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Abstract. We prove a version of pointwise Ergodic Theorem for non-

stationary random dynamical systems. Also, we discuss two specific examples
where the result is applicable: non-stationary iterated function systems and

non-stationary random matrix products.

1. Introduction

Birkhoff Ergodic Theorem is one of the key tools of the theory of dynamical
systems. In the context of topological dynamics it claims that for a continuous
dynamical system f : X → X on a metric compact X and an f -invariant measure
ν on X, given a “test function” ϕ ∈ C(X), the time averages

1

n

n−1∑
j=0

ϕ(f j(x))

converge for ν-a.e. x ∈ X, and if the measure ν is ergodic, the limit almost
everywhere equals the space average

∫
X
ϕdν.

It admits a natural generalization for the case of random dynamical systems.
Namely, let X be a compact metric space, and µ be a probability measure on the
space of continuous maps C(X,X). The iterations of the corresponding random
dynamical system are the sequences of compositions

f1, f2 ◦ f1, . . . , fn ◦ · · · ◦ f1, . . . ,
where fi : X → X are chosen randomly and independently w.r.t. the measure µ.

An analogue of the notion of an invariant measure is the one of a stationary
measure. Namely, a µ-stationary measure ν is a probability measure on X such
that µ ∗ ν = ν, where the convolution µ ∗ ν is the law of f(x) for independent f
chosen w.r.t. µ and x w.r.t. ν. Such a measure always exists (this can be shown via
an analogue of the Krylov-Bogolyubov averaging procedure), though is not unique
in general (in the same way as an invariant measure is not unique for a classical
deterministic dynamical system in general).
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2 A. GORODETSKI AND V. KLEPTSYN

The following theorem corresponds to the Birkhoff Ergodic Theorem for the
stationary random dynamics (e.g. see [DMPS, Theorem 5.2.9]):

Theorem 1.1 (Random Birkhoff Ergodic Theorem). For any ergodic stationary
measure ν on X, for any ϕ ∈ C(X,R), for ν-a.e. x ∈ X, µN-almost surely one has

1

n

n−1∑
k=0

ϕ(fk ◦ . . . ◦ f1(x))→
∫
X

ϕ(x)dν(x),

where f1, f2, . . . are chosen randomly and independently, with respect to the distri-
bution µ.

However, this generalisation heavily relies on the fact that fn’s are identically
distributed. What can be said if fn’s are still chosen independently, but each fn is
distributed w.r.t. a different measure µn? This can be represented symbolically by
the following diagram:

X
µ1−→
f1

X
µ2−→
f2

X → · · · → X
µn−−→
fn

X → . . .

At first glance, many notions and tools disappear, starting with the one of the
stationary measure: the measures µn on different steps may differ, and the system
of equations ν = µn ∗ν for all n is usually incompatible. Thus even finding a proper
statement, not to mention proving it, is non-evident.

Meanwhile, such a setting naturally arises in some situations. For example, the
study of one-dimensional Anderson Localization problem [GK3] in presence of a
background potential leads to the study of products of independent non-identically
distributed matrices, the non-stationary Furstenberg Theorem [GK2], that is within
the frames of non-stationary ergodic theory. It also motivated the study of Hölder
regularity of averaged images of a given initial measure in [GKM, Theorem 2.8].

The goal of the present paper is to discuss a paradigm for ergodic theorems in a
non-stationary setting, presenting both (counter)-examples and a restricted version
of an ergodic theorem, see Theorem 3.1 below. The latter is only a “proof-of-
concept”; it definitely can be vastly generalized, and we hope it soon will be: our
goal is to motivate the farther research in this direction.

2. Preliminaries

Throughout this paper, we set X to be a compact metric space, and assume that
a “test function” ϕ ∈ C(X) is given. Also, for every n we assume that a measure
µn on C(X,X) is given (if the dynamics is assumed to be invertible, one can ask
instead for the measure on the set of homeomorphisms of X). We then denote

(1) P :=
∞∏
n=1

µn,

and our goal is to describe time averages along P-almost every sequence of iterations.
Let us denote by M = M(X) the space of Borel probability measures on the

compact metric space X. We consider it to be equipped with the Wasserstein
distance (that is one of the ways to metrize the weak-* topology in the space of
probability measures):
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Definition 2.1. Let ν1, ν2 ∈ M be two probability measures on X. The Wasser-
stein distance between ν1 and ν2 is defined as

(2) distM(ν1, ν2) = inf
γ

∫∫
X×X

dX(x, y) dγ(x, y),

where the infimum is taken over all probability measures γ on X × X with the
marginals ν1 and ν2, that is, (πj)∗γ = νj , j = 1, 2, where π1,2 : X ×X → X is the
projection on the first and second factor respectively.

Next, note that for a random orbit

(xn)n∈N, xn = fn(xn−1)

the non-stationarity of the dynamics implies that the law of xn can vary quite
strongly, thus the same applies to the law of ϕ(xn) and to its expectation. Thus, we

should not expect the time averages 1
n

∑n−1
k=0 ϕ(xk) to converge. Instead, we should

expect these to have a deterministic behaviour, similarly to the non-stationary Law
of Large Numbers. Namely, under reasonable assumptions for independent, but
not identically distributed random variables ξn one has

1

n

∣∣∣∣∣
n∑
k=1

ξk −
n∑
k=1

Eξk

∣∣∣∣∣→ 0, n→∞.

As the Birkhoff Erogic Theorem generalises the Law of Large Numbers, we should
expect

(3)
1

n

∣∣∣∣∣
n∑
k=1

ϕ(xk)−
n∑
k=1

∫
X

ϕ(x)dνk(x)

∣∣∣∣∣→ 0, n→∞

for some reasonable non-random measures νk. Indeed, this turns out to be the case:
see Theorem 3.1 below.

