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ARTICLE INFO ABSTRACT
Keywords: Starting from the time-domain Kirchhoff-Huygens representation of wave solutions, we propose
High frequency wave a novel Hadamard integrator for the self-adjoint time-dependent wave equation in an inhomo-
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geneous medium. First, we create a new asymptotic series based on the Gelfand-Shilov function,
dubbed Hadamard’s ansatz, to approximate the Green’s function of the time-dependent wave
equation. Accordingly, the governing equations and related initializations for the eikonal and
Hadamard coefficients are derived using the properties of the Gelfand-Shilov generalized func-
tion. Second, incorporating the leading term of Hadamard’s ansatz into the Kirchhoff-Huygens
representation, we develop an original Hadamard integrator for the Cauchy problem of the
time-dependent wave equation and derive the corresponding Lagrangian formulation in geodesic
polar coordinates. Third, to construct the Hadamard integrator in the Lagrangian formulation
efficiently, we use a short-time ray tracing method to obtain equal-time wavefront locations
accurately, and we further develop fast algorithms to compute Chebyshev-polynomial based low-
rank representations of both wavefront locations and variants of Hadamard coefficients. Fourth,
equipped with these low-rank representations, we apply the Hadamard integrator to efficiently
solve time-dependent wave equations with highly oscillatory initial conditions, where the time
step size is independent of the initial conditions. By judiciously choosing the medium-dependent
time step, our new Hadamard integrator can propagate wave field beyond caustics implicitly and
advance spatially overturning waves in time naturally. Moreover, since the integrator is inde-
pendent of initial conditions, the Hadamard integrator can be applied to many different initial
conditions once it is constructed. Both two-dimensional and three-dimensional numerical exam-
ples illustrate the accuracy and performance of the proposed method.

1. Introduction

We consider the Cauchy problem for the self-adjoint wave equation in m-dimensional space R™,

puy, —V-(Wu)=0, xeR", t>0 (1.1)

with initial conditions
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u(0,%) = u' (x), u,(0,x) = u*(x), (1.2)

where ¢ is time, the subscripts , and ,, represent the first and second time derivative, respectively, position x = [x1,X,, ,xm]T, the
gradient operator V = [0, ! ,6X2, ,6xm]T, both variables p and v are analytic and positive functions of position x, characterizing
certain physical parameters of the medium, and u'(x) and u?(x) are compactly supported, highly oscillatory L? functions. Our wave
equation is time independent in the sense that it is invariant under shifts in time, but time dependent in the sense that it contains 7 as
an independent variable. When the initial conditions are highly oscillatory, the wave equation propagates these oscillations in space
and time; however, direct numerical methods, such as finite-difference or finite-element methods, for such problems may suffer from
dispersion or pollution errors [5,4], so that such methods require an enormous computational grid to resolve these oscillations and
are thus very costly in practice. Therefore, alternative methods, such as geometrical-optics based asymptotic methods, have been
sought to resolve these highly-oscillatory wave phenomena. We first propose a novel Hadamard asymptotic ansatz based on Gelfand
and Shilov’s family of functions f i On top of this new ansatz, we further develop an original Hadamard integrator to compute highly
oscillatory time-dependent wave phenomena in inhomogeneous media.

To start with, we use the Gelfand-Shilov generalized function as the basis to seek an asymptotic representation of the Green’s
function G(t, x; x) which satisfies the wave equation (1.1) with the initial conditions ul(x) =0 and u?(x) = #O)S(x — x(). Inserting
this asymptotic representation into the wave equation and taking into account orders of singularities of the Gelfand-Shilov function
and its derivatives, we can obtain time-independent eikonal and transport equations for the phase function and Hadamard coeffi-
cients, respectively, where the fact that the coefficients p and v are independent of ¢ enables us to get away with not having any
time dependence in the eikonal and Hadamard coefficients. Since these Hadamard ingredients are independent of time, we can first
precompute these functions and then compress them into low-rank representations which can be used for further time evolution. In
particular, these low-rank representations allow us to rapidly construct a short-time caustic-free asymptotic Green’s function which
is valid locally in time. To solve initial value problems of the corresponding time-dependent wave equation globally in time, we
incorporate the short-time caustic-free asymptotic Green’s function into the time-domain Kirchhoff-Huygens representation formula
so that we can take multiple local in-time steps to achieve global in-time caustic-friendly wave propagation, leading to the novel
Hadamard integrator.

One of the essential difficulties in applying geometrical optics to construct Green’s functions for wave equations is how to initialize
the eikonal and amplitude functions at the source point [1,2,17]. Here, inspired by our series works on Hadamard-Babich ansatzes for
Helmholtz, Maxwell’s, and elastic wave equations [25,24,23,35], our newly proposed Hadamard’s ansatz for time-dependent wave
equations can be easily initialized as we will show.

Another essential difficulty in applying geometric optics is that it cannot handle caustics easily [19,26,30,3,18,7,11,27,24], and
our Hadamard’s ansatz is not an exception as it is also an asymptotic method. Although caustics occur with high probability for
wave propagation in inhomogeneous media [40], we are still able to use the geometrical-optics type method mainly because of the
following fact [1,39]: in an isotropic medium the point-source eikonal equation has a locally smooth solution near the source point
except the source point itself; this implies that caustics will not develop right away on the expanding wavefront away from the
source. Therefore, in a local (spatial) neighborhood of the point source, the eikonal and amplitude functions from solving eikonal
and transport equations are smooth except the point source; the resulting asymptotic Green’s function is valid locally in that spatial
neighborhood except the point source itself and thus is not uniform near the source point.

Then we immediately run into two questions. The first question is how to obtain uniformly accurate asymptotic Green’s functions
in that small spatial neighborhood even at the source point. The proposed Hadamard’s ansatz comes to our rescue, where the crucial
point is that although the eikonal itself is not differentiable at the source point, the squared eikonal is! This crucial point allows us to
absorb the point-source singularity into the Gelfand-Shilov generalized function, so that we can initialize the Hadamard coefficients
easily, resulting in a uniformly accurate asymptotic Green’s function near and at the source point.

The second question is how to use locally valid asymptotic Green’s functions to solve time-dependent wave equations globally.
The answer is provided by incorporating the locally valid asymptotic Green’s function into the time-domain Kirchhoff-Huygens
representation formula of the time-dependent wave solution. To appreciate this subtle point, we need to characterize the caustic-free
spatial neighborhood of the source point of the eikonal equation in terms of time and space. Since a caustic will need some time
to develop away from the source point in an isotropic medium, we denote by T'(x,) the time when the first caustic occurs for rays
issuing from the source point x,, where time actually corresponds to the solution of the point-source eikonal equation. Therefore,
our short-time asymptotic Green’s function excited at (x,,0) is valid in the (x, ) space-time domain

{e,0) 1 (3%, x9) < T(xg), 0< 1 < T(xp) } . (1.3)

Since the eikonal 7(x, x) and Hadamard coefficients are independent of time ¢, we just need to compute these quantities once and
use them to construct short-time asymptotic Green’s functions for all (x,7) in the above space-time domain (1.3). Moreover, since
all values of x are used by the propagator defined below, we set 7" to be the minimum of T'(x,) as x, varies over some relevant
domain, where this domain should not be too large so that 7 might not be too small. To march forward in time so as to solve the
time-dependent wave equation globally in time, we incorporate the short-time asymptotic Green’s function into the time-domain
Kirchhoff-Huygens representation formula to define a short-time Az propagator, dubbed the Hadamard-Kirchhoff-Huygens (HKH)
propagator, where At < T only depends on the medium and is independent of the initial data. Recursively applying this propagator
in time yields the Hadamard integrator to solve time-dependent wave equations globally in time, where caustics are treated implicitly.
Moreover, by marching forward in time, we are able to treat spatially overturning waves naturally.
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The matter at hand now is how to implement the short-time HKH propagator efficiently. To tackle this challenging problem, we
must surmount several obstacles.
The first obstacle is how to deal with integrals of Gelfand-Shilov functions, which have singularities near the 7-wavefront,

{x 1 7(x,x0) =1} (1.4

In a caustic-free local neighborhood of source x,, we introduce the geodesic (ray) polar transformation P[x,] : x — (7, ®) to simplify
the generalized integrals, where 7 is traveltime and @ € S”! is take-off angle; by assumption, this transformation is well defined.
Since this transformation is from the Cartesian coordinates to the geodesic polar coordinates, we can use the Lagrangian ray-tracing
method to trace wavefronts accurately, where locations of the r-wavefront with take-off angle @ exactly yield the corresponding
Cartesian coordinates x. Finally, a Gaussian quadrature in geodesic polar coordinates is used to compute the resulting Gelfand-Shilov
integrals.

The second obstacle is how to obtain Hadamard coefficients efficiently. Fortunately, over the years we have developed high-order
schemes for point-source eikonal and transport equations [37,42,38,24], and those schemes can be readily used to compute these
coefficients.

The third obstacle is how to accelerate evaluation of Gelfand-Shilov integrals in the HKH propagator. We first compress computed
wavefront locations and Hadamard coefficients into low-rank representations by using multivariate Chebyshev polynomials. On top
of low-rank representations, a block-wise matrix based partial summation allows us to evaluate Gelfand-Shilov integrals rapidly.

1.1. Related works

Hadamard’s ansatz that we initiate here is inspired by the Hadamard method [14] which is outlined in Courant and Hilbert
[10], Chapter VI, Section 15.6. However, since our systematic derivation here is based on Gelfand-Shilov functions as well as their
regularization techniques [13], it is original.

Fast Huygens sweeping (FHS) methods have been designed to solve Helmholtz equations [27,24], frequency-domain Maxwell’s
equations [34,25], and frequency-domain elastic wave equations [36], and these methods work by incorporating locally valid asymp-
totic Green’s functions into the frequency-domain Kirchhoff-Huygens representations of corresponding wave solutions so that they
can treat caustics implicitly in inhomogeneous media at high frequencies. However, since these methods have assumed the sub-
horizontal condition [39] for geodesics which is useful in many practical applications, the allowed wave propagation has a certain
preferred spatial direction; consequently, the FHS methods are able to propagate wavefields through appropriately partitioned spa-
tial layers by marching in that preferred spatial direction in a layer-by-layer fashion. However, such a spatial preference due to the
sub-horizontal condition does come with a cost: the above FHS methods cannot handle overturning waves in that particular spatial
direction since marching in a certain spatial direction is unnatural! Then a question arises immediately: which direction is natural for
marching? It is the time direction. This is exactly what we are achieving in this article!

1.2. Plan of the paper

We introduce in Section 2 the Kirchhoff-Huygens representation formula which utilizes Green’s functions to propagate waves. We
then propose in Section 3 a novel asymptotic series based on the Gelfand-Shilov function, dubbed Hadamard’s ansatz, to approximate
the Green’s function of the time-dependent wave equation, where the governing equations and related initializations for the eikonal
and Hadamard coefficients are derived using the properties of the Gelfand-Shilov generalized function. Incorporating the leading term
of Hadamard’s ansatz into the Kirchhoff-Huygens representation, we develop the Hadamard integrator for the Cauchy problem of the
time-dependent wave equation and derive the corresponding Lagrangian formulation in geodesic polar coordinates in Section 4. We
develop in Section 5 numerical strategies for implementing the Hadamard integrator. To accelerate evaluations of various Gelfand-
Shilov integrals, in Section 6 we construct multivariate Chebyshev polynomial based low-rank representations of wavefront locations
and Hadamard ingredients so that block-matrix based fast partial summation can be implemented. Section 7 presents both two-
dimensional (2-D) and three-dimensional (3-D) results to demonstrate the performance and accuracy of the new Hadamard integrator.
We conclude the paper with some comments in Section 8.

