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Diagnostic classificationmodels (DCMs)have seenwide applications in educational andpsychological
measurement, especially in formative assessment. DCMs in the presence of testlets have been studied in
recent literature. A key ingredient in the statistical modeling and analysis of testlet-based DCMs is the
superposition of two latent structures, the attribute profile and the testlet effect. This paper extends the
standard testlet DINA (T-DINA) model to accommodate the potential correlation between the two latent
structures. Model identifiability is studied and a set of sufficient conditions are proposed. As a byproduct,
the identifiability of the standard T-DINA is also established. The proposed model is applied to a dataset
from the 2015 Programme for International Student Assessment. Comparisons are made with DINA and
T-DINA, showing that there is substantial improvement in terms of the goodness of fit. Simulations are
conducted to assess the performance of the new method under various settings.

Key words: diagnostic classification model, testlet DINA, identifiability, PISA, Q-matrix, interaction,
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In educational and psychological assessments, there is a surge of interest in adapting psy-
chometric models to informed learning. Diagnostic classification models (DCMs; see Rupp et
al. 2010), with the capability of measuring examinees’ mastery of fine-grained skills, have gained
increasing attention and popularity. Over the past few decades, a wide range of DCMs has been
developed, for example, the deterministic inputs, noisy “and” gate (DINA; Macready & Dayton,
1977; Junker & Sijtsma, 2001) model, the deterministic inputs, noisy “or” gate (DINO; Templin
& Henson, 2006) model, the generalized DINA (G-DINA; de la Torre, 2011) model, and the
log-linear CDM (LCDM; Henson et al., 2009).

One fundamental assumption in latent variable modeling is the local independence of item
responses given the measured trait or profile. Practical assessments, however, may comprise
testlets (e.g., Bradlow et al., 1999), that is, sets of items based on a common stimulus, for instance,
a passage in a reading assessment. Correlation among item responses within a testlet often cannot
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be fully explained by the measured trait or profile, and such a testlet effect leads to the violation
of the commonly assumed local independence. Under item response theory (IRT) models for
continuous traits, studies have shown that ignoring the testlet effect leads to biased estimation of
parameters and standard errors (e.g., Bradlow et al., 1999; Wainer et al., 2007; Sireci et al., 1991).
Under DCMs, Hansen (2013) and Chen et al. (2018) discussed the consequences of ignoring
testlet effects, including inaccurate estimation of parameters and misclassification of examinee
attribute profiles, especially when testlet effects are large.

To account for the possible local dependence due to the testlet effect, a commonly adopted
approach in compensatory IRT is to superimpose a testlet-specific random effect term on each
testlet in addition to the general trait(s) to bemeasured by the whole test. The response distribution
of an item within a testlet is typically assumed to depend on a linear combination of the general
trait(s) and the corresponding testlet-specific random effect term. Examples of this include the
bi-factor model (e.g., Gibbons & Hedeker, 1992; DeMars, 2006), the two-tier model (Cai, 2010),
and the testlet-effect model Bradlow et al. (1999). The general and testlet-specific traits are
usually assumed to be normally distributed, and three additional assumptions are required: (1) the
primary and testlet-specific traits jointly work to capture the local dependency within a testlet;
(2) the testlets are assumed to be mutually exclusive, meaning each item loads on at most one
testlet-specific dimension; (3) the general and specific effects are independent or, equivalently
under the normal distribution, uncorrelated. Assumption (1) is the fundamental and essential
idea behind incorporating testlet effects. Assumption (2) reduces computational complexity in
parameter estimation (e.g., Cai, 2010), and the independence between testlet effects can be relaxed
to model the additional correlation between specific dimensions unexplained by the general trait
(e.g., Jennrich & Bentler, 2012). Assumption (3), uncorrelated general and testlet effects, is
essential, as Fang et al. (2021) proved that bi-factor-type models treating general and specific
effects as dependent cannot be statistically identified.

For diagnostic assessments with testlets, similar testlet-effect DCMs have been proposed,
where a testlet-specific random effect is incorporated into the item response function (Hansen,
2013; Hansen et al., 2016; Zhan et al., 2015, 2018; Ma et al., 2023) : Assumption (1) above
straightforwardly carries over to testlet-effect DCMs. Specifically, the proposed models leverage
the fact that both general and specificDCMs can be parameterized as a logisticmodel (e.g., Henson
et al., 2009; de la Torre, 2011), where the linear component contains attribute main effects and
higher-order interactions. Subsequently, a testlet random effect is included as an additive term to
the linear component to account for additional within-testlet dependency. Assumption (2), each
item loading on at most one testlet effect, is also imposed in most models, with the exceptions
of Zhan et al. (2015, 2018), where in general, an item is allowed to crossload on multiple testlet
effects. To impose Assumption (3) in testlet-effect DCMs, existing models still imposed the
structural independence assumption, by assuming that the testlet-specific traits each stem from an
independent normal distribution, either uncorrelated with a higher-order continuous trait (de la
Torre & Douglas, 2004) underlying the discrete attributes (Hansen, 2013; Hansen et al., 2016;
Zhan et al., 2015, 2018) , or independent from the attribute pattern stemming from a multinomial
distribution over permissible latent classes (Ma et al., 2023) .

In the current paper, however, we show that imposing Assumption (3) under testlet-effect
DCMs can be restrictive, resulting in a model that does not adequately account for the within-
testlet local dependency. The reasoning is as follows: In confirmatory IRT and DCMs, focal traits
are typically expert-defined and cannot be rotated without altering substantive interpretations.
A testlet effect, which enters the measurement model as an additive term, defines a person-
specific effect that explains the dependency in responses within the same testlet that has not been
accounted for by the existing terms in the measurement model. For compensatory IRT models, it
is natural to restrict the testlet effect to be independent of the focal traits. This is because, when
the compensatory item response model is linear and the relationship between testlet-specific and
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focal traits is linear, any correlation between the testlet-specific and focal traits can be removed
by projecting the testlet-specific factor to the vector space spanned by the focal factor(s) and,
subsequently, treating the residual of the projection as the testlet-specific effect. However, for
DCMs, where the focal traits are discrete and the measurement model involves higher-order
interactions of latent attributes, such projection cannot be performed. Under testlet-effect DCMs,
one thus faces a dilemma where the orthogonality between testlet-specific and focal effects is
key to identifiability but cannot be naturally granted. To this end, we propose an extension to the
testlet-effect DINAmodel, to account for the additional local dependency by adding an interaction
term involving testlet-specific and focal effects.

The second issue addressed by the current work is testlet-effect DCM identifiability. Model
identifiability is fundamental to consistent parameter estimation and valid statistical inference,
and thus it is not only crucial to latent variable modeling but also has direct implications in
test designs. It is well known that, without suitable assumptions, neither DCMs nor bi-factor
models are identifiable. Identifiability conditions for various DCMs and restricted latent class
models without testlet effects have been studied extensively (see e.g. Allman et al., 2009; Chen et
al., 2015; Xu & Zhang, 2016; Xu, 2017; Fang et al., 2019; Gu & Xu, 2019). For bi-factor models,
which are commonly used to account for testlet effects in continuous latent trait models, Fang
et al. (2021) provided relatively complete characterizations of their identifiability conditions. On
the other hand, establishing the identifiability conditions for testlet-effect DCMs is much more
challenging as it involves both continuous testlet effects and discrete attribute profiles. To this
end, the current work provides theoretical results on the identifiability conditions for testlet-effect
DINA and DINO models under the probit link.

It is worth noting that, aside from testlet-effect DCMs, there exist other approaches for
handling the local dependency induced by testlets in diagnostic assessments. This includes treating
the items in a testlet as one single polytomous item (Ma & de la Torre, 2016) , graphical DCM
that additionally models item pairwise dependence (Kang et al., 2017) , and nonparametric
diagnostic classification that employs a testlet-effect-weighted distance measure (Sha, 2016) .
In addition, under testlet-effect DCMs, more general DCMs than the DINA and the DINO have
been adopted (e.g., Hansen, 2013; Ma et al., 2023). However, the current paper will focus on
accounting for the additional dependency and identifiability theory of the testlet-effect DINA and
DINO models. While the DINA and DINO models are restrictive on the permissible attribute
interactions, we aim to provide a thorough analysis for this simple case, in the hope that these
initial results contribute to further discussions on more general models.

