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Online mental health support communities, in which volunteer counselors provide accessible mental and
emotional health support, have grown in recent years. Despite millions of people using these platforms, the
clinical effectiveness of these communities onmental health symptoms remains unknown. Although volunteers
receive some training on the therapeutic skills proven effective in face-to-face environments, such as active
listening and motivational interviewing, it is unclear how the usage of these skills in an online context affects
people’s mental health. In our work, we collaborate with one of the largest online peer support platforms and
use both natural language processing and machine learning techniques to examine how one-on-one support
chats on the platform affect clients’ depression and anxiety symptoms. We measure how characteristics of
support-providers, such as their experience on the platform and use of therapeutic skills (e.g. affirmation,
showing empathy), affect support-seekers’ mental health changes. Based on a propensity-score matching
analysis to approximate a random-assignment experiment, results shows that online peer support chats
improve both depression and anxiety symptoms with a statistically significant but relatively small effect size.
Additionally, support providers’ techniques such as emphasizing the autonomy of the client lead to better
mental health outcomes. However, we also found that the use of some behaviors, such as persuading and
providing information, are associated with worsening of mental health symptoms. Our work provides key
understanding for mental health care in the online setting and designing training systems for online support
providers.
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1 INTRODUCTION
Mental health problems continue to rise globally and under-treatment of serious mental health
problems remains a major problem, with more than one in ten people living with a mental health
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disorder [20]. Although there is significant evidence supporting the effectiveness of professional
treatments, such as therapy, a substantial proportion of people with mental health problems fail to
receive any treatment because they lack access to services or have needs unmet by health services
[47, 64]. As a result, peer-to-peer support through online mental health communities (OMHCs) has
emerged as an accessible tool for achieving mental and emotional support. OMHCs include sites
like 7 Cups and TalkLife, which usually provide free 24/7 peer-to-peer support from volunteers;
online support communities are thus able to provide support at scale for a wide variety of mental
and emotional problems [25, 30].
Despite the many benefits available through OMHCs, support providers on online platforms

receive relatively little training [102] in contrast to the extensive training for mental health profes-
sionals and even volunteers for crisis intervention programs [10, 34, 66, 70]. OMHCs often require
volunteer support providers to complete short training sessions along with optional specialized
training; for example, 7Cups.com provides short training sessions based on skills established in
face-to-face mental health support such as active listening, empathy, and motivational interviewing
(MI) techniques. Another online support platform, TalkLife, provides small-group and module-led
training for peer support techniques including asking questions, showing empathy, and reflection.
However, there is little known about whether these therapeutic skills and other “common factors”,
which are effective for improving people’s mental health when used by professionals in offline
settings [43, 56, 68], are effective when used by peer supporters online. Resolving this uncertainty
is especially important, as doing so can inform the design of online support providers’ training.
To address these questions, we collaborated with a large online peer support platform in order

to examine the longitudinal and clinical effectiveness of online peer-to-peer support. Using natural
language processing and machine learning techniques, we analyze changes in support-seekers’
depression and anxiety in a dataset spanning over two years containing over 8-million anonymous
text-based support chats between volunteer support counselors and online support-seekers. We
explore the effectiveness of support behaviors, like asking open-ended questions and providing
reflections involved in motivational interviewing and expressing empathy, used by these OMHC
volunteers and examine how these behaviors are associated with long-term improvement in support-
seekers’ depression and anxiety. Our work extends past research, which has largely assessed
outcomes of OMHCs on various non-clinical outcomes (e.g. mood, retention [2, 84, 97]) in cross-
sectional studies. Instead, we measure the effectiveness of support chats on changes in clinical
outcomes in a longitudinal study. Assessing the presence and severity of mental illness symptoms
are largely under-studied in the online context despite being the most important outcomes used in
important primary care settings, from diagnosis and severity measurement [48, 82] to monitoring
responses to mental health treatments [49, 54].

Specifically, our study addresses the following research questions:
RQ1. Does participating in support conversations with volunteers on online peer sup-

port platforms improve people’s depression and anxiety?
RQ2. What volunteer characteristics and the therapeutic techniques they use in these

conversations affect mental health outcomes?
Our study found that participating in online peer support chats with volunteer counselors

improves symptoms of depression and anxiety with a statistically significant but relatively small
effect size. In particular, having a single online support chat on average improved depression
symptom scores by 1.6% and anxiety symptoms by 0.6%. Notably, these improvements were larger for
people who were initially more distressed. We also found some established therapeutic techniques
were associated with improvements in symptoms of depression and anxiety while others were
associated with more symptoms. For example, the motivational interviewing (MI) technique of
reflecting (capturing and returning something the client has said themselves) is effective for

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. CSCW1, Article 190. Publication date: April 2024.



What Makes Digital Support Effective? 190:3

improving depression symptoms, while the MI technique of information-giving was actually
associated with worse symptoms for both depression and anxiety. Overall, our findings provide
insight into the efficacy of online support platforms and can lead to future work on training for
online mental health support.

2 RELATEDWORK
Below, we review prior work on online mental health communities, therapeutic skills that may
lead to better mental health outcomes in both online and offline settings, and success metrics for
evaluating OMHCs.

Table 1 situates our work among past literature, which is further reviewed in the sections below.
We organize the most relevant prior work and differentiate our study though its use of clinical
outcomes, large-scale longitudinal data, and evaluation of support providers techniques.

2.1 Online Mental Health Communities
OMHCs include support groups within general-purpose social networks, such as Facebook groups
dedicated to specific health issues [9, 35, 37, 99], and platforms aimed entirely at health support,
such as CrisisTextLine 1, 7Cups.com 2, and TalkLife 3 that connect support seekers with volunteer
peer counselors for supportive chats. Peer support through online communities is able to fill gaps in
accessing health services for many, helping those whose needs are unmet by traditional resources
[32, 62, 78] or individuals who lack adequate peer networks in their daily lives to achieve needed
support [44, 46, 89, 91]. Support through OMHCs has been found to have numerous benefits,
such as yielding meaningful relationships and increasing trust in getting mental health treatment
[28, 74, 81]. Additionally, OMHCs circumvent many key barriers that prevent help-seeking and
allow immediate addressing of mental health needs [23]. Both general purpose social networks
and ones focused exclusively on mental health are important in spreading health information,
reducing harmful thoughts, empowering help-seeking for stigmatized populations, reducing suicidal
ideation, and fundraising or spreading awareness for health issues [21, 22, 36, 41, 77]. There is
evidence, though, to support that support provided specifically in online mental health platforms
may deviate from conventional practices in traditional, offline therapy contexts; for example, there
are less distinct boundaries between support-seeker and support-provider, and volunteer counselor
behaviors are influenced by training that takes place through platform-provided resources [102].