2. Kirchhoff-Huygens representation formula

We are interested in solving the following Cauchy problem for the self-adjoint wave equation,

puy, —V-(Wu)y=0, xeR", t>0 2.1

with initial conditions

u(0, x) = u! (x), u,(0,x)=u*(x). (2.2)

Here p and v are functions of position x. We look for an integral representation for the wave solution, leading to the Kirchhoff-
Huygens representation formula. We give a self-contained derivation here, as the derivation itself sheds some light on how to use
it.
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Let u(t,x) and v(t, x) satisfy the non-homogeneous, self-adjoint wave equation:

[P(X)u (8, %)], = V - [v(x)Vu(t, x)] = g, (¢, x) (2.3)

and

[p(x)0,(1, )], = V - [V(x)Vo(t, x)] = g, (1, ). 2.4

We will multiply (2.3) by v and integrate by parts and then multiply (2.4) by u and integrate by parts. On subtraction certain terms
will cancel leaving an expression in the form of a divergence to which we will apply the divergence theorem. So we have

vg =0 (pu,), - vV - (vVu),

(2.5)
= (pvu,)t - V- (wvVu) - pvu; +vVu- Vu
and
ug, = (puu,), = V- vVv) - pu,v, +vVu - Vo. (2.6)
Subtract (2.6) from (2.5) to get
Vg —UgH =p (vu, - uu,)’ - V- (wvVu—uvVv). 2.7)

Let V' be a region of space which does not change in time, and let us integrate (2.7) over the cylindrical domain D in space time

D=[0,T]xV={(tx)|x€V and t€[0,T]}. (2.8)

Integrating (2.7) over D we get

T T
/vf—ung:/ dt/p(uu,—uv,), dV—/ dt/V-(vau—quu)dV
0o v 0

D 14
o T
= /p(vu,—uu,)dV —/ dz/vn-(vVu)—un-(vVv)dS
Vv o O Ky
= / p(x) [o(T, ), (T, x) — (T, x)v,(T, x)| &V (2.9)
14

—/p(x) [U(O,x)u,(O,x)—u(O,x)v,(O,x)] dv
4
T

—/ dt/[v(t,x)n-(vVu(t,x))—u(t,x)n-(vVv(t,x))]dS,
0 K

where S =0V.
Now we proceed to specialize formula (2.9) by choosing v in a special way related to the whole-space Green’s function. First
consider the Green’s function G(7, x,; x) which satisfies

[p(X)G (1, x0; )], — V-[V(X)VG(t, X3 X)] = 6(x — x) 6(1), (2.10)
with initial condition

G(t,x3;x)=0 for 1<0. (2.11)
Alternatively the same G may be specified as the solution of

[p(x)G,(t, xp; x)], — V- [V(x)VG(t,xy;x)| =0 for >0, (2.12)

with initial conditions

G(0,xy;x) =0 and G,(0,xy;x) = —— 6(x — x). (2.13)
P(xo)
We will not specify any boundary conditions on G.
We then set
v(t,x) =G (t,x0:%) =G (T — 1, X) . (2.14)
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We easily verify that

p(X)G, (t,x0;x)| =V - [W(x)VG (t,x0;x)| =0 for t<T, (2.15)
[p()G, (£ x03x)], =V [ (1, x0: x)]
with final conditions

G (T, xp:x) =0, G, (T,xp;x) =— 1 5 (x—xp). (2.16)
p (%)
With v = G we have already chosen the forcing function g, = 0. Now we take g, =0 so that the left member of (2.9) vanishes. Hence,
setting g, =g, =0 and v = G, (2.9) gives

0 =/ p(x) [G (T, xO;x) u(T,x) —u(T, x)G, (T,xO;x)] dav
4
- / p(x) [G (0, x9; %) u,(0, %) — u(0,x)G, (0, x5 x)] dV

4
T

- / dt/ G (t,x0;x)n - (vVu(t,x)) — u(t,x)n - (VWG (t,x¢;x)) dS.
0 K
Substituting (2.14) and (2.16) in (2.17) we get

(2.17)

u(T,xy) = / p(x) [G (T, x0: %) 1,0, %) + u(0, )G, (T. xq: x)] AV
v
T (2.18)
+/ dz/G(T—t,xo;x)n-[vVu(t,x)]—u(t,x)n- [VWG (T —1,xp;x)] dS,
0 s
where the boundary integrals capture information entering the computational domain from outside. Since here we consider the
initial value problem with compactly supported initial conditions in a finite time, we can drop the boundary integrals in (2.18) by

taking a sufficiently large computational domain in space in our formulation without affecting the wave solution, and thus we will
do so in the following to obtain

u(T,xq) = / p(x) |G (T, x0: %) 1,0, %) + u(0, X)G, (T, xo: x)| dV". (2.19)
4
Differentiating (2.19) with respect to time, we get

u, (T, xo) = / p(x) [Gt (T,xo;x) u,(0,x) + u(0,x)G,, (T, xo;x)] dv. (2.20)
4

We refer to (2.19) and (2.20) as the Kirchhoff-Huygens representation formula. Now the question is how to use this formula. When
the medium is homogeneous, the Green’s function for the wave equation is known so that the formula has been used frequently in
practice. However, since the Green’s function is usually unknown in an inhomogeneous medium, it is extremely challenging to use
this formula efficiently in this case. Therefore, we propose to compute the needed Green’s function by developing and implementing
a novel Hadamard’s asymptotic ansatz. As we will see, using this novel ansatz in the Kirchhoff-Huygens representation formula gives
us the Hadamard-Kirchhoff-Huygens (HKH) propagator which is able to propagate highly oscillatory wavefields for a short period of
time, but recursively applying this propagator in time yields the Hadamard integrator to solve time-dependent wave equations globally
in time, where caustics are treated implicitly. Moreover, by marching forward in time, we are able to treat spatially overturning waves
naturally.

3. Hadamard’s ansatz based local solution
3.1. Hadamard’s ansatz

We seek an asymptotic representation of the Green’s function of the self-adjoint wave equation which we rewrite here

puy — V- (WWu)=0,x eR"1>0, 3.1)
with initial conditions

1

u(0,x) =0, u,(0,x) = (xg)

5(x — xp). (3:2)
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Essentially, we are looking for the Green’s function at the origin x; = 0. In what follows we shall regard the dependence upon x;,
as understood. Let

c=\/z, n=l=\/E. (3.3)
p c v

We seek an asymptotic representation of « using the Hadamard’s ansatz

m—1
ut. )=y v f, ° -], (3.4)

where the summation is over all integer values of s using the convention that v, =0 for s <0 and that v, # 0. 7(x) is the phase
function, also known as traveltime, which can be explained as the least travel time at speed c¢(x) from the origin to the point x. The
generalized function f j(g) is called the Gelfand-Shilov function as described in [13]. They are defined for 4 > —1 as follows:

Ay St
fio= (3.5)

where

A { 0, for¢<0, (3.6)

& = ¢?, otherwise,

and by analytic continuation for other values of A. Thus the support of the function f f [t2 - rz(x)] lies within the double cone which
is the union of r > 7 and ¢ < —7. The poles of gi and of A! at the negative integer values of 4 cancel so that f i(g) is an entire function
of A. We shall be concerned only with ¢ > 0 for the wave equation. Also

@) =6(), and f"(¢)=8""1(c). (3.7)
We have
-1 gi gj_ 2
sfie= a-Dl - AT =411 (3.8)

and the important relationship

N =r (3.9)

Writing (3.1) in subscript notation we get

pii — (v u’k)’k =0, (3.10)
where u, indicates the x-derivative of u. We will calculate successively u ;, vu, (viy) x, and pii.
Using (3.9),
som=l som=l
up = D (vsTp0 fy 2 Hugfy 2)
s
(3.11)
P s—mt
= 2‘(_211_Y e fy P v Sy ).
5
Hence
soml st
vig = Y (“2ovrTy fy 2 Hogvf, ). (3.12)
s
It follows that
o mid g mtl s mtl om=l
(Vug)y, = 2[405\/12 Tt Sy P —2gvrr), fy P —2ugvTT, fy + s,V o ]
s
(3.13)

m+3

g3
= Zf+ 2 [4o,vr? Tt =20, vTTy) ) =20, 1 VT T+ Vg0, Vi ]
s
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Also, by (3.4),

m+l1

Yow 20, s, 7))

pii

Xﬁmﬁ-{—ﬁi ‘7m+l
Yoot f 2 +2f, 7]

s

2o 2 5 s=ot
:vas[4(1 -, T 42 f T +2f, 2]
’ mil mt3 mil (3.14)

S§—=— S§— == S§—=—
Dou s =) f0 2w f T w2 2]
s m+3 _m#l

Dou a7 A=) f, 2]

m+3

S
4N f T o 1= pu ],
s

where we have also used (3.8). Using (3.13) and (3.14) in (3.10) we see that

_mi3

S
0 = 2f+ T [dogvtlr,ry, — 4o, pt? =200, VTT ),
N

205 qgvrTE —4(s—1- %)va_l + (Us_a Vg 1

(3.15)

Assuming that (3.4) is an asymptotic power series in powers of 1> — 72 near ¢ = 7, we may equate to zero the coefficient of each of
_mi3
the fi 2 fors=0,1,2,...
Thus
0 = 4o, 12 (vrt) — p) =20, VIT) =20, 1, VTT —4(s—1— %)p Us 1+ Wy 0 V)i (3.16)

By setting s = 0 in (3.16) and remembering that v_; =v_, =0 we get
dvgt* (v, = p) = 0. (3.17)
Since we are assuming that v, # 0 and 7(x) # 0 except at x =0, we have
VTpTp —p= 0, (3.18)
which is the eikonal equation
|Vr|2=€:n2. (3.19)
Then, equation (3.15) with s replaced by s + 1 reduces to the transport equations for v,

2vrT ) +2vTTR o +4(s— %)pl}s = (V5o V) k- (3.20)

dvrziogy +lv (rz)qk],k U +2@2s—m)pvg = (Us_y 4 V) k- (3.21)
3.2. Interpretation as energy conservation when s =0

We now study (3.21) for the leading amplitude, i.e. for s = 0. Notice that the leading amplitude in (3.4) is not v, but vy multiplied
_m=1 ml Ml
by the amplitude of the leading singularity near =z of f, > P -H=@+1) 1 f L - 7).! But for ¢ near 7 this amplitude is
m—1 m—=1 m—=1
proportional to 2 . So the true leading amplitude is (proportional to) uy =v,/7 2 , and we will set v, =772 1 in (3.20) to get

m—1

mtl mtl m—1 m=1 m=1
0 = (@vr 2 7)), +uppvt 2 T+ S5 UpVT 2 1,7, —mpT 2 Uy
ml ml m-1
= (upvt 2 7 tugvr 2 1, — " uve 2 1,1 (3.22)
0V k) k 0,k k 7 Yo k Tk
m+
=172 [(upvty) + ugp vyl
So
(upvzy) g +ugrvry,=0. (3.23)

_mt e
1 This is true even for odd m, in which case fo7 = 5(71 ). (See Gelfand and Shilov (1964), III, 1.7.).
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On multiplying by u, we get

uy (o v ), + g ugvry =0. (3.24)
But this is

(vug 7)), =0. (3.25)
Le.

(pug > 7,) = V-(puj c* V1) =0. (3.26)

But pué can be thought of as the energy density? and ¢2 Vr is the group velocity vector with magnitude ¢ in the direction of the

ray, so that pué ¢2Vr is the energy flux vector. Thus the divergence of the energy flux is zero, and so energy is conserved for the
leading-order singularity, and energy flux is conserved along tubes of rays as it should be. This also verifies that (3.21) leads to the
conventional transport equation for the leading term, which always has this interpretation as energy conservation.

3.3. Solution of the transport equations
In this subsection, we assume that the traveltime 7 has been found in the source neighborhood by the method of characteristics.
3.3.1. Analytic form of v,

By method of characteristics, along a ray traced out from the source 0 to x, the directional derivative operator along the traveltime
T satisfies

nzdi =Vr-V=1,0,. (3.27)
T
Using (3.21) with s =0 and (3.27) we may write the equation for v, in the form
do, 2
4p7:d— + 0y [V-(vV77) = 2mp] =0, (3.28)
T

from which we see that
dloguy 1 duy _ V-(vVzH)—2mp

= F 3.29
dr vy dr 4pt ( )
So,
V- (VVTZ) —2mp
loguy = — Tdr+log [0(0)] . (3.30)
R(x)
and
(x) = 0y(0) v (Ve —ame,
Uo(X) =0, €X - —ar7r
0 ofeRp 4pr (3.31)

R(x)
= Uo(o)ho(x).

Here R(x) is the segment of ray joining 0 to the point x. The dependency upon x arises from the dependency of R(x), which is
parameterized by 7. It turns out that vy(0) does not depend upon the initial direction of the ray at 0, and in fact vy(x) is analytic in
x at 0 if n(x) is also. We have defined

\ (erZ) —2mp
hy(x) =expq— / Tdr R (3.32)
R(x)

which satisfies (3.28) for v, with hy(0)=1.

