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Abstract
We study the problem of approximating the eigenspectrum of a symmetric matrix
A ∈ R

n×n with bounded entries (i.e., ‖A‖∞ ≤ 1). We present a simple sublin-
ear time algorithm that approximates all eigenvalues of A up to additive error ±εn

using those of a randomly sampled Õ
(
log3 n

ε3

)
× Õ

(
log3 n

ε3

)
principal submatrix. Our

result can be viewed as a concentration bound on the complete eigenspectrum of a
random submatrix, significantly extending known bounds on just the singular values
(the magnitudes of the eigenvalues). We give improved error bounds of ±ε

√
nnz(A)

and ±ε‖A‖F when the rows of A can be sampled with probabilities proportional to
their sparsities or their squared �2 norms respectively. Here nnz(A) is the number of
non-zero entries in A and ‖A‖F is its Frobenius norm. Even for the strictly easier
problems of approximating the singular values or testing the existence of large nega-
tive eigenvalues (Bakshi, Chepurko, and Jayaram, FOCS ’20), our results are the first
that take advantage of non-uniform sampling to give improved error bounds. From
a technical perspective, our results require several new eigenvalue concentration and
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perturbation bounds for matrices with bounded entries. Our non-uniform sampling
bounds require a new algorithmic approach, which judiciously zeroes out entries of
a randomly sampled submatrix to reduce variance, before computing the eigenvalues
of that submatrix as estimates for those of A. We complement our theoretical results
with numerical simulations, which demonstrate the effectiveness of our algorithms in
practice.

Keywords Eigenvalue approximation · Sublinear algorithms · Randomized
algorithms · Symmetric matrices

1 Introduction

Approximating the eigenvalues of a symmetric matrix is a fundamental problem—
with applications in engineering, optimization, data analysis, spectral graph theory,
and beyond. For an n × n matrix, all eigenvalues can be computed to high accuracy
using direct eigendecomposition in O(nω) time, where ω ≈ 2.37 is the exponent of
matrix multiplication [1, 2]. When just a few of the largest magnitude eigenvalues are
of interest, the power method and other iterative Krylov methods can be applied [3].
These methods repeatedly multiply the matrix of interest by query vectors, requiring
O(n2) time per multiplication when the matrix is dense and unstructured.

For large n, it is desirable to have even faster eigenvalue approximation algorithms,
running in o(n2) time—i.e., sublinear in the size of the input matrix. Unfortunately, for
general matrices, no non-trivial approximation can be computed in o(n2) time: without
reading �(n2) entries, it is impossible to distinguish with reasonable probability if
all entries (and hence all eigenvalues) are equal to zero, or if there is a single pair of
arbitrarily large entries at positions (i, j) and ( j, i), leading to a pair of arbitrarily
large eigenvalues. Given this, we seek to address the following question:

Under what assumptions on a symmetric n × n input matrix, can we compute
non-trivial approximations to its eigenvalues in o(n2) time?

It is well known that o(n2) time eigenvalue computation is possible for highly
structured inputs, like tridiagonal or Toeplitz matrices [4]. For sparse or structured
matrices that admit fast matrix vector multiplication, one can compute a small number
of the largest in magnitude eigenvalues in o(n2) time using iterative methods. Through
the use of robust iterative methods, fast top eigenvalue estimation is also possible for
matrices that admit fast approximate matrix–vector multiplication, such as kernel
similarity matrices [5–7]. Our goal is to study simple, sampling-based sublinear time
algorithms that work under much weaker assumptions on the input matrix.

1.1 Our Contributions

Our main contribution is to show that a very simple algorithm can be used to approxi-
mate all eigenvalues of any symmetric matrix with bounded entries. In particular, for
any A ∈ R

n×n with maximum entry magnitude ‖A‖∞ ≤ 1, sampling an s × s princi-
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pal submatrixAS ofAwith s = Õ
(
log3 n

ε3

)
and scaling its eigenvalues by n/s yields a

±εn additive error approximation to all eigenvalues ofAwith good probability.1 This

result is formally stated below, where [n] def= {1, . . . , n}.
Theorem 1 (Sublinear Time Eigenvalue Approximation) LetA ∈ R

n×n be symmetric
with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by
including each index independently with probability s/n as in Algorithm 1. Let AS

be the corresponding principal submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥
λ|S|(AS).