2.2 Skills for Counseling and Therapy
Effective mental health support depends on numerous behaviors and strategies used [18]. In profes-
sional therapy, therapeutic alliance – the extent to which clients and therapists work collaboratively
on common goals and connect emotionally – has been the most studied and demonstrably ef-
fective element in psychotherapy [67, 90]. Therapist behaviors, including exploration, showing
empathy, reflection, accurate interpretation, and active listening, lead to better therapeutic alliance
and mental health outcomes [1, 68, 69, 95]. Given that there exist core sets of mental health sup-
port skills (“micro-skills”) that transcend specific therapies [68], our work explores how validated
counseling techniques (e.g. expressing empathy, motivational interviewing techniques) affect on-
line support-seekers’ clinical outcomes. As noted by Hall and Horvath regarding mental health
providers, “micro-skills are the building blocks of effective therapeutic communication . . . [While they]
do not encompass the entire therapeutic skill set, they are useful and accessible in the early stages of

1crisistextline.org
27cups.com
3talklife.com
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Table 1. Relevant prior work classified across dimensions including sample size, platform specifications,
mental health outcomes, and analysis predictors.

Large-
scale
sample

Sample
size

1-on-1
support
chats

Non-
professional
support
providers

Clinical
mental
health
outcomes

Based
on stan-
dardized
therapy
skills

Our Work ✓

74K people
(depression)
42K people
(anxiety)

✓ ✓ ✓ ✓

Althoff
et al. [2] ✓

15K
chats ✓

Chikersal
et al. [15] ✓

54K
people ✓ ✓

Sharma
et al. [87] ✓

34 mil.
posts by
1.3 mil. peo-
ple

Doherty
et al. [24] 18 people ✓ ✓

Saha
et al. [83] ✓

300K posts
by
39k people

✓

Zhang
et al. [104] ✓

1 mil.
chats ✓ ✓

Wang
et al. [97] ✓

1.7 mil.
chats ✓ ✓

Pérez-
Rosas
et al. [73]

259
chats ✓

Chen
and Xu [14] ✓

>60K posts
by
46K people

✓

counselor training. . .micro-skills are transtheoretical [and] are the ingredients of the therapeutic pro-
cess" [100]. Some of these skills include reflecting on clients’ feelings, asking open-ended questions,
and providing empathy [39, 72]. Additionally, regardless of specific skills used, simply just having
a therapeutic space to express oneself may be beneficial on its own [45, 71].

In online peer counseling, past work has often examined utterance-level skills of support providers
[2, 15, 73, 103]. For example, high-quality interactions involve counselors discussing support-
seekers’ motivations and encouraging them, while lower-quality counseling involves expressing
higher persuasion and uncertainty [73]. Peer counselors have also been found to have more success
when expressing fewer negative emotions and displaying more positive sentiment [73, 83]. Our
work also contributes to growing work trying to understand how mental health support may
differ in the online context compared to the traditional offline context; for example, professional
therapists may not be expected to discuss their own issues in traditional therapy sessions, but greater
self-disclosure by online peers has been shown to help support-seekers feel more comfortable
[29, 50, 88, 93, 98].
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Below we briefly review frameworks used in our study: (1) empathy, which includes emotional
expression, interpretation, and exploration, and (2) motivational interviewing (MI) – a set of
validated client-centric counseling techniques used by therapists to help clients make lifestyle
changes or work towards recovery [56, 58, 63]. We build on work by Sharma et al. that outlines
and classifies three forms of empathy – emotional expression, interpretation, and exploration
[87]. In addition, we study how online support providers use the behaviors that form the basis
of motivational interviewing, as defined by the Motivational Interviewing Treatment Integrity
(MITI) coding manual Version 4, which includes various effective, behavior-based techniques for
talk therapy including affirmation, open questions, reflections, and informational support [58, 85].
Some techniques such as affirmation or reflective listening have been found to be consistent with
typical therapeutic goals, while other therapist behaviors like confrontation are unlikely to lead to
positive mental health changes in clients [3, 59].

2.3 Measuring Effectiveness of Online Support Communities
Over the past few decades, there has been ample research trying to understand the impact and
effectiveness of support in online communities. There is a growing perspective over the past few
years in HCI advocating for the inclusion of holistic models of well-being, such as the biopsychoso-
cial model, which can take into account biological, psychological, and social factors that contribute
to a person in order to identify better support methods and/or understand a person’s experience
better [60, 94]. While our work contributes a medical perspective of depression and anxiety, we
also fully acknowledge that quantitative measurements of mental health symptoms is simply one
of many ways for considering one’s health, in addition to other holistic factors.
In terms of evaluating people’s well-being from a quantitative perspective, previous work has

used a variety of proxies. For example, past work has used client feedback immediately following a
counseling session [29, 97, 104] and their continued engagement on the platform [87] as indications
of high-quality peer support. Wang et al. found that some linguistic predictors are positively related
to people giving higher evaluation scores to peer counselors but negatively related to their retention
on the platform. Unfortunately, key limitations exist with using these outcome constructs as they
have been shown to be unclear in value and meaning in the online mental health context [17, 97]
and likely measure fundamentally different aspects of well-being [97]. Retention to the platform,
for example, has been a notable focus of past research to measure the success of online health
communities [14, 98, 101]; however, retention can be complex in interpretation in this context as
Massimi et al. found that people may opt not to return to online mental health platforms due to their
positive improvement offline [61]. Additionally, many of these past measures have been limited to
the immediate effects of counseling sessions rather than observing longer-term improvements.

Other evaluation metrics have relied on human assessment, such as defining high-quality coun-
seling sessions based on literature and coding these sessions with these predefined criteria [40, 73].
For instance, because reflective listening is a valuable technique in conventional offline therapy,
researchers have measured the extent to which reflective listening is occurring online as a metric
for the quality of online counseling sessions [63]. Despite there being relatively little prior work
using clinical outcomes to measure improvement from digital mental health support [15, 24], the
gold standard for clinical research in mental health is the use of self-report questionnaires mea-
suring mental health symptoms (e.g. PHQ-9 for depression, GAD-7 for anxiety) or mental health
evaluations by trained professionals. While PHQ-9 and GAD-7 are widely adopted and verified
assessments in mental health research and practice, low data availability and response rate often
make it impossible to study at scale. Our work extends the past literature as shown in Table 1, and
analyzes clinical outcomes from chat-based volunteer support in a large-scale online peer support
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community using short versions of the PHQ and GAD questionnaires for depression and anxiety
symptom assessment, respectively.

3 DATA
Our study’s research site is one of the largest online peer support platforms, which we will refer
to anonymously as the "online support platform". The online support platform is a psychological
support service where individuals ("support-seekers") can engage in anonymous text-based chats
with volunteer support providers on a variety of mental health problems. We will use the terms
“support-seekers” and “support providers” for the remainder of this paper. Our dataset spans January
2020 to May 2022 and contains over 8 million chats, involving over 1.5 million support-seekers, and
288 thousand support providers. A typical (median) chat lasts for 23 minutes and, over the span
of our two-year dataset, support-seekers chatted with 12 distinct providers on average. Our data
contains all chat messages in a chat session, including both support-seeker and support-provider
messages.

