), G1)
j=1

where g; is a constant, {£2;}’s are disjoint subdomains with smooth boundary such that

UN 1£2; C £2, and y(£2)) is the characteristic function of £2;. If the amplitudes g;’s are known
a pr10r1 then the subdomalns £2;’s can be uniquely determlned We record this uniqueness
result due to Isakov [15, Theorem 3.1.1].

Theorem 1 [15, Theorem 3.1.1] Suppose the domain 2 consists of multiple star-shaped
subdomains £2; with respect to their centers of gravity, and g(X) takes a constant value g;
that is known a priori on each subdomain £2;. Under these assumptions, all the subdomains
£2;’s are uniquely determined by the boundary gravimetric data V, U(X)| 0.

On the other hand, if the subdomains .Qj’s are known a priori, Isakov proved that the
constant amplitudes g;’s can be uniquely determined [15, Theorem 3.3.1].

Theorem 2 [15, Theorem 3.3.1] Suppose the domain 2 consists of multiple connected
subdomains £2; with smooth boundary, and g(X) takes a constant value g; on each subdo-
main §;. If ©;’s are known a priori, then all the values g;’s are uniquely determined by the
boundary gravimetric data V,U(X)| 0.

3.2 Uniqueness of Piecewise Constant Sources and Velocities
Combining Theorem 1, Theorem 2, and the representations (15) and (17), we obtain the
following uniqueness result for the reconstruction of piecewise constant sources without

the velocity information if the source amplitudes are known a priori.

Theorem 3 (Identification of piecewise constant sources) Let the source function f(X) be a
piecewise constant function of the form
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Ny
fO0 =Y fa(p)
Jj=1

with disjoint connected supports £2;.
]

(i) If the subdomains Qf’s are star-shaped with respect to their centers of gravity and

N,
the constant amplitudes f; are known, then the sets { Qf ).t | are uniquely determined.
@i1) If the subdomains Qf s are known, then the constant amplztudes Jf; are uniquely

determined.

Proof Let u(k, x) be the Helmholtz solution of (5) with k = Cﬂ By Lemma 1, we have
0

}(im0 Vu(k,x) = Vi uy(x) = / Vi Go(x, y)f (y)dy, x € dQ,

Q
in either 2D or 3D. Note that the left-hand side lim,,_,, V u(w, X) can be computed using
the boundary Cauchy data of u(w, x). If all the subdomains .Qf are star-shaped with respect
to the centers of gravity and f’s are given, Theorem 1 asserts that the subdomains {.Qf} S
can be uniquely determined. If the subdomains {Qf/} s are given, Theorem 2 asserts that
the amplitudes f; can be uniquely determined.

The idea can be further extended to uniquely determine a piecewise constant slow-
ness contrast r(x) in the absence of the knowledge of the source f(x).

Theorem 4 (Identification of piecewise constant velocities) Suppose the unknown source f
satisfies f Q f(y)dy # 0. Let c(x) be a piecewise constant velocity of the form

N,
M=+ ) Q)
j=1

with disjoint connected supports S2.. Here, ¢y is a known background velocity and ¢ > 0
J
everywhere.

(1) Ifthe subdomains £2,’s are star-shaped with respect to thelr centers of gravity and
the constant amplltudes Q.  are known, then the sets {£2, } are uniquely deter-
mined.

(1) If the subdomains .QC,’s are known, then the constant amplitudes .QC/ are uniquely
determined.

Proof Given the piecewise constant velocity, the slowness contrast
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c2 Ne Cf
F=—2_1= E rix(Q,), ri= ———
2 L e
Jj=1 0 j

is piecewise constant as well. Let u(k, x) be the Helmholtz solution of (5) with k = <.
)

First, we prove the statements in 3D. By Lemma 1, we have for x € 02 that
.1
lim aa,i(v,(u)(x) = V,u3(x)

_%/ (X_Y)f(Y)dny”l/ V,Gy(x,y)r(y)dy in3D.
e Q,

(32)
Note that the left-hand side of (32) is known from the data for x € €. For the first term on
the right-hand side, as —Auy = f y(£2;), we apply the Green’s Theorem to obtain

[ o weiy== [ (v o Jis,

which is known from the data. Here v denotes the exterior normal vector field to the bound-
ary 0€2,,. For the second term on the right-hand side of (32), we use the definition of u, and
integration by parts:

_ 1 __1
m= /Q ff(y)dy— y / Auy(y)dy
1

d 0
- _* ds. = — L 1 2wk, z)ds, ,
A Js0 6vu0(z) % 47 k20 00 dvu( 2)ds,

which is known from the data. Therefore, we can compute the integral
/ Vi Go(x, y)r(y)dy, X € 09Q.
Q,