For all i ∈ [|S|] with λi (AS) ≥ 0, let λ̃i (A) = n
s · λi (AS). For all i ∈ [|S|] with

λi (AS) < 0, let λ̃n−(|S|−i)(A) = n
s · λi (AS). For all other i ∈ [n], let λ̃i (A) = 0. If

s ≥ c log(1/(εδ))·log3 n
ε3δ

, for large enough constant c, then with probability ≥ 1 − δ, for
all i ∈ [n],

λi (A) − εn ≤ λ̃i (A) ≤ λi (A) + εn.

See Fig. 1 for an illustration of how the |S| eigenvalues of AS are mapped to esti-
mates for all n eigenvalues of A. Since A satisfies ‖A‖∞ ≤ 1, it must hold that
‖A‖2F = ∑n

i=1 λ2i (A) ≤ n2, so there are at most 1/ε2 eigenvalues greater than εn.
Therefore, we may set λ̃i (A) to zero for all but 1/ε2 eigenvalues and still satisfy the
stated error guarantee. Note that the principal submatrixAS sampled in Theorem 1will

have O(s) = Õ
(
log3 n
ε3δ

)
rows/columns with high probability. Thus, with high proba-

bility, the algorithm reads just Õ
(
log6 n
ε6δ2

)
entries ofA and runs in poly(log n, 1/ε, 1/δ)

time. Standard matrix concentration bounds imply that one can sample O
(
s log(1/δ)

ε2

)

random entries from the O(s) × O(s) random submatrix AS and preserve its eigen-
values to error ±εs with probability 1− δ [8]. See “Appendix F” for a proof. This can
be directly combined with Theorem 1 to give improved sample complexity:

Corollary 1 (Improved Sample Complexity via Entrywise Sampling) Let A ∈ R
n×n

be symmetric with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). For any

ε, δ ∈ (0, 1), there is an algorithm that reads Õ
(
log3 n
ε5δ

)
entries ofA and returns, with

probability at least 1 − δ, λ̃i (A) for each i ∈ [n] satisfying |λ̃i (A) − λi (A)| ≤ εn.

Observe that the dependence on δ in Theorem1 andCorollary 1 can be improved via
standard arguments: running the algorithmwith failure probability δ′ = 2/3, repeating
O(log(1/δ)) times, and taking the median estimate for each λi (A). This guarantees
that the algorithm will succeed with probability at most 1 − δ at the expense of a
log(1/δ) dependence in the complexity.

Comparison toknownboundsTheorem1canbeviewed as a concentration inequality
on the full eigenspectrum of a random principal submatrixAS ofA. This significantly

1 Here and throughout, Õ(·) hides logarithmic factors in the argument. Note that by scaling, our algorithm
gives a ±εn · ‖A‖∞ approximation for any A.
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Fig. 1 Alignment of eigenvalues in Theorem 1 and Algorithm 1. We illustrate how the eigenvalues of AS ,
scaled by n

s , are used to approximate all eigenvalues ofA. IfAS has p−1 positive eigenvalues, they are set
to the top p − 1 eigenvalue estimates. Its |S| − p + 1 negative eigenvalues are set to the bottom eigenvalue
estimates. All remaining eigenvalues are simply approximated as zero

extends prior work, which was able to bound just the spectral norm (i.e., the magnitude
of the top eigenvalue) of a random principal submatrix [9, 10]. Bakshi et al. [11]
recently identified developing such full eigenspectrum concentration inequalities as
an important step in expanding our knowledge of sublinear time property testing
algorithms for bounded entry matrices.