Privacy, Ethics, andDisclosure. This paper used anonymous behavioral log data obtained through
a collaboration with an online support platform to conduct our analysis. All data was anonymized
throughout the entire research process including analysis and no personally identifiable information
was used in this study. No authors on this paper are affiliated with the support platform nor did
this research receive any funding from the platform. Our study does not introduce interventions
or alter people’s experiences on the platform in any way given the potential dangers and ethical
concerns in doing so, and we have chosen instead to only use people’s prior log data to understand
how they currently experience the platform. We also find it worth noting ethical concerns in a
popular thread within online mental health research generally centering around predicting mental
health status from online community behavior [13]. For example, prior work has often used vague
definitions of mental health (such as generalized terms rather than medical definitions of "anxiety"
or "depression") and lack theoretical or clinically rigorous grounding in measuring mental health
disorders [13]. Although mental health can be measured through several different manners, our
study hopes to address these rightful concerns through referencing only the clinical definitions
of depression and anxiety (as opposed to colloquial or general reference) as well as using the
established assessments for these conditions in medical and psychiatry contexts (i.e. PHQ and GAD
assessments). Generally, we hope our study contributes to a growing perspective in the field for
understanding people’s support-seeking and support-providing behaviors, and based on people’s
self-reported data rather than predicting or labeling individual’s statuses or diagnoses. We also take
note from [12] about dehumanizing terminology used in research studies about mental health. As a
result, in this paper we avoid using the terms "users", "subjects", "participants", or "accounts" when
referring to the people who come to our study’s online platform for mental health support; instead,
we have chosen the term "support-seeker" (and, at times, "people with depression/anxiety" and
"individuals"). Additionally, our team does not name nor consider support-seekers on our paper’s
research site as "patients" given our study does not include any professional mental health help and
we characterize the relationship between support-seekers and support-providers on our study’s
platform as closer to a peer relationship.

3.1 Counselor Training
Support providers are required to complete a roughly one-hour, psychology-based training that is
based on active listening and MI skills. Support-provider training includes learning skills such as
asking guiding questions, reflecting concerns back to support-seekers, and showing empathy. After
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this initial training, support providers must pass an exam on the site to begin chatting with support-
seekers. Support providers can also receive awards on their profiles from completing additional
training modules such as specialized courses for specific conditions (e.g. ADHD, Depression) as
well as advanced general skill courses (e.g. “Active Listening”, “Managing Emotions”).

3.2 Clinical Assessments
The online support platform encourages support-seekers to take free clinical mental health exams.
Support-seekers can complete PHQ-9 and PHQ-2 to measure their depression and GAD-7 and
GAD-2 to measure anxiety. These assessment instruments are routinely used in both the research
and medical setting for diagnostic and severity measurement [4, 8, 55, 82, 96]. PHQ-2 includes the
first two questions of PHQ-9, which is the 9-item questionnaire measuring depression presence
and severity. Similarly, GAD-2 includes the first two questions of GAD-7, the 7-item questionnaire
measuring anxiety severity. Support-seekers can take the PHQ and GAD exams every two weeks
to measure any changes in their depression and anxiety symptoms. Our study’s analysis presented
later in this study will use support-seekers’ repeated and longitudinal questionnaire results to
measure their changes in depression and anxiety over time.

Although the 2-item versions for PHQ and GAD are not as accurate as the longer questionnaires,
PHQ-2 and GAD-2 have been shown in prior work to maintain relatively high accuracy including
both considerable sensitivity and specificity for measuring depression and anxiety, respectively
[4, 53, 75]. Sensitivity and specificity for PHQ-2 are 86% and 78%, respectively [4]; GAD-2 has a
sensitivity of 76% and specificity of 81% [75]. A complete list of items in PHQ-2 and GAD-2 can be
found in the appendix. Because these scales ask about the frequency of symptoms of depression
and anxiety in the past two weeks, a higher score on PHQ and GAD indicates worse mental health,
while a lower score indicates better mental health. For both PHQ-2 and GAD-2, scores range from
0 (better mental health) to 6 points (worse mental health).
Our study’s dataset includes 343,599 support-seekers’ responses for PHQ-2 and 186,446 for

GAD-2 between January 2020 to May 2022. Because we are interested in changes in mental health,
we focus on the support-seekers who completed the questionnaires at least twice – 74,219 support-
seekers for PHQ-2 and 42,296 support-seekers for GAD-2. These support-seekers show evidence
of clinically significant symptoms of depression and anxiety in over 60% of of the PHQ and GAD
they completed (see Table 2). Descriptive statistics for the dataset are included in Table 2 while the
detailed distribution of the number of responses per support seeker is shown in Figure 1.

4 RQ1. DOES PARTICIPATING IN PEER-SUPPORT CHATS IMPROVE
SUPPORT-SEEKERS’ DEPRESSION AND ANXIETY?

We first present our methods and results to answer RQ1.
Because PHQ-2 and GAD-2 assessments were administered to all support-seekers independently

of whether they had engaged in peer support chats with support providers, it is possible to
differentiate between support-seekers who engaged in peer support chats versus those who did
not. To answer RQ1, we compare changes in PHQ-2 and GAD-2 assessments between these two
groups through propensity score matching (Section 4.1.1) and conduct analysis on the difference in
their mental health assessments using regression analysis (Section 4.1.2).

4.1 Methods
Due to ethical concerns, we did not pursue a randomized controlled trial or other interventional
study (e.g., randomly withholding treatments) to investigate our research questions. Instead, we
used a pre-post observational study design to infer the treatment effects of engaging in one or more
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Table 2. Descriptive statistics of PHQ-2 and GAD-2 questionnaires, as well as the chat session and messaging
details in each observation period ("Obs. period") as described in Section 4.1 Methods. Note a "chat session"
refers to back-and-forth messages exchanged without a break of more than 24 hours. The length of a chat
session is roughly measured by the duration between the first and last messages exchanged.

PHQ-2 GAD-2
# of users,
taken at least 2x 74,219 42,296

Mean score
(out of 6) 3.55 3.58

% of users with
significant symptoms
(i.e. score of ≥ 3)

63% 61%

Obs. period, between
PHQ assessments

Obs. period, between
GAD assessments

Median # of chat sessions 2 3.20
Median # of messages,
in total chat sessions 286 314

Median duration of total chat
sessions, in days 12.33 18

Fig. 1. Distribution of the number of times support-seekers completed the PHQ-2 and GAD-2 clinical
assessments

chats on support-seekers’ mental health. Specifically, we adopted an “observation-level" random-
effects regression with propensity score matching to predict support-seekers’ post-assessment
mental health scores from their pre-assessment scores, depending on whether they chatted with a
support-provider during the observation period and other independent variables. Detailed statistics
of chat sessions during observation periods are included in Table 2.

In order to monitor mental health changes, we first selected an “observation period” as our unit
of analysis. This period is defined by a support seeker completing two consecutive PHQ-2 or GAD-2
assessments. We refer to the first questionnaire in this sequence as the “pre-assessment”, and the
following one as the “post-assessment”. These observation periods enable repeated observations
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for the same individuals at different time points; thus, this panel data allows us to use multilevel
models like random effects to account for potential omitted-variable bias.

