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Abstract

We present a sublinear time algorithm for computing a near optimal low-rank approximation to any positive
semidefinite (PSD) Toeplitz matrix T ∈ Rd×d, given noisy access to its entries. In particular, given entrywise
query access to T +E for an arbitrary noise matrix E ∈ Rd×d, integer rank k ≤ d, and error parameter δ > 0,

our algorithm runs in time poly(k, log(d/δ)) and outputs (in factored form) a Toeplitz matrix T̃ ∈ Rd×d with
rank poly(k, log(d/δ)) satisfying, for some fixed constant C,

∥T − T̃∥F ≤ C ·max{∥E∥F , ∥T − Tk∥F }+ δ · ∥T∥F .

Here ∥ · ∥F is the Frobenius norm and Tk is the best (not necessarily Toeplitz) rank-k approximation to T
in the Frobenius norm, given by projecting T onto its top k eigenvectors.

Our robust low-rank approximation primitive can be applied in several settings. When E = 0, we obtain the
first sublinear time near-relative-error low-rank approximation algorithm for PSD Toeplitz matrices, resolving
the main open problem of Kapralov et al. SODA ‘23, which gave an algorithm with sublinear query complexity
but exponential runtime. Our algorithm can also be applied to approximate the unknown Toeplitz covariance
matrix of a multivariate Gaussian distribution, given sample access to this distribution. By doing so, we
resolve an open question of Eldar et al. SODA ‘20, improving the state-of-the-art error bounds and achieving
a polynomial rather than exponential (in the sample size) runtime.

Our algorithm is based on applying sparse Fourier transform techniques to recover a low-rank Toeplitz
matrix using its Fourier structure. Our key technical contribution is the first polynomial time algorithm for
discrete time off-grid sparse Fourier recovery, which may be of independent interest. We also contribute a
structural heavy-light decomposition result for PSD Toeplitz matrices, which allows us to apply this primitive
to low-rank Toeplitz matrix recovery.

1 Introduction

A Toeplitz matrix T ∈ Rd×d is constant along each of its diagonals. I.e., Ti,j = Tk,l for all i, j, k, l with i−j = k−l.
These highly structured matrices arise in many fields, including signal processing, scientific computing, control
theory, approximation theory, and machine learning – see [9] for a survey. In particular, Toeplitz matrices often
arise as the covariance matrices of stationary signals, when the covariance structure is shift invariant. I.e., when
the covariance between measurements only depends on their distance in space or time [25]. A row-reversed
Toeplitz matrix is known as a Hankel matrix. Such matrices also find broad applications [20, 22, 42].

Given their importance, significant work has studied fast algorithms for basic linear algebraic tasks on Toeplitz
matrices. A d × d Toeplitz matrix can be multiplied by a vector in just O(d log d) time using the fast Fourier
transform. Toeplitz linear systems can be solved in O(d2) time exactly using Levinson recursion [24], and to
high-precision in O(d · polylog d) time using randomization [56, 57]. A full eigendecomposition of a symmetrix
Toeplitz matrix can be computed in O(d2 · polylog d) time [45].

1.1 Sublinear query algorithms for Toeplitz matrices. Recent work has focused on algorithms for Toeplitz
matrices with complexity scaling sublinearly in the dimension d [1,12,19,34,39,47,55]. Kapralov et al. [34] study
low-rank approximation of positive semidefinite (PSD) Toeplitz matrices. They show that by accessing just
poly(k, log(d/δ), 1/ϵ) entries of a PSD Toeplitz matrix T ∈ Rd×d, one can compute (in factored form) a symmetric

Toeplitz matrix T̃ with rank Õ(k log(1/δ)/ϵ) such that:1

∥T − T̃∥F ≤ (1 + ϵ)∥T − Tk∥F + δ∥T∥F ,(1.1)

∗Manning College of Information and Computer Sciences, University of Massachusetts Amherst.
†School of Computer and Communication Sciences, EPFL.
1Throughout we use Õ(·) to hide polylogarithmic factors in the dimension d and in the argument.
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where ∥M∥F =
√∑d

i=1

∑d
j=1 M

2
ij is the Frobenius norm and Tk = argmin

B:rank(B)≤k

∥T − B∥F is the best rank-k

approximation to T in the Frobenius norm, given by projecting Tk onto its top k eigenvectors.
Observe that Tk may not itself be Toeplitz and it is not a priori clear that Toeplitz T̃ satisfying (1.1) even

exists. The key technical contribution of [34] is to prove that it does, and further that T̃ can be recovered using
sample efficient off-grid sparse Fourier transform techniques. Unfortunately, despite its sample efficiency, the
algorithm of [34] is computationally inefficient, with runtime that is exponential in Õ(k polylog(d)/ϵ) – i.e., at

least dÕ(k/ϵ). The main open question left by their work is if this runtime can be improved, giving a sublinear
time, not just a sublinear query, algorithm.

Eldar et al. [19] study the related problem of recovering an (approximately) low-rank PSD Toeplitz covariance
matrix T ∈ Rd×d given independent samples from the d-dimensional Gaussian N (0, T ). Low-rank Toeplitz
covariance estimation is widely applied in signal processing, including in direction of arrival (DOA) estimation [36],
spectrum sensing for cognitive radio [14,41], and medical and radar image processing [3,8,16,21,49,52]. Motivated
by these applications, Eldar et al. [19] consider two relevant sample complexity measures: the vector sample
complexity (VSC), which is the number of samples (each a vector in Rd) taken from the distribution N (0, T ),
and the entry sample complexity (ESC), which is the number of entries read from each vector sample. They show

that with poly(k, log d, 1/ϵ) VSC and ESC, it is possible to return T̃ satisfying with high probability:2

(1.2) ∥T − T̃∥2 <∼

√
∥T − Tk∥2 · tr(T ) +

∥T − Tk∥F · tr(T )
k

+ ϵ∥T∥2,

where tr(T ) is the trace and ∥T∥2 is the spectral norm. While the above error bound may seem non-standard,
Eldar et al. show that it implies fairly strong bounds when T has low stable-rank. Observe that when T is exactly
rank-k, the error bound becomes ϵ∥T∥2. As in [34], a key drawback is that algorithm of [19] has runtime scaling

exponentially in Õ(k polylog d). Further, the output matrix T̃ is not itself guaranteed to be low-rank.

1.2 Our contributions. In this work, we give a sublinear time algorithm for computing a near-optimal low-
rank approximation of a PSD Toeplitz matrix given noisy access to its entries. Our robust low-rank approximation
primitive can be applied in the settings of both [34] and [19], yielding the first sublinear time algorithms for
standard PSD Toeplitz low-rank approximation and low-rank Toeplitz covariance estimation. Our main result is:

Theorem 1.1. (Robust Sublinear Time Toeplitz Low-Rank Approximation) Let T ∈ Rd×d be a PSD
Toeplitz matrix, E ∈ Rd×d be an arbitrary noise matrix, δ > 0 be an error parameter, and k be an integer rank
parameter. There exists an algorithm that, given query access to the entries of T + E, runs in poly(k, log(d/δ))

time and outputs a representation of symmetric Toeplitz matrix T̃ with rank poly(k, log(d/δ)) that satisfies, with
probability at least 0.9,

∥T − T̃∥F <∼ max{∥E∥F , ∥T − Tk∥F }+ δ∥T∥F ,

where Tk = argminB:rank(B)≤k ∥T −B∥F is the best rank-k approximation to T .

Observe that given our runtime, which depends just poly-logarithmically on the input dimension d, it is
not possible to output T̃ ∈ Rd×d explicitly. Thus, our algorithm outputs a compressed representation of
T̃ . To do so, we use the well known Vandermonde decomposition theorem, which states that any Toeplitz
matrix can be diagonalized by a Fourier matrix [17]. We can show that T̃ in particular, which has rank
r = poly(k, log(d/δ)), can be written as FDF ∗ where F ∈ Cd×r is a Fourier matrix, with jth column given
by [1, e2πi·fj , e2πi·2fj , . . . , e2πi·(d−1)fj ] for some frequency fj , and D ∈ Rr×r is diagonal. Our algorithm outputs

the frequencies f1, . . . , fr and diagonal entries D1,1, . . . , Dr,r, which fully determine T̃ .
As an immediate consequence of Theorem 1.1 applied with E = 0, we obtain the following sublinear time

constant factor low-rank approximation algorithm for PSD Toeplitz matrices, which resolves the main open
problem of [34] for the case of constant factor approximation.

Theorem 1.2. (Sublinear Time Toeplitz Low-Rank Approximation) Let T ∈ Rd×d be a PSD Toeplitz
matrix, k be an integer rank parameter, and δ > 0 be an error parameter. There exists an algorithm that, given

2Throughout, we let f(·) <∼ g(·) denote that f(·) ≤ c · g(·) for some fixed constant c.
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query access to entries of T , runs in poly(k, log(d/δ)) time and outputs a representation of symmetric Toeplitz

matrix T̃ with rank poly(k, log(d/δ)) that satisfies with probability at least 0.9,

∥T − T̃∥F <∼ ∥T − Tk∥F + δ∥T∥F .

We can further apply Theorem 1.1 to the Toeplitz covariance estimation setting of [19]. Here, we set E =
1
s ·XXT−T whereX ∈ Rd×s has s columns sampled i.i.d. from the Gaussian distribution N (0, T ). That is, E is the
error between the true covariance matrix T and a sample covariance matrix 1

sXXT that our algorithm can access.

Using similar ideas to [19], we show that for s = Õ(k4/ϵ2), ∥E∥F <∼
√
∥T − Tk∥2 tr(T ) + ∥T−Tk∥F tr(T )

k + ϵ∥T∥2.
Combined with Theorem 1.1 applied with δ = ϵ/

√
d so that δ∥T∥F ≤ ϵ∥T∥2, this gives:

Theorem 1.3. (Sublinear Time Toeplitz Covariance Matrix Estimation) Let T ∈ Rd×d be a PSD
Toeplitz matrix, k be an integer rank parameter, and ϵ > 0 be an error parameter. There is an algorithm
that given i.i.d. samples x1, . . . , xs ∼ N (0, T ) for s = Õ(k4/ϵ2), runs in poly(k, log(d/ϵ), 1/ϵ) time and outputs a

representation of symmetric Toeplitz T̃with rank poly(k, log(d/ϵ)) satisfying, with probability at least 0.9,

∥T − T̃∥F <∼

√
∥T − Tk∥2 tr(T ) +

∥T − Tk∥F tr(T )

k
+ ϵ∥T∥2.

Further, the algorithm has entry sample complexity (ESC) poly(k, log(d/ϵ)) – it reads just poly(k, log(d/ϵ)) entries
of each vector sample xi.

Observe that the error guarantee of Theorem 1.3 is at least as strong, and can potentially be much stronger, than
that of (1.2), since the bound is on ∥T − T̃∥F rather than ∥T − T̃∥2. At the same time, our algorithm achieves the
same vector and entry sample complexities as [19] up to poly(k, log(d/ϵ), 1/ϵ) factors, while running in sublinear

time. Moreover, our output T̃ is guaranteed to be low-rank, while the output of [19] is not.

2 Technical overview

In this section, we sketch the ideas behind the proof of our main result, the sublinear time robust Toeplitz low-rank
approximation algorithm of Theorem 1.1.

2.1 Recovering Low-Rank Toeplitz Matrices using Fourier Structure. Our starting point is the main

result of [34], which shows that any PSD Toeplitz matrix has a near optimal low-rank approximation T̃ which
is itself Toeplitz. Armed with this existence result, the key idea behind the algorithm of [34] is to leverage the

well-known sparse Fourier structure of low-rank Toeplitz matrices [17] to recover T̃ using a sample efficient (but
computationally inefficient) algorithm. The idea behind [19] is similar, except that they rely on a weaker existence

statement, where the low-rank approximation T̃ is guaranteed to have sparse Fourier structure, but not necessarily
be Toeplitz. Formally, after defining the notion of a Fourier matrix, we state the main result of [34].

Definition 2.1. (Fourier matrix) For any set of frequencies S = {f1, f2, . . . , fs} ⊂ [0, 1], let the Fourier
matrix FS ∈ Cd×s have jth column equal to v(fj) := [1, e2πif , e2πi(2f) . . . , e2πi(d−1)f ].

Theorem 2.1. (Theorem 2 of [34]) For any PSD Toeplitz matrix T ∈ Rd×d, 0 < ϵ, δ < 1, and k ≤ d, there

exists symmetric Toeplitz T̃ with rank r = Õ(k log(1/δ)/ϵ)) such that

∥T − T̃∥F ≤ (1 + ϵ)∥T − Tk∥F + δ∥T∥F .

Further, T̃ can be written as T̃ = FSDF ∗
S where FS ∈ Cd×r is a Fourier matrix (Def. 2.1) and D ∈ Rr×r is

diagonal.3

3Our algorithms will rely on several other properties of the frequency set S and diagonal matrix D guaranteed to exist by Theorem
2.1. See Section 3 for a more complete statement of the theorem, which details these properties.
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The first step in our proof of Theorem 1.1 is to apply Theorem 2.1 to the input PSD Toeplitz matrix T with
ϵ = Θ(1). Our algorithm is given access to the entries of the noisy matrix T + E, which we will write as T̃ + Ẽ

for Ẽ = E + T − T̃ . Observe that by triangle inequality, since ∥T − T̃∥F <∼ ∥T − Tk∥F + δ∥T∥F ,

∥Ẽ∥F <∼ ∥E∥F + ∥T − Tk∥F + δ∥T∥F <∼ max{∥E∥F , ∥T − Tk∥F }+ δ∥T∥F .

Thus, to prove Theorem 1.1, it suffices to show that we can recover T̃ to within a constant factor of the
noise level ∥Ẽ∥F . Our key contribution is to improve the runtime of this step from being exponential in the
rank r = Õ(k log(1/δ)) to being polynomial, and hence sublinear in d (recall that throughout Õ(·) hides poly
logarithmic factors in d and the argument).

To approximately recover T̃ , as in [34] and [19], we will leverage its Fourier structure. In particular, Theorem

2.1 guarantees that T̃ can be written as T̃ = FSDF ∗
S , where FS ∈ Cd×r is a Fourier matrix (Def. 2.1) and

D ∈ Rr×r is diagonal. To find T̃ , the algorithm of [34] brute force searches for a good set of frequencies S and
corresponding diagonal matrix D. In particular, they consider a large pool of candidate frequency sets drawn from
a net over [0, 1]r. For each set S, they solve a regression problem to find a diagonal matrix D that (approximately)
minimizes ∥T − FSDF ∗

S∥F . These regression problems can be solved using a sublinear number of queries to T
using leverage score based random sampling [50, 54]. One can then return the best approximation given by any
of the candidate frequency sets as the final output.

Unfortunately, the above approach incurs exponential runtime, as the number of frequency sets considered
grows exponentially in the rank r = Õ(k log(1/δ)). A similar issue arises in [19], where a brute force search over
frequency sets is also performed, but with a different regression step, where D is relaxed to be any r × r matrix.

2.2 From Column Recovery to Matrix Recovery. To avoid the exponential runtime, of [34] and [19], we
apply tools from the extensive literature on efficient recovery of Fourier-sparse functions [7, 11, 26, 28, 29, 32, 33].

Observe that if we expand out the decomposition T̃ = FSDF ∗
S from Theorem 2.1, each column of T̃ is an r-Fourier

sparse function from {0, . . . , d−1} → R. In particular, letting T̃j denote the j
th column, for any t ∈ {0, . . . , d−1},

letting {af}f ∈ S be the diagonal entries of D,

T̃j(t) =
∑
f∈S

afe
2πif(t−j).

Our algorithm will recover a Fourier-sparse approximation to a single column of T̃ using samples of
T + E = T̃ + Ẽ in just poly(r, log d) time using a sparse Fourier transform algorithm. This Fourier-sparse
approximation will give us approximations to the frequencies in FS , which in turn can be used to form an
approximation to T̃ . This approach presents several challenges, which we discuss below.