3. Statement of the main result

Our main result will be stated under the following assumption. This assumption,
in a sense, generalizes (and slightly strengthens) the unique ergodicity. The latter
requires the stationary measure to be unique, so this setting is more restrictive
than “simple” ergodicity; however, in this setting such an assumption seems to be
appropriate, see the discussion in Section 6.2 below, and Example 6.3 therein.

Standing Assumption: We will say that a sequence of distributions
µ1, µ2, µ3, . . . on C(X,X) satisfies the Standing Assumption if for any δ > 0 there
exists m ∈ N such that the images of any two initial measures after averaging over
m random steps after any initial moment n become δ-close to each other:

∀ν, ν′ ∈M, ∀n ∈ N, distM(µn+m ∗ . . . ∗ µn+1 ∗ ν, µn+m ∗ . . . ∗ µn+1 ∗ ν′) < δ.

Note that if after a given number m of steps the averaged images of any two
initial measures ν, ν′ are close to each other, one can pick any of these images and
state that all the others are close to it. So one can pick any measure ν0 (for instance,
a Dirac one at a given initial point x0) and define

(4) νn := µn ∗ νn−1, n = 1, 2, . . . .
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Then, for any given measure ν, the convolution µn+m ∗ . . . ∗ µn+1 ∗ ν is close to
νn+m, and this motivates the appearance of measures νn in (3).

Here is the main result of this paper:

Theorem 3.1. Suppose the sequence of distributions µ1, µ2, µ3, . . . satisfies the
Standing Assumption above. Given any Borel probability measure ν0 on X, define

νn := µn ∗ νn−1, n = 1, 2, . . . .

Then for any ϕ ∈ C(X,R) and any x ∈ X, almost surely

1

n

∣∣∣∣∣
n∑
k=1

ϕ(fk ◦ . . . ◦ f1(x))−
n∑
k=1

∫
X

ϕdνk

∣∣∣∣∣→ 0 as n→∞,

where the measures νn are defined by (4).
Moreover, an analogue of the Large Deviations Theorem holds. Namely, for any

ε > 0 there exist C, δ > 0 such that for any x ∈ X

(5) ∀n ∈ N, P

(
1

n

∣∣∣∣∣
n∑
k=1

ϕ(fk ◦ . . . ◦ f1(x))−
n∑
k=1

∫
X

ϕdνk

∣∣∣∣∣ > ε

)
< C exp(−δn).

Remark 3.2. While the Standing Assumption above might seem quite restrictive,
it does hold in a natural way in some interesting cases. In the next section we
prove that it holds in two settings, namely, for random dynamical systems defined
by contractions, also known as random iterated function systems, and for random
dynamical systems on a projective space generated by random matrix products.

Remark 3.3. In the stationary case, when µi = µ for all i ∈ N, Standing As-
sumption implies that the random dynamical system defined by the distribution µ
is uniquely ergodic, i.e. has a unique stationary measure. Notice, however, that the
Standing Assumption is actually stronger (i.e. more restrictive) than the unique
ergodicity. Namely, unique ergodicity is equivalent to the statement that time aver-
ages of convoluted images of any initial measure ν converge to the unique stationary
measure ν uniformly in ν:

1

m

m∑
j=0

µ(∗j) ∗ ν → ν, m→∞,

where µ(∗j) is j-th convolution power. Example 6.3 explains why the Standing
Assumption in the non-stationary setting should indeed be stronger.

Remark 3.4. Large Deviation Estimates for stationary Markov chains were heavily
studied, and numerous stationary versions of (5) are known, e.g. see [DV, Ga] for
classical texts, [Ac] for a recent monograph on the subject, as well as [DK1, Theorem
5.2], [DK2, Theorem 4.4].

Remark 3.5. We would like to point out that there are different settings where
non-stationary versions of ergodic theorems could be and were established. For
example, the setting where a sequence of maps that preserve the same fixed measure
was considered in [BB]. The case when all maps are non-singular with respect to
the Lebesgue measure, so the transfer operator technics are applicable, was studied
in [CR, HNTV]. Sometimes a term sequential dynamical system is used in these
contexts. We emphasize that both the setting and the underlying mechanisms there
are different from ours.
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4. Examples of applicability

We will give two examples of non-stationary random dynamical systems for which
Standing Assumption is satisfied and, hence, Theorem 3.1 is applicable.

4.1. Random Iterated Function Systems. An iterated function system is de-
fined by a finite collection of contractions of a complete metric space, usually Rd
or a compact subset of Rd. In many cases it leads to a fractal attractor. For ex-
ample, the standard Cantor set can be defined via two contractions of the unite
interval, x 7→ x

3 and x 7→ x
3 + 2

3 . Many self-similar fractals can be generated this
way. If probabilities are assigned to each of the contractions, one can consider a
corresponding random dynamical system. It is known that it must have unique
stationary measure [Hu, Sz]. Properties of this stationary measure were a subject
of intense studies. There is a vast amount of literature on exact-dimensionality and
fractal dimension of this measure; we will only mention a recent survey [FS]. Hölder
regularity of the this measure was studied in [FL, Proposition 2.2] and [GKM, Sec-
tion 1.2]. For a survey of the theory of Bernoulli convolutions that also fall into
this setting see [PSS] or a more recent [Va].

One can consider a non-stationary random dynamical system generated by con-
tractions, where a different distribution on the space of contraction can be chosen on
each step. This setting was considered, for example, in [GKM]; it was shown there
that under some mild and natural conditions the averaged iterates of any given ini-
tial measure must converge to the space of Hölder regular measures exponentially
fast.