4.1.1 Mitigating Selection Bias via Propensity Score Matching. To account for individual differences
between people, such as their prior experience on the site, their initial mental health status, or
their age, that may bias whether support-seekers engage in support chats, we employed Propensity
Score Matching (PSM), a quasi-experimental method that emulates the conditions of Randomized
Controlled Trials (RCTs) prior to regression analysis. PSM is widely recognized for its robust
performance in reducing the effects of confounding in observational studies [5] and has been
successfully applied in OMHC scenarios similar to our own [14].
In our study, each observation is categorized into the treatment group if the support-seeker

engaged in at least one chat during the observation period. Although another analysis method
would include using the total number of chats during the observation period rather than splitting
support-seekers into just two groups ("had a chat" versus "did not have a chat"), data limitations
limit us from splitting "treated" support-seekers into many different (small) groups by their sum
number of chats and matching based on this number. However, this method is worth exploring
in future work. The aim of PSM is to match each observation in the treatment group with an
observation in the control group (i.e. support-seekers who did not participate in chats) that is
highly similar on confounding characteristics such as demographics and mental health status. To
achieve this, PSM first estimates a propensity score for every observation – the probability of being
in the treatment group conditional on certain covariates – and then pairs observations from the
treatment and control groups who have similar propensity scores. This process results in treated
and control pairs with similar distribution in terms of the covariates [5] but differing on whether
they received “treatment” or not (see Section 2.2). Observations whose propensity scores differ by
at most a pre-specified amount (the caliper width) are excluded.

Step 1. Propensity Score Estimation.
We adopted a logistic regression model to estimate propensity scores, which predict the prob-

ability a support-seeker engages in chats in a given observation period based on the covariates
described below.

Although demographic factors of help-seekers such as age, gender, and ethnicity are frequently
considered in past studies [26, 31, 33, 38, 52, 80], the OMHC which is our research site collects
limited background information about support-seekers and support-providers.

• Support-seekers’ age: The mean age of support-seekers is 24.52 (±10.61), reflecting how
people using the peer support platform are generally young. Age is the only demographic
variable we can reliably measure because it is a required field seekers must provide when
signing up for the online support platform.

Another key factor is help-seekers’ prior experience on the platform [31]. We operationalize this
through three metrics:

• Experience in chats: the total number of chats support-seekers have participated in from
the time of their registration on the platform until the start of the observation period.

• Tenure: the number of days since a support-seeker registered on the platform
• Active days: the total number of days a support-seeker has engaged in any activity on the
platform.

Lastly, we consider:
• Support-seekers’ initial mental health status: measured by the support-seeker’s PHQ-2
or GAD-2 pre-assessment score.
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Table 3. Covariate balance for support-seekers before and after 1:1 caliper matching without replacement
based on logit propensity scores. Descriptive statistics and balance measures are presented for treatment and
control groups, with conditions denoted as ‘U’ for unmatched and ‘M’ for matched.

PHQ-2 GAD-2
Mean ± SD %reduct

|bias|
Mean ± SD %reduct

|bias|Covariate Treated Control %bias Treated Control %bias

Age U 23.39 (±9.31) 25.33 (±11.38) -16.5 88.1 23.44 (±9.50) 25.31 (±11.41) -16 90.6M 23.52 (±9.57) 23.42 (±9.79) 2 23.56 (±9.85) 23.51 (±10.05) 1.5
Initial
MHS

U 3.54 (±1.91) 3.54 (±1.87) 0 -2452.1 3.75 (±1.94) 3.68 (±1.92) 3.4 95.0M 3.58 (±1.87) 3.55 (±1.86) 1.2 3.77 (±1.90) 3.76 (±1.90) -0.2

Experience U 13.30 (±51.06) 2.62 (±14.35) 67.7 96.5 13.87 (±50.39) 2.71 (±13.50) 72.6 97.1M 3.46 (±14.01) 4.41 (±19.12) -2.3 3.45 (±12.41) 4.34 (±17.52) -2.1

Tenure U 325.97 (±555.04) 317.92 (±579.10) 12.5 97.6 373.03 (±579.95) 364.49 (±609.93) 11.8 85.4M 285.93 (±535.96) 277.18 (±519.64) 0.3 320.32 (±552.83) 310.39 (±537.71) 1.7

Active Days U 19.88 (±52.55) 22.60 (±76.97) 18.4 96.8 21.16 (±51.26) 28.32 (±85.69) 12 93.1M 10.29 (±33.47) 13.34 (±45.41) -0.6 11.26 (±32.69) 14.31 (±44.74) 0.8

Step 2. Matching and Balance Estimation.
We employed a one-on-one matching strategy without replacement, based on the logit of the

estimated propensity score. We paired each observation in the treatment group with a counterpart
in the control group that had the closest logit within the defined caliper. The caliper was set at 0.2
of the standard deviation of the propensity score’s logit, following Austin’s recommendations [6] –
specifically, 0.205 for PHQ outcomes and 0.226 for GAD outcomes.
Following matching, we identified 43,249 matched pairs for the PHQ analysis, and excluded

12,854 people in the treatment group who did not have an adequate match. The GAD analysis
includes 26,224 matched pairs, excluding 9,747 people in the treatment group who did not have
an adequate match. Table 5.3 details the balance evaluation after matching. Most of the variables
show an 80-90% reduction in bias following matching, and all the covariates exhibit a bias of
less than five, the threshold recommended by Austin [6]. Although there was no reduction in
bias for pre-assessment mental health score, this is because the treated and control group did
not differ in their pre-assessment mental health scores, as is shown by Figure 2 ("Pre-assessment
PHQ-2/GAD-2").

4.1.2 Regression Analysis. After the matching process, we conducted a random-effects, multi-level
regression with observations nested within support-seekers . Because approximately half of the
sample had only a single observation, fixed effects regressions would not be appropriate. This
regression predicts support-seekers post-assessment mental health (i.e., PHQ and GAD scores) from
their pre-assessment mental health, dependent on whether they had at least one support chat during
the observation period (treatment group) or not (control groups). Including the support-seeker’s
pre-assessment mental health scores (i.e., PHQ-2 or GAD-2) in the regression models effectively
examines how the independent variables predict changes in mental health [16]. To test whether
participating in a support-chat has stronger effects for those with worse mental health, we include
the interaction between participating in a chat with pre-assessment mental health. We also include
as a control variable the number of support-chats the seeker had before the observation.

4.2 Results
Table 4 shows the results for RQ1, the effects of chats on changes in mental health. As a reminder,
because the PHQ-2 and GAD-2 scales ask about the frequency of symptoms, positive coefficients in
the regression analyses indicate that a variable was associated with an increase in symptoms (ie.,
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Fig. 2. Love plot showing covariate balance for PHQ (left) and GAD (right) before ("Unmatched") and after
("Matched") matching process.