Column Signal-to-Noise ratio. First, we must ensure that the column that we apply sparse Fourier transform
to does not have too much noise on it, compared to its norm. To do so, we sample a column T̃j uniformly at

random. By Markov’s inequality, T̃j is corrupted with noise whose ℓ2 norm is bounded as ∥Ẽj∥2 <∼ ∥Ẽ∥F /
√
d

with good probability. Further, using that T̃ is symmetric Toeplitz and that it is close to T and hence nearly
PSD, we can apply a norm compression inequality of Audenaert [4] (see Claim 5.2) to show that each column of

T̃ must have relatively large norm. In particular, for any j we show that ∥T̃j∥2 >∼ ∥T̃∥F /
√
d (see Lemma 5.3). In

combination, these facts ensure that a random column T̃j has a similar signal-to-noise ratio as the full matrix T̃

with good probability. Thus, we can expect to recover a good approximation to T̃ from just this column.

Heavy Frequency Recovery. Of course, given the noise Ẽ, we cannot expect to recover approximations to all
frequencies in S given sample access to T̃ + Ẽ. For example, if a frequency f corresponds to a very small entry
af in D, we may not recover it. We must argue that omitting such frequencies from our approximation of T̃ does
not introduce significant error. More formally, our sparse Fourier transform will recover a set of frequencies that
well approximates some subset of the input frequencies Sheavy ⊂ S, but may not approximate the set frequencies

Slight := S \ Sheavy. The algorithm guarantees that Sheavy suffices to approximate our random column T̃j up to

the noise level ∥Ẽj∥2. Let Zheavy : {0, . . . , d− 1} → R be given by restricting T̃j to the frequencies in Sheavy, i.e.,
Zheavy(t) =

∑
f∈Sheavy

afe
2πift. Let Zlight = Tj − Zheavy. Then we can show that

∥Zlight∥2 = ∥T̃j − Z∥2 <∼ ∥Ẽj∥2 + δ∥T̃j∥2.
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We have ensured that ∥Ẽj∥2 <∼ ∥Ẽ∥F /
√
d by choosing a random column. Further, by applying our recovery

algorithm with error δ′ = δ/
√
d, which introduces only additional log d dependences, we have that δ′∥T̃j∥2 ≤

δ∥T̃∥F /
√
d. Thus, we have overall that ∥Zlight∥2 <∼

∥Ẽ∥F+δ∥T̃∥F√
d

.

It remains to argue that this error being small on just column T̃j ensures that it is small on the full matrix.

In particular, if we let T̃light denote our full Toeplitz matrix restricted to the unrecovered frequencies, we must
show that

∥T̃light∥F <∼
√
d · ∥Zlight∥2 <∼ ∥Ẽ∥F + δ∥T̃∥F .

Again, we show this by arguing that T̃light is itself near PSD and applying the norm compression inequality

of [4]. We interpret the existence of T̃light and T̃heavy := T̃ − T̃light as a heavy-light decomposition of T̃ into

T̃ = T̃heavy + T̃light, see Section 5.1 for the detailed proof.

Sublinear time Approximate Regression. With the above bound in hand, the proof of Theorem 1.1 is
essentially complete, in the last step we use a leverage score based fast approximate regression primitive [50, 54]

to regress onto the approximate frequencies that we recover to give an approximation to the full T̃ . We have
argued that the noise incurred by not recovering all frequencies is bounded by ∥Ẽ∥F + δ∥T̃∥F , and this bounds
the optimum of the regression problem, which we solve approximately, giving the final guarantee of Theorem 1.1.
To solve the regression problem efficiently, we crucially rely on the special structure of the Fourier spectrum S of
T̃ , stated in the full version of Theorem 2.1 in Section 3.4. Full details of this step are presented in Section 5.2.

2.3 Sublinear Time Discrete-Time Off-Grid Sparse Fourier Transform. We have argued that applying

a sparse Fourier transform to a random column of T̃ suffices to recover a good approximation to the full matrix.
It remains to show that we can implement such a sparse Fourier transform efficiently. We sketch the key ideas
behind this efficient sparse Fourier transform here, with the complete proof appearing in Section 4.

If the frequencies in the set S guaranteed to exist by Theorem 2.1 were integer multiples of 1/d, i.e., they
were “on-grid”, then we could apply a discrete sparse Fourier transform algorithm to recover a Fourier-sparse
approximation to T̃j given samples from the column [T + E]j = [T̃ + Ẽ]j . Such algorithms have been studied
extensively [23,26,27]. The main difficulty in our case is that the frequencies in S may be “off-grid”, i.e., arbitrary
real numbers in [0, 1]. Recent work of [11] solves the off-grid sparse Fourier transform problem given sample access

to the function [T̃ + Ẽ]j on the continuous range [0, d]. However, in our setting, we can only access [T̃ + Ẽ]j at
the integer points {0, 1, . . . , d − 1} – i.e., at the entries in the jth column of our matrix. Thus, we must modify

the approach of [11] to show that, nevertheless, we can well approximate T̃j from samples at these points. In
doing so, we give to the best of our knowledge, the first efficient discrete time off-grid sparse Fourier transform
algorithm, which may be applicable in other settings that involve off-grid frequencies but on grid time samples.

Informally, we consider the following sparse Fourier recovery problem:

Problem 1. (Off-Grid Sparse DTFT – Informal) Let x∗(t) =
∑

f∈S af · e2πift for t ∈ [d] := {0, 1, . . . , d−
1} and S ⊂ [0, 1] with |S| = k. Let x(t) = x∗(t) + g(t), where g is arbitrary noise. Given sample access to x(t)
for any t ∈ [d], approximately recover all f ∈ S that contribute significantly to x.

In principal, without noise, one can recover x∗ from 2k samples at any time domain points – including at the
integers in [d] – via Prony’s method [18]. The key challenge is to recover x∗ approximately in the presence of
noise. Observe that with noise, it is generally not possible to identify all frequencies in S given sample access to
x(t) only on [d]. For example, if two frequencies f and f ′ are extremely close to each other, their contributions
to the function x on [d] could nearly cancel out, making it impossible to identify them. This is true even if the
coefficients af and af ′ are arbitrarily large.

Thus, we will settle for approximate frequency recovery. In particular, we will output a list of frequencies
L such that it well approximates a subset of frequencies Sheavy ⊆ S. Denoting for any function f : [d] → C let
∥f∥2d =

∑
i∈[d] |f(i)|2, this subset Sheavy spans an approximation to the Fourier sparse function x∗ up to error

<∼ ∥g∥
2
d + δ∥x∥2d. To find this approximation algorithmically, we will have to regress onto the list of frequencies L,

and the final approximation itself will use poly(k, log(d/δ)) frequencies. In our Toeplitz setting (Theorem 1.1), this
translates to poly(k, log(d/δ)) rank of the final Toeplitz matrix that we output. We state our main approximate
frequency recovery primitive below. See Section 4 for a more formal statement.
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Lemma 2.1. (Approximate Frequency Recovery – Informal) Consider the setting of Problem 1. Assume
that ∥g∥2d ≤ c∥x∗∥2d for a small absolute constant c. Then for any given δ > 0, there exists an algorithm that in
time and sample complexity poly(k, log(d/δ)) outputs a list L of poly(k, log(d/δ)) frequencies in [0, 1] such that,
with probability at least 0.99, letting

Sheavy =

{
f ∈ S : ∃f ′ ∈ L s.t. |f − f ′|◦ ≤

poly(k, log(d/δ)

d

}
,

and letting x∗
Sheavy

(t) :=
∑

f∈Sheavy
afe

2πift, we have

∥x∗ − x∗
Sheavy

∥2d <∼ ∥g∥
2
d + δ∥x∗∥2d.

Here | · |◦ is the wrap-around distance. For any f1, f2 ∈ [0, 1], |f1 − f2|◦ := min{|f1 − f2|, |1− (f1 − f2)|}.

Lemma 2.1 mirrors Lemma 7.23 in [11], but only requires accessing x(t) at integer t ∈ [d] rather than at real
t ∈ [0, d]. We now discuss how we adapt the approach of [11] to work in this more restricted sampling setting.

One cluster recovery. The approach of [11] first considers the one cluster case (see Section 4.1 for a formal
definition), where most of the energy of x is concentrated around a single frequency f0. They show how to
approximately recover this central frequency of the cluster up to poly(k, log(d/δ))/d error in poly(k, log(d/δ))
time. Roughly, since the signal is close to a pure frequency, by considering the ratio x(α + β)/x(α) for carefully
chosen sample points α, β, they show that one can approximate e2πif0β , and in turn f0. In their work, α and
β may be real valued. We need to modify the approach to restrict them to be integers. We formally do this in
Section 4.1. The key idea follows similar ideas to our other modifications of their approach, discussed below.

Multi-cluster recovery with bounded support. After handling the single cluster case, [11] reduces the
general case to it via hashing techniques. In particular, by applying an efficient transformation in time domain,
they access a signal whose frequencies are hashed versions of the frequencies in S. This approach is standard in
the literature on sparse Fourier transform. The hash function spreads out the frequencies in S so that they lie in
different frequency ranges (called ‘buckets’) with good probability, and can be recovered using the single cluster
recovery primitive. The hash function used in [11] is as follows: let σ ∈ R, b ∈ [0, 1] and B be the number of
buckets. Then define:

πσ,b(f) = Bσ(f − b) mod B,

hσ,b(f) = round(πσ,b(f)),(2.3)

where the round(.) function rounds real numbers to the nearest integer. The crucial claim that [11] shows is that

if we let σ be a uniformly random real number in
[

d
poly(k,log(d/δ)) ,

2d
poly(k,log(d/δ))

]
then we have that for any f1, f2

such that |f1 − f2| ≥ poly(k,log(d/δ))
d ,

(2.4) Pr[hσ,b(f1) = hσ,b(f2)] = Pr[Bσ|f1 − f2| ∈ (−1, 1) mod B] <∼ 1/B.

This ensures that f1, f2 land in different hash buckets with good probability. I.e., after hashing, these frequencies
can be separated in the Fourier domain. In particular, [11] applies an efficient filtering approach (see Lemma
4.7) to isolate a cluster of frequencies of width poly(k, log(d/δ))/d around each frequency. If the hash bucket
containing this frequency has high SNR, then the frequency can be recovered via single-cluster recovery.

To implement the above approach in our setting, where we can only access the input at integer time points,
we need the random seed σ to be a random integer. In particular, we let σ to be a uniformly random integer in[

d
poly(k,log(d/δ)) ,

2d
poly(k,log(d/δ))

]
. However this restriction severely affects the collision behavior of the hash function

hσ,b. For example, if |f1− f2|◦ = 1/2, then Bσ|f1− f2|◦ mod B = 0 for every even σ and thus (2.4) cannot hold
with any probability less than 1/2.

To handle this issue, we observe that if an instance only contained frequencies within an interval of width
1/B then we would have |f1 − f2|◦ ≤ 1/B for any f1, f2 in the function’s support. Then, if σ is a uniformly

random integer in
[

d
poly(k,log(d/δ)) ,

2d
poly(k,log(d/δ))

]
, Bσ|f1 − f2|◦ is uniformly distributed on a grid of spacing at
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most B|f1 − f2|◦ ≤ 1. Thus for every σ such that Bσ|f1 − f2|◦ ∈ (−1, 1) mod B, there are roughly at least B
other values of σ for which Bσ|f1 − f2|◦ /∈ (−1, 1) mod B. This is enough to show that (2.4) holds.

General multi-cluster recovery. Of course, a general input instance may have frequencies that do not lie in
an interval of width 1/B. To reduce to this setting, we apply an additional filtering step in the Fourier domain.
Our filter splits the interval [0, 1] into B intervals of width 1/B, based on the same filtering approach of Lemma
4.7 as discussed before. For the complete proof, see Section 4.2. This completes our proof sketch for our discrete
time off-grid sparse Fourier transform primitive (Lemma 2.1).

2.4 Other related work. A large body of work in numerical linear algebra, applied mathematics, theoretical
computer science, and signal processing has studied the problem of computing low-rank approximations of Toeplitz
and Hankel matrices [10, 31, 37, 40, 44, 46, 51]. In many applied signal processing settings, Toeplitz matrices arise
as PSD covariance matrices, motivating our focus on the PSD case. Significant prior work has also studied
the problem of computing an optimal structure-preserving Toeplitz low-rank approximation, where the low-rank
approximation T̃ is itself required to be Toeplitz. However, no simple characterization of the optimal solution
to this problem is known [13] and polynomial time algorithms are only known in the special cases of k = 1 and
k = d − 1 [13, 35]. On the practical side a range of heuristics are known, based on techniques such as convex
relaxation [10, 20,44], alternating minimization [13, 53], and sparse Fourier transform [37].

Many results in the signal processing literature study sublinear query algorithms for Toeplitz matrices, these
are referred to as sparse array methods which proceed by querying a small principal submatrix to obtain an
approximation to the whole matrix [1, 12, 39, 47]. The work of [19] and [34] on sublinear query PSD Toeplitz
low-rank approximation and Toeplitz covariance estimation is closely related to this literature.

Beyond Toeplitz matrices, significant work has focused on sublinear time low-rank approximation algorithms
for other structured matrix classes. This includes positive semidefinite matrices [5, 43], distance matrices [6, 30],
and kernel matrices [2, 43, 58].

2.5 Roadmap. The remainder of the paper is organized as follows. In Section 3 we define basic notation and
import lemmas and theorems from prior work that will be used in our proofs. In Section 4 we give the analysis
of our discrete time off-grid sparse Fourier transform. In Section 5 we apply this sparse Fourier transform to
the low-rank Toeplitz recovery problem, proving our main result, Theorem 1.1. In Section 5.3, we show how
to instantiate this general robust low-rank approximation result to obtain our sublinear time Toeplitz low-rank
approximation and covariance estimation results (Theorems 1.2 and 1.3).

3 Notation and preliminaries

In this section, we introduce notation and preliminary concepts that are used throughout this paper.

3.1 General and linear algebraic notation. Consider functions f : X → R and g : X → R for input domain
X . We write f(·) <∼ g(·) if there exists a constant C > 0 such that f(x) ≤ Cg(x) for all x ∈ X . For any integer
d > 0, let [d] = {0, 1, . . . , d − 1}. For any function x : Z → C, and integer d > 0, we let ∥x∥2d :=

∑
j∈[d] |x(j)|2.

For any set N , let Nn denote the set of all subsets of N with n elements.
For a matrix A, let AT and A∗ denote its transpose and Hermitian transpose, respectively. Let A[i,j] denote

the i, j entry of A and for i1 < j1, i2 < j2, let A[i1:j1,i2:j2] denote the submatrix containing entries from rows i1 to

j1 and columns i2 to j2. For any vector x ∈ Cd, let ∥x∥2 =
√
x∗x denote its ℓ2 norm. For a matrix A ∈ Cd×d, let

∥A∥2 = supx∈Cd ∥Ax∥2/∥x∥2 denote its spectral norm and ∥A∥F =
√∑

i,j∈[d] |A[i,j]|2 denote its Frobenius norm.