The rest of the paper is organized as follows. Section1 introduces the extended testlet DINA
model and discusses its connection to the independent testlet DINA model. Section2 presents
the main theoretical results for model identifiability. Applications to the 2015 Program for Inter-
national Student Assessment (PISA) collaborative problem solving (CPS) assessment data are
presented in Sect. 3. Section4 is devoted to simulation studies. A discussion of the main results,
limitations, and future work is provided in Sect. 5.

1. Testlet DINA with Dependency

In this section, we introduce our extension to the testlet DINA model, the interaction testlet
DINA (IT-DINA) model. The IT-DINA model incorporates the potential dependency between
testlet effects and latent attribute profiles via an interaction term. To explain the rationale behind
incorporating the additional latent interaction, we begin with introducing the testlet-effect DINA
measurement model as seen in Hansen (2013), Hansen et al. (2016), Zhan et al. (2015), Zhan et
al. (2018), and Ma et al. (2023).
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Consider a diagnostic test with J items designed to measure K attributes. The examinee’s
attribute profile is represented by a K -dimensional binary vectorα = (α1, · · · , αK ), whereαk = 1
or 0, indicating the mastery or nonmastery of the kth attribute. Under the DINAmodel (Tatsuoka,
1983; Junker & Sijtsma, 2001) , the relationship between item responses and attributes is specified
by an incidencematrix Q = (q jk)J×K , where q jk = 1 if the kth attribute is required for answering
the j th item correctly, and q jk = 0 otherwise. The ideal response to item j , η j = I(α � q j ), is 1
when the examinee masters all attributes required by item j and is 0 otherwise. Under the DINA
model, the probability of correct response can be parameterized as a generalized linear model,

P(Y j = 1 | α) = h(δ0 j + δ1 jη j ), (1)

where h(·) is a link function, such as the probit or the logit link.
In the presence of testlets, suppose that the J -item test comprises of S testlets. Let Js denote the

number of items in the sth testlet, with
∑S

s=1 Js = J , and Is = { j | item j belongs to testlet s}
denote the set of items in testlet s. Within a testlet, dependency among items often cannot be
fully explained by the measured attributes (α). As in testlet-effect IRT models (e.g. Bradlow et
al., 1999), testlet-effect DCMs assume that items within a testlet additionally measure the same
specific factor known as the testlet effect. For an item j belonging to testlet s,

P(Y j = 1 | α, ζs) = h(δ0 j + δ1 jη j + δs jζs). (2)

Here, ζs is the examinee’s testlet-specific trait for testlet s. Inside the linear component, the item
parameters, δ0 j , δ1 j , and δs j , represent the intercept, the slope formastering all requisite attributes,
and the slope for the testlet-specific trait, respectively.

At the population level, similar to Ma et al. (2023), we assume that a randomly chosen
examinee’s attribute profile follows a multinomial distribution with proportion parameter vector
π = (πα)α∈{0,1}K , where

∑
α∈{0,1}K πα = 1. In general, ζs , which accounts for the additional

dependence in correct response probability for all j ∈ Is yet to be explained by the ideal responses
(η j s), can still depend on α. To capture this dependency, we decompose the last term in Eq. (2),
δs jζs , which controls the expected change in item j’s linear component due to the testlet effect,
as follows:

δs jζs = fs1 j (α) + fs2 j (α)ξs2 + β jsξs1. (3)

Here, ξs1, ξs2
i.i.d.∼ N (0, 1) are two examinee-specific traits on testlet s, and fs1 j (·), fs2 j (·) are

functions of α. Specifically, fs1 j (α) must be orthogonal to η j and describes how α further influ-
ences the mean of the testlet effect term (δs jζs), and fs2 j (α) describes how α influences the
variance of the testlet effect term. The remaining component, β jsξs1, is the unique testlet effect
unrelated to α. With this parameterization for the distribution of the testlet effect, (2) becomes

P(Y j = 1 | α, ζs) = h(δ0 j + δ1 jη j + fs1 j (α) + fs2 j (α)ξs2 + β jsξs1). (4)

This general formulation is not directly suitable for practical use. We discuss a few special cases.

• T-DINA: Conditioning on η j , if the distribution of the testlet-specific term (δs jζs) is inde-
pendent of α, fs1 j (α) and fs2 j (α) reduce to 0, and Eq. (4) becomes

P(Y j = 1 | α, ζs) = h(δ0 j + δ1 jη j + β jsξs1), (5)

which is the T-DINA model (e.g., Zhan et al., 2015).
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• General testlet-effect DCM: Conditioning on η j , if the mean of the testlet effect term
depends on the requisite skills of j but the variance is the same across attribute classes,
then fs2 j (α) = 0. Equation (4) reduces to

P(Y j = 1 | α, ζs) = h(δ0 j + δ1 jη j + fs1 j (α) + β jsξs1), (6)

where fs1 j (α) can be written as the main effect and higher-order interactions of select
requisite skills. This model is equivalent to the testlet-effect general DCM (Hansen,
2013; Ma et al., 2023) . In this case, the additional dependency in responses within a testlet
is due to theDINA ideal response, η j , not being able to fully describe the attribute-response
relationship, and adopting a more general DCM resolves this issue.

• IT-DINA: Conditioning on η j , if the mean of the testlet effect term does not further depend
on α, but the variance differs depending on the ideal response η j , then fs1 j (α) = 0, and
fs2 j (α) can be parameterized as γ js(2η j − 1). In this case, Eq. (4) reduces to

P(Y j = 1 | α, ζs) = h(δ0 j + δ1 jη j + β jsξs1 + γ js(2η
α
j − 1)ξs2). (7)

Adopting the probit link for h(·), we arrive at the proposed IT-DINA model,

P(Y j = 1 | α, ξ s) = 
(δ0 j + δ1 jη j + β jsξs1 + γ js(2η j − 1)ξs2), (8)

where 
(·) is the standard normal cumulative distribution function, and ξ s = (ξs1, ξs2)
′.

Equation8 gives our proposed IT-DINA model, which will be the focal scenario considered
in the current paper. Let δ j = (δ0 j , δ1 j ), δ = (δ j )1≤ j≤J , βs = (β js) j∈Is , β = (βs)1≤s≤S ,
γ s = (γ js) j∈Is , and γ = (γ s)1≤s≤S . The joint marginal distribution of Y = (Y1,Y2, · · · ,YJ )

can be expressed as

P(Y = y | δ,β, γ ,π) =
∑

α

πα

S∏

s=1

∫ ∏

j∈Is
P(Y j = y j | α, ξ s, δ j , β js, γ js)pξ (ξ s)dξ s, (9)

where pξ (ξ s) is the standard bivariate normal density.
Below, we present a few remarks on the IT-DINA model’s interpretation, its relationship to

existing models, and an alternative parameterization based on model-implied first and second
moments given ideal responses.

Remark 1. (Differential testlet effect for masterers and non-masterers). The IT-DINAmodel sim-
plifies the attribute-response relationship to involve only the ideal response, η j , but affords nice
interpretations. Without explicitly modeling the structural relationship between item j’s ideal
response and the testlet effect ζs , the interaction term (2η j − 1)ξs2 controls how the testlet-
specific effect that enters the measurement model will differ, depending on whether the examinee
has mastered all of item j’s requisite skills. We coin this the “differential testlet effect”: When
an examinee has all requisite skills, η j = 1, (2η j − 1)ξs2 = ξs2, and the combined testlet effect
becomes β jsξs1 + γ jsξs2; when an examinee misses any requisite skill for item j , η j = 0,
(2η j − 1)ξs2 = −ξs2 , and the combined testlet effect becomes β jsξs1 − γ jsξs2. In other words,
the testlet-specific trait that enters the measurement model will differ by 2γ jsξs2, depending on
the mastery status of the required skills. With the variance of both ξs1, ξs2 fixed to 1, the coeffi-
cient γ js will capture the extent to which the combined testlet effect on item j is dependent on
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the possession of requisite skills. As a hypothetical example, consider a testlet on an elementary
probability assessment, where the items involve the permutations and combinations based on a
deck of cards. It is natural to imagine cases where one unit of increase in card game familiarity
(the testlet effect) will influence the odds of correct response on an item differently, depending
on whether the examinee has the relevant probability knowledge for solving the item.