One can easily see that in this setting the Standing Assumption holds, and hence,
Theorem 3.1 is applicable:

Proposition 4.1. Let X be a compact metric space, and λ ∈ (0, 1) be a constant.
Suppose {µi}i∈N be a sequence of probability distributions in the space of contrac-
tions X → X with Lipschitz constant at most λ. Then Standing Assumption holds,
i.e. for any Borel probability measures ν, ν′ on X we have

distM(µn+m ∗ . . . ∗ µn+1 ∗ ν, µn+m ∗ . . . ∗ µn+1 ∗ ν′)→ 0 as m→∞,

uniformly in (ν, ν′) and n ∈ N.

Proof. Indeed, for any µi, any map f ∈ suppµi is a contraction with Lipschitz
constant at most λ. Hence for any ν1, ν2 ∈M we have

distM(µ ∗ ν1, µ ∗ ν2) ≤ λdistM(ν1, ν2),

and Proposition 4.1 follows. �

4.2. Random Matrix Products. Let us now show that under some non-
degeneracy assumptions a non-stationary random dynamical system defined by
projective maps must satisfy Standing Assumption.

Suppose K is a compact set in the space of probability distributions on SL(2,R)
such that for any µ ∈ K the measures condition is satisfied (we use terminol-
ogy from [GKM]), i.e. there are no probability measures ν1, ν2 on RP1 such that
(fA)∗(ν1) = ν2 for all A ∈ suppµ. Slightly abusing the notation, we will treat µ
also as a measure on the space of projective maps fA : RP1 → RP1.
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Proposition 4.2. Suppose the measure condition holds for each µ ∈ K. Then for
any sequence {µi} ∈ KN and any probability measures ν, ν′ ∈M we have:

distM(µn+m ∗ . . . ∗ µn+1 ∗ ν, µn+m ∗ . . . ∗ µn+1 ∗ ν′)→ 0 as m→∞,

uniformly in (ν, ν′) and n ∈ N.

We will deduce this proposition from the following statement, that is also of
independent interest:

Proposition 4.3. Suppose the measure condition holds for each µ ∈ K. Then for
any ε > 0 there exists m such that for any measures µ1, . . . , µm ∈ K and any points
x, y ∈ RP1 one has

(µm ∗ · · · ∗ µ1){F | d(F (x), F (y)) < ε} > 1− ε,

where the composition F = fm ◦ · · · ◦ f1 is formed by independent random maps fi
distributed w.r.t. µi. In other words, the random composition F brings x and y to
the distance less than ε with probability at least 1− ε.

This deduction is indeed immediate:

Proof of Proposition 4.2. Note first that

distM(µn+m ∗ . . . ∗ µn+1 ∗ ν, µn+m ∗ . . . ∗ µn+1 ∗ ν′) ≤∫∫
RP1

distM(µn+m ∗ . . . ∗ µn+1 ∗ δx, µn+m ∗ . . . ∗ µn+1 ∗ δy) dν(x)dν′(y);

this follows from the convexity of the transport distance: mixing the couplings
provides a coupling for the averaged measures.

At the same time, we have

(6) distM(µn+m ∗ . . . ∗ µn+1 ∗ δx, µn+m ∗ . . . ∗ µn+1 ∗ δy) ≤

≤
∫
d(F (x), F (y)) d(µn+m ∗ . . . ∗ µn+1)(F ).

Take an arbitrary ε > 0; once m is taken sufficiently large so that the conclusion of
Proposition 4.3 holds, the right hand side of (6) does not exceed

ε · (µn+m ∗ · · · ∗ µn+1){F | d(F (x), F (y)) < ε}+
+ 1 · (µn+m ∗ · · · ∗ µn+1){F | d(F (x), F (y)) ≥ ε} ≤ ε · 1 + 1 · ε = 2ε.

As ε > 0 is arbitrary, we get the desired convergence that is uniform in n, ν, and
ν′. �

Let us now return to Proposition 4.3. Before proceeding to the proof, note that
if the dynamics was stationary and if the expectation of log ‖A‖ was bounded, the
conclusion of the proposition would be implied by the famous Furstenberg Theorem.
This motivates to approach it via a non-stationary version of Furstenberg Theorem.
Such versions were studied recently in [GK2] and [G].

Proof of Proposition 4.3. Assume that the expectation of ‖A‖ is bounded uniformly
in µ ∈ K:

(7) ∃CK : ∀µ ∈ K

∫
‖A‖ dµ(A) < CK.
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Then we are in a situation when Theorems 1.1 and 1.4 from [GK2] are applicable.
Namely, denote

Ln := E log ‖An . . . A1‖.
Theorem 1.1 from [GK2] then implies a linear lower bound for Ln: there exists
λK > 0 such that

Ln ≥ nλK;

moreover, λK does not depend on the individual choices of µi, but only on the
compact K itself.

Now, Theorem 1.4 from [GK2] states that a Large Deviations type estimate
holds: for any fixed δ > 0, there exists δ′ such that for any v0 ∈ R2, |v0| = 1, and
any sufficiently large n (that is, for all n greater than some n0) one has

P(|log |An . . . A1v0| − Ln| > nδ) < e−nδ
′
.

Moreover (see [GK2, Remark 1.4]), the constants δ′ and n0 can be chosen uniformly
in all possible sequences of µi ∈ K.

To establish the conclusion of the proposition in this particular case, i.e. when
(7) holds, take δ := 1

2λK > 0 and consider the corresponding n0, δ′. Then, once
the inequality

(8) |log |An . . . A1v0| − Ln| < nδ

holds, it implies

log |An . . . A1v0| > Ln − nδ ≥
1

2
λKn.