3.3.2. Analytic forms of v, for s > 1
We begin by restating (3.21)
dv

=+, [V-(vV72) + 225 — m) p] = V-(WWu,_)). (3.33)
T

dpt

2 The energy density is % pliy? + % v |Vuq |?, but these two terms, which are analogous to kinetic and potential energy densities, are equal in this leading asymptotic
term.
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Let us first consider the solution A, to the homogeneous form of (3.33)

dhy N
dpt q + h[V-(vV77) + 2(2s —m) p] =0, (3.34)
T
which leads to
dlogh,  V:(vV®) —2mp s
dr dpt T
_ dlog hy s (3.35)
d
_dlogThy
B dr '
So we may take
hy=1""hy. (3.36)
To solve (3.33) we set
v,=h,w,=17"hyws. (3.37)
Substituting this into (3.33) and taking (3.34) into account we have
1=y, dwyg
4p7 " hy - - V-(vWu,_y), (3.38)
T
leading to
s—1
V-(vV
w, = / VOV oy (3.39)
4 P Uy
R(x)

and finally we have

v, (x)=17"" hy(x) / M dr + ¢, . (3.40)
s 0 4ph0 s
(x)

Let us consider the behavior of v, as |x| — 0 assuming that v,_; and its derivatives are finite. We easily see that for s > 1

c.t° for ¢ #0,

s

Us = ) V-(wWo,_)) (3.41)

for ¢, =0.
4sp

x=0

We choose ¢, =0 for all s > 1 in order for v, to be finite. It will also be analytic in x according to Babich [2] just below his equation
(8), to which (3.40) should reduce when v =1 and p = n?, but there appears to be an error in Babich’s equation (8).

Thus we see that the v, are determined by, and depend linearly upon, v,(0), whose value we obtain from the initial conditions
(3.2).

3.3.3. Initialization of vy(0) for m even

To obtain the initialization of v((0), we will follow closely the presentation in the Example in Chapter III, Section 1.6 of Gelfand
and Shilov [13]. We will consider only the first term of the asymptotic series (3.4) since it will subsequently be clear that later terms
contribute zero to the initial values of u and u,.

We write the leading term in the series (3.4) as

_met
Gy (1, 03 x) = vg(xg; %) f, * [t2 — rz(xo;x)] . (3.42)
When there is no ambiguity, we suppress source x, = 0 in the display to simplify notation. Let
co=c(0), ny=n0), vy=v(0), and py=p(0).
We first introduce the geodesic (ray) polar transformation for a given source x,

Plxgl : x = (7, @), (3.43)

where 7 is the traveltime, ® € S"~! is the take-off angle of the ray, and (z,®) is the geodesic polar coordinates. Within any neigh-
borhood of x,, not containing any caustics other than x, there is one and only one ray connecting x and x,, which means P[x]
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is well-defined and one-to-one, and x is a smooth function of the point y = x, + 7®. To facilitate our following discussions, we also
write down the volume element as the following,

dx = dsdS = cdrdS = c| ) 2 drdo, (3.44)

where s is the arc length along the ray, d.S = ‘ ‘da) is the element of area cut out on the wave front 7 = const. by rays emanating

from the solid angle element dw at the source. We will provide a specific expression for the Jacobian ‘ﬁ‘ later. However, for now,
we will use the following approximation when 7 — 0,

aS_leml

om| 0 (1 +0(), (3.45)

which can be obtained by comparing with the polar coordinates in a homogeneous medium near the source.
We now apply (3.42) to a test function ¢(x) € C°(R™) as follows,

/ Gy (2, xq; x)p(x)dx = / uo(xo,x)f+ [z — 73(x0: %)| Pp(x)dx

_m=2_1
= / vox)f, 2 [ - ()] p(x)dx (3.46)
0 \% -1
- / <_210T) Pr R = 2] volx(r, @) glx(r, a))]‘— ¢ drde,
where
k= m=2 and wl(r,w)=vo[x(r,co)]¢[x(r,w)]‘% . (3.47)

Then as |z| — 0, using (3.45) we have

v (x) = o) (0)" ' [1+ O()], (3.48)

leading to

/ Go(t. x)p(x)dx = c'vg (0)(0) / / 37de 61’ f+ [ =220 " '[1 + O(0)ldrdw

_1 k
- %c(')"vo(O)¢(0) / / 12 -2 (%) 2[1 4 O(2))dr? do (3.49)

Q, 0

00 n .
= =0y )¢(0) / / £ 2[R - )] (%) K1 + O(r)1d7? do.

Following Gelfand and Shilov [13] (Chapter III, Section 1.6) we remark that each application of 3 00 reduces the lowest power
TOT

of 7 by two and comes from applying all the derivatives to the factor 72¢

k
, i.e. performing (2 J ) 72k, But after k applications of

70T

a .. .
370e the lowest power of 7 is just 70 =1, so that, as r — 0, we are left with
TOT

_1 k
—c " (0)p(0) / / 12 A= 20)] (%ar) 241 + 0(0)ld7? dw

= ﬂcé"wmvo(O)qﬁ(O) / [ - Tz(x)]_% rdz[1+O(2)] (3.50)
0

2% (—%)!
= Ko, 0O+ 00,

)

where w,, is the area of the unit sphere in R”. Soast — 0
/ Go (1, )¢(x)dx — 0, (3.51)

10
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and the initial condition of u is satisfied.
We now consider the initial condition of u,. Differentiating (3.49) with respect to ¢ and using G, to represent the derivative of

the leading term, we obtain

: 9 S22 2\ 2
/ Got, ©)p(x)dx = 1)), / (—2107) £ 2[R - )] (ﬁ) 221 + O(r)ld7>. (3.52)
0
The lowest power of 7 is again generated from
0 \* x_ Cle,
But it is known [13] that
1
sm k+1
W, = 22 _ 2”_ (3.54)
e
> !
Hence
® (L )k e (3.55)
"\2ror
Using (3.55) in (3.52) we have
(o]
9

_1
P ) [ [ = d? i+ 0]

/ Go(t. x)(x)dx = 27" 1y (0)p(0)zc)! / (—
0

0 2_ 2172
=270y (0)p(O)tc]! / (—i> gdrz[l +0(1)]

o2 <_ 1 ) 1
0 2)° (3.56)
1 _10
=— 22" 20,00 [ - 7] 2 [14+0]
K+ m]
=27""20)(0)p(0)1c " [1+0®)]
1
= 27 Tup(0)p(0)c!,
1
where we have used (—%)! = 2. Hence
i — N k+d _nam ml
llrr(} Go(1,x) =2cq'm" " 20p(0)8(x) = 2¢' w2 vy (0)6(x). (8.57)
t—
Then if we take
m m—2
n n
()= —r = 2 (3.58)
2p0m 2 2vgm 2
we obtain

limu,(t, x) =lim Go(t, x)= lé(x), (3.59)
t—0 t—=0 p

as required by the initial condition of u,.

3.3.4. Initialization of vy(0) for m odd
Similar to even m, we only consider the leading term in the series (3.4)

m=1
Go(t.x) =vg(x) f, * [F = *(x)]. (3.60)

Since G (1, x) is zero for 7(x) >t and the region of x-space for which z(x) < shrinks to the origin as ¢ — 0, the limiting value of
G (1, x) is either zero or some combination of derivatives of 5(x). In order to study the initial value of G(t, x), we apply it to a test
function ¢(x) € CX(R™) for fixed ¢ as follows,

11
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m—1

/ Go(t, X) p(x) dx = / vo(x) f, 7 112 = 72 (x)] p(x) dx

= / Uo(x)é(de)[tz—rz(x)] H(x) dx

(3.61)
- / 5TV = 2 lx(r, @)] Slx(r, @)] ‘ g—f)( ¢ dr do
= //500[:2 —2yy[r,0]c dr do,
Q, 0
where
k= mT_3 , and  y(1,®@) = vy[x(r,w)]1p[x(7, @)] |% . (3.62)
Using (3.45), we have
w1 (%) = ¢ uy(0) p(0) 2" 1+ O(2)] (3.63)
leading to
/ Go(t, x)p(x) dx = ¢! / / 8O£2 — 22104(0) p(0) "~ '[1 + O(1)] dr dw
Q, 0
= %c(')" / / W12 — 22104(0) p(0) " 2[1 + O(2)] d7? dw
Q, 0
(3.64)

= e / / 5®[22 = 21 50(0) p(0) 721 + O(x)] dr? dw
Q, 0

k
= (—1)k2(_l)k C(')" /<2Taa‘r> [UO(O) #(0) 2k+1 [1+0()] do .

=t
m

Each application of 5 aa reduces the lowest power of 7 by two and comes from performing (2 00 ykz2k+1 But after k applications
TOT TOT
of 5 J the lowest power of 7 is just 7, and so as t — 0,
TOT
/Go(t,x) d(x)dx - 0. (3.65)

The other terms in the series (3.4) yield higher powers of 7 and therefore also tend to zero. Thus, if v(0) is finite, the first initial
condition of (3.2) is satisfied.
We next consider the limit of u(#, x) as t — 0. Differentiating (3.64) with respect to t we obtain

k+1
/ Go(t,x)p(x) dx = 't / < J ) [u0(0)¢(0)r2k+1[1+0(r)] dw . (3.66)

2707 =t

‘m

This time the lowest power of 7 is generated from

K+l Kt
a 2k+1 a 2k+1 (2k + l)!!wm
— do = = —, 3.67
/ (210‘r> ! @ = 9m\270¢ ! 2k+l ¢ (3:67)
Q

m

where w,, is the area of the unit sphere on R™ and

12
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im k+2
wy = 2= 2Tk (3.68)
(7 - D! Qk+ DN
Hence
ekl k+1
w, (=2 P2k 28T (3.69)
270t T

Using this in (3.66) we see that

lim / Go(t. %) p(x) dx = 2 7% vy(0) p(0) = 2 7+ 15(0) 4(0) . (3.70)
so that

. ot

}Lr% Go(t.x) = 2¢ 7+ 0y (0)8(x) = 2¢ 77 1y(0)5(x) . (3.71)

Then if we take
m—2 m
1 1 n n
v(0) = 1 o ° 1 Om—] K (3.72)
2pgcg T 2y C6"_27[T 2uym 2 2pym 2

we obtain

limu(t, x) = lim Gy(t, x) = L 8(x), (3.73)

=0 =0 Po
as required by the second initial condition of (3.2). Let us define the constant

nm
C,= —— (3.74)
2p07 2

Compare (3.58) with (3.72) and with equation (5) of Babich [2]. So this general formula holds for all m, even and odd. Gelfand and
Shilov recommend using the method of descent from odd to even dimensions [13], but this is not so straightforward in a nonuniform
medium.

3.4. Truncation of Hadamard’s ansatz

We now consider the (N + 1)-term truncation of Hadamard’s ansatz

N m—1
Gyt x)= Y 0,(0f, 7 (P =72@). (3.75)
s=0

According to (3.13) and (3.14), we obtain the residual as follows,

. J st somt o X s mtd
PGy =Gy =D 42 f 2 +4G=2)f 7 1= Dldvvite,r, f,
s=0 s=0
m+1 m+1 m—1 (3.76)

s—T= 5= s—T=
—2vgvrT), Sy 2 —2ug v, fl 2 + Vg [y 2]
m—1

N
=NV [y >,

where we have used the eikonal equation (3.18) and transport equations (3.20). Since vy has been shown to be analytic in x, the
residual (3.76) in the form of a generalized function is smooth when N is large enough, which is expected from a valid asymptotic
method.

In this article, we develop the Hadamard integrator by incorporating the leading term of Hadamard’s ansatz into the Kirchhoff-
Huygens representation. We will provide a detailed analysis of the corresponding truncation error in a future work.