A Hermitian matrix A ∈ Cd×d is positive semidefinite (PSD) if for all x ∈ Cd, x∗Ax ≥ 0. Let
λ1(A) ≥ . . . ≥ λd(A) ≥ 0 denote its eigenvalues. Let ⪯ denote the Loewner ordering, that is A ⪯ B if and
only if B−A is PSD. Let A = UΣV ∗ denote the compact singular value decomposition of A, and when A is PSD
note that UΣU∗ is its eigenvalue decomposition. In this case, let A1/2 = UΣ1/2 denote its matrix square root,
where Σ1/2 is obtained by taking the elementwise square root of Σ. Let Ak = UkΣkV

∗
k denote the projection of A

onto its top k singular vectors. Here, Σk ∈ Rk×k is the diagonal matrix containing the k largest singular values of
A, and Uk, Vk ∈ Cd×k denote the corresponding k left and right singular vectors of A. Note that Ak is the optimal
rank k approximation to A in the spectral and Frobenius norms. That is, Ak = argminB:rank(B)≤k ∥A−B∥2 and
Ak = argminB:rank(B)≤k ∥A−B∥F .
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We let ∗ denote the convolution operator – in both the discrete and continous settings. For discrete functions
x, y : Z → C, we have [x ∗ y](n) =

∑
k∈Z x(k)y(n − k). For continuous functions x, y : [0, 1] → C, we have

[x ∗ y](f) =
∫ 1

0
x(f ′)y(f − f ′)df ′. For any function f : D → C defined over domain D (e.g., D can be Z,R etc.),

we let supp(f) denote its support. That is, supp(f) = {x ∈ D : |f(x)| > 0}.

3.2 Fourier analytic notation. Throughout, we use the standard discrete-time Fourier transform.

Definition 3.1. (Discrete-time Fourier transform (DTFT)) For x : Z→ C, its DTFT x̂(f) : [0, 1]→ C
is defined as

x̂(f) =
∑
n∈Z

x(n)e−2πifn.

The inverse DTFT is given by:

x(n) =

∫ 1

0

x̂(f)e2πifn df.

The discrete time version of Parseval’s theorem allows us to relate the energy in time and Fourier domains.

Lemma 3.1. (Parseval’s identity) For x : Z→ C with DTFT x̂ : [0, 1]→ C, we have:

∞∑
t=−∞

|x(t)|2 =

∫ 1

0

|x̂(f)|2df.

We define the wrap around distance between two frequencies as follows.

Definition 3.2. (Wrap around distance) For any f1, f2 ∈ [0, 1], let |f1−f2|◦ = min{|f1−f2|, |1−(f1−f2)|}.

3.3 Compact filter functions. Our algorithm will use a function H : Z→ R which approximates the indicator
function of an interval [d] by preserving energies of k-Fourier sparse functions on this interval and almost killing
off their energy outside this interval. At the same time, the support of this function in the Fourier domain is
compact. Formally:

Lemma 3.2. (Discrete version of Lemma 6.6 of [11]) Given positive integers d, k and real δ > 0, let
s0 = poly(k, log(d/δ)), s1 = poly(k, log(d/δ)), s3 = 1 − 1/poly(k, log(d/δ)), and l = Θ(k log(k/δ)), there is a

function H : Z→ R with DTFT Ĥ : [0, 1]→ R having the following properties:

Property I: H(t) ∈ [1− δ, 1] ∀t ∈ Z : |t− d/2| ≤ d

(
1

2
− 2

s1

)
s3,

Property II: H(t) ∈ [0, 1] ∀t ∈ Z : d

(
1

2
− 2

s1

)
s3 ≤ |t− d/2| ≤ d

2
s3,

Property III: H(t) ≤ s0 ·

(
s1

(
|t− d/2|

ds3
− 1

2

)
+ 2

)−l

∀t ∈ Z : |t− d/2| ≥ d

2
s3,

Property IV: supp(Ĥ) ⊆
[
− s1l

2ds3
,
s1l

2ds3

]
and so ∆h := |supp(Ĥ)| = s1l/(ds3) = poly(k, log(d/δ))/d.

For any exact k-Fourier-sparse signal x∗(t) we additionally have the following:

Property V:
∑

t∈Z\[d]

|x∗(t) ·H(t)|2 ≤ δ∥x∗∥2d,

Property VI: ∥x∗ ·H∥2d ∈ [0.99∥x∗∥2d, ∥x∗∥2d].

The first four properties guarantee that H approximates the indicator function of the interval [d] and has a
compact support in Fourier domain. The final two properties capture the fact that multiplying H by any k-
Fourier sparse function almost kills of its energy outside [d] and almost preserves its energy inside [d]. Lemma 3.2
follows by modifying the proof of Lemma 6.6 of [11], which gives an analogous filter function in the continuous
domain. We state Lemma 6.6 below, followed by the proof of Lemma 3.2.
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Lemma 3.3. (Lemma 6.6 of [11]) Given positive integers d, k and real δ > 0, let s0 = poly(k, log(d/δ)), s1 =
poly(k, log(d/δ)), s3 = 1 − 1/poly(k, log(d/δ)), and l = Θ(k log(k/δ)), there is a function H ′ : R → R with

continuous Fourier transform Ĥ ′ : R→ R having the following properties:

Property I: H ′(t) ∈ [1− δ, 1] ∀t ∈ R : |t− d/2| ≤ d

(
1

2
− 2

s1

)
s3,

Property II: H ′(t) ∈ [0, 1] ∀t ∈ R : d

(
1

2
− 2

s1

)
s3 ≤ |t− d/2| ≤ d

2
s3,

Property III: H ′(t) ≤ s0 ·

(
s1

(
|t− d/2|

ds3
− 1

2

)
+ 2

)−l

∀t ∈ R : |t− d/2| ≥ d

2
s3,

Property IV: supp(Ĥ ′) ⊆
[
− s1l

2ds3
,
s1l

2ds3

]
and so ∆h := |supp(Ĥ ′)| = s1l/(ds3) = poly(k, log(d/δ))/d.

Proof. [Proof of Lemma 3.2] Consider the function H ′ : R → R given in Lemma 3.3. To obtain our function H,
we discretize H ′ by restricting it to the integers. The first three time domain properties of our function thus
follow directly from the first three properties of Lemma 3.3. Discretizing H ′ in time domain to obtain H results
in aliasing of Ĥ ′ in Fourier domain to obtain Ĥ. However, by Property IV of Lemma 3.3, we know that the
support of Ĥ ′ is contained in [−1/2, 1/2] assuming d≫ poly(k). Thus Ĥ(f) = Ĥ ′(f) for all f ∈ [−1/2, 1/2], thus
implying that property 4 of Lemma 3.2 follows from property 4 of Lemma 3.3.

Finally, to prove properties 5 and 6, we must use discrete versions of Lemmas 5.1 and 5.5 of [11], which are
used to prove Properties of 5 and 6 of Lemma 6.6 in [11]. The discrete version of Lemma 5.1 was shown in Lemma
C.1 of [19], and establishes that for any k-Fourier sparse x∗ : Z → C, ∀i ∈ [d], |x∗(i)|2 <∼ k6 log3(k)(∥x∗∥2d/d). It
is also fairly easy to obtain the following bound from inspecting the proof of Lemma 5.5 in [11]: for any k-Fourier
sparse x∗ : Z→ C ∀i ∈ Z \ [d], |x∗(i)|2 <∼ k13(ki/d)2.2k(∥x∗∥2d/d). Using these bounds in the proof of Properties 5
and 6 of Lemma 6.6 of [11] and replacing integrals with sums, we obtain Properties 5 and 6 of Lemma 3.2.

We will also need the following filter function from [11], which when convolved with, allows us to access the input
signal whose Fourier transform is restricted to a desired interval.

Lemma 3.4. (Lemma 6.7 of [11]) Given B > 1, δ, k, w > 0, let l = O(k log(k/δ)). Then there exists a function

G : R→ C with continous Fourier transform Ĝ : R→ C satisfying the following

Property I: Ĝ(f) ∈ [1− δ/k, 1] if |f | ≤ (1− w)/2B.

Property II: Ĝ(f) ∈ [0, 1] if(1− w)/2B ≤ |f | ≤ 1/2B.

Property III: Ĝ(f) ∈ [−δ/k, δ/k] if |f | ≥ 1/2B.

Property IV: supp(G(t)) ⊂
[
−lB
w

,
lB

w

]
.

Property V: max(G(t)) <∼ poly(B, l).

3.4 Structure preserving Toeplitz low-rank approximation. We next formally state the main result
of [34] which shows that for any PSD Toeplitz matrix, there exists a near optimal low-rank approximation in
the Frobenius norm which itself is Toeplitz. We will use this fact in the proof of Theorem 1.1 by interpreting
the input PSD Toeplitz matrix as a noisy version of the near optimal Toeplitz low-rank approximation, further
corrupted by noise E.

Theorem 2.1. Given PSD Toeplitz matrix T ∈ Rd×d, ϵ, δ ∈ (0, 1), and an integer rank k ≤ d, let r1 = Õ(k/ϵ)

and r2 = Õ(log(1/δ)). There exists a symmetric Toeplitz matrix T̃ = FSDF ∗
S of rank r = 2r1r2 = Õ(k log(1/δ)/ϵ)

such that,

1. ∥T − T̃∥F ≤ (1 + ϵ)∥T − Tk∥F + δ∥T∥F .
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2. FS ∈ Rd×r and D ∈ Rr×r are Fourier (Def. 2.1) and diagonal matrices respectively. The set of frequencies

S can be partitioned into r1 sets S̃1, . . . , S̃r1 where each S̃i is as follows:

S̃i =
⋃

1≤j≤r2

{fi + γj, fi − γj},

where fi ∈ {1/2d, 3/2d, . . . , 1− 1/2d} for all i ∈ [r1], and γ = δ/(2C log7 d) for fixed constant C > 0.

3. Let −S̃i = {1− f |∀f ∈ S̃i}, then −S̃i ⊆ S for all i ∈ [r1].

4. Let Si = −S̃i ∪ S̃i and Di contain the corresponding entries of D for every i ∈ [r1]. We have that for any

subset S′ of ∪i∈[r1]{Si} , if we let T̃ ′ =
∑

Si∈S′ FSiDiF
∗
Si
, then there exists a PSD Toeplitz matrix T ′ such

that ∥T̃ ′ − T ′∥F ≤ δ∥T ′∥F .

Points 2,3 and 4 of the previous Lemma provide essential structural properties of the near optimal Toeplitz low-
rank approximation crucial for our approach. Point 2 will be used in our sublinear time approximate regression
primitive by essentially providing a finite set inside [0, 1] where possible frequencies of the near optimal Toeplitz

low-rank approximation could lie. Point 3,4 implies in particular that T̃ is almost PSD, which is an important
property used to show that a random column of T̃ must have similar signal-to-noise ratio as the full matrix and
thus a sparse Fourier transform of a random column of T̃ yields good frequencies for approximating T̃ . Point 4 in
fact implies a more fine grained notion, which is useful for our proof that the recovered heavy frequencies suffice
to approximate T̃ .

4 Discrete Time Off-Grid Sparse Fourier Recovery

In this section we prove our main discrete time off-grid Fourier recovery result of Lemma 2.1, which was outlined
in Section 2.3. We re-state the complete version of the lemma here.

Lemma 2.1. Consider x, x∗, g : Z → R, where x∗(t) =
∑

f∈S afe
2πift for S ⊆ [0, 1] with |S| ≤ k, g(t) is

arbitrary noise, and x(t) = x∗(t) + g(t). Assume that we can access x(t) for t ∈ [d] and that ∥g∥2d ≤ c∥x∗∥2d
for a small absolute constant c > 0. Let δ > 0 be an error parameter, and let N 2 = 1

d (∥g∥
2
d + δ∥x∗∥2d) be the

noise threshold. Let ∆ = poly(k, log(d/δ))/d such that ∆ ≥ k · |supp(Ĥ(f))|, where H(t) (with Fourier transform

Ĥ(f)) is the function guaranteed to exist by Lemma 3.2 for parameters k, δ. Then in time and sample complexity
poly(k, log(d/δ)) one can find a list L of poly(k, log(d/δ)) frequencies that satisfies the following with probability
at least 0.99: Let

Sheavy = {f ∈ S : ∃f ′ ∈ L s.t. |f − f ′|◦ <∼ k∆
√
k∆d},

and let x∗
Sheavy

(t) =
∑

f∈Sheavy
afe

2πift. Then

∥x∗ − x∗
Sheavy

∥2d <∼ dN 2.

In the subsequent subsections we state intermediary claims and their proofs building up to the proof of Lemma
2.1. In Section 4.1 we first consider the case when all frequencies of the Fourier sparse function x∗ are very close
to each other – i.e., the one-cluster case. In Section 4.1 we describe how to approximately recover the central
frequency of the one cluster. Then in Section 4.2 we reduce the general case to the one-cluster case. In Section
4.2.1, we first give the reduction in the setting when the frequencies lie in a relatively small interval. We call such
instances ‘bounded’. We then give a reduction from fully general instances to bounded instances in Section 4.2.3.

4.1 One cluster case. In this section, we consider discrete time signals that are clustered in Fourier domain
with approximately bounded support in time domain, as formalized in the following definition.

Definition 4.1. ((ϵ,∆)-one clustered signal) z : Z→ C is (ϵ,∆)-one clustered around f0 ∈ [0, 1] if

Property I:

∫ f0+∆

f0−∆

|ẑ(f)|2df ≥ (1− ϵ)

∫ 1

0

|ẑ(f)|2df,

Property II: ∥z∥2d ≥ (1− ϵ)
∑
t∈Z
|z(t)|2.
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The main result of this subsection is that we can approximately recover the central frequency f0 of a clustered
signal in sublinear time only using samples of the function z at on-grid time domain points {0, . . . , d− 1}.

Lemma 4.1. (Variant of Lemmas 7.3, 7.17 of [11]) Let z be a (ϵ,∆′)-clustered signal around f0 (Def. 4.1)
for any ϵ smaller than an absolute constant. Suppose f0 ∈ I for an interval I ⊆ [0, 1] of size |I| smaller than an
absolute constant with I known to the algorithm a priori. Let ∆′ = O(k∆)for k,∆ as defined in Lemma 2.1.Then

procedure FrequencyRecovery1Cluster returns an f̃0 such that, with probability at least 1− 2−Ω(k),

|f̃0 − f0|◦ <∼ ∆′
√
∆′d.

Moreover, FrequencyRecovery1Cluster has time and sample complexity of poly(k, log(d/δ)).

We now present the main subroutines and their proofs of correctness that lead the proof of Lemma 4.1.

4.1.1 Sampling the signal. In this section, we present algorithms GetEmpiricalEnergy and GetLegal-
Sample and show their correctness, with the goal of proving Lemma 4.3, which is a key primitive to obtain a weak
estimate of the central frequency of a clustered signal. This primitive will then be used in the next section, Section
4.1.2, repeatedly to obtain a good estimate for the central frequency of the clustered signal thus proving Lemma
4.1. This section mirrors Section 7.2 from [11], with algorithms GetEmpiricalEnergy and GetLegalSample
being analogous to GetEmpirical1Energy and GetLegal1Sample but operating on a discrete time signal,
rather than a continuous time one. We refer the reader to [11] for the detailed proofs (we only state the why the
proofs carry over here), since they are the same up to the replacing the continuous Fourier transform with the
DTFT.

Algorithm 4.1 GetEmpiricalEnergy(z, d,∆′)

1: Input: Query access to z on [d], d, ∆′.
2: Rest ← O((d∆′)2).
3: zemp ← 0.
4: for i ∈ [Rest] do
5: Choose αi ∈ [d] uniformly at random.
6: zemp ← zemp + |z(αi)|2.
7: end for
8: zemp ←

√
zemp/Rest.

9: Return zemp.

Lemma 4.2. (Counterpart of Claim 7.11 in [11]) Let z be an (ϵ,∆′)-clustered signal as in Lemma 4.1.
GetEmpiricalEnergy (Algorithm 4.1) takes O((d∆′)2) samples to output zemp such that zemp ∈ (1 ±
0.2)||z||d/

√
d with probability at least 0.9.