Table 4. Random-effects regression predicting support-seekers’ post-assessment PHQ-2 or GAD-2 scores,
comparing matched seekers who had or did not have a support chat during the observation period, controlling
for their pre-assessment mental health and the number of chats they had prior to the observation period and
the pre-assessment mental health X number of prior chat interactions.

PHQ-2 GAD-2

Coeff. Robust SE Coeff. Robust SE

Support-seeker experience in chats (log) -0.052*** 0.006 -0.065*** 0.008
Pre-assessment mental health score (MHS) 0.668*** 0.004 0.683*** 0.005
Treatment: Participated in ≥ 1 chats during
observation period

-0.126*** 0.01 -0.036** 0.013

Treatment × MHS -0.155*** 0.006 -0.145*** 0.007

Constant 3.620*** 0.007 3.739*** 0.01
N_respondents 53915 32222
N_obs 86498 52448

∗𝑝 < 0.05; ∗ ∗ 𝑝 < 0.01; ∗ ∗ ∗𝑝 < 0.001

worse mental health). In terms of control variables, as expected, both depression (𝛽 =.67, p<0.001)
and anxiety ( 𝛽 =.68, p<0.001) were very consistent over the several weeks between pre- and post-
assessments. In addition, support-seekers who had more on-platform conversations prior to the
current observation period had lower post-assessment depression (𝛽 =-.05, p<0.001) and anxiety (𝛽
=-.07, p<0.001) scores.

Most importantly, the results show that the treatment – participation in at least one support-chat
during the observation period – was associated with small but highly reliable improvements in
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mental health. Participation in support-chats was associated with improvements in symptoms
of both depression (𝛽 =-0.126, p < 0.001) anxiety, although to a lesser degree (𝛽 = -0.036, p <
0.01). In addition, the Treatment × pre-assessment mental health interactions show the benefits of
participating in the support chats were greater for those who initially had worse mental health for
both depression (𝛽 = −.155, 𝑝 < .001) and anxiety (𝛽 − .145, 𝑝 < .001). As illustrated in Figure 3, the
dotted blue lines consistently fall beneath the solid red ones. This indicates that support-seekers who
participate in chats exhibit fewer symptoms of depression (PHQ-2) and anxiety (GAD-2) (indicative
of improved mental health) than those who do not participate. In addition, the 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑋𝑀𝐻𝑆

interactions were significant and negative for both the PHQ-2 scale (𝛽 = -0.155, p < 0.001) and the
GAD-2 scale (𝛽 = -0.155, p < 0.001), indicating that participating in a chat was associated with
improved mental health more for those who initially had more depression and anxiety symptoms
respectively. These interactions are illustrated in Figure 3, showing larger differences between
those participating in chats versus not when the pre-assessment measure of mental symptoms was
high (i.e. 1) rather than low (i.e. 0). That is, people with above-average (or major) depression or
anxiety seemed to derive more benefit from engaging in conversations with volunteers compared
to those with average or mild symptoms.
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Fig. 3. Marginal plot that illustrates the interaction effect between treatment and pre-assessment score,
for support-seekers who have average vs. above-average initial symptom severity. Note that a higher score
indicates worse symptoms (i.e. greater symptom severity).

5 RQ2. WHAT CHARACTERISTICS OF THE SUPPORT CONVERSATIONS AFFECT
CLINICAL MENTAL HEALTH OUTCOMES?

5.1 Methods
To answer RQ2, we also adopted a regression analysis to study the association between therapeutic
techniques that occurred during support conversations and changes in support-seekers’ mental
health. This research involved three steps.
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(1) Firstly, we collected consecutive PHQ-2 and GAD-2 assessments from support-seekers and
arranged them in pairs, creating an observational period.

(2) For support-seekers who had a support chat during the observational period, we measured
factors that the prior literature suggests should be associated with changes in support-seekers’
mental health. These include characteristics of the support providers and support-seekers
before the observation period started and characteristics of the support conversations that
occurred during the observations period.

(3) We used random-effects regression models to predict how the providers’, seekers’, and chat
characteristics predict changes in mental health assessments (i.e., post-assessment controlling
for pre-assessment).

For each observation period in which a support-seeker has at least one conversation, we used
seven independent variables as listed below in 5.1.1 and 5.1.2.

5.1.1 Support-provider characteristics. We measured five characteristics of the support providers
with whom the support-seeker chats during the observation period:

• Chats with repeat support providers: capturing the percentage of chats the support-seeker
hadwith a support-provider they previously interacted with before the time of pre-assessment.
This tracks the relationship between support-seekers and support providers, a crucial factor
in counseling processes as suggested by previous studies [1, 95].

• Support-providers’ age: a continuous variable representing the average age of the support
providers interacted with by the support-seeker.

• Support-providers’ experience in chats: a variable measuring the average total number
of chats these support providers have engaged in from their registration until the time of
pre-assessment.

• Support-providers’ tenure: time since the support provider registered on the online support
platform.

• Support-providers’ trainingmodules: the average number of awards for support providers
for completing additional training modules by the platform.

5.1.2 Support-seeker characteristics. We measured two characteristics of the support-seeker before
the start of an observation period.

• Support-seekers’ pre-assessment mental health scores (MHS) (i.e., PHQ-2 or GAD-2):
By including pre-assessment score, this lagged dependent variable model effectively examines
how the independent variables predict changes in mental health status [16].

• Support-seekers’ tenure: As a measure of the support-seekers’ experience with the platform,
we included time since the support-seeker registered on the online support platform. Because
this measure had a long tail, we used the log transformation.

5.2 Chat characteristics.
We concatenated all the communication the support-seeker had with one or more providers during
an observation period and measured the following attributes of these conversations:

• Total conversation turns: The number of conversational turns during an observation period
is a measure of the length of the conversation. We include it to gauge the "dosage effect" of
peer-support chats on mental health. Just as the analysis for RQ1 showed that having a chat
was more strongly associated with improvements in mental health for those who initially had
worse mental health at the beginning of the observation period, we included interaction term
between total turns and pre-assessment mental health to test whether longer conversations
had stronger effects for those who initally had worse mental health.
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• Sentiment in support-seekers’ language: The positivity or negativity of the support-
seekers language during the conversations may be an indicator of their mental health. In
addition, previous research suggests the positivity or negativity of support-seekers’ language
may influence how support providers respond to them. For example, providers may offer
more emotional support in response to seekers using emotionally negative language [98]. To
measure sentiment, we adopted the off-the-shelf VADER classifier from Hutto et al.’s [42].
VADER is a rule-based model for sentiment analysis that performs exceptionally well for
social media text, which makes it particularly relevant for our study’s case. It outperforms
human raters in social media datasets with an F1 score of 0.96. We applied the model to
the support-seekers’ language during the chats. The VADER classifier outputs an inclusive
three-class label (negative, neural, and positive), and we included the negative and positive
labels as predictors.