Remark 2. (Relationship with T-DINA and DINA) When item parameters γ js = 0 for all j , the
measurement model in Eq. (8) reduces to the T-DINA model (e.g., Hansen, 2013; Hansen et al.,
2016; Zhan et al., 2015). It further reduces to the DINA model (reparameterized in probit form),
when β js = 0 for all j . Hypothesis testing on the coefficients for the testlet main effect (βs) and
interaction (γ s) offers a natural way for model comparison, via empirically testing the presence
of testlet effect and testlet-attribute dependence on an item.

Remark 3. (Differences with the multidimensional T-DINA model) Zhan et al. (2015, 2018)
proposed a multidimensional T-DINA model, where each item can load on more than one testlet-
specific dimension. While the proposed IT-DINA model also involves each item loading on two
testlet-specificdimensions, the twomodels are inherently different. ThemultidimensionalT-DINA
model essentially allows testlet-specific dimensions to go beyond a simple loading structure. The
IT-DINA model, other the other hand, still assumes that each item in testlet s only loads on the
two-dimensional testlet effects specific to testlet s. The two dimensions here are introduced for
the purpose of capturing the differential testlet effects associated with different ideal responses.

Remark 4. (η-implied first moment: DINA slipping and guessing)Under the DINAmodel, the
uncertainty at the item level is captured by the slipping parameter s and guessing parameter g: for
item j , g j := P(Y j = 1 | ηα

j = 0) and c j := 1 − s j = P(Y j = 1 | ηα
j = 1). The new IT-DINA

model can be reparameterized to obtain c and g. For item j in testlet s, given the testlet effect ξ s,
we have

P(Y j = 1 | ηα
j = 1, ξ s, δ j , β js, γ js) = 
(δ0 j + δ1 j + β jsξs1 + γ jsξs2),

P(Y j = 1 | ηα
j = 0, ξ s, δ j , β js, γ js) = 
(δ0 j + β jsξs1 − γ jsξs2).

With the probit link, by integrating out ξ s , we get

c js = Eξ s

[
P(Y j = 1 | ηα

j = 1, ξ s, δ j , β js, γ js)
]

= 


⎛

⎝
δ0 j + δ1 j

√
1 + β2

js + γ 2
js

⎞

⎠ , (10)

g js = Eξ s

[
P(Y j = 1 | ηα

j = 0, ξ s, δ j , β js, γ js)
]

= 


⎛

⎝
δ0 j

√
1 + β2

js + γ 2
js

⎞

⎠ . (11)

For the case of γ js = 0, c js = 

(
(δ0 j + δ1 j )/

√
1 + β2

js

)
and g js = 


(
δ0 j/

√
1 + β2

js

)
,which,

when β js = 0, further reduce to c j = 
(δ0 j + δ1 j ) and g j = 
(δ0 j ).

Remark 5. (η−implied second moments) Following Fang et al. (2021), we can get the joint
marginal probability of correct responses for a pair of items j1 and j2 in testlet s,

P(Y j1 = 1,Y j2 = 1 | δs,βs, γ s,π)
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=
∑

α

πα
2

(


−1

(

c
ηα
j1

j1
g

(
1−ηα

j1

)

j1

)

,
−1

(

c
ηα
j2

j2
g

(
1−ηα

j2

)

j2

)

; ρα
j1 j2s

)

, (12)

where

ρα
j1 j2s = β j1sβ j2s + γ j1sγ j2s(2η

α
j1

− 1)(2ηα
j2

− 1)
√

(1 + β2
j1s

+ γ 2
j1s

)(1 + β2
j2s

+ γ 2
j2s

)
,

δs = δ[Is, :] denotes the submatrix of matrix δ consisting only of rows in the set Is , and

2(a, b; ρ) := P(X1 ≤ a, X2 ≤ b) where X1, X2 ∼ N (0, 1), and corr(X1, X2) = ρ.
Typically, a, b, and ρ are referred to as the thresholds and the tetrachoric correlation.

Because η j is either 0 or 1, ρα
j1 j2s

can only take two values,

ρ1j1 j2 = β j1sβ j2s + γ j1sγ j2s√
(1 + β2

j1s
+ γ 2

j1s
)(1 + β2

j2s
+ γ 2

j2s
)
, and ρ2j1 j2 = β j1sβ j2s − γ j1sγ j2s√

(1 + β2
j1s

+ γ 2
j1s

)(1 + β2
j2s

+ γ 2
j2s

)
.

For a more concise presentation, we let ρ1
s = (ρ1

j1 j2s
) j1< j2, j1, j2∈Is and ρ2

s =
(ρ2

j1 j2s
) j1< j2, j1, j2∈Is , and further let ρ = (ρ1

s , ρ
2
s )s=1,...,S denote the collection of all the tetra-

choric correlation parameter matrices.

2. Identifiability

In this section, we develop the theoretical results for the identifiability of the proposed IT-
DINA model. Let P := {(δ,β, γ ,π) | δ1 j > 0, πα > 0,

∑
α πα = 1} denote the parameter

space. We also introduce its reparameterized version P(r) = {(c, g, ρ,π) | c js > g js, πα >

0,
∑

α πα = 1} ( δ1 j > 0 implies c js > g js).

2.1. Definition of Identifiability

We introduce two definitions of identifiability, strict identifiability (Definition 1) and
(δ,β, γ )-partial identifiability (Definition 2).

Definition 1. (strict identifiability) We say the IT-DINA is identifiable at (δ,β, γ ,π) if the fol-
lowing holds: If there exists another set of parameters (δ̄, β̄, γ̄ , π̄) ∈ P that defines the same
probability distribution in Eq. (9), it must hold that (|δ|, |β|, |γ |, |π |) = (|δ̄|, |β̄|, |γ̄ |, |π̄ |).
Definition 2. ((δ,β, γ )-partial identifiability) For the IT-DINA, the model parameters
(δ,β, γ ,π) are said to be (δ,β, γ )-partially identifiable if (c, g, ρ,π ) are identifiable.

Definition 2 is weaker than Definition 1, i.e., the strict identifiability of (δ,β, γ ,π ) implies
(δ,β, γ )-partial identifiability. Nevertheless, (δ,β, γ )-partial identifiability can uniquely deter-
mine parameters (c, g, ρ) but can fail to guarantee the strict identifiability. Examples in the
appendix provide an illustration of models whose (δ,β, γ ) is non-identifiable, while (c, g, ρ)

can be identified.
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2.2. Main Results

For reader convenience, we now first summarize our main theoretical results.

• Theorem 1 provides checkable sufficient conditions for the (δ,β, γ )-partial identifiability.
• Theorem 2 gives the conditions which guarantee strict identifiability.
• Proposition 1, essentially a byproduct of Theorem 2, provides sufficient conditions for the

identifiability of the independent testlet DINA model.

We require the following two conditions.

C1 After row permutations, there exist S0 testlets whose Qs-matrix can be partitioned into
a K × K identity matrix IK and a matrix Q′, where Q′ is a (Js − K ) × K matrix, for
s = 1, 2, . . . , S0. In other words, the Qs submatrix is complete (Chiu et al., 2009) in
S0 testlets.

C2 The number S0 in C1 is no smaller than max{K , 3}.

Theorem 1. Let Qs denote the Js × K submatrix of Q that corresponds to items in testlet s.
Under the model specified in Eq. (8), Conditions C1 and C2 are sufficient for (δ,β, γ )-partial
identifiability of (δ,β, γ ,π).

In addition to the first two conditions, we further impose the following requirement.

C3 For each testlet s = 1, 2, · · · , S, there exist at least three items with nonzero β param-
eters, and at least three items with nonzero γ parameters. The two sets of three items
are allowed to differ.