Proof. The proof follows that of Claim 7.11 of [11], up to replacing the continuous Fourier transform with the
DTFT. The main reason why the proof carries over is that since z has approximately compact support in Fourier
domain, it is a smooth function. Thus its energy in time domain that is concentrated on [d] can be estimated
using uniform sampling with few samples.
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Algorithm 4.2 GetLegalSample(z, d,∆′, β, zemp)

1: Input:Query access to z on [d], d, ∆′, β, zemp.
2: Rrepeat ← O((d∆′)3), Sheavy ← ∅.
3: for i ∈ [Rrepeat] do
4: Choose αi ∈ [d] uniformly at random.
5:

6: if |z(αi)| ≥ 0.5zemp then
7: Sheavy ← Sheavy ∪ {i}.
8: end if
9: end for

10: for i ∈ Sheavy do
11: w(i)← |z(αi)|2 + |z(αi + β)|2.
12: end for
13: Choose α among αi, i ∈ Sheavy with probability w(i)/

∑
j∈Sheavy

w(j).
14: Return: α.

Lemma 4.3. (Counterpart of Lemma 7.2 in [11]) Let β̂ =
Cβ

∆′
√
∆′d

for a sufficiently small constant Cβ. Let

z be a (ϵ,∆′)-one clustered signal around f0 as in Lemma 4.1. Then Algorithm GetLegalSample, with any

integer β ≤ 2β̂ and zemp satisfying zemp ∈ (1± 0.2)∥z∥d/
√
d, takes O((d∆′)3) samples to output α ∈ [d] such that

α+ β ∈ [d] and, with probability at least 0.6,

|z(α+ β)− z(α)e2πif0β | ≤ 0.08(|z(α)|+ |z(α+ β)|).

Proof. The proof follows that of Lemma 7.2 of [11] upto the replacement of the continuous Fourier transform with
the DTFT.

The above lemma, Lemma 4.3 obtains a weak estimate for f0 by taking the logarithm of the ratio of the input
evaluated at α and α+ β. This lemma is then used repeatedly in Section 4.1.2

4.1.2 Frequency recovery. The main goal of this subsection is to present algorithms that can estimate the
central frequency of a clustered signal approximately, leading to the proof of Lemma 4.1.These algorithms use the
primitives presented in the previous section.

Algorithm 4.3 Locate1Inner(z,∆′, d, β̂, zemp, L̂, Rloc)

1: vq ← 0, ∀q ∈ [t].
2: while r = 1→ Rloc do
3: Choose β ∈ [0.5β̂, β̂] ∩ Z uniformly at random.
4: γ ← GetLegalSample(z,∆′, d, β, zemp).
5: θ′ ← phase(z(γ)/z(γ + β))/2π.
6: for q ∈ [t] do

7: θq = L̂−∆l/2 + q−0.5
t ∆l.

8: If ∥2πθ′ − 2πβθq∥◦ ≤ sπ then add vote to vq, vq−1, vq+1 (∥x − y∥◦ = minz∈Z |x − y + 2πz| for any
x, y ∈ R

9: end for
10: end while
11: q∗ ← {q|vq > Rloc

2 }.
12: Return: L← L̂−∆l/2 + q∗−0.5

t ∆l.
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Algorithm 4.4 Locate1Signal(z, d, F,∆′, zemp, I)
1: t = log(d), t′ = t/4, Dmax = logt(d), Rloc ≂ log1/c(tc) (c < 1/2 is some constant), L(1) ← midpoint of I,

i0 = logt′(1/|I|) + 1.
2: for i = i0 → Dmax do
3: ∆l = 1/(t′)i−1, s ≂ c, β̂ ← ts

2∆′l .

4: if β̂ >∼ d/(d∆)3/2 then
5: Break.
6: else
7: L(i) ← LocateInner(z,∆′, d, β̂, zemp, L

(i−1), Rloc).
8: end if
9: end for

10: Return: L(Dmax).

Algorithm 4.5 FrequencyRecovery1Cluster(z, d,∆′, I)
1: zemp ← GetEmpiricalEnergy(z, d,∆′)
2: for i = 1→ O(k) do
3: Lr ← Locate1Signal(z, d,∆′, zemp, I).
4: end for
5: Return: L∗ ← median{Lr|r ∈ [O(k)]}.

The following lemma formalizes the guarantees of the Locate1Inner primitive which is used iteratively in
Locate1Signal to refine and narrow-down the estimate for f0, the frequency around which z is clustered. The
final algorithm leading to the proof of Lemma 4.1 FrequencyRecovery1Cluster then runs Locate1Signal
multiple times and returns the median of all the runs to get an approximation to f0 with high-probabilityThis
lemma is the analogue of Lemma 7.14 of [11], however since β is always restricted to be an integer in Algorithm
Locate1Inner, an alternate proof of correctness is needed. Another major difference is that since we already
know an interval I of size o(1) such that f0 ∈ I, the initialization of the frequency searching primitive
Locate1Signal uses this information.

Lemma 4.4. (Variant of Lemma 7.14 of [11]) Consider an invocation of Locate1Inner on inputs (as per

Alg. 4.4) such that there is a q′ ∈ [t] with f0 ∈ [L̂−∆l/2+ q′−1
t ∆l, L̂−∆l/2+ q′

t ∆l]. Let β be sampled uniformly at

random from [ st
4∆l ,

st
2∆l ]∩Z and let γ denote the output of procedure GetLegalSample(z,∆′, d, β, zemp, L̂, Rloc).

Then the following holds,

• with probability at least 1− s, vq′ will increase by one,

• for any |q − q′| > 3, with probability at least 1− 15s vq will not increase.

Proof. The proof follows that of Lemma 7.14 of [11]. In their notation θ = f0 and θq = L̂−∆l/2+ q−1/2
t ∆l. The

major and only difference lies in analyzing the case when |q− q′| > 3 and |θ− θq|◦ ≥ ∆l
st and showing that in this

case vq will not increase with high constant probability. Here, we adopt the analysis of [26] and instead of using
Lemma 6.5 of [11], we will use a corollary of Lemma 4.3 of [26] since our choice of β is a random integer rather
than a random real number in some range. This lemma is as follows.

Lemma 4.5. (Corollary of Lemma 4.3 of [26]) For some integer number m, if we sample β uniformly at
random from a set T ⊆ [m] of t consecutive integers, for any i ∈ [d] and a set S ⊆ [d] of l consecutive integers,

Pr[βi mod d ∈ S] ≤ 1

t
+

im

dt
+

lm

dt
+

l

it
.

We use Lemma 4.5 with the following values — we set m = ⌈ st
2∆l⌉, T = [ st

4∆l ,
st
2∆l ]∩Z, t ≥

st
4∆l−1, S = [0, 3s

4 d]∩Z,
l ≤ 3

4sd+1, i = d|θ−θq|◦. Without loss of generality we can assume that i is an integer by rounding θ = f0 to the
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nearest integer multiple of 1/d. This is feasible as the signal will still be clustered around this rounded f0 since the
width of the cluster ∆′ = poly(k, log(d/δ))/d ≫ 1/d. Recall that t = log d. By assuming that d is large enough,
we assume that st

4∆l ≥ max(4, 10/s + 1). Note that d∆l
st ≤ i ≤ d∆l. Observe that m

t ≤ ( st
2∆l + 1)/( st

4∆l − 1) ≤ 3.
Hence,

Pr[βi mod d ∈ S] ≤ s

10
+

3d∆l

d
+ 3

(3/4)sd+ 1

d
+

(3/4)sd+ 1

d∆l(st)−1 · (st(4∆l)−1 + 1)

≤ s

10
+ o(1) + 9/4s+ 3s ≤ 7.5s,

where we used the fact that ∆l ≤ |I| ≤ s/1.5 since s = Θ(1) and |I| is a small enough constant, By the same
bound for S = [− 3s

4 d, 0] and a union bound, we conclude

Pr[βd|θ − θq|◦ mod d ∈ [−3s

4
d,

3s

4
d]] ≤ 15s,

which is equivalent to

Pr[2πβ|θ − θq|◦ mod 2π ∈ [−3s

4
2π,

3s

4
2π]] ≤ 15s.

Recall that we denote ∥x−y∥◦ = minz∈Z |x−y+2πz| as the circular distance between x, y for any x, y ∈ R.Thus,
overall we get that with probability at least 15s, ∥2πβ(θq − θ)∥◦ > (3s/4)2π. By triangle inequality, this further
implies that

∥2πβ(θ′ − θq)∥◦ > ∥2πβ(θ − θq)∥◦ − ∥2πβ(θ′ − θ)∥◦ > (3s/4)2π − sπ/2 = sπ.

This implies that vq will not increase as per Line 8 of Algorithm Locate1Inner.

The next lemma essentially gives the final guarantee of the Locate1Signal algorithm.

Lemma 4.6. (Variant of Lemmas 7.15 and 7.16 in [11]) Consider the parameter setting as described in Al-
gorithm Locate1Signal. The procedure Locate1Inner uses Rloc legal samples and then procedure Lo-
cate1Signal runs Locate1Inner Dmax times to output a frequency f̃0 such that |f̃0 − f0|◦ <∼ ∆′

√
∆′d with

probability at least 0.9. Moreover, Locate1Signal has time and sample complexity poly(k, log(d/δ)).

Proof. Equipped with Lemma 4.4 the proof is identical to the proofs of Lemmas 7.15 and 7.16 in [11].

Finally, the success probability can be boosted by repeating the procedure O(k) times and using the median trick.

Lemma 4.1. Let z be a (ϵ,∆′)-clustered signal around f0 as per Definition 4.1 for any ϵ smaller than an absolute
constant. Suppose f0 ∈ I for an interval I ⊆ [0, 1] of size |I| smaller than an absolute constant, with I known to

the algorithm apriori. Then procedure FrequencyRecovery1Cluster returns an f̃0 such that with probability
at least 1− 2−Ω(k),

|f̃0 − f0|◦ <∼ ∆′
√
∆′d.

Moreover, FrequencyRecovery1Cluster has time and sample complexity of poly(k, log(d/δ)).

Proof. Follows the proof of original lemma, Lemma 7.17 in [11].

4.2 General case. Consider the setup and parameters of Lemma 2.1, where we have a general signal

x∗(t) =
∑

f∈S afe
2πift where S ⊆ [0, 1], |S| ≤ k and g(t) is noise satisfying ∥g∥2d ≤ c∥x∗∥2d for a small enough

constant c > 0. Our framework to recover frequencies from such an instance will be to first reduce a general
instance to a bounded instance, these are instances where supp(x̂∗) is only contained in some interval of length
1/B. We will use B = Θ(k2). Then using hashing techniques, we will show how to recover frequencies from
bounded instances by reducing them to one-cluster instances and then running one-cluster recovery primitive of
Lemma 4.1.

First we introduce the basic hashing primitives that will be needed multiple times throughout this section.
The following definition introduces the hash function which maps frequencies in the Fourier domain to B buckets,
and the filter function which when convolved with gives access to the function containing frequencies restricted
to any desired bucket. This is the standard notation identical to Definitions 6.3 and 6.8 in [11].
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Definition 4.2. (Hashing and filtering notation) Let hσ,b : [0, 1] → {0, 1, . . . , B − 1} defined as follows
for any σ ∈ R, b ∈ [0, 1],

hσ,b(f
∗) = round(

B

2π
· (2πσ(f∗ − b) mod 2π)) ∀f∗ ∈ [0, 1].

Let G
(j)
σ,b be the function which when convolved with allows us to access the function restricted to bin j for all

j ∈ [B] (via G as per Lemma 3.4):

Ĝ
(j)
σ,b(f) = Ĝdis(

j

B
− σf − σb) :=

∑
i∈Z

Ĝ(i+
j

B
− σf − σb) ∀f ∈ [0, 1],

G
(j)
σ,b(t) = DTFT (Ĝ

(j)
σ,b(f)).

When necessary, we will make explicit the parameters B, δ, w, k used in the construction of G as per Lemma 3.4

and therefore G
(j)
σ,b.

Next we present the notation for the functions obtained by convolving the input with the filter function G
(j)
σ,b(t).

Definition 4.3. Let H(t) be as per Lemma 3.2 for parameters k, δ and G
(j)
σ,b as per Def. 4.2. Let z(j) =

(x∗ ·H) ∗G(j)
σ,b, g

(j) = (g ·H) ∗G(j)
σ,b and x(j) = (x ·H) ∗G(j)

σ,b = z(j) + g(j), for all j ∈ [B].

Finally we present the algorithm HashToBins and its guarantees from [11] which computes z(j)(t) for any
integer t of one’s choice for all j ∈ [B]. The proof is slightly modified to work with the DTFT (see Defn. 3.1).

Algorithm 4.6 HashToBins(x,H,G,B, σ, α, b, δ, w = 0.001(default)))

1: Let (G(t), Ĝ(f)) be the filter functions as per Definition 3.4 with parameters B, δ, w.
2: Let W (t) = x ·H(t), D = O(log(k/δ)) such that |supp(G(t))| = 2BD and V as V [j] = G[j] ·W (σ(j−α))e2πiσb

for j ∈ [−BD,BD] (here G[j] = G(j)∀j ∈ [−BD,BD] is the discretization of G(t)).
3: Let v ∈ RB as u[j] =

∑
i∈[−D,D] V [j + iB] ∀j ∈ [B].

4: Return: FFT(v);

Lemma 4.7. (Variant of Lemma 6.9 in [11]) Let u ∈ CB be the output of HashTo-
Bins(x,H,G,B, σ, α, b, w), and assume σ and σα ∈ Z. Then u[j] = x(j)(σα) ∀j ∈ [B] where x(j) is as
per Definition 4.3. Let D = O(log(k/δ)/w) such that |supp(G(t))| = 2BD as per Lemma 3.4. Then
HashToBins takes the following samples from x - {x(σ(i− α))}BD

i=−BD, and runs in time O(B log(k/δ)/w).

Proof. The proof is identical to the proof of Lemma 6.9 in [11], but we just need to observe that in the last line
of the proof where they conclude that

û[j] =

∫ ∞

−∞
Ŵ (s) · Ĝdis(j/B − σs− σb)e−2πiσasds,

for all j ∈ [B], Ŵ (f) = x̂ ·H(f) is the continuous Fourier transform of (x · H)(t) which is considered to be a
continuous signal from R→ C (Here the continuous version of H as per Lemma 6.6 of [11], i.e. before discretization
in time domain to obtain the H function as per Lemma 3.2). We however need to consider the discretized version
of this signal. Now observe that since σ and σa are integers we have that,

Ĝdis(j/B − σ(s+ i)− σb)e−2πiσa(s+i) = Ĝdis(j/B − σs− σb)e−2πiσas,

for all i ∈ Z, where Ĝdis is as per Definition 4.2. Thus we can rewrite the definition of û[j] as

û[j] =

∫ 1

0

∑
i∈Z

Ŵ (s+ i)

 · Ĝdis(j/B − σs− σb)e−2πiσasds,
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where
∑

i∈Z Ŵ (s+i) is the exactly the DTFT of (x·H)(t) when t is restricted to Z. Thus û(j) = (x·H∗G(j)
σ,b)(σa) =

x(j)(σa) where G
(j)
σ,b(t) is as per definition 4.2 and (x · H)(t), G

(j)
σ,b(t) are both discrete time signals as is in our

case.

Equipped with these tools we now describe a clustering based pre-processing step, also described in [11],
applied to general instances before explaining what are bounded instances and how to reduce to them.

Definition 4.4. (Clustering) Consider H as per Lemma 3.2 for parameters k, δ. For any two frequencies

f1, f2 in the support of x̂∗(f) we say that f1 ∼ f2 if their supports overlap after convolving with Ĥ, i.e.

supp( ̂H · e2πif1t) ∩ supp( ̂H · e2πif2t) ̸= ∅. We cluster frequencies by taking a transitive closure under this
relation ∼ and define C1, C2, . . . , Cl, where 0 ≤ l ≤ k, as the clusters. Thus, each Ci ⊆ [0, 1] is an interval,

C1 ∪ . . . ∪ Cl = supp(x̂∗ ·H(f)) and Ci ∩ Cj = ∅ for any i ̸= j.