3.5. Local, short-time validity of Hadamard’s ansatz

In an inhomogeneous, isotropic medium, rays issued from a point source will refocus away from the source with high probability
[40] so that multiple rays pass through some physical locations, where the traveltime (a.k.a. eikonal or phase) and amplitude
functions consist of multiple branches and thus are multivalued; moreover, caustics occur at ray envelopes, where the traveltime

13
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function transits from one branch to another, and the amplitude function becomes infinite and is thus burning® at such transition
points (caustics); for examples of caustics, see [6,8] for caustic folds and [32,20,33] for caustic cusps. However, the validity of
geometric optics including Hadamard’s ansatz is based on the tacit, implicit assumption that the traveltime function is a well-defined
single-valued function. Once the traveltime function becomes multivalued, the geometric-optics ansatz has to be modified to produce
correct asymptotic solutions according to the structure of caustics [26,30,3]; since the caustic structure of wave phenomenon is
unknown a prior, such modifications are nontrivial and infeasible in general. Therefore, since it cannot easily accommodate possibly
multi-branched traveltime functions directly, the Hadamard’s ansatz can be used only locally around the source point before a caustic
occurs. Then the question that we ask is: how to handle caustics in practice? To go beyond caustics at the level of wave propagation,
we will use the Huygens secondary-source principle in the form of the Kirchhoff-Huygens representation formula of wave solutions
so that we can treat caustics implicitly rather than ‘stare’ at them directly.

The crux of the matter is the following fact: in isotropic media such as considered here, there is a neighborhood of the source in
which no caustic occurs except the source itself [24]. In terms of traveltime 7, such a caustic-free neighborhood of the source can be
characterized as {x : 7(xg:x) < T(xo)}, where T(xo) is the time when the first caustic transpires. In this caustic-free neighborhood,
the Hadamard asymptotic expansion (3.4) of the Green’s function is valid for ¢ < T'(x,). We do not need to find T'(x,) exactly. Since
all values of x are used by the propagator defined below, we set 7' to be the minimum of T'(x,) as x, varies over some relevant
domain, where this domain should not be too large so that 7 might not be too small. Based on this observation, we incorporate
the short-time asymptotic Green’s function into the time-domain Kirchhoff-Huygens representation formula to define a short-time A¢
HKH propagator, where At < T only depends on the medium and is independent of the initial data.

4. Hadamard-Kirchhoff-Huygens (HKH) propagator

By incorporating the leading term of Hadamard’s ansatz (3.4) into Kirchhoff-Huygens representation formulas, we develop the
Hadamard-Kirchhoff-Huygens (HKH) propagator to propagate the highly oscillatory wavefields for a short period of time.

To implement this propagator efficiently, we need to integrate Gelfand-Shilov generalized functions over curved or surface
wavefronts by using geodesic polar coordinates; thus, we start by providing an exact expression for the Jacobian of the geodesic
polar transformation,

‘E _ ! . (4.1
Jdw

1 2

- m__m—
4pycy ! pevy

Its derivation is detailed in Appendix. With the exact Jacobian (4.1) at our disposal, we further derive and simplify Gelfand-Shilov
integrals for odd and even dimensions, respectively.

4.1. The integral of G(t,x(;x) and Go(t, Xo; X) for m even

In order to compute the integral of G (¢, x; x), we apply it to a test function ¢ € C8°(IR'" ) for fixed ¢ as follows,

_mol
/ Gy (1, X0 x)p(x)dx = / vo(x) £, % [ = 720 p(x) dx

m2 )
_[(_ 9 \NT ;a2 2 98 (4.2)
= / ( 2101') [ [P =7 )] Uo[x(r,a))](b[x(r,m)]‘aw ¢ drde

m2z m—1
=/<_ 9 ) PR AW %drdm.

210t 4p0c0 " puy
When m =2, we have the following integral:
2zt
1 2 o3 TP
Gy (1, x0; x)p(x)dx = - [t -7 ] ? ————dzdd, (4.3)
(_5)! o 4p0c07rpuo

where the take-off angle @ = 6 € [0,2x]. To handle the integral of Go(t, Xg; ), we use the fact that the Green’s function satisfies the
wave equation (3.1). Therefore, for the given test function ¢ and 7 > 0, we carry out integration by parts:

/p(x)éo (t, xo;x) d(x)dx = / V. (vVGO (t, xO;x)) d(x)dx
=— / (VWG (%03 %)) - V(d(x))dx (4.4)

= / Gy (t,xo;x) V- (vV(x))dx.

3 The word ‘caustic’ comes from Greek via Latin, meaning ‘combustible’.

14
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Further, when m =2, combining (4.4) with (4.3) yields:

2t

ot IOV

/ Go(t, xq; x)p(x)dx =

l

2

. (4.5)
4p0c TpU

4.2. The integral of G(t, x; x) for m even

Differentiating (4.2) with respect to ¢ we obtain

/ Go(t, xo: X)p(x)dx = 2t / Uo(x) f;T_l [2 = 22(x)] p(x)dx

1
Y / Up(X) f;__i_' [ = 72(x)] d(x)dx

9 A6+ _% (4.6)
=2t/(_2rdr) Sy [t -7 Uo(ﬁ‘— cdrdw
(k+1) _1 m—1
- 2;/ (- 9 )R- — % o,
2707 4pocg'z " puig
where k = '"T_2
When m =2 such that kK =0, we carry out integration by parts, yielding
27t .
/GO(I,xO;x)¢(x)dx :2:// (— J )fﬁ [? -7 Tzid’drde
2701 4p0(_‘07[pL)0
0 0
2r 0
_1
= ! / - —2 | ae
(_1 ) | 4pocimpug
> )0 _
27 1 4.7)
_l
ol [ @) [
4p0c 7pUy
2r t
x
¢( 0) ! // [t - rz] 2 Avr.v ¢ dzdo,
p(xo) 4p0c mpUy
where we have used the definition (3.6), the initialization (3.58) and the fact that x(z, 0)|,_o = X,
4.3. The integral of G (t, x; x) and Go(t, Xo; x) for m odd
As before, we apply G (7, x(; x) to a test function ¢(x) for fixed ¢ as follows,
/ Gy(t,x) p(x) dx = / Uo(JC)fJr [f2 -7 (x)] p(x) dx
m=3
= / 0o(x) 87 112 — 22(x)] (x) dx
(4.8)

- / 5O - 2 lx(r, @)] $lx(r. @)] ‘ %( ¢ dr do

m=3 m—1
/5< -] —— 4 de.

4poc(')"7rm_1puo

When m =3, we have the following integral,

15
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f fuo-orz
Gy(t,x0; %) Pp(x) dx = o[t —1°] ————— dr dw

4pocyx*pug

olt— 72
[ _fo s
2t Apyern?puy

| 800377000 |,

Combining (4.4) with (4.9), we obtain the integral of Go(t,xo; x) form=3:

. [v.v
/Go(t,xo;x)qﬁ(x) dx = t/ M] do. (4.10)
T=t

| 8poc 72 pvg

4.4. The integral of Gy(t,x,;x) for m odd

We first introduce the following properties of the §-function: For ¢,7 > 0,

SO = 22y = (5t — 1) + 26Dt - 7). (4.11)
473

Differentiating (4.9) with respect to # and letting m = 3, we obtain

/ Golt, %03 x) p(x) dx = / 26602 — 22 vy [x(r, )] Pl x(7, )] ‘%|c[x('r, ®)] dr do

- / 3t — tlug[x(z, )] Slx(7, )] %|w dr do

N / 501~ eloglx(e. @) etz 00| 2| LLEEN g g
(4.12)
= - 4 98 | telx(z. )]
= / 8t — ]y, (r. @) dr do + / - [vo[x(r,a))]qb[x(‘r,a))] 6(0‘ e L' dw
= /w(t a))dco+/i volx(z a))]d)[x(ra))]‘ﬁ M do
2 dr [0 el 272 ]
= w,(t,w) do + 4 [n// (r a))] do
s dr 20 o= ’
where
_ 0S| telx(z, @)] _ 19
va(r.@) = wlx(e. o) Plx(r.0)]| 2| =5 === = yweRr—. (4.13)

That is,

/Go(t,xo;x)¢(x)dx=/ + dw+z/ V-V + do. (4.14)
8p0c0ﬂ2pvo et 8p0c0ﬂ2p00 -

4.5. HKH propagator

By choosing the initial conditions as the test function ¢, we obtain the HKH propagator.
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When m =2, by taking the test function ¢(x) as p(x)u,(0,x) and p(x)u(0, x) in (4.3) and (4.7), respectively, we obtain

2r ot
,1 7u, (0, x(7, 9))
u(t, xq) =u(0, xq) + 2 ——— —dzdf
4p0c27rvo
27t (4.15)
1
+ // [? =772 VeV [W] drdo.
Further taking ¢(x) as p(x)u,(0, x) and p(x)u(0, x) in (4.7) and (4.5), respectively, yields
2r t
1 .

(1, 30) = 0,0, %) + —— / / 2 =277 L VuOx@0)) 4 4

(_%)1 4popc(2)7z'vo

(4.16)
2r t
2] 2 V-V u,(O *(.9) dzdo.
4p0C Uy
When m =3, by taklng @(x) as p(x)u,(0,x) and p(x)u(0, x) in (4.9) and (4.14), respectively, we obtain
0, x(z, , x(7, , x(7,
u(t,x0)=/t u,(0,x(7, w)) + u(0, x(t, @)) wilve. v u(0, x(z, ®)) do. (4.17)
Spocgﬂ'zl)o =t 8/)0C87[2U0 =t 8/}0C37Z'2U0 —t
Further taking ¢(x) as p(x)u,(0, x) and p(x)u(0, x) in (4.14) and (4.10), respectively, yields
0 0
u,(t xo) / A (vVu(O x(r ﬂ)))) + M +t CZVT -V M dw. (418)
8p0pc 7ty ot 8poc 7ty ot 8poc 7ty e

Formulas (4.15)-(4.16) and (4.17)-(4.18) are two-dimensional and three-dimensional HKH propagators, respectively, which are
used to propagate the wavefield from 7 =0 to 7 = ¢, where 0 < ¢ < T Although HKH propagators are only valid for a short-time period
in a caustic-free neighborhood, recursively applying this propagator in time yields the Hadamard integrator to solve time-dependent
wave equations globally in time, where caustics are treated implicitly and spatially overturning waves are handled naturally.

5. Numerics for Hadamard integrators

Here, we present numerics for the Hadamard integrator. Essentially, we will numerically discretize the HKH propagator and
obtain the Hadamard integrator by recursively applying the propagator in time. For highly oscillatory wavefields, we maintain a
fixed number of points per wavelength (PPW) to uniformly discretize the computational domain into regular grid points.

To begin with, we briefly discuss high-order numerical schemes for the eikonal and transport equations, yielding the squared-
phase function 72 and the Hadamard coefficient vy, respectively. Subsequently, we present Gaussian quadrature formulas for the HKH
propagator. To ensure accurate computation of the numerical quadrature, we utilize the ray tracing method to obtain locations of the
equal-time wavefront. We then construct cubic spline interpolations to approximate the integrands at the wavefront locations, using
the oscillatory initial data and computed Hadamard ingredients on the uniform grid, respectively. Finally, we present a preliminary
algorithm of the Hadamard integrator for time-dependent wave equations.

5.1. Numerical schemes for eikonal and transport equations

The leading term of the Hadamard’s ansatz is defined by two functions, the eikonal 7 satisfying the eikonal equation (3.19) and the
Hadamard coefficient satisfying the transport equation (3.21). Since we have assumed that Hadamard’s ansatz is valid locally around
the source point, we need access to these two functions in order to construct the ansatz. Since the eikonal equation as a first-order
nonlinear partial differential equation does not have analytical solutions in general, we have to use a robust, high-order numerical
scheme to solve this equation; moreover, the eikonal equation equipped with a point-source condition is even more tricky to deal with
due to the upwind singularity at the source point [37]. To make the situation even more complicated, the transport equation (3.21)
for the Hadamard coefficient v, is weakly coupled with the eikonal equation (3.19) in that the coefficients of the former equation
depend on the solution of the latter. Fortunately, this set of weakly coupled equations with point-source conditions has been solved
to high-order accuracy by using Lax-Friedrichs weighted essentially non-oscillatory (LxF-WENO) sweeping schemes as demonstrated
in [38]. The high-order schemes in [38] have adopted essential ideas from many sources including [31,21,15,37,16,43,41,12,28,24]
and have been used in many applications. Consequently, we will adopt these schemes to our setting as well and we omit details here.
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5.2. Numerical quadrature for the HKH propagator

Starting from the Gelfand-Shilov integrals in the Lagrangian formulation, we apply the Gaussian quadrature to numerically
implement the HKH propagator in geodesic polar coordinates.