Bymeeting all three conditions above, the followingTheorem2 provides sufficient conditions
for strict identifiability.

Theorem 2. Under the model specified in Eq. (8), if conditions C1, C2 and C3 are satisfied, then
the parameters (δ,β, γ ,π) are identifiable.

The T-DINA model is a special case of the proposed model, where γ js ≡ 0 for all s and
all j . By modification of Condition C3, we can achieve the strict identifiability of the T-DINA
model. This result provides the first-ever sufficient conditions for the identifiability of T-DINA in
the literature.

C4 For testlet s, s = 1, 2, · · · , S, there exist at least three items such that their β parameters
are nonzero.

Proposition 1. For the standard T-DINA model specified in Eq. (8) with γ js ≡ 0, Conditions C1,
C2, and C4 are sufficient for the identifiability of (δ,β, γ ,π).

Remark 6. (Extension toDINOmodel) The result presented in Theorems 1 can be directly applied
to the DINO-based model by the mathematical duality between the DINA and DINO models
(Proposition 1 in Chen et al., 2015; Köhn&Chiu, 2016). Additionally, Theorem 2 and Proposition
1 can also be extended directly to DINO-based models as the (δ,β, γ )-partial identifiability of
(δ,β, γ ,π).

2.3. Technical Discussions

There are some technical issues that need further clarification. In the remarks below, we
provide discussions on some of the issues.
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Remark 7. (Identifiability up to sign changes) By the definition of parameters (δ,β, γ ,π), the
identifiability holds up to sign changes to the slope coefficientswithin a testlet, particularly,βs, γ s .
For example, we consider β js identifiable if β js/β̄ js = ±1, for item j .

Remark 8. (DINA and T-DINA identifiability) Theorem 1 implies the strict identifiability of the
DINA model. The Q-matrix in Theorem 1 satisfies the conditions in Gu and Xu (2020); Gu
(2020); Gu and Xu (2019, 2022) for identifying the slipping, guessing, and latent membership
parameters. However, the proposed conditions are stricter because Theorem 1 aims at identifying a
more general IT-DINA model. Further, for a T-DINA model, a complete characterization of iden-
tifiability is not yet available to our knowledge. Theorem 1 can provide the partial identifiability
of a T-DINA model and Proposition 1 implies its strict identifiability. However, under a T-DINA

model, because of the additional restriction ρ1
j1 j2s

= ρ2
j1 j2s

= β j1sβ j2s/
√

(1 + β2
j1s

)(1 + β2
j2s

),

there might exist more relaxed identifiability conditions.

Remark 9. ConditionC1 states that the Q-matrix, after swappingof testlets, can be partitioned into
matrices Q1, . . . , QS0 and Q

∗ where Q∗ is a (J−∑S0
s=1 Js)×K matrix. And for s = 1, 2, · · · , S0,

Qs contains an identity matrix IK .

Remark 10. For a given testlet s, Condition C3 states, after swapping indices of items, β and γ

parameters can be expressed as follows,

(β j1s, β j2s, β j3s, β j4s, . . . ), (γl1s, γl2s, γl3s, γl4s, . . . )

where β j1s, β j2s, β j3s and γl1s, γl2s, γl3s are all nonzero. Note that { j1, j2, j3} and {l1, l2, l3} are
subsets of Is , which can either intersect or be disjoint.

Remark 11. Since Js can be as small as one, the result here covers the situation in which some
of the testlets may contain a single item.

Remark 12. The probitmodel assumption here is indeed crucial in developing our theory. It allows
us to compute the tetrachoric correlation so that the explicit formula of the joint probability of
item responses, i.e. (12), can be obtained. Whether other types of link functions can provide such
mathematical convenience is worth future study.

Remark 13. Theorems 1–2 guarantee the identifiability of model parameters when the Q-matrix
remains fixed. Since Q-matrix is usually unknown in real applications, a common practice is to
estimate the Q-matrix in advance from the data. Therefore, it is important and challenging to
identify the conditions for the identifiability of Q-matrix. One possible solution is to follow the
techniques in Gu and Xu (2021) where they developed necessary and sufficient conditions of
identifiability of Q-matrix for DINA model. We leave this to future work.

2.4. Examples

To help readers to gain intuitions of the identifiability conditions, we end this section with
two illustrative examples.

Example 1. Consider the IT-DINA model with K = 2 attributes and S = 3 testlets, with the
Q-matrix given by Table 1, and I1 = {1, 2, 3}, I2 = {4, 5, 6}, and I3 = {7, 8, 9}. Assume β js

and γ js are nonzero, for j = 1, . . . , 9, s = 1, 2, 3.
For each testlet, there exists an identity matrix in the corresponding Qs-matrix. Additionally,

there are three items in each testlet. Thus Conditions C1, C2 and C3 are satisfied. By Theorem 2,
we know that the model is identifiable.
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Table 1.
Q-matrix in Example 1.

Item α1 α2 Item α1 α2 Item α1 α2

1 1 0 4 1 0 7 1 0
2 0 1 5 0 1 8 0 1
3 0 1 6 1 1 9 1 0

Table 2.
Q-matrix in Example 2.

Item α1 α2 α3 α4 Item α1 α2 α3 α4

1 1 0 0 0 13 0 1 0 0
2 1 1 0 0 14 0 0 1 0
3 0 0 1 0 15 0 1 1 1
4 0 1 0 0 16 0 0 0 1
5 0 0 0 1 17 1 0 0 0
6 1 0 1 1 18 0 1 0 0
7 1 0 0 0 19 1 1 1 1
8 0 1 0 0 20 0 0 1 0
9 1 0 1 1 21 0 0 0 1
10 0 0 1 0 22 1 0 1 0
11 0 0 0 1 23 0 1 0 1
12 1 0 0 0 24 1 1 1 1

Example 2. Next we consider a model with K = 4 and S = 4, with the Q-matrix given by
Table 2, and I1 = {1, 2, 3, 4, 5, 6}, I2 = {7, 8, 9, 10, 11}, I3 = {12, 13, 14, 15, 16}, and I4 =
{17, 18, 19, 20, 21}. Note that items 22–24 are single items. Assume β js and γ js are nonzero, for
j = 1, . . . , 21, s = 1, . . . , 4.

It can be seen that for each testlet, there exists an identity matrix in Qs . There also exist at
least three items in each testlet, and S0 ≥ min{K , 3}. By Theorem 2, we know that this model is
also identifiable.

3. Applications

In this section, we apply the proposed IT-DINAmodel (model (8)), the T-DINAmodel (model
(5)), and the DINA model (model (1)) to a dataset from the 2015 PISA. We conduct hypothesis
testing for the existence of possible dependency between testlet effects.We also provide parameter
estimation for the attribute profiles.

3.1. Data

We fitted the models to the data from the 2015 computer-based PISA collaborative problem-
solving (CPS) test. Four of five testlets in main survey cluster 1 were selected. Within the frame-
work of the 2015 PISA survey, CPS skills were represented by a cross matrix of three collabora-
tion competencies and four core problem-solving competencies (OECD, 2016) . Yavuz and Atar



XIN XU ET AL.

Table 3.
The Q-matrix in PISA data and the testlet structure. ∗ indicates which testlet an item belongs to.