In particular, for any given ε > 0, taking n1 to be the integer part of log 2ε−1

1
2λKn

, we

have
|An . . . A1v0| > 2ε−1

once n > n1 and (8) holds. In turn, this inequality implies that the angle between
the image An . . . A1v0 and the image of the most expanded unit vector does not
exceed ε

2 . Hence, having it for two vectors v0, v
′
0 corresponding to two points

x, y ∈ RP1 implies that

(9) dist(F (x), F (y)) < ε,

where F = fAn...A1
. On the other hand, for any n > n2 := d 1

δ′ log 2ε−1e one has

e−nδ
′
<
ε

2
.

Hence, for n > max(n0, n1, n2) we get the desired (9) with the probability at
least

1− 2e−nδ
′
> 1− 2

ε

2
= 1− ε

for arbitrary µ1, . . . , µn ∈ K and x, y ∈ RP1.
Now, let us pass to the general case. The following tool is useful to study random

dynamical systems on the circle. Consider an inverse stationary measure, that is,
a measure ν− such that

ν− = E
[
(f−1)∗ν

−] .
Then the measures of forward random iterations of an interval form a martingale:

Eν−(f(J)) = E
[
((f−1)∗ν

−)
]

(J) = ν−(J).

In the non-stationary setting the notion of one stationary measure is no longer
applicable. Thus, similarly to the statement of Theorem 3.1, we will replace this
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notion by a sequence of measures related by convolution. Namely, for every given
n and measures µ1, . . . , µn ∈ K, we define

ν−n := Leb, ∀i = 1, . . . , n ν−i−1 := Eµi

[
(f−1)∗ν

−
i

]
= µ−i ∗ ν

−
i ,

where the measure µ−i is the push-forward image of µi under the inversion map
f 7→ f−1. Then we also have the martingale property for the measures of the
iterations: for any i and any interval J one has

(10) Eµi

[
ν−i (f(J))

]
= ν−i−1(J),

and thus

(11) Eµn∗···∗µi

[
ν−n (F (J))

]
= ν−i−1(J).

For any given x, y ∈ RP1 consider the sequence of their random iterations: let
fi be chosen independently w.r.t. µi, and denote

x0 := x, y0 := y, xi = fi(xi−1), yi = fi(yi−1).

We then have the following lemma.

Lemma 4.4. Assume that for some i after i iterations we have ν−i ([xi, yi]) <
1
2ε

2

or ν−i ([yi, xi]) <
1
2ε

2. Then with the probability at least 1− ε
2 we have

dist(xn, yn) < ε.

Proof. Assume that we are in the first case. Then as

E(ν−n ([xn, yn]) | f1, . . . , fi) = ν−i ([xi, yi]) < ε · ε
2
,

due to the Markov inequality with the probability at least 1 − ε
2 we have

dist(xn, yn) = Leb([xn, yn]) = ν−n ([xn, yn]) < ε.

The case ν−i ([yi, xi]) <
1
2ε

2 can be treated in the same way. �

Roughly speaking, Lemma 4.4 says that if the random iterations of x and y
approach each other in the sense of the measure ν−i , they most probably will stay
sufficiently close to each other in the usual sense at time n, too. The next observa-
tion is that measures ν−i are non-atomic, uniformly in both i and possible choices
of measures µj . Namely, we have the following lemma.

Lemma 4.5. There exists ε1 > 0 such that for any n, i and µ1, . . . , µn ∈ K and
any interval J of length |J | < ε1 we have ν−i (J) < 1

2ε
2.

Proof. Note first that the measures µ− corresponding to the inverse maps also
satisfy the measures condition. Indeed, if we had f−1∗ ν = ν′ for µ-a.e. f for some
µ ∈ K, then we would also have f∗ν

′ = ν, and that would be a contradiction.
Now, the Atoms Dissolving Theorem 1.13 from [GK2] is applicable, and it states

that there exists some k0 such that for any µ′1, . . . , µ
′
k0
∈ K and any x′, x′′ ∈ RP1

(12) ((µ′1)− ∗ · · · ∗ (µ′k0)− ∗ δx′)({x′′}) <
1

2
ε2.

In other words, any (reverse) length k0 convolution makes weights of atoms dissolve
so they do not exceed 1

2ε
2. This implies that for some ε′ and any µ1, . . . , µk0 ∈ K

one has

(13) (µ−1 ∗ · · · ∗ µ
−
k0
∗ δx′)(J) <

1

2
ε2 ∀J, |J | ≤ ε′.
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Indeed, if this statement would be violated for any ε′m = 1
m , then for some Jm,

µ1,m, . . . , µk0,m, we would find a convergent subsequence of these data,

Jmj
→ x′′, µi,mj

→ µ′i ∈ K,

and would get a contradiction with (12). Averaging (12) over x′ w.r.t. ν−i+k0 , we
obtain the conclusion of the lemma for all i ≤ n− k0.

Finally, all the measures ν−n−k for k = 1, . . . , k0 are non-atomic, as by defi-

nition ν−n = Leb. Again, this implies that there exists ε′′ such that for any
µn−k+1, . . . , µn ∈ K

(14) (µ−n−k+1 ∗ · · · ∗ µ
−
n ∗ ν−n )(J) <

1

2
ε2 ∀J, |J | ≤ ε′′.

Indeed, otherwise we find a convergent subsequence of intervals Jm and measures
µ−n−j ∈ K, and obtain a contradiction with the non-atomicity mentioned above.