5.2.1. Whenm=2
We set 7 =tcos{ in (4.15) and (4.16) to obtain

u(t, xg) = u(0, x) + —// cosCu 0. x(Wcost.0) | 29, .y [w] dedo

4pocgfwo 4p0c§7rvo
z (5.1)
2r 3
= u(0. x0) + —— / / F\(£.0) + Fy(£.0)dCde,
\/; 0 0
where
FC.0)= cosé’u,(O,xz(tcosC,ﬁ)), Fy(¢,0)= V7.V w ’ (5.2)
4pycy oy 4pycy oy
and
2z 2
(1, %9) = 1, (0, xg) + ——= / / COSW'("V”(O;x(tcosg’g)))+c2vf.v w dzdo
4popc07w0 4!’000””0
(5.3)
2z 2
= u,(0, x0) + —= / / F5(C.0) + Fy(C,0)dCdd,
\/;0 0
where
Fyg = S LOIOOLID g0y =cve v [M] (5.4)
4pgypcymuy 4pocirug

We uniformly discretize [0, %] %[0, 2x] into a grid of size M| X M,, which corresponds to using the tensorized Gaussian-Chebyshev
quadrature nodes with respect to (z, ). Numerically, we choose M, and M, according to the initial conditions so that there are at
least 4-6 nodes per wavelength to ensure a sufficient sampling of the wave field. Then, we obtain

M, M,
w2
u(t, xq) ~ u(0, xp) + ﬁ ,ZI;(F‘(C”O’) + G 0 3 3 (5.5)
and
M, M, )
T 2
(1, X0) = u,(0, X0) + ﬁ ;;(F3< 10+ FiG0) 3 (5.6)
5.2.2. Whenm=3
We rewrite (4.17) and (4.18) as follows,
u(t,xq) E/FS(co)+ Fys(o) dw, (5.7)
where
Fa() = tu, (0, x(z, co))3+ u(0, x(7, ®)) , F@=1|ve-v M ’ (5.8)
8pocym2up o 8pocymivy )| .,
and
u,(t,xg) E/ F(o)+ F(o) do, (5.9)
where
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- tV-(vVu(O,x(‘r,m)))+pu,(0,x(r,0))):| R [CQVT,V<M>] . 5.10)
=t =t

3 3
8ppyc, w2 Uy 8pocy w2y

Now we utilize the tensorized Gauss-Legendre quadrature with respect to @ = (6,¢) € [0,27] X [0, z] to evaluate the spherical
integrals:

2M3 My

u(t, x) ~ M% 3w, (F560,.6) + Fs(0,.¢))). (5.11)
3=t j=1
2M3 M3

u (1, %0) ~ Mi3 3D w; (F0,.) + Fy(0,,¢))). (5.12)
i=1 j=1

where we set {£;} so that {cos¢;} and w; are nodes and weights of the M;-order Gauss-Legendre quadrature in [-1, 1], and {6, } are
the equidistant nodes on [0,27]. Similarly, we need to ensure that there are 4-6 nodes per wavelength.

5.3. Hadamard ingredients

In order to construct the HKH propagator, we need the following ingredients,

2, v, V72, Vg, V12 - Vo, (5.13)

which will be referred to as the Hadamard ingredients in the following. Here we use 72 rather than 7 since 7 is differentiable at the
point source while 7 itself is not.

In principle, all these ingredients can be obtained from the eikonal z and v, by solving the eikonal and transport equations
with the LxF-WENO schemes [38], respectively; however, since the LxF-WENO schemes yield solutions on uniform regular meshes,
they are not completely fit with the geodesic polar coordinates used for evaluating Gelfand-Shilov integrals. Therefore, in order to
compute these ingredients, we will develop a hybrid computational framework by combining the results from both the Eulerian
LxF-WENO solver and the Lagrangian ray-tracing method.

The Lagrangian ray-tracing method, introduced in the next section, provides us with the arrival-angle related slowness vector
V7 as a by-product, and we have 7 known in the geodesic polar coordinates. Consequently, we only need to solve the eikonal and
transport equations to obtain the following ingredients,

0o, Vg, V22 - Vo, (5.14)

To obtain a third-order accurate v, we use the third-order WENO approximations [15] to compute Vuv,,. However, to avoid evaluating
V72 - Vo, through numerical differentiation of v, we employ equation (3.21) to obtain the following expression,

_0lV- (vVr2) = 2mp]

VZ.V =
T 2 2

(5.15)
It is worth noting that both Vz and Vz? - Vu, are used to compute V7 - Vv, when needed. When m is even, we combine Vo, with
Vz to form V7 - Vu, directly, since using the expression

V-V, = Zivﬁ -V, (5.16)
T

involves dividing by 7, which is unstable near the source, where 7 =0. When m is odd, the Gelfand-Shilov integrals concentrate on
the wavefront = At which is away from the source, and we can safely utilize vl. Vv, in (5.16) to evaluate Vz - Vy, indirectly so
as to reduce the number of needed ingredients and achieve better accuracy as well.

5.4. Ray tracing methods

We have derived the numerical quadrature formulas for the HKH propagator in geodesic polar coordinates. The crucial task now
is to accurately compute these formulas. To achieve this, it is imperative to determine the wavefront locations corresponding to the
Gaussian-quadrature nodes, as both the wavefields and Hadamard ingredients are given in Cartesian coordinates. Hence, to facilitate
the evaluation of the propagator, we introduce the Lagrangian ray-tracing method to compute wavefront locations accurately and
obtain geodesic polar coordinates accordingly.

As mentioned earlier, in a caustic-free neighborhood of source x,, the geodesic polar transformation P[x] is well-defined and
one-to-one. So we define the inverse geodesic polar transformation for a fixed x, as follows,

Plxyl : (z,0) > x, (5.17)

which maps the traveltime and take-off angle to the corresponding physical location of the ray. Essentially, it traces the ray starting
from x,, with the take-off angle @ until time 7, which aligns very well with the method of characteristics for a short period of time 7.

Solving the eikonal equation via the method of characteristics with the Hamiltonian H(x,p) = c(x)|p|, where p = V7, we obtain
the following Hamiltonian system,
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dx p
o= Vp (x,p) =c(x) ol
d
L=V, Hxp) = Ve@pl, (5.18)
dr p
@ = VeGP P p=c@ipl =1,
with initial conditions
x(0) =x(, p(0) = n(xy)e, 7(0)=0. (5.19)

By the initial conditions (5.19) for the system (5.18), we immediately get 7 = so that we can rewrite the Hamiltonian system as

& v, Hxp) =L,
dr Ipl (5.20)
‘ .
P =V H(x.p)= Ve)lp|
T
with initial conditions
x(0) = x¢, p(0) = n(xy)e. (5.21)

Given the source location x(, and the take-off angle @, we solve the Hamiltonian system (5.20) with the initial conditions (5.21)
using Runge-Kutta methods until = = At. This allows us to obtain the physical location of the wavefront (ray) x|,_,,, which yields the
inverse geodesic polar transformation x = P‘l[xO](At, o). Additionally, as a by-product, we obtain the arrival angle p| ._A, = V7|,_p;»
which serves as one of the Hadamard ingredients.

After obtaining the wavefront locations through ray tracing, the next step is to compute the integrands F; at these irregular
locations, which consist of Hadamard ingredients (5.13) and highly oscillatory initial data, specifically:

u(0,-), u,(0,-), Vu(0,-), Vu,(0,-), V- (vVu(0,-)). (5.22)

To obtain Hadamard ingredients on the curved wavefront, we use two steps: in the first step, we solve the eikonal and transport
equations in a caustic-free neighborhood of the source x, on a regular grid, where the grid size s is independent of & used
for interpolating the initial data; in the second step, we interpolate these quantities defined on the regular grid onto the curved
wavefront by using cubic splines, where the accuracy of the interpolation is ensured by high-order numerical schemes for Hadamard
ingredients [22].

On the other hand, to obtain the oscillatory initial data (5.22) on the curved wavefront, we use a two-step strategy: in the first
step, we compute the required numerical derivatives on a regular grid to guarantee high-order accuracy of these quantities; in the
second step, we use cubic splines to interpolate these initial data defined on the regular grid onto the curved wavefront. Since
u(0,-) =u' and u,(0,-) = u? are highly oscillatory L? functions, accurately interpolating these initial data in a weak sense requires a
sufficiently fine grid. Numerically, according to the oscillation frequency of u' and u?, we will choose an appropriate grid size & to
discretize the computational domain so as to ensure that the number of points per wavelength (PPW) is approximately 10.

To numerically implement the cubic spline interpolations, we utilize the MATLAB function griddedInterpolant while setting the
‘option’ to ‘spline’. This provides an interpolant that performs cubic spline interpolation at the input locations based on gridded data.

Finally, we can update the wavefield at x, by computing the summations (5.5) and (5.6) for the 2-D case or (5.11) and (5.12) for
the 3-D case, leading to the desired HKH propagator.

5.5. Algorithm for time-dependent wave equations

Recursively using the current data of the wavefield as ‘initial’ data to apply the HKH propagator yields the Hadamard integrator
which solves the Cauchy problem of time-dependent wave equations. We have the following preliminary algorithm.

Algorithm 1

1. Uniformly discretize the computational domain into a wave-resolution-satisfying regular grid; choose an appropriate time step
size At < T according to the medium and set an ending time T,,, to ensure that the waves do not reach the computational
boundary; initialize u(0,-) = u! and u,(0,-) = u? on the regular grid; set time 7 =0 and the loop variable k = 0.

2. For the current time step with 7' = kAt:

(a) compute the following numerical differentiations on the regular grid

Vu(kAt,), Vu,(kAt,), and V-(vVu(kAt,-)), (5.23)

which, along with u(kAt,-) and u,(kAt,-), constitute the current data at the current time step;

(b) construct the cubic spline interpolations for the gridded current data using griddedInterpolant;

(c) determine a subregion Q, of Q that contains the region of influence of current data by extending each direction of the
non-zero region of the current data outward by max cAf;
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(d) for x; € Q;:

i. solve the Hamiltonian system (5.20) with the initial conditions (5.21) to obtain wavefront locations and arrival angles;
solve the eikonal and transport equations in a caustic-free neighborhood of the source x,, and interpolate the Hadamard
ingredients onto the wavefront locations via cubic splines; interpolate the current data onto wavefront locations and
generate the integrands Fj;

ii. use formulas (5.5) and (5.6) for 2-D or (5.11) and (5.12) for 3-D to update wavefields:

u=((k+DAtxg), u ((k+1)Atx,);

(e) setu ((k + l)At,Q\Qk) =u ((k + 1)At, Q\Qk) =0.
3. Update T =(k+ 1)At. If T < T,,,, then k < k + 1 and go to Step 2; else, stop.

In this preliminary algorithm, for every x, we need to trace rays, solve the eikonal and transport equations, and perform corre-
sponding interpolations, and these operations are expensive since the set of {x,} occupies a volume. Therefore, to accelerate this
algorithm, we will construct low-rank representations of wavefront locations and Hadamard ingredients so that those Gelfand-Shilov
integrals can be evaluated rapidly, where such low-rank representations result in an algorithm which is amenable to fast block-matrix
operations.

6. Fast computation of Hadamard integrators

In the preliminary Algorithm 1, for each given source x, we trace rays, solve eikonal and transport equations, and interpolate
the current data and Hadamard ingredients onto current wavefronts at every time step. Notably, except for the interpolation of
the oscillatory current data, tracing rays and solving eikonal and transport equations only depend on the given medium so that
wavefront locations and Hadamard ingredients can be precomputed and reused for different initial conditions. Moreover, assuming
that the medium parameters p and v are analytic, we can construct low-rank representations of wavefront locations and Hadamard
ingredients. To achieve this, we first introduce generic multivariate Chebyshev interpolations.

6.1. Multivariate Chebyshey interpolation

Let us consider a function

fa, n=ln,m, -yl €l-1,11%, (6.1)
which permits a low-rank representation. We can then expand f in terms of Chebyshev polynomials of the first kind

ny nyy

J@m Y, Y Cliys - ig)Ty (1) =Ty, (), (6.2)

=l iy=l

where n, is the order of Chebyshev interpolation with respect to 7, T,-k (ny) = cos(i; arccos(1;,)) is the Chebyshev polynomial of the
first kind of order i;, and the tensor C contains the spectral coefficients to be determined.