Item α1 α2 α3 s1 s2 s3 s4 Item α1 α2 α3 s1 s2 s3 s4

CC104101 0 1 0 ∗ CC104202 1 0 0 ∗
CC104102 1 0 0 ∗ CC104203 1 0 0 ∗
CC104103 0 1 0 ∗ CC104204 0 0 1 ∗
CC104105 1 0 0 ∗ CC104205 0 1 0 ∗
CC104106 1 0 0 ∗ CC104206 1 0 0 ∗
CC104107 1 0 0 ∗ CC106201 1 0 0 ∗
CC106101 1 0 0 ∗ CC106202 0 0 1 ∗
CC106102 1 0 0 ∗ CC106203 0 0 1 ∗
CC106103 1 0 0 ∗ CC106204 0 1 0 ∗
CC106104 0 0 1 ∗ CC106205 0 1 0 ∗
CC106105 0 1 0 ∗ CC106206 0 0 1 ∗
CC106106 1 0 0 ∗ CC106207 0 0 1 ∗
CC106107C 0 0 1 ∗ CC106208 0 0 1 ∗
CC104201 0 0 1 ∗ CC106209 0 1 0 ∗

(2020) presented three core competencies that could provide the best model fit. Therefore, we take
the assignment of the three competencies as attributes in this paper. K = 3 attributes (i.e., CPS
competencies) were measured, specifically, α1: establishing and maintaining shared understand-
ing; α2: taking appropriate action to solve the problem; α3: establishing and maintaining team
organization. This resulted in a total of J = 28 items grouped in S = 4 testlets. The corresponding
Q-matrix and structure of testlets are given in Table 3. It could be seen that testlets 2, 3, and 4
contained complete Qs matrices. This empirical example hence met the identifiability conditions
for Theorem 1. To evaluate the appropriateness of retrofitting a DCM to this data set, following
the approach of de La Torre and Karelitz (2009), we have calculated item diagnosticity and found
that almost all the items exhibited typical/high diagnosticity. Therefore, we fitted DCMs on PISA
CPS data in an attempt to extract diagnostic information.

For the current study, test takers were chosen from all OECD countries and regions where
the English version of the exam was administered. For simplicity, all polytomous responses were
recoded to dichotomous scores based on whether the highest score was received. Examinees with
missingness were removed, resulting in a total of N = 8880 examinees.

3.2. Methods and Results

To assess the goodness of fit, the likelihood ratio test (LRT), the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC) were used. For the LRT, we use the usual
χ2 approximation for the log-likelihood ratio statistic. The AIC and BIC are given by

AIC = −2 log(L̂) + 2p,

BIC = −2 log(L̂) + p log (N ),

where p denotes the number of model parameters, and N the sample size.
Table 4 presents the results of the LRT. It shows that, for DINA versus T-DINA, the DINA

should be rejected in favor of T-DINA as the corresponding p-value was much less than 0.05.
Furthermore, for T-DINA versus the proposed IT-DINA, T-DINA should be rejected. Using AIC
and BIC, we also conclude that IT-DINA provided the best fit as shown by Table 5.
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Table 4.
Results on the LRT on the PISA data. H0 is the null hypothesis, H1 is the alternative hypothesis, χ2 denotes the values
of the LRT statistic and d f denotes the degrees of freedom of the LRT.

H0 H1 χ2 df p-value Result

DINA T-DINA 2117.491 28 < 1 × 10−16 Reject H0
T-DINA IT-DINA 644.933 28 < 1 × 10−16 Reject H0

Table 5.
Results on goodness of fit for PISA data.

Model p −2 log(L̂) AIC BIC

IT-DINA 120 271574.276 271814.276 272665.263
T-DINA 92 272219.209 272403.209 273055.632
DINA 64 274336.7 274464.699 274918.559

Tables 6 and 7 provide the parameter estimates under the IT-DINA and T-DINA, respectively.
The interaction on some items was much higher, such as γ25,4 = 0.768, while the corresponding
β25,4 = −0.078. However, under the T-DINA model, β25,4 = 0.534 which was higher than that
under the proposed model. For classes ηα

25 = 1 and ηα
25 = 0, the impact of testlet for item 25 is

mainly reflected through ξ4,2 not ξ4,1.
Tables 8 and 9 display the frequencies of latent classes across various models estimated

using expected a posteriori (EAP). Both the proposed IT-DINA and T-DINAmodels modified the
classification of examinees when compared to DINAmodel. For instance, 65 and 84 students with
class (0, 0, 0) in the DINA model were instead classified into class (1, 1, 1). One explanation is
that the DINA model could potentially classify examinees who possess all the required attributes
but are low on the context-based stimuli as non-masterers. However, the IT-DINA and the T-DINA
model incorporated additional testlet effects, resulting in adjustments for these students. A similar
trend was observed in other classes.

Furthermore, upon comparing Tables 8 and 9, differences were found in the attribute classi-
fication under the IT-DINA and the T-DINA. This discrepancy arose because the T-DINA model
and the IT-DINA model imply different levels of the testlet effects for the participants, which
could in turn shift the attribute classifications.

4. Simulation Study

This section provides a simulation study that evaluates parameter recovery under the proposed
testlet DINA model and the consequences of ignoring the testlet and the interaction effects.

4.1. Design

The Q-matrix and testlet structures are specified by Tables 3 and 10 for K = 3 and 5,
respectively. In both cases, the identifiability conditions in Theorem 1 are met. Sample sizes of
N = 500, 1000, 2000 and 4000 were considered. The data were generated according to the
following specifications. Five parameter settings were considered. Cases 1–3 considered different
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Table 6.
Parameter estimates under the proposed IT-DINA model for PISA data. For πs, the order is π (0,0,0), π (1,0,0), π (0,1,0),
π (0,0,1), π (1,1,0), π (1,0,1), π (0,1,1), π (1,1,1).

Item δ0 δ1 β1 β2 β2 β4 γ1 γ2 γ3 γ4 π

1 0.382 0.890 0.121 0.317 0.339
2 −0.304 1.714 0.629 0.252 0.009
3 −0.501 1.602 0.538 0.431 0.000
4 −1.330 1.413 0.604 0.001 0.001
5 0.760 0.655 −0.150 0.439 0.008
6 0.432 0.633 −0.080 0.463 0.002
7 −0.767 1.810 −0.604 0.730 0.005
8 −0.659 0.403 0.292 0.007 0.636
9 −0.593 1.560 −0.220 0.459
10 −0.058 0.946 −0.078 0.101
11 −0.240 1.152 0.091 0.143
12 −0.672 0.377 0.378 0.296
13 −1.927 1.284 0.376 0.566
14 −0.570 1.463 0.930 0.323
15 −0.465 0.733 0.022 0.162
16 −0.104 1.944 0.266 0.855
17 −0.231 1.318 0.224 0.449
18 0.386 0.315 −0.100 0.195
19 0.751 0.887 0.035 0.446
20 −0.312 0.804 0.174 0.189
21 −0.982 0.334 0.165 0.043
22 −0.393 0.471 0.155 0.298
23 −1.044 1.331 0.583 0.292
24 −0.594 1.598 0.327 0.236
25 0.210 1.319 −0.078 0.768
26 −0.785 1.467 0.464 0.092
27 0.891 1.594 −0.139 0.548
28 −0.676 1.421 0.099 0.524

scenarios where the true data generating process was the IT-DINA, and cases 4 and 5 consider
scenarios where the DINA and the T-DINA were the true data-generating models, respectively.

• Case 1: γ js = 0.5, β js = 0.5, K = 3, and attribute profiles were generated from a discrete
uniform distribution, i.e., π was set to 1

8 for all α ∈ {0, 1}3.
• Case 2: γ js = 1, β js = 0.5, K = 3, and π was set to 1

8 for all α ∈ {0, 1}3.
• Case 3: Each testlet contains two γ js and two β js with negative values, and |γ js | = 1,

|β js | = 0.5, K = 5, and π was set as an non-uniform distribution following Culpepper
(2015) in which the probability of belonging to a class with three or more skills is twice
as likely as belonging to a class with zero, one, or two skills. That is, πc = 0.021 for all
αc with two or fewer skills and πc = 0.042 for αc with three or more skills.

• Case 4: γ js = 0, β js = 0, K = 3, and π was set to 1
8 for all α ∈ {0, 1}3.

• Case 5: γ js = 0, β js = 1, K = 3, and π was set to 1
8 for all α ∈ {0, 1}3.

• For more details on other parameters, please refer to Tables 1–3 in Appendix.

Each condition was replicated for T = 500 times. To evaluate performance of the proposed
model, we first consider recovery of the original parameters (δ,β, γ ). To compare the perfor-
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Table 7.
Parameter estimates under the T-DINA model for PISA data. For πs, the order is π (0,0,0), π (1,0,0), π (0,1,0), π (0,0,1),
π (1,1,0), π (1,0,1), π (0,1,1), π (1,1,1).