Remark 4.8. Let ∆h = |supp(Ĥ(f))| as per Lemma 3.2, and let the ∆ parameter of Lemma 2.1 be set such that
it satisfies ∆ ≥ k∆h. Note that thus width of any cluster is at most k∆h ≤ ∆ = poly(k, log(d/δ))/d.

∆ will be fixed throughout this section as per Remark 4.8. This is the same ∆ as set in the statement of Lemma
2.1. Equipped with these tools and notations, we now define a bounded instance as follows.

Definition 4.5. ((I, δ′)-bounded instance) Let I ⊆ [0, 1] be an interval satisfying |I| ≤ 1/B, and ϵ > 0 be a
small enough constant. Let x∗(t) =

∑
f∈S afe

2πift where S ⊆ [0, 1], |S| ≤ k. Let H(t) be as per Lemma 3.2 for
parameters k, δ, and g(t) be noise. Then the instance x(t) = (x∗(t)+g(t))·H(t) is an (I, δ′)-bounded instance if the

following is satisfied - All clusters C as per Defn. 4.4 applied to x∗ ·H satisfy C ⊆ I and
∫
[0,1]\I |ĝ ·H(f)|2df ≤ δ′.

The noise threshold N 2 is defined as

N 2 =
δ

d

∫
[0,1]

|x̂∗ ·H(f)|2df +
1

d

∫
I
|ĝ ·H(f)|2df + kδ′/dϵ.

We will only be able to recover “heavy” frequencies from a bounded instance, and thus next we present their
definition.

Definition 4.6. (Heavy frequency) Consider the setup of Definition 4.5. Call a frequency f∗ ∈ [0, 1] heavy
frequency if it satisfies ∫ f∗+∆

f∗−∆

|x̂∗ ·H(f)|2df >∼
dN 2

k
,

where the interval [f∗ −∆, f∗ +∆] is modulo 1.

For any heavy frequency f∗ we would be interested in isolating the cluster of width O(k∆) around it by making
sure no other heavy frequency maps to the bucket f∗ maps to. This is to ensure that the signal restricted to that
bucket becomes a one-cluster signal, thus allowing the application of Lemma 4.1 to recover f∗ approximately.
Thus next we define what a “well-isolated” frequency is.

Definition 4.7. (Well-isolated frequency, from [11]) f∗ is well-isolated under the hashing (σ, b) if, for
j=hσ,b(f

∗), the signal z(j) (as per Defn. 4.3) satisfies∫
[0,1]\(f∗−200k∆,f∗+200k∆)

|ẑ(j)(f)|2df ≲ ϵdN 2/k.

4.2.1 Reducing from a bounded multi cluster instance to Θ(k2) one cluster instances. In this section,
we show how to reduce a bounded instance to B = Θ(k2) clustered instances.

This is presented as the main result of this section below, Lemma 4.9. It extends Lemma 7.6 of [11] for the
case when we can only take samples on integer points in time domain. It essentially states that if we hash the at
most k clusters in the Fourier spectrum of the input into B = Θ(k2) buckets then all clusters are simultaneously
isolated. Moreover the clusters which are heavy and the corresponding bins to which they hash have high SNR
then they are essentially one-clustered as per Def. 4.1. We first state this main lemma, then proceed with sub
lemmas and their proofs that will build to up to the proof of this main lemma.
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Lemma 4.9. (Variant of Lemma 7.6 of [11] for on-grid samples) Let x(t) = (x∗(t) + g(t)) · H(t) be a

(I, δ′)-bounded instance as per Definition 4.5. Let G
(j)
σ,b(t) for all j ∈ [B] be as per Def. 4.2 and Lemma 3.4 for

parameters B = Θ(k2), δ = ϵδ/k, w = 0.01 and k = k. Apply the clustering procedure of Defn. 4.4 to x∗ ·H and

let kC ≤ k be the total number of clusters in x̂∗ ·H. Let σ be a u.a.r integer in [ 1
200Bk∆ , 1

100Bk∆ ] and b be a
u.a.r. real number from [0, 1

σ ]. With prob. at least 1− k2C/B − kC/99k the following is true -
Consider any cluster C with f∗ the midpoint of C. Then f∗ is well-isolated (Def. 4.7). Moreover for

j = hσ,b(f
∗) if,

1. f∗ is heavy as per Defn. 4.6,

2.
∫
[0,1]
|ĝ(j)(f)|2df <∼ ϵ

∫ f∗+∆

f∗−∆
|x̂∗ ·H(f)|2df (g(j) as per Defn. 4.3),

then x(j) (as per Definition 4.3) is an (2
√
ϵ, 200k∆)-one clustered signal around f∗ with interval I.

The particular choice of σ is because we need to ensure that the time points at which HashToBins accesses the
input as per Lemma 4.7 are integers. Thus σ and α must be chosen such that σ and σα are both integers (see
Lemma 4.7). This is done by choosing σ to be a random integer in a bounded interval and α such that σα is
an integer and it equals the time point at which we want to access the functions x(j). However this introduces
complications because if σ is a random integer as opposed to a random real number in a bounded interval then
the collision behaviour under the random hashing changes. Thus we first start with the main lemma that bounds
the collision probability of two frequencies under the hash function of Definition 4.2. This proof is different from
Claim 6.4 in [11] because σ is not being random real number in a bounded interval, we can only ensure small
collision probability for frequencies not more than 1/B apart.

Lemma 4.10. (Hashing collision probabilities, analog of Claim 6.4 of [11]) Let σ be a u.a.r. integer
in [ 1

200Bk∆ , 1
100Bk∆ ]. Let hσ,b be as per Definition 4.2 for σ and arbitrary b ∈ [0, 1]. Then,

1. For any f1, f2 ∈ [0, 1] s.t. 200k∆ ≤ |f1 − f2| < 200(B/2− 0.5)k∆, then Pσ[hσ,b(f1) = hσ,b(f2)] = 0.

2. For any f1, f2 ∈ [0, 1] s.t. 200(B/2− 0.5)k∆ < |f1 − f2| < 1
B , then Pσ[hσ,b(f1) = hσ,b(f2)] ≲ 1

B .

Proof. For convenience, let F = |f1 − f2|. For a hash collision to occur, hσ,b(f1) = hσ,b(f2), it must be that
2πσF ∈ (s · 2π − 2π

2B , s · 2π + 2π
2B ) for some integer s as per the definition of hσ,b in Def. 4.2.

1. The proof of this case is unchanged when σ is restricted to integers. For completeness: if 200k∆ ≤ F <
200(B − 0.5)k∆, then 2π

B ≤ |2πσF | <
2π

100Bk∆200(B/2− 0.5)k∆ = (1− 1
2B )2π. Thus collision is impossible.

2. The collision condition is equivalent to σF ∈ (s − 1
2B , s + 1

2B ) for some integer s. Note that the range

of possible values of s is {⌊ F
200Bk∆⌋, . . . , ⌈

F
100Bk∆⌉}.The rest of the proof proceeds by a simple counting

argument based on lengths of intervals. Assume F < 1
B . For any integer s, there are at most 1/B

F +1 = 1
BF +1

integer values of σ such that σF ∈ (s− 1
2B , s+ 1

2B ). Taking into account the total number of possible values
of s, we get that the total number of such integer values σ is at most

(
1

BF
+ 1) · (⌈ F

100Bk∆
⌉ − ⌊ F

200Bk∆
⌋+ 1) ≤ (

1

BF
+ 1) · ( F

200Bk∆
+ 2)

<∼
1

200B2k∆
.

Moreover, there are at least (B−1)/B
F = B−1

BF integer values of σ such that s+ 1
2B < σF < (s+ 1)− 1

2B , i.e.
such that σF lies in between this interval and the next one. Again, taking into account the total possible
values of s we get that the total number of such integer σ is at least

(
B − 1

BF
) · (max(⌈ F

100Bk∆
⌉ − ⌊ F

200Bk∆
⌋ − 3, 1)) >∼ (

B − 1

BF
) · ( F

200Bk∆
)

>∼
1

200Bk∆
.

Note that using the notation <∼ and >∼ is correct as 1
BF and F

200Bk∆ are at least Ω(1). Thus we can upper

bound the collision probability upto constants by 1/200B2k∆
1/200Bk∆ = 1

B .
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We need the following definition before proceeding.

Definition 4.8. (Nice cluster) Consider the setup of Lemma 4.9. Let C be a cluster with midpoint f∗ as per

Defn. 4.4. Let j = hσ,b(f
∗) and Ĝ

(j)
σ,b(f) be the corresponding filter function as per Defn. 4.2. Then C is a nice

cluster if |Ĝ(j)
σ,b(f)| ≥ 1− ϵδ/k for every f ∈ C.

Now we move on to state and prove the lemma that bounds the probability of isolating all frequencies (as per
Definition 4.7) under the random hashing hσ,b.

Lemma 4.11. (Variant of Lemma 7.19 of [11] for on-grid samples) Consider setup of Lemma 4.9. Then
with probability 1− k2C/B − kC/99k over the randomness in σ, b the following holds -

For all clusters C with f∗ being the midpoint of C, f∗ is well isolated and C is nice (as per Defn. 4.8).
Moreover, for j = hσ,b(f

∗) and z(j) as per Defn. 4.3,∫ f∗+200k∆

f∗−200k∆

|ẑ(j)(f)|2df ∈ [1− δ, 1]

∫ f∗+∆

f∗−∆

|x̂∗ ·H(f)|2df.

Proof. Consider any cluster C with f∗ being its central frequency. We divide by cases and draw on Lemma 4.10.

• Due to the random shift b, the entire interval where |Ĝ(j)
σ,b(f)| ∈ [1− ϵδ/k, 1] is randomly shifted by σb (see

Def. 4.2). Furthermore since the width of the interval containing f∗ and where |Ĝ(j)
σ,b(f)| ∈ [1 − ϵδ/k, 1] is

at least 99k∆ and the width of C is ∆, the entire cluster C lands in the same bucket as f∗ and the region

where |Ĝ(j)
σ,b(f)| ∈ [1− ϵδ/k, 1] with probability 1− 1/99k.

• If 200k∆ ≤ |f ′ − f∗| < 1
σ −

1
σB , then 2π

B ≤ |2πσ(f
∗ − f ′)| ≤ 2π − 2π

B implies that the two frequencies
are always mapped to different buckets as per Definition 4.2. As a result, they fall in the region where

|Ĝ(j)
σ,b(f)| ≤

ϵδ
k . Any such f ′ contributes at most ϵδ

k

∫ f ′+∆

f ′−∆
|x̂∗ ·H(f)|2df to the energy in Fourier domain,

and thus the total contribution of all such f ′ is at most ϵδ
k

∫
|x̂∗ ·H(f)|2df ≤ ϵdN 2/k to the energy in

Fourier domain.

• If 1
σ −

1
σB ≤ |f

′ − f∗| ≤ 1
B , then by Lemma 4.10, the probability of a hash collision is at most 1

B , and by

taking a union bound over the at most kC such cluster midpoints f ′ in the spectrum of x̂∗, we have that
no such f ′ lands in the same bucket as f∗ with probability at least 1 − 1/B. Thus, for any such f ′, the

entire interval f ′±∆ again falls in the ϵδ
k -valued tail of Ĝ. This implies the total contribution from all such

clusters with midpoint f ′ to the energy in the Fourier domain is at most ϵδ
k

∫
|x̂∗ ·H(f)|2df ≤ ϵdN 2/k

Points 2 and 3 imply that f∗ is well-isolated. Point 1,2 and 3 implies that∫ f∗+200k∆

f∗−200k∆

|ẑ(j)(f)|2df ∈ [1− δ, 1]

∫ f∗+∆

f∗−∆

|x̂∗ ·H(f)|2df.

with probability 1 − kC/B − 1/99k. Taking a union bound over at most kC such clusters C, the proof of the
Lemma is finished. Point 1 after the union bound over all kC clusters implies all such clusters are nice (as per
Defn. 4.8).

Then the next lemma we need shows that even after multiplying with Ĝ
(j)
σ,b, the signal’s energy in the time domain

remains concentrated on [0, d].

Lemma 4.12. Condition on the guarantee of Lemma 4.11 holding. Let C be any cluster with midpoint f∗ such
that f∗ is heavy as per Defn. 4.6. Then z(j)(t) for j = hσ,b(f

∗) satisfies,

∑
t∈[−∞,0]∪[d,∞]

|z(j)(t)|2 <∼ ϵ
∞∑

t=−∞
|z(j)(t)|2.
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Proof. From Lemma 4.11, we know that C is nice and f∗ is well isolated. Let x∗
C(t) =

∑
f∈supp(x̂∗):f∈C

vfe
2πift

Thus we have the following,∫
[0,1]

|ẑ(j)(f)− x̂∗
C ·H(f)|2df <∼ ϵδ/k

∫
[0,1]

|x̂∗ ·H(f)|2df ≤ ϵdN 2/k.

This implies we have the following by Cauchy-Schwarz,∫
[0,1]

|ẑ(j)(f)|2 >∼

∫
[0,1]

|x̂∗
C ·H(f)|2df − ϵdN 2/k(4.5)

>∼

∫
[0,1]

|x̂∗
C ·H(f)|2df.(4.6)

where we used the fact that f∗ is heavy and thus ϵdN 2/k ≤ ϵ
∫
[0,1]
|x̂∗

C ·H(f)|2df .
Now we have that for z(j) = (x∗

C ·H)(t) + gC(t), gC satisfies,

∞∑
t=−∞

|gC(t)|2 =

∫
[0,1]

|ĝC(f)|2df <∼ (ϵδ/k)

∫
[0,1]

|x̂∗ ·H(f)|2 ≤ ϵdN 2/k.

Thus we have that, ∑
t∈[−∞,0]∪[d,∞]

|z(j)(t)|2 <∼
∑

t∈[−∞,0]∪[d,∞]

|(x∗
C ·H)(t)|2 + ϵdN 2/k.

Now since x∗
C is an at most k-Fourier sparse function, by the properties of the H function as per Lemma 3.2, we

have the following, ∑
t∈[−∞,0]∪[d,∞]

|(x∗
C ·H)(t)|2 ≤ ϵ

∑
t∈[−∞,∞]

|(x∗
C ·H)(t)|2

= ϵ

∫
[0,1]

|x̂∗
C ·H(f)|2df.

and since f∗ is heavy, ϵ
∫
[0,1]
|x̂∗

C ·H(f)|2df + ϵdN 2/k <∼ ϵ
∫
[0,1]
|x̂∗

C ·H(f)|2df . Thus we finally get the following,

∑
t∈[−∞,0]∪[d,∞]

|z(j)(t)|2 <∼ ϵ

∫
[0,1]

|x̂∗
C ·H(f)|2df.

Combining this with equation 4.5 and applying Parseval’s theorem completes the proof of the lemma.

With these tools in place, we are ready to prove Lemma 4.9.

Proof. [Proof of Lemma 4.9] Condition on Lemma 4.11 being true. Consider any cluster C with midpoint f∗ as

per the Lemma satisfying the assumptions of the Lemma 4.9. Let j = hσ,b(f
∗) and recall z(j) = (x∗ ·H) ∗ G(j)

σ,b

and x(j) = ((x∗ + g) ·H) ∗G(j)
σ,b. Let If∗ = [f∗ − 200k∆, f∗ +200k∆] modulo 1. Then combining the fact that f∗

is heavy and it is well-isolated, we know that the following holds from guarantees of Lemma 4.11,

(4.7)

∫
If∗

|ẑ(j)(f)|2df >∼

∫ f∗+∆

f∗−∆

|x̂∗ ·H(f)|2df ≥ dN 2/k,

and the following as well

(4.8)

∫
[0,1]\If∗

|ẑ(j)(f)|2df <∼ ϵdN 2/k.
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Now recall ĝ(j) = ĝ ·H · Ĝ(j)
σ,b. Then the previous discussion implies the following,∫

If∗

|x̂(j)(f)|2df >∼

∫
If∗

|ẑ(j)(f)|2df −
∫
If∗

|ĝ(j)(f)|2df (Cauchy-Schwarz)(4.9)

>∼

∫
If∗

|ẑ(j)(f)|2df (assumption 2 of Lemma 4.9 plus eqn. 4.7)(4.10)

>∼

∫ f∗+∆

f∗−∆

|x̂∗ ·H(f)|2df ≥ dN 2/k (equation 4.7).(4.11)

Furthermore,∫
[0,1]\If∗

|x̂(j)(f)|2df ≤ 2

(∫
[0,1]\If∗

|ẑ(j)(f)|2 + |ĝ(j)(f)|2df

)
(Cauchy-Schwarz)

<∼ ϵdN 2/k + ϵ

∫
If∗

|ẑ(j)(f)|2df (assumption 2 of Lemma 4.9 and eqns. 4.7 and 4.8)

<∼ ϵ

∫
If∗

|x̂(j)(f)|2df (from eqn. 4.10 and f∗ being heavy).