Taking ε1 := min(ε′, ε′′) concludes the proof of Lemma 4.5. �

Combining the statements of Lemma 4.5 and Lemma 4.4, we get the following
corollary:

Corollary 4.6. For any ε > 0 there exists ε1 > 0 such that the following holds.
Assume that for some i after i iterations we have dist(xi, yi) < ε1. Then with the
probability at least 1− ε

2 we have

dist(xn, yn) < ε.

We are now ready to conclude the proof of Proposition 4.3 by considering two
different cases. Assume first that there exists ε2 > 0 and k2 such that for any
x′, y′ ∈ RP1 and any µ1, . . . , µk2 ∈ K with the probability at least ε2 the following
event holds:

∃i ≤ k2 : dist(x′i, y
′
i) ≤ ε1,

where
x′0 := x′, y′0 := y′, x′i = fi(x

′
i−1), y′i = fi(y

′
i−1),

and fi are random maps chosen independently w.r.t. µi.
In this case, for any k3 the probability that the iterations of two initial points x

and y do not approach each other closer than ε1 during k2 · k3 iterations does not
exceed (1− ε2)k3 : we have k3 attempts with at least ε2 chance of success at each of
these. Taking k3 sufficiently large so that (1 − ε2)k3 < ε

2 and defining n := k2 · k3,
we get that with the probability at least 1 − ε

2 there exists i ≤ n such that

dist(xi, yi) < ε1,

and hence dist(xn, yn) < ε with the probability at least (1 − ε
2 )2 > 1− ε.

Finally, if such ε2 and k2 do not exist, we take a sequence of candidates ε2,(m) =
1
m , k2,(m) = m and consider the points x′(m), y

′
(m) and measures µ1,(m), . . . , µm,(m) ∈

K, for which the desired statement fails. Extracting a convergent subsequence, we
find x′, y′ and µ1, µ2, . . . , for which almost surely the images x′i, y

′
i always stay at

the distance at least ε′.
Now, Atoms Dissolving Theorem 1.13 from [GK2] together with the compactness

argument that we have already applied imply that for some k4, ε3 > 0 for any
interval J of length |J | ≤ ε3 we have

P(xk4 ∈ J),P(yk4 ∈ J) ≤ 1

3
.
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In particular, for any i > k4 the product of matrices T[k4,i] := Ai . . . Ak4+1 cannot

have norm higher than 4
ε3ε2

, as otherwise with the probability at least 1
3 both points

xk4 , yk4 will be at the distance at least ε3
2 from its most contracted direction, and

thus their images

xi = fT[k4,i]
(xk4), yi = fT[k4,i]

(yk4)

will be at the distance at most 1
‖T[k4,i]‖·

ε3
2

< ε2
2 from the image of the most expanded

direction, and hence closer than ε2 to each other.
Thus, the products Ai . . . Ak4+1 almost surely satisfy a uniform upper bound

by 4
ε3ε2

. Hence, the norms of the matrices Ai are also uniformly bounded.

Consider now the compact set K′ that is the closure of {µk4+1, µk4+2, . . . }. This
is a closed subset of K, and hence a compact set of measures, on which the norms
of matrices are uniformly bounded and for which the measure condition is satisfied.
Hence, we are again in the assumptions of the Nonstationary Furstenberg Theorem
([GK2, Theorem 1.4]). And thus the uniform bound on the norms of products
T[k4,i] provides us a contradiction, making this second case impossible.

This concludes the proof of Proposition 4.3. �

Remark 4.7. In case of a higher dimension, without additional assumptions (an
analogue of absence of a finite invariant set of planes) the measure condition does
not suffice to ensure the nonstationary ergodicity, as [GK2, Example A.1] shows.
Nevertheless, with some extra assumptions (that would be sufficient to guarantee
a non-stationary version of “simplicity of Lyapunov spectrum”, or at least “sim-
plicity of the first Lyapunov exponent”) the conclusion of the proposition could be
generalised to the case of SL(d,R), d > 2.

Remark 4.8. Contraction of random orbits for general stationary dynamics on
the circle was established and studied in detail in [A], [KN], [Mal]. Even though
in some parts of the proof of Proposition 4.3 we have used the fact that we are
composing projective maps, we expect that under some suitable assumptions the
statement and the proof can be adapted to a more general case of non-stationary
dynamics of circle homeomorphisms.

5. Proof of Theorem 3.1

We will establish the second part of the theorem, the Large Deviations estimates,
first; it implies the first part by an easy application of the Borel–Cantelli Lemma.

For a closed interval J ⊂ R, denote by M(J) the space of Borel probability
measures on J equipped with the Wasserstein metric.

Fix any ϕ ∈ C(X,R) and set M = max(1,maxx∈X |ϕ(x)|). The continuous map
ϕ : X → R induces a map on the space of Borel probability measures ϕ∗ :M(X)→
M([−M,M ]).

Lemma 5.1. The map ϕ∗ :M(X)→M([−M,M ]) is continuous.

Proof. Indeed, as X is compact and thus ϕ is uniformly continuous on X, there

exists δ > 0 such that dX(x, y) < δ implies |ϕ(x)− ϕ(y)| < ε′

2 . On the other hand,

take ε′′ := ε′δ
4M . If for some coupling γ between two measures ν, ν′ the integral (2)

takes value less than ε′′, then by Markov inequality

γ({(x, y) | dX(x, y) > δ}) < ε′′

δ
=

ε′

4M
,
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and hence, using the pushforward γ′ := (ϕ,ϕ)∗γ as a coupling between ϕ∗ν and
ϕ∗ν

′, we have∫∫
|u− v| dγ′(u, v) =

∫∫
X×X

|ϕ(x)− ϕ(y)| dγ(x, y) ≤

≤ ε′

2
· γ({(x, y) | dX(x, y) ≤ δ}) + 2M · γ({(x, y) | dX(x, y) > δ})

<
ε′

2
· 1 + 2M · ε

′

4M
=
ε′

2
+
ε′

2
= ε′.