Standard matrix concentration bounds [12] can be used to show that the singular
values of A (i.e., the magnitudes of its eigenvalues) are approximated by those of

a O
(
log n
ε2

)
× O

(
log n
ε2

)
random submatrix (see “Appendix G”) with independently

sampled rows and columns. However, such a random matrix will not be symmetric or
even have real eigenvalues in general as the sampling of the rows is independent of the
columns, and thus no analogous bounds were previously known for the eigenvalues
themselves.

Recently, Bakshi et al. [11] studied the closely related problem of testing positive
semidefiniteness in the bounded entry model. They show how to test whether the
minimum eigenvalue of A is either greater than 0 or smaller than −εn by reading just
Õ( 1

ε2
) entries. They show that this result is optimal in terms of query complexity, up to

logarithmic factors. Like our approach, their algorithm is based on random principal
submatrix sampling. Our eigenvalue approximation guarantee strictly strengthens the
testing guarantee—given ±εn approximations to all eigenvalues, we immediately
solve the testing problem. Thus, our query complexity is tight up to a poly(log n, 1/ε)
factor. It is open if our higher sample complexity is necessary to solve the harder full
eigenspectrum estimation problem. See Sect. 1.4 for further discussion.

Improved bounds for non-uniform sampling Our second main contribution is
to show that, when it is possible to efficiently sample rows/columns of A with
probabilities proportional to their sparsities or their squared �2 norms, significantly
stronger eigenvalue estimates can be obtained. In particular, letting nnz(A) denote
the number of nonzero entries in A and ‖A‖F denote its Frobenius norm, we show
that sparsity-based sampling yields eigenvalue estimates with error ±ε

√
nnz(A) and

norm-based sampling gives error ±ε‖A‖F . See Theorems 2 and 3 for formal state-
ments. Observe that when ‖A‖∞ ≤ 1, its eigenvalues are bounded in magnitude by
‖A‖2 ≤ ‖A‖F ≤ √

nnz(A) ≤ n. Thus, Theorems 2 and 3 are natural strengthen-
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ings of Theorem 1. Row norm-based sampling (Theorem 3) additionally removes the
bounded entry requirement of Theorems 1 and 2.

As discussed in Sect. 1.3.1, sparsity-based sampling can be performed in sublinear
time when A is stored in a slightly augmented sparse matrix format or when A is
the adjacency matrix of a graph accessed in the standard graph query model of the
sublinear algorithms literature [13]. Norm-based sampling can also be performed
efficiently with an augmented matrix format, and is commonly studied in randomized
and ‘quantum-inspired’ algorithms for linear algebra [14, 15].

Theorem 2 (Sparse Matrix Eigenvalue Approximation) Let A ∈ R
n×n be symmetric

with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by

including the i th index independently with probability pi = min
(
1, s nnz(Ai )

nnz(A)

)
as in

Algorithm 2. Here nnz(Ai ) is the number of non-zero entries in the i th row of A. Let
AS be the corresponding principal submatrix of A, and let λ̃i (A) be the estimate of

λi (A) computed from AS as in Algorithm 2. If s ≥ c log8 n
ε8δ4

, for large enough constant

c, then with probability ≥ 1 − δ, for all i ∈ [n], |λ̃i (A) − λi (A)| ≤ ε
√
nnz(A).

Theorem 3 (Row Norm Based Matrix Eigenvalue Approximation) Let A ∈ R
n×n be

symmetric and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including
the i th index independently with probability pi = min

(
1,

s‖Ai‖22
‖A‖2F

+ 1
n2

)
as in Algo-

rithm 3. Here ‖Ai‖2 is the �2 norm of the i th row of A. Let AS be the corresponding
principal submatrix of A, and let λ̃i (A) be the estimate of λi (A) computed from AS

as in Algorithm 3. If s ≥ c log10 n
ε8δ4

, for large enough constant c, then with probability

≥ 1 − δ, for all i ∈ [n], |λ̃i (A) − λi (A)| ≤ ε‖A‖F .