To construct the multivariate low-rank representation (6.2), we create an M -dimensional tensor F that contains the function
values of f at the tensor-product Chebyshev nodes. These nodes are defined as the following,

P ) _ 2i; —1 2ipy — 1 2ip—1
[7°(iy,ip,++,ipr)] = |coOs > ,COS ,eee,c08 | ——— (6.3)
ny 2n, 2np,

where 1 <i; <n,;. Subsequently,

F=fm). 6.9

After applying the fast cosine transform to each dimension of F, we generate the spectral-coefficient tensor C [9]. When we aim
to interpolate f onto a mesh of size N X N, X --- X N, the computational cost of the direct summation of (6.2) is O(H;Zl n;N;).
However, the Orszag partial summation method [9] can be introduced to greatly reduce the cost. In [27], we have given an efficient
Chebyshev summation method for M = 3, and this summation can be directly generalized to the current generic M-dimensional case.
The computational cost is then reduced to

M T i M
o<2 [H nkHNf] ) (6.5)
i=1 k=1 =i

Since n;, is the order of Chebyshev interpolation which is much smaller than N;, where the mesh size N, depends on the initial
conditions, the partial summation does reduce the cost of the interpolation onto a regular mesh. However, when we consider to
interpolate onto irregular locations, the above partial summation trick no longer works. This motivates us to construct low-rank
representations in a principled manner so that we can perform interpolation onto irregular locations rapidly.
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6.2. Low-rank representations of wavefront locations and Hadamard ingredients

Given a source x and Gaussian-quadrature nodes in geodesic polar coordinates, we need wavefront locations x and Hadamard
ingredients (5.13) so as to compute Gelfand-Shilov integrals numerically. To facilitate these evaluations, we now construct the
Chebyshev-polynomial based low-rank representations with respect to traveltime 7, source point x,, and take-off angle ®.

The first set of low-rank representations, A, is constructed to provide representations for wavefront locations and arrival angles,
effectively avoiding repeatedly ray-tracing at each source,

Ay (1%, @) = x, VT (x5 X), (6.6)

which is actually the low-rank representation of the short-time solver for the autonomous Hamiltonian system (5.20) with analytic
coefficients ¢ and Vc.

The second set of low-rank representations, A,, is constructed to provide representations for Hadamard ingredients on the wave-
front locations x, effectively avoiding repeatedly solving the eikonal and transport equations at each point source,

Ny 1 (7,x0, @) = Uy(xg; X), Vg (xg; X), Vrz(xo;x) - Vg (xg; x), (6.7)

which additionally avoids interpolations on curved wavefronts. In fact, we have constructed Chebyshev interpolants for Hadamard
ingredients with respect to source x, and wavefront location x as is done in [22]. Now since both A; and A, are low-rank represen-
tations with respect to (7, x5, @), they allow us to use block-matrix based partial summation to accelerate evaluations of numerical
integrals.

Numerically, the orders of tensorized Chebyshev interpolations are determined by the regularity of the medium. Additionally,
the orders corresponding to different independent variables vary due to the distinct domains of definition of these variables. To
determine the appropriate orders, we initially set empirical orders and compute the Chebyshev interpolations. Then, we adaptively
adjust the interpolation orders based on the accuracy of the current interpolations at some specific sampling points. Although this
process may appear tedious, it only needs to be performed once for a given medium during the precomputation step.

When the underlying medium changes rapidly, we can divide the computational region into several sub-regions and construct
the low-rank representations in each sub-region separately. Although this may slightly increase the cost of pre-computation, we may
use lower order Chebyshev interpolants in each sub-region so that the overall accuracy for the entire region can be improved and
the construction time of interpolants may be reduced.

Different low-rank representations A and A, are constructed for the 2-D and 3-D case, respectively. The main difference between
these representations lies in whether the traveltime 7 is treated as an interpolation variable (in the 2-D case) or a fixed parameter
(in the 3-D case). This difference arises due to the distinct properties of Green’s functions for wave equations in odd and even spatial
dimensions.

6.2.1. Whenm=2

Given a source x,, and time step At, the spatial support of the two-dimensional Green’s function at x is {x : 7(x(; x) < At}. Thus
we construct the low-rank representations for wavefront locations x =[x, y], Hadamard ingredients v, Vz = [n(x) cos(8), n(x) sin(6)]
ox’ dy
To construct A, we take

and Vo, =[ ] with respect to traveltime 7, source x, =[x, o] and take-off angle 6.
f()=x, y, n(x)cos@, n(x)sind, (6.8)

respectively, in (6.2), where

n=1I[7,xq, 9,09l €10,At] X Q, X [0,27] = D,, (6.9)

with Q, C Q, and we can further map D, to [—1, 14 by translation and scaling.
To obtain F ={f(7; ,Xq,. ¥0,,-0,,)}, we first use the arrival angle 6 to parameterize the slowness vector p so as to reduce the
Hamiltonian system (5.20) into the following system [32],

d
d—x=cc039, —y=csin9, ﬁ=cxsin9—c cos@; (6.10)
dr dr dr Y
we then use the Runge-Kutta method (RK45) to solve the Hamiltonian system (6.10) with initial conditions

x(0) = xq = [x0,i,-¥0,1,1»  P(0) =[n(xp)cos(6p,;, ), n(xg) sin(6p ;, )] (6.11)

until 7 = 7; ; the resulting solutions yield F.
To construct A,, we take
ovy  0vy

f(m) = vy, % (6.12)

respectively, where we set n as in (6.9). We follow the same procedure as before to solve the Hamiltonian system and obtain
wavefront locations x(t; , Xo, ¥o ;- 00, )- Additionally, we solve the eikonal and transport equations with the source located in the
neighborhood defined by ’
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[xoi, = H.Xg;, + HI1X [yg;, — H.yg,, + H], (6.13)

where we carefully choose the value of H to ensure that the neighborhood is caustic-free and includes the wavefronts required for
our HKH propagator. After interpolating v, %, aai)? onto wavefront locations x(z; ,Xq,,» Yo,i>60,;,) using cubic splines, we obtain
F.

Finally, we compute the spectral coefficients C by applying the fast cosine transform to F.

6.2.2, Whenm=3
Given a source x, and time step Af, the spatial support of the three-dimensional Green’s function is {x : 7(xy;x) = At}.
Thus we take 7 = Ar and construct the low-rank representations for wavefront locations x = [x,y, z], Hadamard ingredients
V= [n(x)cos@siné, n(x)sinfsiné, n(x)cos &, vy and vzt. Vv, with respect to source x, =[x, y, 2] and take-off angle [6,, &].
To construct A, we take

f(m=x,y, z, n(x)cos@sin&, n(x)sinfsin&, n(x)cosé, (6.14)

respectively, where

n=[xg, ¥p» 29,0y, &p1 € Q. X [0,27]1 X [0, 7] = D3, (6.15)

with Q, € Q, and we can further map Dj to [—1, 1P by translation and scaling.
To obtain F = { f(xq,,, Y0, Z0,i5> 60, £0,is)}» we solve the Hamiltonian system (5.20) by the Runge-Kutta method (RK4) equipped
with the following initial conditions

x(0)= Xo = [-xo,,‘1 > Y0,ip 20,5 1, (6.16)
P(0) =[n(xg)cos by, sin&y;. ,n(xq)sinby;, sinéy ;. , n(xg)cos o). | (6.17)
until 7 = Ar.

To construct A,, we take

fm)=vy, V1* - Vg, (6.18)

respectively, where we set 77 as (6.15). Then we solve the eikonal and transport equations with the source [xy;,, ¥y, Zo,; | located in
the neighborhood defined by ‘

[xo’,-1 - H,xo’,-1 + H]X [yo’,-2 - H,yo’,-2 + H] X [zo’,-3 - H,zo’,-3 + H]. (6.19)

Subsequently, we interpolate v, and Vz2 - Vu, onto X(X0,1,Y0,i5 20,i5» 00,1, $0,5) Using cubic splines to obtain F. With F at our
disposal, we calculate the spectral coefficients C via the fast cosine transform.

6.3. Low-rank representation based fast algorithm

Based on the low-rank representations, we upgrade the preliminary Algorithm 1 into a blockwise fast algorithm.

Algorithm 2

1. Construct the low-rank representations for wavefront locations and Hadamard ingredients according to Section 6.2.

2. Uniformly discretize the computational domain into a wave-resolution-satisfying regular grid; choose an appropriate time step
size At < T according to the medium and set an ending time T}, to ensure that the waves do not reach the computational
boundary; initialize u(0,-) = u' and u,(0,-) = u? on the regular grid; set time 7' = 0 and the loop variable k = 0.

3. For the current time step T = kAt:

(a) compute the following numerical differentiations on the regular grid

Vu(kAt,-), Vu,(kAt,-), and V. (vVu(kAt,-)), (6.20)

which, along with u(kAt,-) and u,(kAt,-), constitute the current data at the current time step;

(b) construct the cubic spline interpolations for the gridded current data using griddedInterpolant;

(c) determine a block subregion Q, of Q which contains the region of influence of current data by first extending each direction
of the non-zero region of the current data outward by max cA¢ and then finding a minimal block region that contains the
current region, where the minimal block region is assigned to be Q,;

(d) divide Q, into N, sub-domains Qi such that the size of each sub-domain is smaller than a predefined constant. For each
sub-domain Q{ :

i. use low-rank approximations to obtain the wavefront locations and the Hadamard ingredients on these locations; inter-
polate the current data onto wavefront locations and generate the integrands F;;
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ii. use formulas (5.5) and (5.6) for 2-D or (5.11) and (5.12) for 3-D to update wavefields:

u((k+ DALQL) . u, ((k+1DALQY):

(e) setu((k+ I)AI,Q\Qk) =u, ((k + DALQ\Q, ) =0.
4. Update T =(k+ 1)At. If T <T,,,, then k < k + 1 and go to Step 3; else, stop.

We have in Step 3 carried out an additional domain decomposition, which is intended to control the memory usage for updating
the oscillatory wavefields block by block. The rational is the following. Since the estimate of the computational cost (6.5) suggests
that, the larger the size of the grid for multivariate Chebyshev interpolation, the more the computational cost is saved by using partial
summation. Therefore, when computing resources are sufficient, we can skip this additional partition and update the wavefields on
the entire Q, all at once to achieve the lowest computational cost. Numerically, we aim to choose larger subdomains Qi whenever
possible, subject to the limitation of computing resources. But when the available computing resources are limited, this additional
partition might help us manage resources more effectively so that we can carry out large-scale computations. In the 2-D case, we
alternate directions and perform successive bisections to obtain sub-domains QZ of the same size. In the 3-D case, we partition Q,

into layered Qi along a certain direction, such as the z-direction.
6.4. Efficiency of low-rank representation based fast algorithm

Here, we analyze the computational complexity of the direct algorithm (Algorithm 1) and the fast algorithm (Algorithm 2),
respectively. We first evaluate the computational cost associated with updating the wave field in a single time step using either the
direct algorithm or the fast algorithm. It should be noted that we need only O(1) time steps, as the time step size is solely determined
by the medium.

Assuming that f is a frequency parameter of the wave solution, which is directly related to the wave number of the initial
condition, the m-dimensional computational domain is divided into a uniform finite-difference mesh so that this mesh consists of
O(p™) sampling points in order to accurately capture the oscillatory wave field. To apply the two-dimensional or three-dimensional
Hadamard integrator at a given source, we need to use O(f%) Gaussian nodes to evaluate the Gaussian quadrature.

The numerical implementation of the Hadamard integrator comprises three main components: the computation of wavefront
locations and Hadamard ingredients, cubic spline interpolation of initial conditions, and the calculation of Gaussian numerical
quadratures. The fast algorithm efficiently reduces the computational expense of the first component by incorporating a low-rank
representation.

In the direct algorithm, for each source x, we first solve the Hamiltonian system (5.18) using a Runge-Kutta method to obtain
the locations of O(f?) Gaussian nodes on the wavefront. This step incurs a computational cost of O(f2). Next, we solve the eikonal
and transport equations using the higher-order Lax-Friedrichs sweeping method in a local neighborhood with O(n{) mesh points.
This results in the Hadamard ingredients on a uniform grid. Here, n is a preset parameter that depends on the medium and the
desired accuracy of the Hadamard ingredients. The computational cost for obtaining the Hadamard ingredients at each source is
o (ng)" log(no)), as shown in [29]. We then interpolate the Hadamard ingredients to the wavefront locations through spline interpola-
tion, which incurs a computational cost of O(f2). Consequently, the overall computational complexity of calculating the wavefront
locations and Hadamard ingredients for O(f™) sources in the direct calculation is O ( ﬂmng' log(ny) + O(ﬁ’"”)).