This is another inverse problem of gravimetry for r(x). Under the assumption of the theo-

rem, Theorem 1 and Theorem 2 imply that the piecewise constant function r(x) can be

uniquely determined. The conclusion follows since ¢ = L—O

The proof in 2D is similar: we use (16) in Lemma 1 1nstead to obtain for x € 92 that
.1 ;
lim Ea,f Im(V,u)(x) = Vb (x)

=—= [ x=y)f(ydy+u, / VGyx,y)r(y)dy in2D.
Q Q,

(33)
The rest of the proof is identical to the three dimensional case.
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3.3 Reconstruction Algorithm

Note that Theorem 3 ensures the uniqueness of piecewise constant sources regardless of the
velocity information, and Theorem 4 ensures the uniqueness of piecewise constant slow-
ness contrast functions regardless of the source information. In this section, we will provide
numerical algorithms to reconstruct the source and velocity. For the source, we assume that
it is piecewise constant with known amplitudes and unknown supports; for the velocity, we
assume that it is piecewise constant with known supports and unknown amplitudes.

Suppose the piecewise constant source function fis

[Vf
f0= Y fa(2), 2 nQ =oforj#k
j=1

If the source amplitudes {f;} are given a priori, we can parameterize the domain .ij by a
level-set function ?; with [35]

¢;(x)>0 if xe Q/},
¢, =0 if x €00,
$;(x) <0 if x€ Q\Q_f

Then f(x) = Zjvzfl JH(@;(x)), where H(?) is the Heaviside function

1 if >0,
H() =105 if t=0,
0 if t<0O.

Denote the low frequency datad :=lim,_, V,u(w, X) and the level-set representation

Ny
wx) = ) f / V,Gox, YH($,(y)dy, X € 0Q. (34)
=1 IR

To find the associated level-set functions ¢]-, we will minimize the data misfit between the
simulated data w and measured data d according to the proof of Theorem 3 in the least-
squares sense:

J1 gy 1= % /a . w(x) = d(x)|*ds(x). (35)

The gradient of this objective functional with respect to the j-th level-set fucntion ¢; is
(171,

Vo Jlb1, by oo sy 1(X) =J§5(¢j(x))/ V,G(z,%)(w(z) — d(z))ds(2), (36)
o0

where 6 is the Dirac delta function, and the data residual w — d serves as the adjoint source
that is back-propagated into the domain for updating the level-set functions.

We introduce an artificial time parameter ¢ to drive the following evolution (Hamilton-
Jacobi) equation to the steady state [17] by solving the equation with essentially non-oscil-
latory schemes [36]:
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/0% = =V 191,62,y 109 37)

equipped with the Neumann boundary condition %| o0 =0 and the initial condition
#;(0,x) = ¢, ((x). Then the minimizer ¢?(x) of the least-squares objective functional (35)
is given by ¢Ji*(x) =lim,_ @;(t,x) [17]. We refer readers to [26, 47] for more details
about numerical implementation of the multiple level-set method. We also refer readers
to [25, 27-29, 32] for more recent works on using the level-set method for gravity inverse
problems.

We summarize the algorithm to reconstruct piecewise constant sources without velocity
information in Algorithm 1.

Algorithm 1 Level-set reconstruction of piecewise constant sources without velocity

i. Choose a small enough angular frequency wy such that the input data can be approximated by d(x,) ~
+o0
u(x,w) = u(x,t)e “fdt. Given are the source amplitudes f;, fa,-++, fn, and the corresponding initial

Jo
guesses ¢1,0(X), ¢2,0(X), -+, dn;,0(%).
ii. Evolve the following level-set equation to the steady state equation:

0 ‘ .

a%(’% t) = =V, J[b1, P2, 0N, ] (X) (38)
with the initial condition and the Neumann boundary condition as above. Here, the gradient
Vo, J[d1, 2+, dn,](x) is given by (36). A proper reinitialization process should be applied to keep the

sign-distance property [16, 44] during the evolution, which is an important step to regularize the solution
of the level-set equation.