Thus, the inequality distM(ν, ν′) < ε′′ implies distM([−M,M ])(ϕ∗ν, ϕ∗ν
′) < ε′, which

proves Lemma 5.1. �

Since M(X) is compact, Lemma 5.1 implies that ϕ∗ is uniformly continuous.
Combined with the Standing Assumption this implies that for any ε′ > 0 there
exists m such that for any n and for any initial measure ν ∈M,

(15) distM([−M,M ])(ϕ∗(µn+m ∗ . . . ∗ µn+1 ∗ ν), ϕ∗νn+m) < ε′,

where the sequence of measures {νi}i≥0 is given by (4).
Now, fix ε > 0, and let us obtain the Large Deviations estimates for this ε. Fix

m sufficiently large to make sure that (15) holds with ε′ = ε2

30M .
Since ϕ is bounded, it suffices to establish (5) for all n ≥ 1 that are divisible

by m. For any n = mq, q ∈ N, decompose the iterations k = 1, . . . ,mq into m
arithmetic sequences k = r + jm, j = 0, . . . , q − 1 with the difference m, indexed
by the residue r = 1, . . . ,m.

It suffices to check that Large Deviations estimate holds for each of these subse-
quences and ε > 0 that we fixed above. Indeed,

1

n

∣∣∣∣∣
n∑
k=1

ϕ(fk ◦ . . . ◦ f1(x))−
n∑
k=1

∫
X

ϕdνk

∣∣∣∣∣ ≤
≤ 1

m

m∑
r=1

∣∣∣∣∣∣1q
q−1∑
j=0

ϕ(fjm+r ◦ . . . ◦ f1(x))−
q−1∑
j=0

∫
X

ϕdνjm+r

∣∣∣∣∣∣ .
Therefore, it suffices to prove that for each given r = 1, 2, . . . ,m we have for all
q ≥ 1 that

(16) P

1

q

∣∣∣∣∣∣
q−1∑
j=0

ϕ(fjm+r ◦ . . . ◦ f1(x))−
q−1∑
j=0

∫
X

ϕdνjm+r

∣∣∣∣∣∣ > ε

 <
C

m
e−δn,

since that will imply (5).
Fix r ∈ {1, 2, . . . ,m}, and denote

yj := xr+mj = fr+mj ◦ · · · ◦ f1(x);

then, the first sum in (16) is given by
∑q−1
j=0 ϕ(yj).

To establish the estimate (16), we are going to compare this sum to a sum of
independent random variables ξj that are distributed w.r.t. ϕ∗νjm+r respectively.
To do so, for the technical reasons of the construction, we will add two more ran-
dom variables per iteration that are distributed uniformly on [0, 1] and that are
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independent from the iterations and altogether. Namely, we consider

Ω := {(fn, zn, z′n)n∈N} = C(X,X)N × [0, 1]N × [0, 1]N,

equipping it with the probability measure

P̃ := P×LebN×LebN,

where P is defined by (1).

Lemma 5.2. There exist random variables ξj , ξ
′
j on the space (Ω, P̃) such that:

• ξj are independent for all j, and the law of ξj is ϕ∗νr+jm;
• ξ′j are i.i.d Bernoulli variables, taking value 1 with the probability ε

8M .
• For every j, if ξ′j takes value 0, then |ϕ(yj)− ξj | ≤ ε

3 .

We postpone the (slightly technical) proof of this lemma until the end of this
section. Note that it allows to complete the proof of Theorem 3.1. Indeed, note
first that the last conclusion of Lemma 5.2 implies the inequality

(17) |ϕ(yj)− ξj | ≤
ε

3
+ 2Mξ′j ;

notice that here we are using the fact that |ϕ| ≤M , and hence |ϕ(yj)− ξj | ≤ 2M .
The sum in (16) can be estimated as

(18)
1

q

∣∣∣∣∣∣
q−1∑
j=0

ϕ(fjm+r ◦ . . . ◦ f1(x))−
q−1∑
j=0

∫
X

ϕdνjm+r

∣∣∣∣∣∣ =

=
1

q

∣∣∣∣∣∣
q−1∑
j=0

ϕ(yj)−
q−1∑
j=0

Eξj

∣∣∣∣∣∣ ≤ 1

q

q−1∑
j=0

|ϕ(yj)− ξj |+
1

q

∣∣∣∣∣∣
q−1∑
j=0

(ξj − Eξj)

∣∣∣∣∣∣ ≤
≤ ε

3
+ 2M · 1

q

q−1∑
j=0

ξ′j +
1

q

∣∣∣∣∣∣
q−1∑
j=0

(ξj − Eξj)

∣∣∣∣∣∣
Now, note, that as Eξ′j = ε

8M < ε
6M , one has

P̃

1

q

q−1∑
j=0

ξ′j >
ε

6M

 < C1e
−δ1q

for some δ1 > 0 due to the Large Deviations estimate for the independent vari-
ables ξ′j . In the same way, as ξj are independent and uniformly bounded by M ,
from the Large Deviations estimate one has

P̃

∣∣∣∣∣∣1q
q−1∑
j=0

(ξj − Eξj)

∣∣∣∣∣∣ > ε

3

 < C2e
−δ2q

Now, if both 1
q

∑q−1
j=0 ξ

′
j ≤ ε

6M and 1
q

∣∣∣∑q−1
j=0(ξj − Eξj)

∣∣∣ < ε
3 hold, (18) implies

1

q

∣∣∣∣∣∣
q−1∑
j=0

ϕ(yj)−
q−1∑
j=0

Eξj

∣∣∣∣∣∣ ≤ ε

3
+ 2M · ε

6M
+
ε

3
= ε.