In the fast algorithm, we first perform an additional precomputation step to obtain tensorized Chebyshev interpolations of wave-
front positions and Hadamard ingredients of size H:":lz n;. As mentioned in Section 6.2, we initially solve the Hamiltonian system

(5.18) using the Runge-Kutta method to determine the physical locations of H:':rlz n; Chebyshev nodes. This step requires a com-

putational cost of O(]—L'.":Jrl2 n;). Next, we solve the eikonal and transport equations with H:": . ; Chebyshev nodes in physical space

as sources. This is accomplished using a higher-order Lax-Friedrichs sweeping method in the corresponding local neighborhoods.

The computational cost for this step is O (H:":l nng log(no)). Afterwards, we interpolate Hadamard ingredients onto the tensorized

wavefront locations of size H:':rlz n; using cubic spline interpolation. We then construct the Chebyshev interpolations using the FFT

m+2

based fast cosine transform, with a computational cost of O (Hi=l n; log(Hl'.':;2 n,-)). Therefore, the overall computational cost of the

precomputation step is O (H:": L g log(no)) +0 (H:’:lz n; log(]’Lf"jl2 n,-)). After precomputation, we can use partial summation to

interpolate the wavefront locations and Hadamard ingredients to O(f"*?2) tensorized Gaussian quadrature nodes. The computational

cost for this process is O(f"*2), which can be expressed as O (El',':lz(H;(:l nkﬂ”’+3_")), as mentioned in equation (6.5).

Among the remaining two components, both algorithms will incur a computational cost of O(f"+2). This is because they both
require interpolating the initial conditions at O(f”*+2) nodes and calculating the Gaussian quadrature. Therefore, the fast algorithm
can save at least O (ﬂ’"ng)" log(no)) in computational cost at each time step. In the next section, we will demonstrate that this is the
most computationally expensive part of the entire algorithm. Additionally, it is important to note that n; (where i =1,2,---,m+2)
represents the order of the Chebyshev interpolations, which only depends on the medium and is often much smaller than f. This
means that even considering the computational cost of precomputation, which only needs to be done once, the fast algorithm still
offers significant savings.
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Fig. 1. Example 1. (a) The velocity; (b) Rays and wavefronts with source x, =[0.5,0.5]. The thick blue lines represent equal-time wavefronts (traveltime contours)
with the contour interval equal to 0.1, and thin colored lines represent rays with different take-off angles.

The low-rank representation greatly enhances the efficiency of the algorithm. However, further minimizing the computational
cost of the Lagrangian Hadamard integrator becomes challenging due to the need for expensive integration of irregular wavefronts.
It is an ongoing work to develop the Eulerian Hadamard integrator based on the current work.

7. Numerical examples

This section provides numerical examples to demonstrate accuracy and performance of the proposed Hadamard integrator.
Because an exact solution for the wave equation is not available in general, we numerically solve the wave equation with a pseu-
dospectral method to obtain highly accurate numerical solutions, and these numerical solutions will serve as exact solutions to
calibrate our Hadamard integrator. In addition, we use ‘RT’ to indicate solutions computed by the Hadamard integrator.

7.1. Two-dimensional examples

Example 1. We set up the problem as the following.

_ 1 _
* = Totsm@encosean’ ¥ T
« u(0,x,y)=sin(zf(x + y— 1)) exp (=600 ((x — 0.5)2 + (y — 0.5)?) ), and ,(0,x, y) = 0, where f is a positive frequency parameter.

I, and ¢ =1 4+ 0.1 sin(2zx)cos(2xy).

e The computational domain is Q = [0, 17? and the grid size used to discretize Q is h = #

« The orders of the tensorized Chebyshev polynomials with respect to [x, vy, 7, 0,1 are [15,15,15,15].
« The numbers of Gaussian-quadrature nodes are M| = M, =28.

Fig. 1 shows the velocity model, some rays and wavefronts, where no caustic transpires in the computational domain. Accordingly,
we set Ar = 0.1 for the HKH propagator. To construct the low-rank representations, we solve the Hamiltonian system (6.10) using
the Runge—Kutta method (RK4) for 1000 time steps to obtain accurate wavefront locations, and we solve the eikonal and transport
equations with grid size 4; =0.004 in the squared neighborhood (6.13) with H =0.2.

We first illustrate how the sampling rate of waves in terms of points per wavelength (PPW) affects the accuracy of wave propa-
gation. Since, essentially, a wave-resolution-satisfying discretization of the computational domain affects the accuracy of numerical
differentiation and interpolation of oscillatory wave data, which in turn will influence the accuracy of the Hadamard integrator, we
will appreciate such discretization effect by using numerical experiments. Of course, at the outset of such experiments, we can avoid
numerical errors from differentiation and interpolation by using the given exact initial conditions in their analytic forms. Therefore,
we will apply the HKH propagator for one step to solve the wave equation in the setting of Example 1 with the following parameters:
p=64, h= ﬁ, and M, = M, =128, where we will use different initialization methods to fulfill the initial data on the underlying
wavefronts.

Specifically, we consider the following four fulfilling cases:

. (PPW~5) Cubic-spline interpolation created under a mesh with step size h = ?10;
. (PPW~10) Cubic-spline interpolation created under a mesh with step size / = ﬁ;
. (PPW~20) Cubic-spline interpolation created under a mesh with step size h = %;
. (Analytical expressions) Analytical expressions of the initial conditions and their derivatives are used directly.

AW N

The numerical errors compared with the exact solution for the wavefield at 7 = 0.1 are shown in Fig. 2, and the relative L? and
L errors are shown in Table 1. Since we use the same low-rank representations and Gaussian-quadrature nodes for the four cases,
we can conclude that different error behaviors are due to different initializations. We also observe that both the initialization by
PPW = 20 and the analytical initialization yield the similar level of accuracy, indicating that an over-resolved numerical initialization
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Fig. 2. Example 1. 7' =0.1. Errors with different initializations. (a) PPW~ 5; (b) PPW~ 10; (c) PPW~ 20; (d) Analytical expressions.

Table 1
The relative L2 and L™ errors at 7' = 0.1 with different initializations.

Initialization methods PPW ~ 5 PPW ~ 10 PPW ~ 20 Analytical expressions
Relative L? error 6.8¢—2 2.0e -3 6.0e —4 6.0e —4
Relative L™ error 8.9¢ -2 2.5¢-3 7.0e —4 7.0e -4

will achieve the same accuracy as an analytical initialization. However, since we are recursively applying the HKH propagator to solve
the wave equation, at intermediate steps an analytical initialization is not available and an over-resolved numerical initialization
is expensive; consequently, as a trade-off between accuracy and computational complexity, we choose to uniformly discretize the
computational domain by using PPW~ 10 which suffices to resolve wave motion.

Next, we consider initial conditions with variable f to illustrate the effectiveness of the Hadamard integrator for highly oscillatory
wavefields. We set f = 16,32,64,128 and h = %, 6’ 20" ﬁ, respectively, and we present the RT solutions and exact solutions at
T =0.4 in Fig. 3. Fig. 4 shows line comparisons of the two solutions, where the exact solution in ‘-’ overlays the RT solution in ‘0’.
The RT solutions match the exact solution well, especially when the f is large. However, it should be noted that both the right end
of Fig. 4(a) and the left end of Fig. 4(b) visibly do not fit to the exact solution as well as other parts. This slight discrepancy can be
attributed to two reasons. Firstly, the wave field at time (k + 1)At is updated by calculating the integral of the wave field at time kA?,
where At represents the time step that is solely dependent on the medium. Assuming that the spline interpolation of the oscillatory
wave field at time kAt exhibits consistent relative accuracy, regions with higher amplitudes at time kAt will have larger absolute
errors at time (k + 1)Az. Upon carefully observing Figs. 4(a) and 4(b), it becomes apparent that the poorly matched portions coincide
with the location of the wavefront at the previous moment. The second reason is that the Hadamard integrator as an asymptotic
method performs better in the high-frequency regime, which also explains why, in comparison to other figures, this phenomenon is
only prominent in Figs. 4(a) and 4(b).

The relative L™ and L? errors of RT solutions with different § are shown in Fig. 5. The relative errors drop significantly and stay
below 1% as f increases, and such error behaviors are typical for microlocal analysis based numerical methods for high-frequency
wave propagation [22]. While a detailed numerical analysis of our new method is an ongoing work, we provide a brief explanation
for such a phenomenon here. The overall error of our Hadamard integrator consists of three parts: the leading-term truncation error
of the asymptotic series in terms of f#, the numerical errors due to approximations to oscillatory data, Hadamard ingredients, and
low-rank representations, and the interaction of the asymptotic error and the numerical errors; when f is small, the asymptotic error
dominates over the other errors so that we can observe the obvious error reduction when f increases; but when g is large enough,
the asymptotic error is no longer dominant over the other errors so that the error reduction saturates when f increases.

Here we demonstrate the significant improvement in computational efficiency achieved by the fast algorithm. When f = 32, the
wave field of 160> mesh points can be updated in a single time step within 3.5 seconds by the fast algorithm. Out of this total
time, 2.3 seconds are allocated to the calculation of Chebyshev interpolations for the wavefront locations and Hadamard ingredients,
0.7 seconds are dedicated to the calculation of cubic spline interpolation for the initial conditions, and 0.5 seconds are used for
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Fig. 3. Example 1. T = 0.4. (a) RT solution with f = 16; (b) Exact solution with = 16; (c¢) RT solution with # = 32; (d) Exact solution with g = 32; (e) RT solution
with f = 64; (f) Exact solution with g = 64; (g) RT solution with # = 128; (h) Exact solution with g = 128.

the computation of Gaussian quadratures. In the absence of the low-rank representations, we have to solve 160 set of eikonal
and transport equations, where the required calculation time is approximately 3450 seconds! It is worth noting that during the
precomputation step of the fast algorithm, only around 30 seconds are spent solving these equations 152 times. The incorporation of
the low-rank representations effectively transforms an impractical algorithm into one that can be implemented rapidly.

Example 2. We set up the problem as the following.

— 4 — — :
P = 05t oG v=1, ¢=0.5(1 +0.5sin(5zx) cos(3xy)).

e u(0,x,y)=sin(64z(x+y—1))exp (—600 ((x —0.5)2%+(y— 0.5)2)), and «,(0,x,y) =0.
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Fig. 4. Example 1. T = 0.4. (a) a windowed slice at x =0.25 with f = 16; (b) a windowed slice at y = 0.8 with f = 16; (c) a windowed slice at x =0.25 with f =32;
(d) a windowed slice at y =0.8 with f = 32; (e) a windowed slice at x = 0.25 with § = 64; (f) a windowed slice at y = 0.8 with § = 64; (e) a windowed slice at x = 0.25
with g = 128; (f) a windowed slice at y=0.8 with = 128.

¢ The computational domain is Q = [0, 11? and the grid size used to discretize Q is h = L
« The orders of the tensorized Chebyshev polynomials with respect to [x,, ¥y, 7, 0,] are [31,31,21,21].
« The numbers of Gaussian-quadrature nodes are M|, = M, = 192.

This example serves the purpose of illustrating that the Hadamard integrator maintains accuracy in a medium that induces caustics
and is able to treat spatially overturning waves smoothly. In Fig. 6, we show the velocity and the ray diagram overlaid with several
wavefronts (traveltime isocontours) emitted from the source point at [0.5,0.5], where caustics occur when the rays form envelopes
and the wavefronts self-intersect.

To evolve the wavefield in this example, we take Az = 0.1 to construct the HKH propagator. To handle the rapid variation in the
velocity model, we increase the orders of Chebyshev polynomials but still keep PPW~10 by considering the smallest wavelength. To
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Fig. 6. Example 2. (a) The velocity; (b) The rays and wavefronts with source x, = [0.5,0.5]. The thick blue lines represent the equal-time wavefronts with the contour
interval 0.1, and thin colored lines represent rays from different take-off angles.

construct the low-rank representations, we solve the system (6.10) using the Runge-Kutta method (RK4) for 1000 steps, and we solve
the eikonal and transport equations with mesh size 4; = 0.002 in the square neighborhood (6.13) with H =0.1.