Item δ0 δ1 β1 β2 β2 β4 π

1 0.376 0.866 0.257 0.337
2 −0.308 1.709 0.685 0.014
3 −0.498 1.602 0.704 0.000
4 −1.238 1.307 0.448 0.000
5 0.689 0.599 0.086 0.006
6 0.396 0.573 0.141 0.000
7 −0.625 1.421 0.175 0.005
8 −0.602 0.337 0.121 0.638
9 −0.599 1.512 0.246
10 −0.058 0.944 0.053
11 −0.233 1.139 0.169
12 −0.630 0.339 0.361
13 −2.016 1.330 0.803
14 −0.444 1.144 0.455
15 −0.471 0.737 0.154
16 −0.112 1.928 0.883
17 −0.229 1.325 0.526
18 0.380 0.309 0.111
19 0.736 0.871 0.402
20 −0.314 0.800 0.254
21 −0.972 0.328 0.122
22 −0.387 0.462 0.349
23 −0.971 1.238 0.461
24 −0.585 1.575 0.369
25 0.209 1.146 0.534
26 −0.729 1.370 0.275
27 0.855 1.468 0.429
28 −0.653 1.380 0.511

Table 8.
Tabulation of attribute classification based on DINA and IT-DINA models on PISA data.

DINA
(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1) Sum

IT-DINA (0,0,0) 2866 55 6 5 1 6 8 14 2961
(1,0,0) 12 53 0 0 2 1 0 1 69
(0,1,0) 1 0 0 0 0 0 0 1 2
(0,0,1) 2 0 0 3 0 0 0 1 6
(1,1,0) 2 8 1 0 18 0 0 2 31
(1,0,1) 2 2 0 0 0 4 0 0 8
(0,1,1) 8 0 2 1 0 0 19 3 33
(1,1,1) 65 62 5 5 48 61 13 5511 5770
Sum 2958 180 14 14 69 72 40 5533 8880
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Table 9.
Tabulation of attribute classification based on DINA and T-DINA models on PISA data.

DINA
(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1) Sum

T-DINA (0,0,0) 2847 30 7 8 2 6 13 27 2940
(1,0,0) 15 76 0 0 1 3 0 3 98
(0,1,0) 1 0 0 0 0 0 2 1 4
(0,0,1) 0 0 0 0 0 0 0 0 0
(1,1,0) 4 11 2 0 17 0 0 2 36
(1,0,1) 0 0 0 0 0 0 0 0 0
(0,1,1) 7 0 1 0 0 0 15 3 26
(1,1,1) 84 63 4 6 49 63 10 5497 5776
sum 2958 180 14 14 69 72 40 5533 8880

Table 10.
The Q-matrix for K = 5 in the simulation study and the testlet structure. ∗ indicates which testlet an item belongs to.

Item α1 α2 α3 α4 α5 s1 s2 s3 s4 Item α1 α2 α3 α4 α5 s1 s2 s3 s4

1 1 0 0 0 0 ∗ 15 0 1 0 0 0 ∗
2 0 1 0 0 0 ∗ 16 0 0 1 0 0 ∗
3 0 0 1 0 0 ∗ 17 0 0 0 1 0 ∗
4 0 0 0 1 0 ∗ 18 0 0 0 0 1 ∗
5 0 0 0 0 1 ∗ 19 0 0 0 1 1 ∗
6 1 1 0 0 0 ∗ 20 1 0 0 0 0 ∗
7 1 0 0 0 0 ∗ 21 0 1 0 0 0 ∗
8 0 1 0 0 0 ∗ 22 0 0 1 0 0 ∗
9 0 0 1 0 0 ∗ 23 0 0 0 1 0 ∗
10 0 0 0 1 0 ∗ 24 0 0 0 0 1 ∗
11 0 0 0 0 1 ∗ 25 1 0 1 1 0 ∗
12 0 0 1 1 0 ∗ 26 0 1 1 1 0 ∗
13 1 0 0 1 0 ∗ 27 1 0 0 0 1 ∗
14 1 0 0 0 0 ∗ 28 0 1 0 0 1 ∗

mances ofDINA,T-DINAand IT-DINA, recovery of transformedparameters (s, g)was evaluated.
Recovery was evaluated in terms of average bias (BIAS), root-mean-squared error (RMSE), stan-
dard error (SE) and BIAS ratio (BR) (Kish et al., 1962; Meng, 1993; Coelho & Pereira, 2011)
for each parameter, across all the replications. For instance, for the slipping parameter s j , denote

its estimate from the t th replication by ŝ(t)
j , then

BIAS(ŝ j ) = 1

T

T∑

t=1

(ŝ(t)
j − s j ),

RMSE(ŝ j ) =
√
√
√
√ 1

T

T∑

t=1

(ŝ(t)
j − s j )2,
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Figure 1.
BIAS, RMSE, and SE of slipping parameters under Cases 1 and 2 when N = 4000. X-axis is the Q-matrix, where a black
square denotes the requirement of the attribute for an item.

SE(ŝ j ) =

√
√
√
√
√

1

T

T∑

t=1

(

ŝ(t)
j − 1

T

T∑

t=1

ŝ(t)
j

)2

,

BR(ŝ j ) = BIAS(ŝ j )

SE(ŝ j )
.

4.2. Results

First, we analyzed the BIC-based model selection outcomes, calculating the percentage of
instances the true data-generating model was selected using BIC. Across all cases, Case 1 (IT-
DINA with weaker interaction effect) was the only condition where the data-generating model
was not favored by BIC-based selection across all sample sizes: In Case 1, with sample sizes of
N = 500 and 1000, the IT-DINA (true model) was selected in 11% and 98.6% of the replications,
and the remaining 89% and 1.4% of instances favored the simpler T-DINA model. Under larger
sample sizes of 2000 or 4000, BIC selected the IT-DINA in 100% of replications.

For Cases 2 and 3, IT-DINA (the truemodel) was consistently chosen in 100% of replications,
irrespective of the sample sizes considered. In Case 4, the DINA model (true model) emerged
as the preferred choice across 100% of replications across different sample sizes. In Case 5, the
BIC consistently favored the T-DINA model (true model), with a 100% selection rate across all
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Table 11.
The average BIAS and RMSE of item parameters under the proposed testlet DINA model.

N Case 1 Case 2
500 1000 2000 4000 500 1000 2000 4000

BIAS δ0 −0.0600 −0.0261 −0.0130 −0.0063 −0.0540 −0.0247 −0.0115 −0.0059
δ1 0.1001 0.0452 0.0209 0.0110 0.0914 0.0431 0.0197 0.0112
β1 0.0326 0.0212 0.0106 0.0064 0.0265 0.0263 0.0218 0.0190
β2 0.0250 0.0146 0.0060 0.0035 0.0133 0.0131 0.0040 0.0021
β3 0.0339 0.0137 0.0058 0.0029 0.0149 0.0106 0.0064 0.0041
β4 0.0248 0.0115 0.0044 0.0032 0.0090 0.0079 0.0052 0.0034
γ1 0.0297 0.0096 0.0045 0.0005 0.0623 0.0153 0.0041 −0.0009
γ2 0.0223 0.0077 0.0071 0.0016 0.0586 0.0184 0.0104 0.0052
γ3 0.0304 0.0152 0.0050 0.0041 0.0622 0.0258 0.0101 0.0052
γ4 0.0127 0.0123 0.0041 0.0009 0.0464 0.0243 0.0086 0.0030

RMSE δ0 0.2057 0.1198 0.0781 0.0527 0.2140 0.1322 0.0893 0.0601
δ1 0.3211 0.1847 0.1177 0.0798 0.3421 0.2120 0.1402 0.0947
β1 0.2774 0.1805 0.1281 0.0912 0.3461 0.2168 0.1547 0.1177
β2 0.2142 0.1385 0.0906 0.0623 0.2862 0.1584 0.1040 0.0721
β3 0.2285 0.1392 0.0939 0.0655 0.3065 0.1727 0.1087 0.0748
β4 0.2265 0.1396 0.0946 0.0639 0.2677 0.1637 0.1022 0.0704
γ1 0.3103 0.1929 0.1384 0.0986 0.2559 0.1584 0.1148 0.0827
γ2 0.2608 0.1488 0.0976 0.0680 0.2248 0.1366 0.0936 0.0644
γ3 0.2682 0.1592 0.1016 0.0710 0.2470 0.1482 0.0989 0.0676
γ4 0.2647 0.1579 0.1031 0.0709 0.2174 0.1404 0.0941 0.0646