Overall, we thus get,

(4.12)

∫
If∗

|x̂(j)(f)|2df ≥ (1− ϵ)

∫
[0,1]

|x̂(j)(f)|2df.

Next, our goal is to show that the x(j)’s energy in time domain is concentrated in [0, d]. By Plancherel’s
theorem, we get the following

(4.13)

d∑
t=0

|g(j)(t)|2 ≤
∞∑

t=−∞
|g(j)(t)|2 =

∫
[0,1]

|ĝ(j)(f)|2df <∼ ϵ

∫
[0,1]

|ẑ(j)(f)|2df = ϵ
∞∑

t=−∞
|z(j)(t)|2,

where the second last inequality used assumption 2 of Lemma 4.9. Combining this with Lemma 4.12, we have
that

d∑
t=0

|g(j)(t)|2 ≤
∞∑

t=−∞
|g(j)(t)|2 ≤ ϵ

d∑
t=0

|z(j)(t)|2.

Equipped with this inequality, we can bound the energy of x(j) in time domain over [d] as follows

d∑
t=0

|x(j)(t)|2 ≥
d∑

t=0

|z(j)(t)|2 −
d∑

t=0

|g(j)(t)|2 − 2

√√√√ d∑
t=0

|z(j)(t)||g(j)(t)|

≥
d∑

t=0

|z(j)(t)|2 −
d∑

t=0

|g(j)(t)|2 − 2

√√√√(
d∑

t=0

|z(j)(t)|2)(
d∑

t=0

|g(j)(t)|2)

≥ (1− 2
√
ϵ)

d∑
t=0

|z(j)(t)|2.

Furthermore combining equation 4.13 and using Lemma 4.12, we can bound the energy of x(j) outside [d] as
follows, ∑

t∈[−∞,0]∪[d,∞]

|x(j)(t)|2 <∼
∑

t=−[∞,∞]

|g(j)(t)|2 +
∑

t∈[−∞,0]∪[d,∞]

|z(j)(t)|2

<∼ ϵ

d∑
t=0

|z(j)(t)|2.
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The above two inequalities imply the following

(4.14)
d∑

t=0

|x(j)(t)|2 ≥ (1− 2
√
ϵ)

∞∑
t=−∞

|x(j)(t)|2.

Finally we know that f∗ ∈ I. Thus, equations 4.14 and 4.12 imply x(j) is an (2
√
ϵ, 200k∆)-clustered signal around

f∗ and thus completing the proof of Lemma 4.9. Since we conditioned on Lemma 4.11, this holds with probability

1− k2C/B − kC/99k simultaneously for all clusters C of x̂∗ ·H.

4.2.2 Frequency recovery of bounded instances. Lemmas 4.9 and 4.1 imply the following lemma which
shows how to recover all “recoverable” frequencies of a bounded instance with high probability.

Lemma 4.13. Let x(t) = (x∗(t) + g(t)) ·H(t) be an (I, δ′)-bounded instance with noise threshold N 2 as per the
setup of Definition 4.5. Let G(t) for all j ∈ [B] be as per Def. 4.2 and Lemma 3.4 for parameters B = Θ(k2), ϵδ/k
and w = 0.01, k. Let ∆ be as per Lemma 2.1. Apply the clustering procedure of Defn. 4.4 to x∗ ·H and let kC ≤ k
be the total number of clusters. Let σ be a u.a.r. integer in [ 1

200Bk∆ , 1
100Bk∆ ] and b be a u.a.r. real number in

[0, 1
σ ]. Then one can find a list L of B frequencies in [0, 1] in time poly(k, log(d/δ)) such that with probability at

least 1 − k2C/B − kC/99k − o(1/k) the following holds - For all clusters C with f∗ being the midpoint of C and
j = hσ,b(f), f

∗ is well-isolated (Def. 4.7). Moreover, if

1. f∗ is heavy as per Defn. 4.6 and,

2.
∫
[0,1]
|ĝ(j)(f)|2df <∼ ϵ

∫ f∗+∆

f∗−∆
|x̂∗ ·H(f)|2df (g(j) as per Def. 4.3),

then there exists a f ∈ L such that |f∗ − f |◦ <∼ k∆
√
k∆d .

Proof. Condition on Lemma 4.9 holding true. Our procedure to find L is just to run FrequencyRecov-
ery1Cluster on each of the B instances corresponding to each hash bucket and thus we get a list of B fre-
quencies, one frequency per each hash bucket. Consider any cluster C of x∗ · H with midpoint f∗ satisfying

the conditions of the Lemma. Let j = hσ,b(f
∗), then Lemma 4.9 implies that x(j) = (x∗ + g) · H ∗ G(j)

σ,b is

(
√
ϵ, 200k∆)-one clustered around f∗. We then apply Lemma 4.1 to the jth bucket, that is on x(j). We do this by

returning the jth element of the output of HashToBins(x,H,B, σ, α/σ, b, δ, w) to implement time domain access
x(j)(α) for any α ∈ [d] as needed by the algorithm of Lemma 4.1. This implies that we can recover a f such
that |f − f∗|◦ <∼ k∆

√
k∆d with probability 1− 2−Ω(k). We take a union bound for Lemma 4.1 to succeed for all

j ∈ [B]. This happens with probability 1 −B · 2−Ω(k) = 1− o(1/k). Then we union bound this with Lemma 4.9
succeeding. This completes the proof of the lemma.

4.2.3 Reducing a general instance to a bounded instance. Consider the setup and parameters of Lemma

2.1, that is a general signal x(t) = x∗(t) + g(t), where x∗(t) =
∑

f∈S afe
2πift where S ⊆ [0, 1], |S| ≤ k and g(t) is

arbitrary. In this section we explain the reduction from such a general instance to B = Θ(k2) bounded instances.

To achieve this, we convolve with the filter function G
(j)
σ,b(t) as per Definition 4.2 with σ = 1 and b is real number

chosen uniformly at random between [0, 1]. The parameters used in the G filter function as per Definition 3.4 to

construct G
(j)
1,b(t) is B and w = 1/poly(k) and δ.

Before stating and proving the main result of this section, We first make a few important observations about
this filtering operation. The claim below formalizes the behavior of the hash function h1,b, and its proof trivially
follows from Definition 4.2.

Claim 4.14. The hash function hσ,b as per Definition 4.2 for σ = 1 and b ∈ [0, 1] partitions [0, 1] into B
intervals/buckets [b−1/2B, b+1/2B], [b+1/2B, b+3/2B], . . . , [b−3/2B, b−1/2B] where each interval is modulo 1.

Convolving the input with G
(j)
1,b gives access to the input only containing frequencies in the jth such interval/bucket.

We will use the HashToBins primitive as per Lemma 4.7 to access the function containing frequencies
restricted to a such a bucket/interval. We now define the notion of a badly cut cluster needed to argue that all
clusters land in the region where the filter function G has value almost 1.
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Definition 4.9. Let C be any cluster as per Definition 4.4. Suppose there exists a j such that C ⊆ Ij :=
[b + j/2B, b + (j + 2)/2B]. Let Iinnerj := [b + j/2B + w/2B, b + (j + 2)/2B − w/2B]. We say that C is “ badly

cut” if C ̸⊆ Iinnerj .

Since the width of any cluster is poly(k, log(d/δ))/d = o(1/k2) = o(1/B), we can show the following Lemma.

Lemma 4.15. With probability at least 0.99 over the randomness in b, no cluster in x∗ ·H as per Definition 4.4
is badly cut.

Proof. Since the width of any cluster is at most poly(k, log(d/δ))/d and the width of the good region Iinnerj

in any interval Ij is at least (1 − w)/B = Θ(1/k2), the probability that a fixed cluster is badly cut is at
most poly(k, log(d/δ))/d. Since there are at most k clusters, taking a union bound finishes the proof since
k3 · poly(k, log(d/δ))/d << 0.01.

We choose a b uniformly at random and condition on the event guaranteed to hold with probability 0.99 as per
the previous Lemma 4.15. We now state the main claim of this section below which shows that this event is
enough to guarantee that the instance corresponding to each bin j ∈ [B] is bounded.

Lemma 4.16. Choose b u.a.r. in [0, 1]. Let z(j)(t) = ((x∗ + g) ·H) ∗G(j)
1,b(t) for G

(j)
1,b as per Def. 4.2 and Lemma

3.4 for parameters B,w = 1/poly(k), δ. Let Cj be the union of all clusters of x∗ · H(see Def. 4.4 for clusters)

in interval Ij (see Def. 4.9 for Ij) and Sj = supp(x̂∗) ∩ Cj. Then with probability at least 0.9 over choice of b,
for all j ∈ [B] z(j)(t) = (x(j) ·H)(t) + (g(j) ·H)(t), where x(j)(t) =

∑
f∈Sj

afe
2πift, is a (Ij , δ∥x∗∥2d/k)-bounded

instance (as per Def. 4.5). Furthermore for any interval I ⊆ Ij,∫
I

| ̂g(j) ·H(f)|2df <∼

∫
I

|ĝ ·H(f)|2df + (δ/k)∥x∗∥2d.

Now we state the proof this Lemma.

Proof. [Proof of Lemma 4.16] Lemma 4.15, implying Cj ⊆ Iinnerj , combined with the fact that |Ĝ(j)
1,b(f)| ∈

[1, 1− δ/k] for all f ∈ Iinnerj , |Ĝ(j)
1,b(f)| ≤ 1 for all f ∈ Ij from Lemma 3.4 implies the following,∫

I

| ̂g(j) ·H|2df =

∫
I

|x̂(j) ·H(f)− x̂∗ ·H · Ĝ(j)
1,b(f)− ĝ ·H · Ĝ(j)

1,b(f)|
2df

≤ 2

∫
I

|ĝ ·H(f)|2df +
2δ

k

∫
I

|x̂∗ ·H(f)|2df

<∼

∫
I

|ĝ ·H(f)|2df +
δ

k

∫
[0,1]

|x̂∗ ·H(f)|2df <∼

∫
I

|ĝ ·H(f)|2df +
δ

k
∥x∗∥2d.

Furthermore |Ĝ(j)
1,b(f)| ≤ δ/k for all f ∈ [0, 1] \ Ij from Lemma 3.4 implies the following,∫

[0,1]\Ij
| ̂g(j) ·H(f)|2df =

∫
[0,1]\Ij

|(x̂∗ ·H + ĝ) · Ĝ(j)
1,b(f)− 0|2df (x̂(j) ·H(f) = 0∀f ∈ [0, 1] \ Ij)

≤ δ

k

(∫ 1

0

|x̂∗ ·H(f)|2df +

∫ 1

0

|ĝ ·H(f)|2df

)
<∼

δ

k
∥x∗∥2d,

where in the last line we used the assumption of Lemma 2.1 that ∥g∥2d ≤ c∥x∗∥2d for some small enough constant
c > 0. This implies that z(j)(t) = (x(j) · H)(t) + g(j)(t) is a (Ij , δ∥x∗∥2d/k)-bounded instance (recall Def. 4.5)

because the previous equation implies that
∫
[0,1]\Ij |

̂g(j) ·H(f)|2df <∼
δ
k∥x

∗∥2d and x(j), an at most k-Fourier sparse

function, has all its clusters in Ij whose width is 1/B.
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Equipped with these reductions, we are now ready to finish the proof of Lemma 2.1. The proof essentially reduces
a general instance to B bounded instances and then applies the algorithm of Lemma 4.13 to recover frequencies
from each of these bounded instances.

Proof. [Proof of Lemma 2.1] Consider the setup as described in Lemma 2.1. We apply Lemma 4.16 to x. Then
we know that with probability at least 0.9, z(j)(t) = (x(j) ·H)(t) + g(j)(t), where x(j)(t) =

∑
f∈Sj

afe
2πift is an

(Ij , δ∥x∗∥2d/k) bounded instance for all j ∈ [B]. Now consider the jth such bounded instance. Then the noise
threshold in the jth bounded instance x(j) N 2

j as per Def. 4.5 satisfies,

N 2
j =

1

d

∫
Ij

|ĝ(j)(f)|2df +
δ

dϵ
∥x∗∥2d +

δ

d

∫
[0,1]

|x̂(j) ·H(f)|2df(4.15)

<∼
1

d

∫
Ij

|ĝ ·H(f)|2df +
δ

d
∥x∗∥2d +

δ

d

∫
Cj

|x̂∗ ·H(f)|2df(4.16)

<∼
1

d
(

∫
[0,1]

|ĝ(f)|2df + δ∥x∗∥2d) =
1

d
(∥g∥2d + δ∥x∗∥2d) = N 2.(4.17)

where in the second inequality we used the guarantee of Lemma 4.16 to upper bound
∫
Ij
|ĝ(j)(f)|2df and in third

inequality we used the fact that
∫
Ij
|ĝ ·H(f)|2df ≤ ∥g ·H∥2d ≤ ∥g∥2d =

∫
[0,1]
|ĝ(f)|2df (noise g(t) outside [d] is 0).

Now we apply Lemma 4.13 to z(j). Then we know that all clusters in Cj (set of all clusters of x(j)) with midpoint
f∗ that do not satisfy both the conditions of Lemma 4.13 have no guarantee of being recovered. Call Cunrec the
union of all such clusters. First the amount of energy corresponding to clusters Cj with midpoints that are not
heavy (as per Def. 4.6) is at most

(4.18) |Cj |dN 2
j /k ≤ dN 2,

since all clusters are disjoint as per 4.4. Now consider the random hashing (σ, b) and corresponding filters G
(·)
σ,bas

per Lemma 4.13, then we know that all clusters C ∈ Cj with midpoint f∗ and i = hσ,b(f
∗) satisfying∫

[f∗−∆,f∗+∆]

|x̂(j) ·H(f)|2df <∼

∫
[0,1]

| ̂g(j) ·H · Ĝ(i)
σ,b(f)|

2df,

also have no guarantee of being recovered. Since the clusters are disjoint and also well-isolated simultaneously
from Lemma 4.13, thus mapping to different bins, the total amount of energy lost due to such low SNR clusters
is at most the following,∑

i∈[B]

∫
[0,1]

| ̂g(j) ·H · Ĝ(i)
σ,b(f)|

2df <∼

∫
[0,1]

| ̂g(j) ·H(f)|2(
∑
i∈[B]

|Ĝ(i)
σ,b(f)|

2|)df

<∼

∫
[0,1]

| ̂g(j) ·H(f)|2df =

∫
Ij

| ̂g(j) ·H(f)|2df +

∫
[0,1]\Ij

| ̂g(j) ·H(f)|2df

<∼

∫
Ij

| ̂g(j) ·H(f)|2df + δ∥x∗∥2d/k (since z(j) is a bounded instance)

<∼

∫
Ij

|ĝ ·H(f)|2 + δ∥x∗∥2d/k (from guarantee of Lemma 4.16),

where the first two inequalities follow from Def. 4.4 and Properties I-III of Lemma 3.4. Summing this up over all
j ∈ [B], we get that the total energy of such low SNR clusters is at most

(4.19)

∫
[0,1]

|ĝ ·H(f)|2df + δ∥x∗∥2d = ∥g ·H∥2d + δ∥x∗∥2d ≤ ∥g∥2d + δ∥x∗∥2d = dN 2.