• Support providers’ therapeutic language: We used natural-language processing tech-
niques (NLP) to measure the support providers’ language. We focused on Motivational
Interviewing behaviors and empathy, two kinds of therapeutic techniques that have been
widely shown to be effective in improving clients’ mental health in traditional counseling
contexts and are used for training volunteers in online support platforms.
– Motivational Interviewing behaviors: We measured seven Motivational Interviewing
behaviors from the MITI 4.2 manual [65], including asking questions, offering affirmations,
and reflecting back the seekers’ thoughts, using the classifiers developed by Shah et al [85].
The MITI code classifiers are transformer-based models (i.e., BERT) that were pre-trained
on 120 million chat messages on the same platform as our study and fine-tuned based on
manually annotated datasets. These manually annotated data consists of 14,797 utterances
from 734 conversations annotated with 17 Motivational Interviewing behaviors adapted for
the online nature of the platform of study by Shah et al [85]. Each model takes in a support-
provider’s utterance as input, as well as the immediately previous utterance, and outputs a
binary label indicating whether the current utterance contains the corresponding MITI
code. Descriptions of these measures, including definitions, examples, and classification
accuracy are shown in Table 5.

– Empathy: We measured three components of empathy (emotional reaction, exploration,
and interpretation) based on classifiers developed by Sharma et al. [87]. Descriptions of
these measures, including definitions, examples, and classification accuracy are shown in
Table 6. The classifiers include two independently pre-trained RoBERTa-based encoders
that accept one turn of clients’ and support providers’ messages separately and identify
empathy shown in the support providers’ responses. Following Sharma et al.’s settings, we
fine-tuned the models on a public Reddit dataset [88] that contains many mental health
communities. As reported in their paper, the models have F1 scores ranging from .626 to
.745 in terms of identifying three kinds of empathy on the Reddit dataset.

5.2.1 Regression Analysis. In order to understand how support-provider characteristics, support-
seeker characteristics, and characteristics of the conversations predict changes in mental health, we
used a similar random-effect model specification as in RQ1 with additional predictor and control
variables. However, because the RQ2 analysis contains many more predictor variables and all
predictors are continuous rather than binary, we cannot use propensity score matching as a pre-
processing step. Results are shown in Table 7. Because some of the measures of MI behaviors are
highly correlated with the measures of empathy, resulting in multi-co-linearity, we conducted
separate analyses using the MI interviewing behaviors and empathy as predictors. The correlation
between MI codes and Empathy codes are shown in Figure 4.
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Table 5. Description, examples, and classifier accuracy scores for our study’s seven MI (MITI 4.2) codes [65].
Classifiers are from [85].

MI
Technique Description Example F1

Score

Giving
Information

Support-provider gives general infor-
mation or feedback in a neutral tone.

"This website has a lot of ma-
terials with coping skills for
anxiety if you would like to do
more research"

0.574

Question

Support-provider asks a question that
maybe either open (leaving space for
support-seekers’ response) or closed
(implies a short or restricted answer)

"Hello, what would you like to
talk about?" 0.927

Reflection

Support-provider makes a reflective
listening statement, capturing and re-
turning something the support-seeker
recently said.

"It seems like you are having
a hard time figuring out the
way forward." 0.692

Affirm

Support-provider accentuates some-
thing positive about the support-
seeker, such as their strengths, inten-
tions, or behavior

“It’s important to you to be
a good parent, just like your
folks were for you." 0.624

Seeking
Collaboration

Support-provider attempts to share
power or acknowledge the client’s
expertise (e.g.support-provider seeks
consensus with the client regarding
tasks)

"Would it be alright if we
spend some time discussing
the standards for consuming
alcohol during pregnancy."

0.500

Emphasizing
Autonomy

Support-provider focuses on support-
seekers’sense of control, freedom, and
ability to decide their actions.

"You’re the one who knows
yourself best here. What do
you think ought to be on this
treatment plan?"

0.785

Persuade with
Permission

Support-provider emphasizes collabo-
ration or autonomy support while per-
suading. Per-mission is present when
e.g. client asks for opinion or support-
provider asks for permission.

"I have some information
about your risk of problem
drinking and I wonder if I can
share with you."

0.770

5.3 Results
Table 7 shows that some characteristics of the support-providers were associated with statistically
significant changes in seekers’ mental health. We note that our findings generally show small R-
squared values, though; we further discuss this in Section 6.1.1. We had expected that chatting with
providers with more experience would be associated with improvements in mental health, but this
expectations was only partially confirmed. In particular, talking with older support-providers was
associated with reductions in depression (𝛽 = −.036, 𝑝 < .001). This may be because the older vol-
unteers had richer life experiences, which especially benefited the relatively young support-seekers
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Table 6. Description, examples, and classifier accuracy scores for our study’s three empathy codes [87].
Classifiers are from [87].

Empathy
Technique

Description Example F1
Score

Emotional
Reactions

Support-provider expresses warmth,
compassion, and concern.

“I’m so sorry that you experi-
enced this” 0.745

Interpreta-
tions

Support-provider communicates
that they understand the feel-
ings/experiences of the support-
seeker, and may attempt to describe
or relate.

“Honestly I’ve been through
the same thing. My parents got
divorced when I was 18...I un-
derstand why you would be
guarded.”

0.626

Exploration

Support-provider attempts to ex-
plore, probe, or describe the feel-
ings/experiences not explicitly ex-
pressed by the support-seeker.

“Do you feel like you have a
short temper at the moment or
that you’re more snappy than
usual”

0.726

on this site [29]. However, the association was not significant in predicting anxiety. Surprisingly,
support-providers’ experience on the site, including past chatting experience and having repeated
interactions with the support seeker during the observation period, was not associated with changes
in either depression or anxiety (p>0.05). In fact, talking with support-providers who completed
more training modules on the site was associated with increases in anxiety (𝛽 = .037, 𝑝 < .001).
One possibility is that poorer support-providers are the ones who seek out more training, while
another is that the training on the site is counter productive. Given correlational nature of the
evidence we cannot determine the causation behind this association. We discuss these findings
more in Section 6 (Discussion).

We now turn to the associations of changes in mental health with support-seekers’ characteristics.
Support-seekers with a unit higher pre-assessment PHQ-2 score had higher post-assessment scores
as well (𝛽 = 0.446, 𝑝 < 0.001). Similarly, those with with a unit higher pre-assessment GAD-2
anxiety score reported higher anxiety during post-assessment (𝛽=0.46, p<0.001). The sentiment of
support-seekers in their messages predicted changes in their mental health. In particular, support-
seekers who expressed more negative sentiment in conversations during an observation period
reported worse depression (𝛽 = 0.208, 𝑝 < 0.001) and anxiety (𝛽 = 0.193, 𝑝 < 0.001) on their
post-assessments. In addition, the associations with positive sentiment followed a similar but
weaker pattern. Support-seekers who expressed more positive sentiment in conversations during
an observation period reported slightly lower depression (𝛽 = −0.024, 𝑝 < 0.01), but no change in
their levels of anxiety (𝛽 = −0.001, 𝑝 > .05) on their post-assessments.