Ny
iii. Finally, the internal source is given f*(x) = ZfJH(Oj(x))
j=1

Once the source is recovered, we will use it to help with the inversion of the velocity.
However, due to the ill-posedness of this inverse problem, only sufficiently accurate
sources can be used. Otherwise, the accumulated error in the source function may sig-
nificantly impact the inversion of the velocity. In order to avoid such instability, we will
assume that the velocity c(x) is piecewise constant with known support, namely
t= cé + Zsz‘l cj2 )((ch), where the subdomains ch’s are known, and it remains to com-
pute the amplitudes ch’ We solve this problem using a waveform fitting process in the
least-squares sense:

T
. .1 N I
minJ, [V}, vy, +++,Vy ] = min — / / |z, ) — d(z, )| *ds,dt, (39)
v " v 2 Jo Jag
where (X, ?) is the simulated data using the reconstructed source f(x) and d(x,,?) is the
measured scattering data.
4 Numerical Examples
We present numerical examples in 2D and 3D based on the proposed reconstruction meth-
ods for piecewise constant sources. In certain cases, we will reconstruct the piecewise con-

stant velocities as well. However, reconstruction of velocities is generally more ill-posed than
reconstruction of sources, and thus it poses more challenges for numerical experiments.
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4.1 Forward Data Generation

We simulate the acoustic wave propagation (1)—(2) with the MATLAB k-wave toolbox
[46] to generate the temporal boundary data (3). The k-wave toolbox solves the follow-
ing first order system of equations using the first order k-space pseudo-spectral method:

1 optx) _

o a = —pVy - q(,X),
dq(t,

M = V(8. %),
pl[:O = pO(X)’

qli=o =0.

Here p(t,x) is the acoustic pressure field, g(z, X) is the acoustic particle velocity, p, is the
ambient density, c¢(X) is the SOS, and p(X) is the initial pressure field. This first order sys-
tem can be reduced to the usual second-order acoustic wave equation for p:

;azp(’sx) _ 1 _ ) ,
c2(x) or pvx pvxp(t7 X) =0 mn (07 +oo) X R ,

P(O: X) = Po(x)’ (40)
2(0,x) = 0.

When the ambient density p is constant, this is the PAT/TAT model (28). We will take
p = 1 from now on.

In view of the connection between our problem and PAT/TAT (see Remark 1), we first
take py(x) = c2(x)f(x) to generate the pressure data p(z,x) and the particle velocity data
q(t,x), and then compute the integral 6;1 pt,x) = fot p(z,x)dz (which is ¥ in (30)). The
measurable boundary data and boundary gradient data are

—1 ~1
o7 p(t,x), V0 ' p(t,x) = —q(1,%), X € 0.

In order to apply our reconstruction methods, we take the Fourier transform of the tempo-
ral data to obtain the frequency domain data at a fixed low frequency w, > 0O:

T

T T

. 1 i i

-1 T 0T (0T

/ o p(r, 0 dr = —— [ p(z, )7 dr, - / g, x)e™dr,  x € 0,
0 1w, Jo 0

where T > 0 is sufficiently large to ensure minimum acoustic energy trapped in the domain
Q. This is the simulated forward data utilized in our numerical inversion.

4.2 Accuracy of the First Term

To begin with, we verify the accuracy of the zero order approximation in 2D. We use three
different SOS models, as shown in Figs. la—c, along with the same source function f(x),
as shown in Fig. 2a, to demonstrate that the first term u,(x) is independent of the chosen
velocity model and hence only contains the source information.

The two dimensional computational domain is £ = [-115,115] X [-115,115] mm
with a spacing of 1 mm. The reference background SOS is ¢, = 1500 m/s. We take T = 6
milliseconds as the total propagation time to avoid any significant energy present in the
computational domain. The time sampling rate is Az = 10~* milliseconds. A total of 128

2
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Fig.1 The speed of sound models: a two disks; b shepp-Logan phantom like with piecewise constant
velocities; ¢ shepp-Logan phantom like with random velocities
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Fig.2 The internal source models overlapped with the sensors: a an equal amplitude and b variable ampli-
tudes

sensors are placed along a circle of radius 110 mm centered at the origin to measure the
time-domain scattering data. We choose 100 Hz as the lowest frequency, i.e., the angular
frequency w, = 2r X 100, to approximate the zero frequency data.

Figures 3a and 3b display the x- and y-components of the true gravimetry data (com-
puted via (15)) and the scattering data at 100 Hz for the three different SOS models. We
can see that the approximate low-frequency data from three SOS models are almost the
same as the true gravimetry data. The relative L2-error is about 0.6% for each component.
This validates that the quantity V,u,(x) does not depend on the SOS model and encodes
only information of the source f(x).