Combining equations 4.19 and 4.18 we get that
∫
Cunrec

|x̂∗ ·H(f)|2df <∼ dN 2. Morever taking a union bound

over all j ∈ [B] for Lemma 4.13 to succeed for all z(j), we get that this event happens with probability
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1 − (
∑

j∈[B] |Cj |2/B + |Cj |/99k) ≥ 1 − O(k2)/B − k/99k ≥ 0.9 for B = O(k2) (since
∑

j∈[B] |Cj |2 ≤
O((
∑

j∈[B] |Cj |)2) = O(k2)). If we let L to be the union of the outputs of Lemma 4.13 on all j ∈ [B], then
from the claim of Lemma 4.13 we get that Sheavy as defined as per Lemma 2.1 satisfies the following,

∥x∗ − x∗
Sheavy

∥2d <∼

∫
[0,1]

|x̂∗ ·H(f)− ̂x∗
Sheavy

·H(f)|2df

=

∫
Cunrec

|x̂∗ ·H(f)|2df

<∼ dN 2.

We can implement sample access to z(j)(t) for any integer t that the algorithm of Lemma 4.13 demands by
returning u[j] for u = HashToBins(x,H,G, 1, t, b, w). A remark here is that whenever HashToBins requires to
access the input outside [d] we output 0, from property 5 of Lemma 3.2 this only increases the noise by a additive
δ∥x∗∥2d factor. The correctness of this follows from Lemma 4.7 and thus the total running time and sample
complexity suffers a multiplicative overhead of O(B log(k/δ)/w) on top of running the algorithm of Lemma 4.13.
Thus the overall running time and sample complexity is still poly(k, log(d/δ)).

5 Sublinear Time Algorithms for Toeplitz Matrices

In this section, we prove our main sublinear time robust Toeplitz matrix approximation result (Theorem 1.1) and
describe its applications to sublinear time Toeplitz low-rank approximation and covariance estimation. In Section
5.1 we present the proof of a heavy-light decomposition result using the off-grid frequency recovery algorithm of
Lemma 2.1 and the existence result of Theorem 2.1, as briefly discussed in Section 2.2. Next, in Section 5.2 we
use this heavy-light decomposition result and sublinear time approximate regression techniques for Fourier sparse
functions to prove Theorem 1.1. Finally, in Section 5.3 we use Theorem 1.1 to prove our sublinear time low-rank
approximation (Theorem 1.2) and covariance estimation (Theorem 1.3) results.

5.1 Heavy Light Decomposition. In this subsection, we present the proof of our heavy-light decomposition
as discussed in Section 2.2. The formal statement is as follows.

Lemma 5.1. Consider the input setup of Theorem 1.1. Let T̃ = FSDF ∗
S be as guaranteed to exist by Theorem 2.1

for T , ϵ = 0.1, δ and k. Let Ek = E + T − T̃ . Assume ∥Ek∥F ≤ c∥T̃∥F for some small enough constant c > 0.
Then in poly(k, log(d/δ)) time we can find a list of frequencies L ⊆ [0, 1] of size |L| = poly(k, log(d/δ)) satisfying

the following with probability 0.9 - Let Sheavy ⊆ S̃ defined as follows,

Sheavy = {f ∈ S : ∃f ′ ∈ L s.t. |f − f ′|◦ ≤ poly(k, log(d/δ))/d}.

Furthermore for every f ∈ Sheavy, if (1− f) mod 1 /∈ Sheavy then add it to Sheavy. Then there exists a diagonal

Dheavy and T̃heavy = FSheavyDheavyF ∗
Sheavy such that T̃ light = T̃ − T̃heavy satisfies

∥T̃ light∥F <∼ ∥E
k∥F + δ∥T∥F .

To prove this, we first need the following helper claim for PSD matrices which will also be useful at a later
stage in the paper.

Claim 5.2. (Equation (5) in [4]) The following holds for any PSD matrix A ∈ Rd×d -

∥A∥F ≤ ∥A[0:d/2,0:d/2]∥F + ∥A[d/2:d,d/2:d]∥F .

Using the above claim, we now state our main helper lemma about the structural properties of symmetric Toeplitz
matrices that are nearly PSD. The following lemma essentially says that if a nearly PSD Toeplitz matrix has large
Frobenius norm, then the first half of the first column must have large ℓ2 norm as well.

Lemma 5.3. Let T̃ be a d× d symmetric Toeplitz matrix, and suppose that there exists a PSD Toeplitz matrix T
satisfying ∥T̃ − T∥F ≤ 0.001∥T∥F . Then the following holds,

∥T̃[0:d/2,0]∥2 ≥
0.49√

d
∥T̃∥F .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited5107

D
ow

nl
oa

de
d 

06
/0

1/
24

 to
 6

8.
11

8.
19

3.
18

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Proof. Since T is PSD, using Lemma 5.2 we know that

(5.20) ∥T∥F ≤ ∥T[0:d/2,0:d/2]∥F + ∥T[d/2:d,d/2:d]∥F .

Since T is also Toeplitz, T[0:d/2,0:d/2] = T[d/2:d,d/2:d]. Thus we have ∥T[0:d/2,0:d/2]∥F ≥ 0.5∥T∥F . Since

∥T̃[0:d/2,0:d/2] − T[0:d/2,0:d/2]∥F ≤ ∥T̃ − T∥F ≤ 0.001∥T∥F ≤ 0.01∥T̃∥F , we get that ∥T̃[0:d/2,0:d/2]∥F ≥ 0.49∥T̃∥F .
Finally we have the following.

(5.21)

∥T̃[0:d/2,0:d/2]∥2F = (d/2)T 2
[0,0] +

∑
i∈[1,d/2]

(d− 2i)T̃ 2
[i,0] (since T̃[0:d/2,0:d/2] is symmetric Toeplitz)

≤
∑

i∈[d/2]

dT̃ 2
[i,0] = d∥T̃[0:d/2,0]∥22.

Thus we get that
√
d∥T̃[0:d/2,0]∥2 ≥ ∥T̃[0:d/2,0:d/2]∥ ≥ 0.49∥T̃∥F .

Equipped with this helper lemma and our sublinear time off-grid recovery result of Lemma 2.1, we are ready to
present the proof of Lemma 5.1.

Proof. [Proof of Lemma 5.1] For T̃ = FSDF ∗
S suppose that S = {f1, f2, . . . , fÕ(k)} and D = diag([v1, . . . , vÕ(k)]).

Let T̃1(t) =
∑Õ(k)

j=1 vje
2πifjt, a Õ(k) Fourier sparse function. Then it is easy to see from expanding out T̃ = FSDF ∗

S

that the first column of T̃ is defined by T̃1(t) for t ∈ {0, . . . , d−1}. A minor technicality compared to the description

in the tech-overview is that rather than working with a random column T̃[0:d,j] for j ∼ {0, . . . , d/2}, we will work

with the d/2 sized chunk of it T̃[j:j+d/2,j] which by the virtue of T̃ being Toeplitz is equal to the first half of the

first column T̃[0:d/2,0]. Thus this d/2 sized chunk of the jth column has identical Fourier spectrum compared to
the first column.

First observe that Ei∼[d/2][∥Ek
[i,i+d/2,i]∥

2
2] ≤ ∥Ek∥2F , thus applying Markov’s inequality the following holds

with probability 0.99 for an i ∼ [d/2].

(5.22) ∥Ek
[i:i+d/2,i]∥

2
2 ≤ (100/d)∥Ek∥2F .

We apply Lemma 5.3 to T̃ , this is possible because point 3 of Theorem 2.1 in Section 3 implies that there exists
some PSD Toeplitz matrix T ′ such that ∥T̃ − T ′∥F ≤ δ∥T̃∥F . We thus get the following by combining equation

5.22, ∥Ek∥F ≤ c∥T̃∥F with Lemma 5.3,

(5.23)

∥Ek
[i,i+d/2,i]∥2 ≤ (10/

√
d)∥Ek∥F

≤ (10c/
√
d)∥T̃∥F

<∼ c∥T̃[0:d/2,0]∥2.

Fix this i and condition on this event that equations 5.23 and 5.22 hold. Let x∗(t) = T̃1(t), g(t) = Ek
i (t + i) :=

Ek
[i+t,i] and x(t) = x∗(t) + g(t) for t ∈ [d/2]. We can access x(t) by querying the input T +E at index [i+ t, i] for

any t ∈ [d/2]. Let H(t) be the function as per Lemma 3.2 for parameters Õ(k), δ. Apply Lemma 2.1 to x = x∗+g
to obtain a list of frequencies L of size poly(k) and let Sheavy ⊆ S be the set of all f ∈ S = supp(x̂∗) such that

there exists some f ′ ∈ L satisfying |f − f ′| <∼ ∆k
√
∆kd = poly(k, log(d/δ))/d. Let Slight = S \ Sheavy. Observe

that since the width of each set S̃i as per point 2 in Theorem 2.1 in Section 3 is Õ(γ) = Õ(1/2poly log d)) = o(∆)

(∆ is as per Lemma 2.1), each S̃i is either completely in Sheavy or completely in S̃ \ Sheavy. Let Dheavy contain

the diagonal entries of D corresponding to Sheavy, T̃heavy = FSheavyDheavyF ∗
Sheavy and T̃heavy

1 be its first column.
Then we have the following,

∥T̃1(t)− T̃heavy
1 (t)∥2d/2 <∼ ∥g∥

2
d/2 + δ∥T̃1∥2d/2(5.24)

= ∥Ek
[i:i+d/2,i]∥

2
2 + δ∥T̃1∥2d/2 (Definition of g = Ek

[i:i+d/2,i])(5.25)

≤ ∥Ek
[i:i+d/2,i]∥

2
2 + δ∥T∥2F .(5.26)

where the first inequality follows from the guarantee of Lemma 2.1. We now state an important caveat below.
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Remark 5.4. It may happen that T̃heavy has complex entries, this can happen when there is some f ∈ Sheavy

such that 1− f /∈ Sheavy. However, discarding the imaginary part of entries in T̃heavy can only lead to reducing
∥T̃1(t)− T̃heavy

1 (t)∥d/2, thus the bound of equation 5.26 still holds. The removal of imaginary parts can be achieved

by adding 1− f to Sheavy for all such f ∈ Sheavy, and the coefficients of f, 1− f in Dheavy will be equal to half
of the corresponding coefficients in D, thus they will still be equal by point 3 of Theorem 2.1 in Section 3.

Now define the symmetric Toeplitz matrix T̃ light = T̃ − T̃heavy, and its first column T̃ light
1 (t) = T̃1(t)− T̃heavy(t).

Recall we know that every S̃i (defined as per point 2 of Theorem 2.1 in Section 3) is either completely in Sheavy

or completely out of it, and for every S̃i ∈ Sheavy, −S̃i ∈ Sheavy (−S̃i defined in point 3 of Thm. 2.1). Let S′

be set of all Si = −S̃i ∪ S̃i for S̃i ∈ Sheavy such that −S̃i was not in Sheavy, but we added it to make T̃heavy

real in Remark 5.4. This implies T̃ light =
∑

Si∈S\Sheavy FSi
DiF

∗
Si

+ (1/2)
∑

Si∈S′ FSi
DiF

∗
Si

where each Si, Di as

per point 3 of Theorem 2.1 in Section 3. Let T̃ a =
∑

Si∈S\Sheavy FSi
DiF

∗
Si

and T̃ b =
∑

Si∈S′ FSi
DiF

∗
Si
. Then by

point 3 of Theorem 2.1 in Section 3 we can say that there exists PSD Toeplitz matrices T a, T b such that,

∥T̃ a − T a∥F ≤ δ∥T a∥F
∥T̃ b − T b∥F ≤ δ∥T b∥F

Let T light = T a + (1/2)T b, thus T light is also PSD Toeplitz. Thus T light satisfies

(5.27) ∥T̃ light − T light∥F ≤ δ(∥T a∥F + ∥T b∥F ) ≤ O(δ)∥T light∥F ≪ 0.001∥T light∥F .

On the other hand equation 5.26 implies the following for T̃ light.

(5.28) ∥T̃ light
[0:d/2,0]∥

2
2 = ∥T̃1(t)− T̃heavy(t)∥2d/2 <∼ ∥E

k
[i:i+d/2,i]∥

2
2 + δ∥T∥2F .

Thus equations (5.28) and (5.27) allow us to apply Lemma 5.3 to upper bound ∥T̃ light∥F <∼
√
d∥T̃ light

[0:d/2,0]∥2
to get the following.

∥T̃ light∥2F <∼ d∥Ek
[i:i+d/2,i]∥

2
F + δd∥T∥2F

=⇒ ∥T̃ light∥F <∼ ∥E
k∥F + δd∥T∥F .

where in the last line we used equation 5.22. Adjusting δ by 1/d factor (this is feasible by losing log factors as
the dependence on δ is log(1/δ)), we finish the proof of point 2. of the Lemma.

5.2 Noisy Toeplitz Recovery. Equipped with Lemma 5.1 and Theorem 2.1, in this subsection, we present
the proof of Theorem 1.1 which is our main sublinear time Toeplitz matrix approximation result.

Proof. [Proof of Theorem 1.1] Consider T̃heavy,L and T̃ light as per the statement of Lemma 5.1. Lemmas 5.1 and

2.1 imply the following for T̃heavy = FSheavyDheavyF ∗
Sheavy ,

∥T + E − T̃heavy∥F ≤ ∥E∥F + ∥T − T̃∥F + ∥T̃ − T̃heavy∥F
<∼ ∥E∥F + ∥T − Tk∥F + δ∥T∥F + ∥T̃ light∥F
<∼ ∥E∥F + ∥T − Tk∥F + δ∥T∥F .

Let N = {1/2d, 3/2d, . . . , 1−1/2d}. Apply Lemma 5.1 and let L be the set of poly(k, log d) frequencies returned by
Lemma 5.1 and L′ = {f ∈ N : ∃f ′ ∈ L s.t. |f ′ − f | ≤ poly(k, log(d/δ))/d}. This implies |L′| ≤ poly(k, log(d/δ)).
Let S(L′) =

⋃
f∈L′

⋃
1≤j≤r2

{f + γj, f − γj} where γ, r2 are as per Theorem 2.1. Thus |S(L′)| ≤ poly(k, log(d/δ))

This implies Sheavy as per Theorem 2.1 satisfies Sheavy ⊆ S(L′). Now we will solve the following regression
problem approximately.

(5.29) min
D:D is diagonal

∥T + E − FS(L′)DF ∗
S(L′)∥F .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited5109

D
ow

nl
oa

de
d 

06
/0

1/
24

 to
 6

8.
11

8.
19

3.
18

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



We will first show that the optimal solution of the above optimization problem satisfies the guarantees of
Theorem 1.1, then we will show how to obtain a constant factor approximate solution to the above problem
in poly(k, log(d/δ)) time.

Let Ek = E + T − T̃ as defined in Lemma 5.1, and first consider the case when ∥Ek∥F ≥ c∥T̃∥F where c is
the constant as per Lemma 5.1. This is the case when the noise is noticeably larger compared to the true input,
and thus the guarantees of Lemma 5.1 are not guaranteed to hold. In this case, returning 0 as the solution of the
regression problem won’t be too bad. Formally we have the following.

min
D:D is diagonal

∥T + E − FS(L′)DF ∗
S(L′)∥F ≤ ∥T + E∥F (for D = 0)

= ∥T − T̃ + T̃ + E∥F
≤ ∥T − T̃∥F + ∥T̃∥F + ∥E∥F
<∼ ∥T − Tk∥F + δ∥T∥F + ∥T̃∥F + ∥E∥F
<∼ ∥T − Tk∥F + δ∥T∥F + ∥Ek∥F + ∥E∥F
<∼ ∥E∥F + ∥T − Tk∥F + δ∥T∥F .

where we used Theorem 2.1 in the third last inequality, ∥Ek∥F ≥ c∥T̃∥F in the second last inequality and the
definition of Ek in the last inequality.