NON-STATIONARY ERGODIC THEOREM 13

Hence, the probability in (16) is bounded from above by the

P

1

q

∣∣∣∣∣∣
q−1∑
j=0

ϕ(yj)−
q−1∑
j=0

Eξj

∣∣∣∣∣∣ > ε

 ≤
≤ P̃

1

q

q−1∑
j=0

ξ′j >
ε

6M

+ P̃

∣∣∣∣∣∣1q
q−1∑
j=0

(ξj − Eξj)

∣∣∣∣∣∣ > ε

3


< C1e

−δ1q + C2e
−δ2q,

and we obtain the desired exponentially small bound with δ = min(δ1, δ2).
Since we have obtained the desired bound (16) that holds for each r = 1, . . . ,m,

this completes the proof of Theorem 3.1 modulo Lemma 5.2.

Proof of Lemma 5.2. On the space (Ω, P̃), define a sequence of σ-algebrae

Fj := σ({(fk, zk, z′k) | k ≤ r + jm}).
Note that the random values ϕ(yi) = ϕ(xr+mi), i = 0, . . . , j − 1 are measurable
w.r.t. Fj−1; meanwhile, the conditional distribution of ϕ(yj) with respect to this
σ-algebra is given by

Dj,yj−1 := ϕ∗(µr+mj ∗ . . . ∗ µr+1+m(j−1) ∗ δyj−1).

Due to the choice of m, this conditional distribution is ε′-close to ϕ∗νr+jm, that is
the law of the desired random variable ξj . This suggests to construct ξj and ξ′j in
the following way. Assume that

(i) for every j the random variables ξj , ξ
′
j are measurable w.r.t. Fj ;

(ii) the conditional distribution of ξj w.r.t. {(fk, zk, z′k) | k ≤ r + (j − 1)m}
is ϕ∗νr+jm;

(iii) the conditional distribution of ξ′j w.r.t. {(fk, zk, z′k) | k ≤ r + (j − 1)m} is
Bernoulli with the success probability ε

8M ;
(iv) If |ϕ(yj)− ξj | > ε

3 , then ξ′j takes value 1.

Then these random variables satisfy the conditions of Lemma 5.2. Indeed, prop-
erty (ii) implies that ξj is independent from σ-algebra Fj−1. As ξ0, . . . , ξj−1 are
measurable w.r.t. Fj−1 due to the property (i), the random variable ξj is indepen-
dent from ξ0, . . . , ξj−1.

In the same way, ξ′j is independent from ξ′0, . . . , ξ
′
j−1 due to (i) and (iii). The

last conclusion of the lemma will follow from (iv).
Let us now construct random variables ξj , ξ

′
j , satisfying (i)–(iv).

Recall that between two probability measures on the real line, the optimal trans-
port can be constructed explicitly. Namely, assume that we are given two proba-
bility measures ρ, ρ′ on the real line. Take two independent random variables η, ζ,
where η is distributed w.r.t. ρ, and ζ is uniformly distributed on [0, 1]. Let

Φρ(y, z) := ρ((−∞, y)) + z · ρ({y});
then Φ(η, ζ) is a uniformly distributed random variable (this is the standard prin-
ciple of substituting a random variable to its own distribution function, where the
independent random variable is used to “dissolve the atoms”). On the other hand,
an application of the function

Ψρ′(s) = sup{y : ρ′((−∞, y)) ≤ s},
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that is an inverse to the distribution function of ρ′, sends the Lebesgue measure
to ρ′. Hence, their composition, F(ρ,ρ′) := Ψρ′ ◦ Φρ, provides a coupling between ρ
and ρ′. Namely, the random variable ξ := F(ρ,ρ′)(η, ζ) is distributed w.r.t. ρ′,
and the desired coupling is given by the joint distribution (η, ξ). This coupling
minimizes the Wasserstein distance [V].

Now, for each j consider random variables

ξj := F(Dj,yj−1
,ϕ∗νjm+r)(ϕ(yj), zr+jm).

Properties (i) and (ii) then are satisfied by construction.
Due to the optimality of this transport and the assumption on m, conditionally

to any yj−1 we have

E(|ξj − ϕ(yj)| | yj−1) = distM([−M,M ])(Dj,yj−1
, ϕ∗νjm+r) ≤ ε′.

Now, consider the event

Aj :=
{
|ξj − ϕ(yj)| >

ε

3

}
.

Due to Markov inequality, conditionally to any yj−1, its probability does not exceed

P̃(Aj | yj−1) ≤ 3

ε
· E(|ξj − ϕ(yj)| | yj−1) ≤ 3ε′

ε
=

3

ε
· ε2

30M
<

ε

8M
.

Now, define ξ′j by

(19) ξ′j = 1IAj + 1I|ξj−ϕ(yj)|≤ ε
3
· 1Izr+jm≤ψ(j,yj−1),

where the value

ψ(j, yj−1) :=
ε

8M − P̃(Aj | yj−1)

1− P̃(Aj | yj−1)
∈ (0, 1)

is chosen in such a way that

P̃(ξ′j | yj−1) =
ε

8M

for any value of yj−1. The choice (19) ensures both property (iii) (measurability
follows from the explicit formulae) and (iv) (that follows directly from the construc-
tion).

This completes the construction of random variables ξj , ξ
′
j and the verification

of their properties, thus the proof of Lemma 5.2. �

6. Concluding remarks

6.1. Different phase spaces at different times. A general remark is that in
the non-stationary setting the phase spaces at different iterations are no longer
canonically identified with each other. Namely, consider a random orbit

xn = fn(xn−1).