We now review the associations of changes in mental health with characteristics of the support
conversations. Our analysis for RQ1 demonstrated reliable improvements in depression and anxiety
associated with participating in online peer support conversations, with the improvements larger for
those who initially had worse mental health. The RQ2 analysis shows analogous results among those
who participated in the support-chats. We consider the length of the support chats as a "dosage"
of a support conversation; people who participated in longer chats with more turns have slightly
improved mental health for depression (𝛽 = −.023, 𝑝 < .05) but not anxiety (𝛽 = .012, 𝑝 > .05),
with larger effect size for those who initially showed worse symptoms. Having longer chats was
more strongly associated with improvements in mental health for those who initially had worse
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Fig. 5. Marginal plot that illustrates the interaction effect between total conversation turns and support-
seekers’ pre-assessment scores, comparing effects for those with average versus above-average initial symptom
severity.

had a significant association with changes in mental health; Exploration and Interpretation did
not. Inconsistent with much research on the common factors that seem responsible for success in
conventional psychotherapy [68], receiving Emotional Reactions during the observation period
was associated with a small, but statistically reliable increase in depression (0.028 (𝑝 < .001) points
on the PHQ-2 score).

In terms of anxiety symptoms, none of the MITI codes was associated with statistically reliable
improvements in anxiety. In contrast, like the results for depression, a standard deviation increase of
Persuasion with Permission was associated with worsening of anxiety symptoms (𝛽=0.033, p<0.001).
Also like the depression analysis, support-seekers had worse anxiety when provided with more
Emotional Reaction. One standard deviation increase in receiving Emotional Reaction during the
observation period was associated with a small, but statistically reliable increase of 0.048 (𝑝 < .001)
point increase in their GAD-2 score.

6 DISCUSSION
Our research strongly suggests that online peer support chats are beneficial for improving clinical
depression and anxiety outcomes, albeit with a relatively small effect size. Additionally, we identified
effective MI skills like Reflection and Emphasizing Autonomy that contribute to this clinical
effectiveness. However, several MI techniques including Seeking Collaboration, Persuading (with
Permission), Give Information, and the empathy component of Emotional Reaction were associated
with worsening of mental health outcomes. Our work has significant implications for understanding
how online support chats affect people’s mental health symptoms as well as the specific methods
contributing to the effectiveness of training provided to online volunteer support providers in many
OMHCs.
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6.1 Effectiveness of Online Peer Support Chats
Support-seekers who chat on the platform report less frequent symptoms of depression and anxiety
compared to the matched seekers who did not engage, with the change highly reliable for both
depression and anxiety (p < .001). Moreover, support-seekers who initially had more severe depres-
sion and anxiety showed greater improvement compared to those with milder initial symptoms.
These results are based on a quasi-experimental analysis that matches people participating and
not participating in chats on factors likely to be associated with mental health and willingness
to engage in support chats. Furthermore, our analysis for RQ2 shows a parallel result, with the
dosage of the chats (i.e., more turns) being associated with improved mental health, and especially
so among support-seekers’ who initially had worse depression and anxiety. Thus, findings for both
RQ1 and RQ2 suggest that online support chats are more effective when the support-seeker has
worse symptoms. Our study contributes a clinical perspective on existing literature [2, 24, 97] about
the general effectiveness of online communities for mental health outcomes. Although the effect
sizes are small, these results are consistent with the hypothesis that participating in peer-to-peer
support-conversations improves people’s mental health.

6.1.1 Low Effect Size of Support-Provider Chats. Although having support conversations seems to
improve support-seekers’ mental health, we acknowledge that these effects are not powerful. That
is, while having at least one chat on the platform during an observation period was significantly
associated with a reduction in the frequency of depression and anxiety symptoms, the improvements
were small (a 1.6% improvement for depression scores and and a 0.6% improvement for anxiety).
There are potentially several reasons for these findings. First, people may not be having enough
volume of messaging on the platform to experience significant improvement. Results for RQ2
show a dosage effect, in which improvements in both depression and anxiety were greater with
longer conversations. Having one or even several relatively brief conversations over the course of a
several-week observation period may not be a strong enough intervention to have large effects on
well-being. Another more problematic explanation, however, is that the volunteer counselors may
not be trained well enough to provide effective support. In contrast to the months-long training
that professional counselors receive, volunteers’ roughly one-hour training may not provide the
skills needed to be effective support-providers. Finally, on a more methodological note, the 2-item
depression and anxiety measures used on the outcome measure in this research may not be sensitive
or accurate enough to capture all the change that is occurring.

6.2 Characteristics of conversations
Although the results suggest that peer-to-peer support can improve mental health, our research
did not conclusively identify the techniques that the volunteers counselors used that account
for this success. Abundant research demonstrates what works in professional counseling. For
example, meta-analyses show that counselors who express empathy are more effective than those
who do not, with a moderate effect size [68] and that counselors who use appropriate Motiva-
tional Interviewing techniques (e.g. Reflection, Emphasizing Autonomy) while refraining from
"MI-inconsistent" techniques (e.g. persuading) are more effective [56–58]. Consistent with this
prior research, our research suggests that use of the MI-consistent techniques of Reflection and
Emphasizing Autonomy was associated with improved depression outcomes. Additionally, the use
of the MI-inconsistent techniques like Giving Information and Persuasion was associated with
worse depression outcomes. Note, though, that our paper’s classification of Persuasion includes the
support-seeker giving permission rather than persuasion being unsolicited.

However, other results were inconsistent with the prior research on the effective skills used by
professional counselors. For example, one component of empathy – Emotional Reaction – was
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associated with a significant increase in both the PHQ-2 and GAD-2 scores indicating worse mental
health. In addition, use of the MI-consistent technique of Seeking Collaboration was associated
with worse depression outcomes. One possible explanation for these findings is that the lightly
trained volunteers on our research site don’t execute these techniques well enough. Moreover, the
machine learning models we used to measure MI behavior did not distinguish between "authentic"
versus "superficial" execution of these behaviors. Moreover, it is likely that support-seekers elicit
Emotional Reactions or Seeking Collaboration when they describe their mental health problems
or express more negative sentiment. A major limitation of our analysis method is that we labeled
support-providers’ utterances independently of the context of the support chat and support-seekers’
messages. However, in reality, it is likely that support-providers’ chat behaviors largely depend on
the support-seekers’ messages that might have elicited them. Thus, it is possible that when support-
seekers reveal more mental health problems in the discussion this causes the support-providers’
empathy and MI-consistent behavior. Unfortunately, our analysis methods do not allow us to test
for possible reverse causation.

In addition, no motivational interviewing techniques were significantly associated with improv-
ing anxiety outcome. Moreover, motivational interviewing techniques one might expect to improve
mental well-being, like asking open-ended questions or providing affirmations, were not signifi-
cantly associated with improving depression. One possible explanation for why these techniques
don’t have the positive effects suggested by the prior literature is that what the support-providers
say in the conversation is less important than merely being present and acting as an audience. This
explanation is consistent with research showing that personal disclosure and emotional expression
in general is healthy for both emotional and physical well-being [45, 71]. As Pennebaker’s research
suggests [71], it may be that merely engaging in the conversations and having an opportunity
to talk about ones problems and express ones emotions is all that is necessary. According to this
view, role of the support-provider is to provide an audience to encourage fruitful self-expression
rather than to act as an amateur therapist. Additionally, prior work has found that distraction
from negative emotions leads to improved mood. This distraction may occur through just casually
chatting through online social channels like social media platforms and OMHCs, where people
also engage in casual chatter not about any mental health issue [19, 85].