Now consider the other case when ∥Ek∥F ≤ c∥T̃∥F . Then the requirements needed by Lemma 5.1 hold. Now,
from the structure of S as per points 2 and 3 of Lemma 2.1 we know that Sheavy ⊆ S(L′). This implies the
following,

min
D:D is diagonal

∥T + E − FS(L′)DF ∗
S(L′)∥F ≤ ∥T + E − T̃heavy∥F

≤ ∥E∥F + ∥T − T̃∥F + ∥T̃ − T̃heavy∥F
= ∥E∥F + ∥T − T̃∥F + ∥T̃ light∥F
<∼ ∥E∥F + ∥T − Tk∥F + δ∥T∥F ,

where in the last inequality we used point 2. of Lemma 5.1 to bound ∥T̃ light∥F and Theorem 2.1 to bound

∥T − T̃∥F . Thus, in all cases, we can conclude the following.

(5.30) min
D:D is diagonal

∥T + E − FS(L′)DF ∗
S(L′)∥F <∼ ∥T − Tk∥F + ∥E∥F + δ∥T∥F .

We will now applying the following lemma that is a corollary of Lemma 5.7 of [19] that allows us to find a D that
is a constant factor approximate solution to the regression problem of equation (5.29) in time only depending
polynomially on |S(L′)| = poly(k, log(d/δ)).

Lemma 5.5. (Corollary of Lemma 5.7 of [19]) There is an algorithm such that given any matrix B ∈ Rd×d

and set M ⊂ [0, 1] of size |M | = m, it runs in time at most poly(m) and returns a diagonal D′ ∈ Rm×m that
satisfies the following with probability 0.99,

∥B − FMD′F ∗
M∥F <∼ min

D∈Rm×m:
D is diagonal

∥B − FMDF ∗
M∥F ,

where FM is a Fourier matrix as per Def. 2.1.

Applying the previous lemma to B = T +E and M = S(L′), we can find a D′ in time poly(k, log(1/δ)) such that
the following holds with probability at least 0.99,

∥T − FS(L′)D
′F ∗

S(L′)∥F ≤ ∥T + E − FS(L′)D
′F ∗

S(L′)∥F + ∥E∥F
<∼ ∥E∥F + ∥T − Tk∥F + δ∥T∥F
<∼ max{∥E∥F , ∥T − Tk∥F }+ δ∥T∥F .

where in the second last inequality we used equation (5.30). This finishes the proof of the main theorem.
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We end this section by presenting the proof of Lemma 5.5. This follows the proof of Lemma 5.7 in [19] with the
modification that D is restricted to be a diagonal, however we restate the proof here for completeness.

Proof. Let D̂ = argmin Diagonal D ∥B − FMDF ∗
M∥F . Let S1, S

T
2 ∈ Rs×d be independent sampling matrices

as per Claim A.1 of [19] for ϵ = δ = 0.1 and the leverage score distribution of Corollary C.2 of [19]. Then
s = O(m log2(m)). Let D′ = argmin Diagonal D ∥S1BS2−S1FMDF ∗

MS2∥F . D′ can be found in poly(s) = poly(m)
time. Our strategy to prove the lemma will have two steps. First we will state an inequality and show how that
implies the lemma, and then we will prove the inequality. We will show that the following holds with probability
at least 0.97, for all diagonal D ∈ Rm×m.

(5.31) ∥S1FMDF ∗
MS2 − S1BS2∥F = (1± 0.1)∥FMDF ∗

M −B∥F ± 100∥FM D̂F ∗
M −B∥F .

Equipped with the previous inequality, we can use it to prove the lemma as follows.

(5.32)

∥FMD′F ∗
M −B∥F ≤ 1.1∥S1FMD′F ∗

MS2 − S1BS2∥F + 100∥FM D̂F ∗
M −B∥F

≤ 1.1∥S1FM D̂F ∗
MS2 − S1BS2∥F + 100∥FM D̂F ∗

M −B∥F
≤ (1.1)2∥FM D̂F ∗

M −B∥F + (100 · 1.1 + 100)∥FM D̂F ∗
M −B∥F

≤ 212∥FM D̂F ∗
M −B∥F .

where the first and second last inequality follow by applying equation (5.31) and the second inequality follows
from the optimality of D′ for the subsampled regression problem.

Now we focus on proving equation (5.31). First using the triangle inequality we write ∥S1FMDF ∗
MS2 −

S1BS2∥F as follows.

(5.33) ∥S1FMDF ∗
MS2 − S1BS2∥F = ∥S1FMDF ∗

MS2 − S1FM D̂F ∗
MS2∥F ± ∥S1FM D̂F ∗

MS2 − S1BS2∥F .

Now observe that since S1, S2 are independent leverage score sampling matrices, they are unbiased estimators of
the norm of any vector in Rd. That is, for any X ∈ Rd×r for any r, E[∥S1X∥2F ] = E[∥XTS2∥2F ] = ∥X∥2F for both
i = 1, 2. Thus applying Markov’s inequality we get that with probability at least 0.99,

∥S1FM D̂F ∗
M − S1B∥2F ≤ 100∥FM D̂F ∗

M −B∥2F .

Applying Markov’s inequality again over the randomness of S2, we get the following with probability at least 0.99,

∥S1FM D̂F ∗
MS2 − S1BS2∥2F ≤ 100∥S1FM D̂F ∗

M − S1B∥2F
≤ 1002∥FM D̂F ∗

M −B∥2F
Thus taking a union bound over the randomness in S1, S2, we get that the following holds with probability at
least 0.98.

(5.34) ∥S1FM D̂F ∗
MS2 − S1BS2∥F ≤ 100∥FM D̂F ∗

M −B∥F

Finally, due to Claim A.1 and Corollary C.2 of [19], since S1, S2 are independent leverage score sampling matrices
taking s = O(m log2(m)) samples the following subspace embedding property holds with probability at least 0.99.

∥S1[FM ;FM ]y∥22 = (1± 0.01)∥[FM ;FM ]y∥22 ∀y ∈ C2m and

∥y∗[FM ;FM ]∗S2∥22 = (1± 0.01)∥[FM ;FM ]y∥22 ∀y ∈ C2m

This guarantee applied to S1 implies the following.

∥S1FMDF ∗
M − S1FM D̂F ∗

M∥F = (1± 0.01)∥FMDF ∗
M − FM D̂F ∗

M∥F

And then applying the subspace embedding guarantee for S2 finally gives us the following.

∥S1FMDF ∗
MS2 − S1FM D̂F ∗

MS2∥F = (1± 0.01)∥S1FMDF ∗
M − S1FM D̂F ∗

M∥F
= (1± 0.01)2∥FMDF ∗

M − FM D̂F ∗
M∥F .

Plugging the previous equation and 5.34 back into 5.33 we get 5.31. This completes the overall proof of Lemma
5.5.
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5.3 Sublinear Time Low-Rank Approximation and Covariance Estimation. Our goal in this section is
to present the proofs of the sublinear time low-rank approximation and covariance estimation results of Theorems
1.2 and 1.3 respectively. The proof of Theorem 1.2 easily follows by applying Theorem 1.1 for E = 0. The main
Lemma we will need to apply our framework to prove Theorem 1.3 is the following that allows us to bound the
magnitude of the noise.

Lemma 5.6. Consider d×d PSD Toeplitz T . Let k be an integer and ϵ > 0. Given samples x1, . . . , xs ∼ N (0, T ),

let X ∈ Rd×s be a matrix whose ith column is xi/
√
s for all i ∈ [s]. If s = Õ(k4/ϵ2), then the following holds with

probability at least 0.98

∥XXT − T∥F <∼

√
∥T − Tk∥2 tr(T ) +

∥T − Tk∥F tr(T )

k
+ ϵ∥T∥2.

Assuming Lemma 5.6, we now present the proof of Theorem 1.3.

Proof. [Proof of Theorem 1.3] The proof follows easily from applying Theorem 1.1 with E = XXT − T ,

δ = ϵ/poly(d) and bounding the Frobenius norm of E using Lemma 5.6 with s = Õ(k4/ϵ2). Note that
δ∥T∥F ≤ ϵ∥T∥2 since δ = ϵ/poly(d) thus log(1/δ) = O(log(d/ϵ)). This bounds the Vector Sample Complexity
(VSC). Note that Theorem 1.1 only accesses poly(k, log(d/ϵ)) entries of XXT and any of its (i, j)th entry is equal
to
∑s

k=1 xk,ixk,j . Thus each entry access to XXT requires reading 2 entries, the i and jth entries, from each
sample. Thus we get that the Entry Sample Complexity (ESC) is poly(k, log(d/ϵ)).

Now we proceed by presenting the proof of Lemma 5.6.

Proof. [Proof of Lemma 5.6] Let T = UΣUT be the eigenvalue decomposition of T where Σ ⪰ 0 is diagonal. Let
Pk = UkU

T
k be the projection matrix onto the subspace spanned by the top-k eigenvectors. Using the rotational

invariance of the Gaussian distribution, we have that X is distributed as X ∼ UΣ1/2G, where G ∈ Rd×s is a
matrix with each entry distributed independently as 1√

s
N (0, 1). Then we upper bound ∥XXT − T∥F by the

following three terms using the triangle inequality,

∥XXT − T∥F ≤ ∥XXT − PkXXTPk∥F + ∥PkXXTPk − Tk∥F + ∥Tk − T∥F .

We finish the proof by taking a union bound over the following two claims, which bound the first and second
terms of the expression above.

Claim 5.7. If s = Õ(k), then with probability at least 0.99,

∥XXT − PkXXTPk∥F <∼

√
∥T − Tk∥2 tr(T ) +

∥T − Tk∥F tr(T )

k
.

Claim 5.8. For any ϵ > 0. If s = Õ(k4/ϵ2), then with probability at least 0.99,

∥PkXXTPk − Tk∥F ≤ ϵ∥T∥2.

Note that since T is PSD, ∥T − Tk∥F =
√∑d

j=k+1 λ
2
j (T ) ≤

√
λ1(T )(

∑d
j=1 λj) =

√
∥T − Tk∥2tr(T ). Thus we

ignore the third term ∥T − Tk∥F in the upper bound on ∥XXT − T∥F in the big-Oh term of Claim 5.7. This
completes the proof of Lemma 5.6.

We now proceed by proving Claims 5.7 and 5.8.

Proof. [Proof of Claim 5.7] We know that X = UΣ1/2G and Pk is a rank-k projection matrix. Thus, we can
apply the projection cost-preserving sketch property of the Gaussian distribution from Lemma 12 and Theorem
27 of [15].

As a result, if s = Ω(k/γ2), then the following holds with probability at least 0.99:

(5.35) ∥PkX −X∥22 = (1± γ)∥PkUΣ1/2 − UΣ1/2∥22 ±
γ

k
∥PkUΣ1/2 − UΣ1/2∥2F .
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Fix γ = O(1). Now we use the fact that for any matrices A,B, ∥AA∗ − BB∗∥F ≤ ∥AB∗ − BB∗∥F + ∥AA∗ −
AB∗∥F ≤ ∥A−B∥2(∥A∥F + ∥B∥F ). Applying this fact to A = PkX and B = X, we get that

∥XXT − PkXXTPk∥F ≤ ∥PkX −X∥2(∥X∥F + ∥PkX∥F )

≤ O

(√
∥PkUΣ1/2 − UΣ1/2∥22 +

∥PkUΣ1/2 − UΣ1/2∥2F
k

∥X∥F

)
(from equation 5.35)

= O


√
∥T 1/2 − T

1/2
k ∥22 +

∥T 1/2 − T
1/2
k ∥2F

k
∥X∥F


= O

(√
∥T − Tk∥2∥X∥2F +

∥T − Tk∥F ∥X∥2F
k

)
.

In the second line, we used that ∥PkX∥F ≤ ∥X∥F , and the last line follows by observing that UΣ1/2 =

T 1/2, PkUΣ1/2 = T
1/2
k . Now observe that ∥X∥2F = ∥T 1/2G∥2F . Thus by applying the Johnson-Lindenstrauss

lemma to each row of T 1/2 and taking a union bound over the d rows of T 1/2, we have that as long as
s = Ω((1/ϵ2) log(d/δ)), ∥X∥2F ≤ (1 + ϵ)∥T 1/2∥2F = (1 + ϵ) tr(T ) with probability 1 − δ. Fixing ϵ = δ = 0.001,
taking a union bound over this event and the projection cost-preserving sketch property, and plugging the bound
∥X∥2F ≤ O(tr(T )) into the last line of the derivation above, we finish the proof of the claim.

Finally, we prove Claim 5.8. This proof follows the proof strategy of Theorem 7.1. in [48]but adapted for the case
when the covariance matrix is exactly rank k.

Proof. [Proof of Claim 5.8] For any d× d rank-k matrix A, we have that

∥A∥2 = max
x∈Sk−1

|xTUT
k AUkx| ≤

1

1− 2ϵ
max
z∈Nϵ

|zTUT
k AUkz|,

where Uk is the matrix containing the top-k eigenvectors of A, Sk−1 is the unit sphere in k dimensions, and Nϵ

is an ϵ-net of Sk−1. Fix ϵ = 1/4, then using Lemma 5 of [54] which uses volumetric arguments to bound the size

of Nϵ, we have that |Nϵ| ≤ 17k. Now let E = PkXXTPk − Tk = T
1/2
k GGTT

1/2
k − Tk. Observe that E has rank

at most k. Letting Uk be the matrix of the top-k eigenvectors of E, we have that

∥E∥2 ≤ 2 max
x∈Nϵ

|xTUT
k EUkx|.

This implies the following:

P(∥E∥2 > t) ≤ P(max
x∈Nϵ

|xTUT
k EUkx| > t/2)

≤
∑
x∈Nϵ

P(|xTUT
k EUkx| > t/2).

Thus we need to focus on upper bounding P(|xTUT
k EUkx| > t/2) for a fixed x ∈ Sk−1. Let y = Ukx, which

implies that y ∈ Sd−1. Thus we need to bound P(|yTEy| > t/2) for some y ∈ Sd−1. We have that

yTEy =
1

s

∑
i∈[s]

(
yTT

1/2
k gig

T
i (T

1/2
k )T y − yTTky

)
=

1

s

∑
i∈[s]

(
Z2
i − E[Z2

i ]
)
,

where each Zi = yTT
1/2
k gi and gi ∼ N (0, Id×d). Thus each Zi ∼ N (0, σ2) where σ2 = ∥yTT 1/2

k ∥22. As a
result, 1

s

∑
i∈[s]

(
Z2
i − E[Z2

i ]
)
is a chi-squared random variable. Using standard chi-squared concentration bound
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of Laurent-Massart [38], we have the following

P(|yTEy| ≥ t/2) ≤ exp

{
−Ω

smin

(
t2

σ4
,
t

σ2

)}.
Thus, setting t = ϵσ2 and s = O

(
1
ϵ2 log

(
|N1/4|

δ

))
yields that the above upper bound on the failure probability

is at most δ/|N1/4|. Therefore,
P(∥E∥2 > ϵσ2) ≤ δ

Thus we get that if s = Õ(k/ϵ2), then with probability at least 0.99,

∥E∥2 ≤ ϵ∥yTUkΣ
1/2∥22 ≤ ϵtr(Tk) ≤ ϵk∥T∥2.

This further implies that ∥E∥F ≤ ϵk1.5∥T∥2. Setting ϵ = ϵ/k1.5, we conclude the proof of the claim.
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