We show in Fig. 7 the wavefields at 7" =0,0.1,:--,0.8. We can perceive the effect of caustics from the variations of the wave
amplitude which imply that the rays are gradually focusing at caustics.

Compared to the exact solution, the relative maximum error of the Hadamard integrator at T = 0.8 is 1.4% and the relative L?
error is 1.6%. To further compare the results at T = 0.8, we overlay the exact solution (‘-’) on the RT solution (‘0’) along different
lines in Fig. 8. We can observe that the RT solution consistently matches the exact solution very well. As expected, the Hadamard
integrator accurately propagates wavefields in a caustic-inducing medium.

7.2. Three-dimensional examples

Example 3. We use the following setup.

*r= (1+0.1sin(znx)cis(zny)sin(znz)ﬁ’ v=
« u(0,x,y,2z) =sin(xp(x + y+z — 1.5)) exp (—200 ((x — 0.5 + (y — 0.5)* + (z — 0.5)2)), 4,(0, x, y,z) =0.

« The computational domain is Q = [0, 1]%, and the grid size used to discretize Q is h = #

« The orders of the tensorized Chebyshev polynomials with respect to [x, ¥y, zo, 6y, &1 are [15,15,15,15,15].
« The number of Gaussian-quadrature nodes is M5 =3p.

1,and ¢ =1+0.1sin(2zx)cos(2xy)sin(2xz).

The slice at z = 0.6 of the velocity model and the rays starting from x, =[0.5,0.5,0.5] are shown in Fig. 9; there is no caustic in
this example.

We set A7 = 0.1 for the HKH propagator. To construct the low-rank representations, we solve the Hamiltonian system (5.20) using
the Runge-Kutta method (RK4) for 1000 time steps, and we solve the eikonal and transport equations with mesh size #; = 0.005 in
the cubic neighborhood (6.19) with H =0.15.

We first set f =16, h = l, and T = 0.4. Fig. 10 shows slices and line comparisons of wavefields. Fig. 10(a) shows a z-section of
the 3-D wavefield at z =0.75, and Fig. 10(d) shows the line at y = 0.7 and z = 0.75, in which we compare the exact solution (‘-’) with
the RT solution (‘0’). Fig. 10(b) shows an x-section of the 3-D wavefield at x = 0.45, and Fig. 10(e) shows the line at x =0.45 and
z=0.2, in which we compare the exact solution (‘-’) with the RT solution (‘0’). Fig. 10(c) shows a y— section of the 3-D wavefield at
y=0.15, and Fig. 10(f) shows a line at x =0.3 and y =0.15, in which we compare the exact solution (‘-’) with the RT solution (‘0’).
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Fig. 7. Example 2. RT solutions. (a) T=0; (b)) T=0.1; () T=0.2; () T=03;(e) T=0.4; () T=0.5;(8) T=0.6; (W) T=0.7; () T =0.8.

We next set T =0.4, f =32 and 2 =1/160, and the results are shown in Fig. 11. Fig. 11(a) shows a z-section of the 3-D wavefield
at z =0.75, and Fig. 11(d) shows a line at y =0.7 and z = 0.75, in which we compare the exact solution (‘-’) with the RT solution
(‘0’). Fig. 11(b) shows an x-section of the 3-D wavefield at x = 0.15, and Fig. 11(e) shows a line at x =0.15 and z = 0.3, in which we
compare the exact solution (‘-’) with the RT solution (‘0’). All the RT solutions match well with the exact solutions. Fig. 11(c) shows
the y-section of the 3-D wavefield at y =0.425, and Fig. 11(f) shows a line at x =0.3 and y = 0.425, in which we compare the exact
solution (‘-’) with the RT solution (‘0’). As shown, the RT solutions match the exact solutions very well.

Example 4. We use the following setup.

2
. _ 14+exp(=36(z—0.5)) _ _ 0.8+1.25exp(—36(z—0.5))
= (0.8+1425 exp(=36(z—0.5)) ) sv=1land c= = 0%
u(0, x,,z) = sin(327(x + y + z — 1.5)) exp(=600((x — 0.5) + (y — 0.5)% + (z — 0.45)?)), u,(0,x, y, z) = 0.

The computational domain is Q = [0, 1]? and the grid size used to discretize Q is h = L

160"
Q is divided into five parts to construct the low-rank representations,

QK =0n{x:ze[02(K-1),02K]}.

The orders of the tensorized Chebyshev polynomials with respect to (xg, ¥y, zo, 09, &) in different sub-regions are:
- Q!:11,1,3,9,9];

- 0?:[1,1,15,15,15];

- O3 :[1,1,25,25,25];

- Q*:[1,1,15,15,15];

- &% :[1,1,3,9,9].

The number of Gaussian-quadrature nodes is M5 = 96.
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Fig. 9. Example 3. (a) The slice of velocity at z=0.6. (b) The rays with different take-off angles starting from the source x, = [0.5,0.5,0.5].

Here we have chosen the z-dependent velocity ¢ to be analogous to a scaled, smoothed, and shifted Heaviside function in the z-
direction. The slice of the velocity ¢ at x =0.5 and y = 0.5 is shown in Fig. 12(a), from which we can see that the velocity changes
rapidly from ¢ =0.8 to ¢ = 1.25 around z = 0.5. We present the rays starting from x, = [0.5,0.5,0.45] in Fig. 12(b). This velocity
field produces overturning rays and a lot of caustics in Q. We will use this example to illustrate that the Hadamard integrator can
not only handle caustics automatically but also treat spatially overturning waves naturally. We take A7 =0.1 to construct the HKH
propagator.

To construct the low-rank representations, we solve the Hamiltonian system (5.20) using the Runge-Kutta method (RK4) for 1000
time steps, and we solve the eikonal and transport equations with mesh size 4; =0.005 in a cubic neighborhood (6.19) with H =0.1
for Q' and Q2 and H =0.15 for Q3, Q*, and Q5. We locate most of interpolation nodes in Q3 to capture rapid changes in the velocity
model.

In Fig. 13, we show the wavefields at T = 0.4 in some caustic-free regions. Fig. 13(a) shows a z-section of the three-dimensional
wavefield at z = 0.5, and Fig. 13(d) shows slices at y = 0.8 and z = 0.5, in which we compare the exact solution (‘-’) with the
RT solution (‘0’). Fig. 13(b) shows an x-section of the three-dimensional wavefield at x = 0.28125, and Fig. 13(e) shows slices at
x =0.28125 and z = 0.3, in which we compare the exact solution (‘-’) with the RT solution (‘0’). Fig. 13(c) shows a y-section of the
three-dimensional wavefield at y = 0.25, and Fig. 13(f) shows slices at y =0.25 and z = 0.35, in which we compare the exact solution
() with the RT solution (‘0’). As shown, The RT solutions match the exact solutions very well.

In Fig. 14, we show the wavefields at T = 0.4 in some caustic-inducing regions. Fig. 14(a) shows an x-section of the three-
dimensional wavefield at x = 0.625, and Fig. 14(d) shows slices at x = 0.625 and y = 0.8, in which we compare the exact solution
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Fig. 10. Example 3. f =16, T =0.4. (a) a sectional slice at z = 0.75; (b) a sectional slice at x =0.45; (c) a sectional slice at y = 0.15; (d) comparison of the slices at
y=0.7 and z =0.75; (e) comparison of the slices at x = 0.45 and z =0.2; (f) comparison of the slices at x =0.3 and y =0.15.
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Fig. 11. Example 3. f =32, T =0.4. (a) a sectional slice at z=0.75; (b) a sectional slice at x =0.15; (c) a sectional slice at y = 0.425; (d) comparison of the slices at
y=0.7 and z=0.75; (e) comparison of the slices at x =0.15 and z = 0.3; (f) comparison of the slices at x =0.3 and y =0.425.

(“-”) with the RT solution (‘0’). Fig. 14(b) shows a y-section of the three-dimensional wavefield at y = 0.9375, and Fig. 14(e) shows
slices at x =0.6 and y =0.9375, in which we compare the exact solution (‘-”) with the RT solution (‘0’). Fig. 14(c) shows a y-section
of the three-dimensional wavefield at y = 0.75, and Fig. 14(f) shows slices at x =0.75 and y =0.75, in which we compare the exact
solution (‘-’) with the RT solution (‘0’). The overturning waves refocus and bring about a significantly high amount of energy in wave
motion in related regions in Fig. 14(a)(c). However, the Hadamard integrator still maintains the accuracy and the RT solutions match
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Fig. 12. Example 4. (a) The slice of velocity at x = 0.5; (b) The rays with different take-off angles starting from the source x, =[0.5,0.5,0.45].
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Fig. 13. Example 4. T'=0.4. (a): a sectional slice at z=0.5; (b): a sectional slice at x =0.28125; (¢): a sectional slice at y = 0.25;(d):comparison of the slices at y=0.8
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the exact solution very well. As demonstrated here, the Hadamard integrator can naturally propagate spatially overturning waves in
time.

8. Conclusion

Based on the Kirchhoff-Huygens representation and Hadamard’s ansatz, we developed an original Hadamard integrator for solv-
ing time-dependent wave equations with highly oscillatory initial conditions. We derived the Lagrangian formulations via ray tracing
and constructed low-rank representations for the wavefront locations and the Hadamard ingredients to accelerate the application of
the integrator. By judiciously choosing a medium-dependent time step, the Hadamard integrator can propagate wavefields beyond
caustics implicitly and advance spatially overturning wave naturally. Both two-dimensional and three-dimensional numerical exam-
ples illustrated the accuracy and performance of the new integrator. Applying this new integrator to seismic and medical imaging is
an ongoing work.
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Fig. 14. Example 4. T = 0.4. (a): a sectional slice at x = 0.625; (b):a sectional slice at y =0.9375; (c): a sectional slice at y = 0.75; (d): comparison of the slices at
x=0.625 and y =0.8; (e): comparison of the slices at x =0.6 and y = 0.9375; (f): comparison of the slices at x =0.75 and y =0.75.
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Appendix A. Jacobian of geodesic polar transformation

We now give the exact expression of the Jacobian of geodesic polar transformation. Consider

/V2rdV=/V-VrdV=/Vr-ndS. (A1)

T T S

Here T is a volume bounded by a segment of a ray tube cut at one end by the surface 7 =¢; and at the other by the surface r =1,
and n is the outward unit normal to the surface S, the boundary of 7. S consists of the curvilinear tube of rays and the two ends
consist of patches of the wavefronts 7 =, and 7 =¢,, where #; < t,. The tangents to the rays are parallel to Vz and so Vz-n=0
on the tube of rays, whereas n is normal to the wave fronts and therefore parallel to Vz and so Vz-n=|Vz|=1/c on r =t; and
Vz-n=—|Vz|=-1/c on 7 =t,. Putting this together we get

/V2rdV= /lV‘rldS—/lVrl ds= /1 ds-/1 das.. (A.2)
C c
7

S So S So

where S; and S, are the patches cut out by the tube of rays on wavefronts 7 =, and 7 =¢,. Utilizing the geodesic polar transforma-
tion, we have
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5l
t
/d(o/c‘£|vzrdr=/dwl QHI. (A.3)
o® clowlly

Q& o o)

Here we have supposed that the tube of rays consists of the bundle of rays having take-off angles ® € Q, where Q is a patch on the
unit sphere. But Q is arbitrary and so we may equate the integrands with respect to @ to get

5!
t
/C‘£|V2‘L’d‘[=l E]l (A.4)
Jo clowlly
To
On differentiating with respect to #; and dropping the subscript ;, we obtain the ordinary differential equation

i(l 98 ) =c £|V2,, (A.5)
dt o o

Now let J = ‘ % ‘ According to (A.5), we have
v%:r‘di (7' T)=d""eve -V ('), (A6)
s
where % =c¢Vz - V. Letting A% = cJ~!, relation (A.6) implies that A(2) satisfies the standard transport equation

V- (A3Vr) =0. (A7)
Comparing (A.7) with (3.26), we get

c
. = Ag = ypczu% s (A.8)
where y is a constant to be determined. Taking 7 — 0 in (3.45), we have
2 m—1
S o _, (A.9)
VﬂoCoUO(o) 7/7000"0”'
Thus
Y =4pocg ™!, (A.10)
which means that
95 7=l
|£ T dp e o2 (A.11)
pocy ™ peug
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