4.3 Two-dimensional Examples
Case 1 Source with Equal Amplitudes.

Source Inversion Once the accuracy of the low frequency data is verified, we are ready
to reconstruct the source. We apply the level set method to solve the inverse problem of
gravimetry (15). Figure 4a shows the initial guess of the zero level-set function (blue dot-
ted line) overlapped with the zero level-set of the target source (red solid). We plot the
zero level-set function generated by the fast local level-set method [18, 31, 32] at the 400th
evolution step in Fig. 4a. We observe that the reconstructed zero level-set function (blue
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Fig.3 Comparisons of the true gravimetry data generated via (15) and the low frequency approximation
Vu(x, @) at 100 Hz for three different SOS models in Figs. la—1c. a x-component and b y-component

dotted line) successfully converges to the jumps of the target source rapidly, and the cor-
responding simulated data with the reconstructed level-set function can match both x- and
y-components of the low frequency data very well, as is shown in Fig. 4b. This indicates
that our method has effectively resolved the support of the internal source by using only the
low frequency data without knowing the velocity as a prior.

Velocity Inversion Due to the nonlinearity of the velocity inversion, the error in the source
term (either in the amplitude or the support) can severely impact the reconstruction of the
velocity based on our numerical experiences. To reduce such impact, we take the SOS
model to be piecewise constant with known jump discontinuities and focus on reconstruc-
tion of the amplitudes. Due to the severe ill-posedness of the problem, we know this may
not be applied to all the scenarios in practice. Further research is needed to extend our
algorithm to reconstruct more general velocity in a practical way.

We perform the inversion of the SOS amplitudes in the frequency domain by the data
fitting criteria based on the least-squares objective (39), which is optimized by the L-BFGS
algorithm. The data frequency band is from 60 kHz to 90 kHz and a constant value of
1 500 m/s is used as the initial guess for the inversion of SOS. The reconstructions at
the 9th iteration and the 20th iteration for the first and second SOS models are shown in
Fig. 5a and Fig. 5b, respectively. The corresponding SOS target amplitudes and recon-
structed amplitudes are summarized in Table 1, where small relative errors are observed.
One interesting point worth mentioning is that larger errors appear in the subdomain with a
smaller size in both cases, which is an indication that some proper pre-conditioners should
be applied so that the updating direction remains fair for subdomains with different sizes.

Case 2 Source with Variable Amplitudes.

Source Inversion In this case, we reconstruct a piecewise constant source function f(x)
with variable amplitudes. The initial guess of the zero level set is the same as shown in
Fig. 6a, yet with three amplitudes 0.8, 0.5, and 1, respectively, on the subdomains. This
is plotted in Fig. 6a. After 1120 evolution steps, the reconstructed source is displayed in
Fig. 6b and its zero level-set function in Fig. 7a. We also compare two components of the
simulated data by the reconstructed source in Fig. 7b, which shows that the data match

almost perfectly. These results validate that our source inversion method is effective in
reconstructing sources with high precision.
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Fig.4 a The initial zero level-set function and b the reconstructed zero level-set function overlapped with
the true level-set function at the 400th iteration. ¢ Comparisons of x- and y-components of the simulated
data by the inverted level-set function and the measured data
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Fig.5 Reconstructed piecewise constant SOS values with given supports of SOS models: a two-disk model
and b shepp-Logan phantom like model

Table 1 Comparison of the target

SOS values and the reconstructed True v (m/s) Tnv. v (m/s) Rel. error
lues in the first and

Seggn\:iaSOS models 1400 1367 2.36%
1 600 1576 1.50%
1400 1402 0.14%
1450 1518 4.69%
1580 1 600 1.33%
1650 1629 1.60%
1700 1694 0.35%

The larger relative errors are present in the subdomains of smaller
sizes

Noisy Source Inversion Next, we study the source inversion with noisy data measurement.
The noise added to the simulated data is Gaussian random noise with mean zero and standard
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Fig.6 Comparisons of a the initial guess and b the inverted source models at the 1 270th evolution step for
the source inversion with variable amplitudes
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Fig.7 a Reconstructed zero level-set function overlapped with the true level-set function at the 1 270th
iteration. b Comparison of x- and y-components of the simulated data by the inverted level-set function and
the measured data

deviation of the 2% maximum absolute value of the time-domain velocity data g(z, x). We still
extract the low-frequency data at 100 Hz by transforming the noisy data into the frequency
domain as before. We start with the same initial level-set function as in Fig. 6a using the
known amplitudes on each level-set function. The CFL number for the level-set evolution is
decreased to 0.6 in this test to stabilize the inversion, which serves as a kind of regulariza-
tion for the small step size used in the gradient descent method. The final result at the 1 690th
evolution step is plotted in Fig. 8a overlapped with the target zero level-set function. See also
Fig. 8a in comparison with Fig. 2b. We still can observe a good recovery of the support of
the internal source in the case of noisy data. The simulated data by the inverted result are also
very close to the measured noisy data as shown in Fig. 8b, which gives a relative data residual
of 5.1% and 4.3% for the x- and y-components, respectively, indicating the successful recon-
struction from the noisy data without any velocity information.
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Fig.9 Three dimensional example. a Speed of sound model and b the internal source
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Fig. 11 Three dimensional example. Comparisons of the three components of a, b, ¢ the low frequency
approximation Vu(x,w,) at 100 Hz and d, e, f true gravimetry data. The relative errors are respectively
0.93%,0.93%, 0.83%