SE δ0 0.1853 0.1118 0.0745 0.0509 0.1997 0.1263 0.0861 0.0586
δ1 0.2891 0.1708 0.1120 0.0768 0.3187 0.2009 0.1344 0.0920
β1 0.2701 0.1786 0.1273 0.0910 0.3447 0.2119 0.1469 0.1098
β2 0.2121 0.1373 0.0903 0.0622 0.2835 0.1577 0.1037 0.0721
β3 0.2257 0.1382 0.0938 0.0653 0.3046 0.1720 0.1082 0.0747
β4 0.2245 0.1387 0.0940 0.0637 0.2674 0.1632 0.1016 0.0702
γ1 0.3079 0.1910 0.1365 0.0974 0.2435 0.1523 0.1093 0.0785
γ2 0.2572 0.1481 0.0970 0.0679 0.2146 0.1348 0.0923 0.0639
γ3 0.2654 0.1580 0.1014 0.0708 0.2371 0.1449 0.0977 0.0672
γ4 0.2637 0.1568 0.1027 0.0707 0.2107 0.1373 0.0926 0.0644

BR δ0 −0.3067 −0.2213 −0.1633 −0.1134 −0.2572 −0.1879 −0.1222 −0.0938
δ1 0.3363 0.2512 0.1788 0.1368 0.2778 0.2071 0.1367 0.1187
β1 0.1085 0.1151 0.0827 0.0710 0.0759 0.1248 0.1443 0.1614
β2 0.1170 0.1051 0.0672 0.0565 0.0458 0.0830 0.0387 0.0295
β3 0.1509 0.0980 0.0625 0.0433 0.0454 0.0597 0.0596 0.0546
β4 0.1122 0.0825 0.0443 0.0502 0.0297 0.0544 0.0494 0.0497
γ1 0.0989 0.0441 0.0222 −0.0031 0.2433 0.0741 0.0032 −0.0387
γ2 0.0842 0.0454 0.0757 0.0217 0.2699 0.1347 0.1081 0.0778
γ3 0.1108 0.0940 0.0485 0.0570 0.2623 0.1736 0.1000 0.0750
γ4 0.0359 0.0760 0.0410 0.0120 0.2204 0.1740 0.0865 0.0453
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Figure 2.
BIAS, RMSE, and SE of guessing parameters under Cases 1 and 2 when N = 4000. X-axis is the Q-matrix, where a
black square denotes the requirement of the attribute for an item

conditions. In sum, BIC-based model selection could usually select the correct data-generating
model but tended to favor simpler models when both the true dependency (γ ) and the sample size
were smaller.

Under IT-DINA, the BIAS, RMSE, SE and BR of item parameters δ were averaged across
all the items, and those of item parameters (β, γ ) were averaged across items in corresponding
testlets. The results are presented in Table 11 for Cases 1 and 2. When the sample size increased,
BIAS decreased to 0. Furthermore, RMSEs, SEs and BRs under the proposed model decreased
as sample size increased, indicating consistency of the estimators. Similar trends for parameter
recovery were also found in Cases 3–5.

Figure1 presents the recovery of recalculated slipping parameterswhen N = 4000. Parameter
estimates under both the T-DINA and DINA models showed a larger bias compared with the
proposed model. Further, under DINA and T-DINA models, the BIAS of slipping parameters
under Case 2 was larger than that under Case 1. Therefore, the values of γ would influence the
consequences of ignoring interactions.

Figure2 presents the recovery of recalculated guessing parameters when N = 4000. BIAS
under the three models showed the same trend as in Fig. 1. Fitting T-DINA and DINA models
to data generated under the proposed model produced biased estimates, and the BIAS was more
obvious under a larger γ . Further, when comparing Figs. 1 and 2, BIAS of slipping parameters
under T-DINA and DINA models was more obvious than that of guessing parameters, while the
proposed model yielded unbiased estimates for both slipping and guessing.
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Figure 3.
BIAS, RMSE, and SE of slipping and guessing parameters under Case 3 when N = 4000. X-axis is the Q-matrix, where
a black square denotes the requirement of the attribute for an item.

Figure3 illustrates the recovery of recalculated slipping and guessing parameters under Case
3 when N = 4000. A similar trend is observed as in Cases 1 and 2, wherein the T-DINA and
DINAmodels exhibit a greater bias compared to the proposedmodel. Additionally, Fig. 3 indicates
that the variability in slipping and guessing parameters is larger for items requiring three skills
compared to those requiring only one skill.

Figures 4 and 5 present the recovery of recalculated slipping and guessing parameters under
Cases 4 and 5 when N = 4000. Under Case 4, parameter estimates under the IT-DINA, T-DINA,
and DINAmodels were nearly identical, suggesting that the more complex IT-DINA and T-DINA
models could accurately recover the parameters when the true model is the DINA. Under Case 5,
when the T-DINA was the data-generating model, the recovery of parameters under the IT-DINA
and T-DINA model was highly similar, both better than the recovery of parameters under the
DINA model.

To take a closer look at the parameter estimates, Table 12 showed recovery of s j and g j of
all the items. Under Cases 1–3, as the sample size increased, RMSE and SE of parameters s j and
g j decreased for the proposed model. However, the RMSE under the T-DINA model remained
large for s j and g j , especially under Case 2, indicating the interaction between the testlet effect
and latent profiles cannot be ignored. Further, RMSEs of parameters s j and g j under the DINA
model were larger than those under the T-DINA model, indicating the need to model the testlet
effect when it is present. Overfitting a more complex model (e.g., the IT-DINA) to data generated
under simpler models did not compromise parameter recovery. Specifically, under Case 4 (DINA),
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Figure 4.
BIAS, RMSE and SE of slipping and guessing parameters under Case 4 considering N = 4000. X-axis is the Q-matrix,
where a black square denotes the presence of the attribute.

results for fitting the IT-DINA, T-DINA, and DINA models were nearly identical across different
sample sizes. Further, under Case 5 (T-DINA), the IT-DINA and T-DINA models performed
similarly and better than the DINA model across different sample sizes.

Table 13 shows the recovery of π under Case 1. As the sample size increased, BIAS reduced
to near 0 under the proposed model. Under the T-DINA and DINA models, estimates of π were
biased, especially for π(0,0,0), and the values of RMSE and BR were remarkably larger.

Table 14 shows the recovery of parameters π under Case 2. In line with Case 1, absolute
values of bias under IT-DINAwere near 0 when N = 4000, whereas estimators under the T-DINA
and DINA models were biased. Further, with stronger true interactions, the T-DINA and DINA
model parameter estimates under Case 2 were much less accurate than those under Case 1.

5. Discussion

This paper aimed to provide an in-depth inspectionof themodel formulation and identifiability
of testlet-effect DCMs. In particular, we discussed the need for modeling potential dependencies
between attributes and testlet effects. When the attribute-response relationship could be described
by the DINA and DINO models, an approach to account for this dependency via an interaction
term is proposed. The proposed IT-DINAmodel generalizes the testletDINAmodel,with potential
dependency modeled through γ (2η − 1)ξ2, an interaction term between the attribute profile and
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Figure 5.
BIAS, RMSE and SE of slipping and guessing parameters under Case 5 considering N = 4000. X-axis is the Q-matrix,
where a black square denotes the presence of the attribute.

the testlet effect. This specific form of interaction facilitated model comparisons (i.e., testing
for the independence between ideal response and testlet effect). Model selection based on BIC
demonstrated good performance in selecting the data-generating model under most simulation
conditions. In turn, simulation and empirical results from the PISA 2015 CPS assessment showed
the utility of adopting the more general IT-DINA model in capturing the potential additional
dependency between ideal response and testlet effect.