An application of a time-dependent change of variables yn = hn(xn), where each
hn is a homeomorphism of X, sends an orbit of the initial system to

yn = gn(yn−1), gn = hn ◦ fn ◦ h−1n−1.
This corresponds to the random iterations of another system from the same class,
with measures µ′n = (Tn)∗µn that are push-forward images of µn under the “change
of variable” maps

Tn : C(X,X)→ C(X,X), Tn : f 7→ hn ◦ fn ◦ h−1n−1.
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However, the equality between some xn and xm does not imply the equality between
their images yn = hn(xn) and ym = hm(xm). This is why one can (and should)
think of the spaces X at different moments of time as of different fibers.

Moreover, in the absence of stationarity we do not need to assume that the phase
space stays the same all the time. Rather, we can consider a sequence of compact
metric spaces X0, X1, X2, . . ., and a sequence of probability measures µn, n ≥ 1, on
C(Xn−1, Xn):

X0
µ1−→
f1

X1
µ2−→
f2

X2 → · · · → Xn−1
µn−−→
fn

Xn → . . . .

Then, given a sequence of “observable” functions ϕn ∈ C(Xn,R), we can ask the
same questions as before.

It is reasonable to require a uniform bound on the diameters of Xn, and a uniform
modulus of continuity for the functions ϕn; Theorem 3.1 then can be generalized
to such a setting:

Theorem 6.1. Assume that the diameters of Xn are uniformly bounded, and that
the Standing Assumption (with the replacement of X by corresponding Xn’s), holds.
Then for any sequence ϕn ∈ C(Xn,R) of functions admitting a uniform modulus
of continuity and any x ∈ X0 we have that

1

n

∣∣∣∣∣
n∑
k=1

ϕk(fk ◦ . . . ◦ f1(x))−
n∑
k=1

∫
Xk

ϕkdνk

∣∣∣∣∣→ 0 as n→∞,

where νn = µn ∗ νn−1 for all n ≥ 1, and ν0 is any initial Borel probability measure
on X0.

Moreover, an analogue of the Large Deviations Theorem holds: for any ε > 0
there exists C, δ > 0 such that for any x ∈ X0

∀n ∈ N, P

(
1

n

∣∣∣∣∣
n∑
k=1

ϕk(fk ◦ . . . ◦ f1(x))−
n∑
k=1

∫
Xk

ϕkdνk

∣∣∣∣∣ > ε

)
< C exp(−δn).

The proof of Theorem 6.1 is almost verbatim repetition of the proof of Theorem
3.1, and as such will be omitted.

6.2. Counter-examples: assumptions that cannot be avoided. This section
is devoted to presenting the examples where Nonstationary Random Ergodic The-
orem does not hold. The first of these shows why one has to require at least some
upper bound on the number of iterations needed to “diffuse” the initial measure in
the Standing Assumption:

Example 6.2. Let the set X = {a, b} consist of two points only. Fix a (sufficiently

quickly growing) sequence nk = 10k
2

, and let measure µn be defined as µn = δid for
n 6= nk and

µnk
=

1

2
δid +

1

2
δσ,

where σ is a transposition that interchanges a and b. Then, on one hand, for any
initial n, any two measures ν, ν′ on X, and any nk > n, one has

µnk
∗ . . . ∗ µn+1 ∗ ν′ = µnk

∗ . . . ∗ µn+1 ∗ ν =
1

2
δa +

1

2
δb =: ν.

On the other hand, any individual orbit (xn) spends each interval of time between nk
and nk+1 either fully at a, or fully at b, with each of these probabilities occurring
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equiprobably and independently for different k. As the quotient nk+1−nk

nk
tends to in-

finity, this easily implies that the time averages of any function ϕ almost surely have
both ϕ(a) and ϕ(b) as its accumulation points. In particular, these time averages
(for non-constant ϕ) do not converge.

The next example shows why in the Standing Assumption we avoid averaging in
time. Actually, the absence of the natural identification between the phase spaces
at different times (discussed in the previous section) already suggests that time-
average of images of a measure is not a good object to be considered: that would
require an addition of measures on the different spaces. However, even if we are
dealing with a uniquely ergodic deterministic dynamical system, so that such an
addition can be considered, the Nonstationary Ergodic Theorem for ϕn depending
on n without the Standing Assumption may not hold:

Example 6.3. Let X = S1 = R/Z, and f(x) = x + α mod 1 be an irrational
rotation. Then, the (classical) dynamical system (X, f) is uniquely ergodic (its
unique invariant measure is Lebesgue measure); however, the Standing Assumption
does not hold (there is no randomness, and the distances between the orbits do
not decrease). At the same time, Cesaro averages of the images of any two initial
measures on the circle converge to Lebesgue measure with some uniform rate.

Now, take any function ϕ ∈ C(X) and consider the family ϕn = ϕ ◦ f−n.
This family of functions is equicontinuous on X. At the same, the conclusion of
Theorem 6.1 does not hold for these functions: for any initial point x ∈ X one has

1

n

n∑
k=1

ϕk(fk ◦ . . . ◦ f1(x)) =
1

n

n∑
k=1

ϕ ◦ f−k(fk(x)) = ϕ(x),

so there is no constant-like behaviour. Also, replacing the choice of functions by

ϕn = ϕ ◦ f−n+r(n),
where r(n) := max{k | n > nk} for a fast-growing sequence nk = 10k

2

, similar to
Example 6.2, one gets the absence of a limit of “non-stationary” time averages for
every initial point x.
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