4.4 Three dimensional Examples

Source Inversion We now consider three dimensional inversion of the source function.
The SOS model and the source model in this three dimensional experiment are plotted
in Figs. 9a and 9b. The velocity model consists of three different values: 1 400 m/s,
1 600 m/s, 1 800 m/s, and the source amplitudes are of equal values on the two subdo-
mains. The reference background SOS is v, = 1 500 m/s. The cross-section of the SOS
model and the source model at y = 0 mm are shown in Figs. 10a and 10b.

The computational domain in 3D is [—-128, 128] x [-128, 128] x [—128, 128] mm? with
a spacing of 1 mm. As the wave energy in 3D decays faster than in 2D, we take 7' = 0.34
milliseconds as the total duration of wave propagation with a sampling rate of 1.7. A total
of 32 X 16 = 512 sensors are placed on the surface of a sphere of radius of 100 mm cen-
tered at the origin to measure the scattering data.

In order to verify the accuracy of the low frequency approximation, we again choose
100 Hz as the lowest frequency to approximate the zero frequency data, i.e., @, = 21 X 100
(rad/s). The low frequency data (real part) are shown in Figs. 1la—c in terms of its
X-, y-, z-components. In comparison, the simulated gravimetry data using the exact source
are plotted in Figs. 11d—f. All the data match very well, as is predicted by the theory.

For the inversion, we choose a spatial grid of size 2 mm on each direction and generate a mesh
of 118 x 118 x 118 to discretize the domain [—118, 116] x [—-118, 116] x [—-118, 116] mm?°.
The CFL number is 0.6 in this three dimensional example. We evolve the level-set equation
to a steady state by starting with an initial guess that is a sphere centered at the origin with a
radius of 50 mm; see Fig. 12a. Figure 12b shows the reconstructed zero level-set function at
the 780th evolution step. Compared with the target source model in Fig. 9b, no significant dif-
ference is observed. Figure 12c displays the cross-section of the initial guess, the reconstructed
source, and the target ground-truth source at y = 0 mm, which further confirms the accuracy
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Fig. 13 Three dimensional example. a, b, ¢ The x, y, z-components of the simulated data using the inverted
source function at the 780th evolution step. The relative error is roughly 3% for each component

of the source inversion. We also re-simulated the gravimetry data using the reconstructed
source as shown in Figs. 13a—c, which match very well with the measured low frequency data
as shown in Figs. 11a—c, with the maximum relative error of only 3%.

Noisy Source Inversion To simulate the noisy data, we add the Gaussian random noise
to the clean measurement. The noise has zero mean and a standard deviation of 2% of the
maximum absolute value of the time-domain velocity data g(z, x). The noisy data are then
transformed to the frequency domain to yield the low-frequency data at 100 Hz. The initial
level-set function is again the sphere in Fig. 12a, and all the other parameters are the same
as in the noise-free experiment. The level set evolution is terminated at the 1690th step,
as is shown in Fig. 14a, and the reconstructed cross-section at y = 0 mm overlapped with
the target zero level-set function is plotted in Fig. 14b. The relative error is 17.3%, 12.9%,
and 12.8% for each component, respectively, as is shown in Figs. 15a—f. It is clear that, in
the presence of noise, our inversion method can still provide a reasonable reconstruction
within an acceptable precision. Due to the fast decay of the wave field in 3D, the level-set
method seems more sensitive to the random noise. One possible way to mitigate this effect
is to apply the Kantorovich-Rubinstein norm in the inverse problem of gravimetry, which is
more robust against random noise. We refer readers to the recent study [13, 14] for details.
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Fig. 15 Three dimensional example. a, b, ¢ are the x-, y-, z-components of the simulated data using the
inverted source function at the 780th evolution step. The relative error is roughly 3% for each component

5 Conclusion

We investigated the reconstruction of a piecewise constant passive acoustic source from a
single boundary temporal measurement without knowing the speed of sound and proved
some related theoretical uniqueness results. Numerical examples validated our proposed
methodology. Generalizing this setup to elastic waves consists of ongoing work.
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