Another contribution of the current work is the identifiability conditions for testlet-effect
DINA and DINO models. The formulation of the dependency as an interaction effect facilitated
the derivation of the identifiability results for IT-DINA. In addition, the probit link allowed deriva-
tion of an explicit formula of conditional probability P(Y |ηα) after integrating out the normally
distributed testlet effect ξ . This allowed us to establish easy-to-check sufficient conditions for the
identifiability of the IT-DINA model, as well as the T-DINA model as a special case.

While the proposed IT-DINA model extends the T-DINA to account for potential structural
dependency between the testlet effects and attribute patterns, one should note that the IT-DINA
could still remain an oversimplification: The DINA and DINO models are very special cases
of DCMs where the attribute and ideal response relationship is fully conjunctive or disjunc-
tive. When the T-DINA model does not fit the observed data well, the presence of interaction
effects (i.e., dependency) is one potential explanation, but it could also be due to a misspecified
model, for instance, when the DINA model or the Q-matrix does not fully account for the actual
attribute-response relationship (see the discussion of Eq. (6)). In empirical analyses, adopting
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Table 12.
The recovery of transformed slipping and guessing parameters under the DINA, T-DINA and IT-DINA model.

Case N IT-DINA T-DINA DINA
BIAS RMSE SE BIAS RMSE SE BIAS RMSE SE

s j 1 500 −0.0000 0.0312 0.0311 −0.0033 0.0322 0.0315 −0.0110 0.0386 0.0310
1000 −0.0001 0.0222 0.0221 −0.0037 0.0235 0.0226 −0.0113 0.0320 0.0222
2000 0.0001 0.0153 0.0152 −0.0032 0.0169 0.0156 −0.0109 0.0275 0.0154
4000 −0.0002 0.0109 0.0109 −0.0035 0.0128 0.0112 −0.0112 0.0253 0.0111

2 500 0.0001 0.0326 0.0325 −0.0110 0.0630 0.0540 −0.0300 0.0809 0.0379
1000 −0.0003 0.0229 0.0228 −0.0101 0.0534 0.0327 −0.0307 0.0767 0.0262
2000 −0.0001 0.0158 0.0157 −0.0095 0.0487 0.0216 −0.0305 0.0741 0.0182
4000 −0.0003 0.0112 0.0112 −0.0097 0.0463 0.0151 −0.0309 0.0731 0.0129

3 500 −0.0009 0.0352 0.0342 −0.0059 0.0618 0.0523 0.0016 0.0622 0.0487
1000 0.0000 0.0245 0.0238 −0.0053 0.0463 0.0357 0.0017 0.0497 0.0330
2000 0.0000 0.0170 0.0165 −0.0042 0.0374 0.0251 0.0030 0.0430 0.0231
4000 −0.0002 0.0121 0.0118 −0.0042 0.0321 0.0177 0.0028 0.0389 0.0163

4 500 −0.0000 0.0276 0.0273 −0.0000 0.0275 0.0271 −0.0000 0.0273 0.0270
1000 −0.0001 0.0194 0.0192 −0.0001 0.0193 0.0191 −0.0001 0.0193 0.0191
2000 −0.0000 0.0137 0.0135 −0.0001 0.0137 0.0135 −0.0001 0.0136 0.0135
4000 −0.0002 0.0097 0.0096 −0.0002 0.0097 0.0096 −0.0002 0.0097 0.0096

5 500 0.0003 0.0326 0.0325 0.0000 0.0317 0.0316 −0.0247 0.0683 0.0355
1000 0.0002 0.0228 0.0227 −0.0001 0.0224 0.0223 −0.0243 0.0630 0.0247
2000 −0.0000 0.0158 0.0158 −0.0003 0.0156 0.0156 −0.0244 0.0611 0.0175
4000 −0.0001 0.0113 0.0113 −0.0002 0.0112 0.0112 −0.0244 0.0595 0.0124

g j 1 500 −0.0012 0.0296 0.0293 −0.0036 0.0307 0.0298 −0.0080 0.0366 0.0288
1000 −0.0005 0.0205 0.0203 −0.0028 0.0217 0.0208 −0.0074 0.0303 0.0203
2000 −0.0004 0.0144 0.0143 −0.0029 0.0159 0.0147 −0.0075 0.0261 0.0143
4000 −0.0002 0.0101 0.0100 −0.0027 0.0118 0.0104 −0.0071 0.0241 0.0101

2 500 −0.0006 0.0314 0.0313 −0.0051 0.0600 0.0529 −0.0203 0.0758 0.0353
1000 −0.0006 0.0219 0.0218 −0.0016 0.0490 0.0311 −0.0200 0.0717 0.0244
2000 −0.0002 0.0153 0.0152 −0.0007 0.0445 0.0206 −0.0195 0.0688 0.0170
4000 −0.0001 0.0107 0.0107 −0.0004 0.0424 0.0144 −0.0195 0.0678 0.0120

3 500 −0.0002 0.0302 0.0299 −0.0053 0.0509 0.0459 −0.0107 0.0532 0.0451
1000 −0.0002 0.0214 0.0212 −0.0040 0.0371 0.0311 −0.0090 0.0399 0.0307
2000 −0.0001 0.0149 0.0147 −0.0039 0.0293 0.0216 −0.0093 0.0331 0.0213
4000 −0.0002 0.0108 0.0106 −0.0038 0.0249 0.0154 −0.0091 0.0290 0.0152

4 500 −0.0000 0.0249 0.0244 −0.0001 0.0248 0.0242 −0.0001 0.0246 0.0241
1000 0.0001 0.0176 0.0172 0.0001 0.0175 0.0172 0.0001 0.0175 0.0171
2000 −0.0000 0.0124 0.0121 −0.0000 0.0123 0.0121 −0.0000 0.0123 0.0120
4000 0.0001 0.0087 0.0085 0.0001 0.0087 0.0085 0.0001 0.0087 0.0085

5 500 −0.0001 0.0314 0.0312 −0.0007 0.0304 0.0303 −0.0152 0.0640 0.0331
1000 0.0000 0.0218 0.0216 −0.0002 0.0214 0.0213 −0.0150 0.0594 0.0232
2000 0.0002 0.0153 0.0152 0.0001 0.0151 0.0150 −0.0145 0.0569 0.0163
4000 −0.0001 0.0108 0.0107 −0.0001 0.0107 0.0106 −0.0147 0.0556 0.0115

the DINA/DINO models requires researchers to thoroughly evaluate the appropriateness of this
assumption, for instance, by performingmodel comparison under general DCMs (e.g., de la Torre,
2011).
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As the DINA/DINO are special cases to general DCMs, there are clear limitations to the
scope of the current work. In particular, the proposed IT-DINAmodel only considers the situation
where the attribute pattern enters the measurement model and influences testlet effect distribution
via the conjunctive ideal response. The addition of a single interaction term between the ideal
response and a testlet effect likely will not be adequate under a more complex DCM. How to
parameterize the potential dependency between testlet effects and attribute patterns under general
DCMs remains an open question. Further, the current identifiability results for the IT-DINA
model and the T-DINA model are only applicable to cases when the DINA and DINO DCMs are
appropriate. Although more general testlet-effect DCMs have been proposed (Hansen, 2013; Ma
et al., 2023) , identifiability conditions for these general models are not yet available. We hope the
current discussion of the simple case provides initial results for addressing these open questions
related to testlet-effect DCMs.

Aside from extension to more general DCMs, there are several directions for future work.
Firstly, testlet-effect DINA and its identifiability conditions may be extended to model polyto-
mous responses. In the literature, there exist several different parameterizations for polytomous
DCMs, e.g., Fang et al. (2019), Culpepper (2019), and Ma (2019). We expect the incorporation of
testlet effect and potential latent dependency to differ depending on the adopted parameterization.
Secondly, the current identifiability results assumed the Q-matrix to be known. Future research
may consider extension of the results to situations of unknown Q. Thirdly, in the current paper,
the dependence is modeled through a specific interaction term. Alternative formulation of depen-
dency may be of interest. Lastly, with the development of computer-based test, we have access to
not only the response data but also additional data such as the response times. How to incorporate
these more complicated data may require more sophisticated modeling techniques.
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