6.3 Designing Training for Online Support Platforms
Our study generally contributes to the design of training for digital support platforms. In particular,
our study identified how the therapeutic techniques that guide training in online support platforms,
which are widely established in therapy and social work contexts, can significantly help or harm
people. We found evidence that several established therapeutic techniques translate to effective
clinical outcomes in the online context; for example, our findings suggest that focusing training
on client-led techniques like emphasizing a support-seekers’ autonomy and reflecting back their
own stated feelings has effective outcomes, while behaviors that could be thought of as more
support-provider-led (persuading, giving information) are harmful for people’s mental health
outcomes.

We found insignificant results for some behaviors that would presumably contribute to effective
care (e.g. affirmation). As we have mentioned, the ways that our work classifies MI techniques and
empathy are context-blind; we only label an utterance as containing a technique or not rather than
whether the technique is being used appropriately. This is a problem prevalent in this research
area generally, where online mental health interventions aim to increase the frequency at which
people use support techniques with minimal consideration of when or how these techniques
should be used. For example, Sharma et al’s HAILEY system, which helps volunteer supporters
write empathetic responses, doesn’t focus on when to offer empathy [86]. This focus on quantity
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rather than appropriateness may contribute both to some support-provider behaviors showing
insignificant results and low effect size even for statistically significant findings.

Additionally, some of our findings seem counterintuitive, like providers’ emotionally empathetic
reactions predicting more depression and anxiety or conversations with support-providers with
more training modules predicting more anxiety. It may be that unmeasured confounds account
these surprising results. For example, providers’ may offer more empathetic responses when talking
to someone describing worse depression or anxiety. Similarly, the support-providers who feel
less confident or perform poorly in support chats may take these additional training modules.
Further analysis is needed to better understand the conditions under which these skills harm
support-seekers and how to change online training programs to account for this. We also note
that, as reviewed previously in Section 2.2, skills used in the online context versus traditional
in-person care may differ in effect. Given that our existing frameworks such as MI are based in the
traditional context, many general concepts of care that show in our analysis to be insignificant (or
even harmful) may remain relevant in online support but appear differently when presented in text-
based conversations. Alternatively, MI techniques and empathy may have unique behaviors when
combined with behaviors that are specific to the online context (i.e. chit-chatting, demographic
self-disclosure [29, 85]). There may be context-specific online behaviors which are not covered by
existing frameworks; for example, effective techniques like casual chit-chatting that can distract
from negative emotions may be helpful for mental health outcomes [19, 85]. We suggest that future
work may study techniques within the online context specifically rather than just attempting to
emulate face-to-face contexts; existing research suggests that emotions are expressed differently
through text-based conversations due to reasons such as lack of audio/visual cues and asynchronous
communication, and trusting relationships are also different compared to in-person interactions
[7, 27, 79, 92]
In general, our study is most relevant to the growing research interest in developing digital,

self-guided, and interactive training to support online health communities [11, 51, 76]. Digital
interactive training environment can help to train novice support providers in using the non-specific
clinical micro-skills and communication styles that are common across evidence-based therapies,
such as Motivational Interviewing and Cognitive Behavioral Therapy (CBT). This type of training
could provide scalable training to hundreds of thousands of volunteer support providers on online
mental health platforms. Although we focus on mental health volunteers, a similar approach could
be used to supplement the more formal education that medical practitioners receive. Although
further work is needed to understand the exact skills that should guide online training, our analysis
suggests promising effects of online support chats for depression and anxiety. Our analysis also
found that (at least a subset of) existing frameworks of motivational interviewing and empathy
do translate to beneficial effects for online support-seekers. Our work contributes to studying
behavioral interventions and therapy strategies built for the online context, such as iCBT [15] and
augments the findings of [85, 97] in that outcome measures for measuring the effectiveness of these
frameworks can be highly variable; some therapeutic behaviors may significantly affect proxies
like support-seeker satisfaction but do not necessarily translate to clinical symptom improvement.

6.4 Limitations
Our work has the following limitations. First, we studied one peer support platform, and cannot
guarantee our findings generalize to all other online platforms. Furthermore, our findings may
not be applicable to the OMHCs that do not include peer support chats or volunteer counselors,
such as those that connect people to licensed therapists for teletherapy (e.g. BetterHelp.com) or
provide support primarily through forum-based help (e.g. mentalhealthforum.net). Second, our
analysis may have suffered from some limitations in measuring variables. Our analysis can only
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detect changes in mental health between any two PHQ-2 and GAD-2 questionnaires. Although our
analysis attempted to identify the results of engaging in one or more peer support chats during that
time, people can engage in support chats with several different support providers, engage in other
platform activities, and more; as a result, it is difficult to isolate and assess the effects of having any
given chat. Third, although our study uses longitudinal data on assessment score changes and uses
propensity-score matching, the analyses and still correlational and cannot conclusively identify
causal directions. Lastly, we acknowledge the limited accuracy on some of our study’s classifiers
(see Table 5). Although the majority of our therapeutic technique classifiers have high accuracy,
the lowest F1 accuracies for MITI classifiers are 50% for Seeking Collaboration and 57% for Giving
Information. Inaccuracies in identifying MITI or empathy codes being used could have reduced our
analysis’ predictive accuracy. Although we saw statistically significant results for both classifiers,
as discussed in our results, in general we have analyzed any results from these low accuracy MI
code classifiers cautiously.

7 CONCLUSION
We have presented an analysis on the longitudinal and clinical effectiveness of online peer support
platforms for depression and anxiety outcomes. Through a pre-post observational study design,
we found that having online peer support chats with volunteer counselors improves depression
and anxiety symptoms. Additionally, our analysis found that, although online peer support chats
are effective, the specific therapeutic behaviors that underlie these platforms, such as support,
affirmation, and empathy, do not explain this effectiveness. Our work has important implications
for the future of designing online mental health communities and for digital training for online
support providers.
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A FULL PHQ-2 AND GAD-2 QUESTIONNAIRES
PHQ-2: Over the last 2 weeks, how often have you been bothered by the following problems?
(1) Little interest or pleasure in doing things

• Not at all
• Several days
• More than half the days
• Nearly every day

(2) Feeling down, depressed or hopeless
• Not at all
• Several days
• More than half the days
• Nearly every day

GAD-2: Over the last 2 weeks, how often have you been bothered by the following problems?
(1) Feeling nervous, anxious or on edge

• Not at all
• Several days
• More than half the days
• Nearly every day

(2) Not being able to stop or control worrying
• Not at all
• Several days
• More than half the days
• Nearly every day
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