The above non-uniform sampling theorems immediately yield algorithms for test-
ing the presence of a negative eigenvalue with magnitude at least ε

√
nnz(A) or ε‖A‖F

respectively, strengthening the testing results of [11], which require eigenvalue mag-
nitude at least εn. In the graph property testing literature, there is a rich line of work
exploring the testing of bounded degree or sparse graphs [13, 16]. Theorem 2 can be
thought of as a first step in establishing a related theory of sublinear time approximation
algorithms and property testers for sparse matrices.

Surprisingly, in the non-uniform sampling case, the eigenvalue estimates derived
fromAS cannot simply be its scaled eigenvalues, as in Theorem 1. E.g., whenA is the
identity, our row sampling probabilities are uniform in all cases. However, the scaled
submatrix n

s ·AS will be a scaled identity, and have eigenvalues equal to n/s—failing
to give a ±ε

√
nnz(A) = ±ε‖A‖F = ±ε

√
n approximation to the true eigenvalues

(all of which are 1) unless s �
√
n

ε
. To handle this, and related cases, we must argue

that selectively zeroing out entries in sufficiently low probability rows/columns of
A (see Algorithms 2 and 3) does not significantly change the spectrum, and ensures
concentration of the submatrix eigenvalues. It is not hard to see that simple random
submatrix sampling fails even for the easier problem of singular value estimation.
Theorems 2 and 3 give the first results of their kinds for this problem as well.
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1.2 RelatedWork

Eigenspectrum estimation is a key primitive in numerical linear algebra, typically
known as spectral density estimation. The eigenspectrum is viewed as a distribution
withmass 1/n at each of the n eigenvalues, and the goal is to approximate this distribu-
tion [17, 18]. Applications include identifyingmotifs in social networks [19], studying
Hessian and weight matrix spectra in deep learning [20–22], ‘spectrum splitting’ in
parallel eigensolvers [23], and the study of many systems in experimental physics and
chemistry [24–26].

Recent work has studied sublinear time spectral density estimation for graph struc-
tured matrices—Braverman et al. [27] show that the spectral density of a normalized
graph adjacency or Laplacian matrix can be estimated to ε error in the Wasserstein
distance in Õ(n/ poly(ε)) time. Cohen-Steiner, Kong, Sohler, and Valiant study a
similar setting, giving runtime 2O(1/ε) [28]. We note that the additive error eigenvalue
approximation result of Theorem 1 (analogously Theorems 2 and 3) directly gives
an εn approximation to the spectral density in the Wasserstein distance—extending
the above results to a much broader class of matrices. When ‖A‖∞ ≤ 1, A can have
eigenvalues as large as n, while the normalized adjacency matrices studied in [27,
28] have eigenvalues in [−1, 1]. So, while the results are not directly comparable, our
Wasserstein error can be thought as on order of their error of ε after scaling.

Our work is also closely related to a line of work on sublinear time property test-
ing for bounded entry matrices, initiated by Balcan et al. [29]. In that work, they
study testing of rank, Schatten-p norms, and several other global spectral proper-
ties. Sublinear time testing algorithms for the rank and other properties have also
been studied under low-rank and bounded row norm assumptions on the input matrix
[30, 31]. Recent work studies positive semidefiniteness testing and eigenvalue esti-
mation in the matrix–vector query model, where each query computes Ax for some
x ∈ R

n×n . As in Theorem 3, ±ε‖A‖F eigenvalue estimation can be achieved with
poly(log n, 1/ε) queries in this model [32]. Finally, several works study streaming
algorithms for eigenspectrum approximation [33–35]. These algorithms are not sub-
linear time—they require at least linear time to process the input matrix. However,
they use sublinear working memory. Note that Theorem 1 immediately gives a sub-
linear space streaming algorithm for eigenvalue estimation. We can simply store the
sampled submatrix AS as its entries are updated.

1.3 Technical Overview

In this section, we overview the main techniques used to prove Theorem 1, and then
how these techniques are extended to prove Theorems 2 and 3. We start by defining a
decomposition of any symmetric A into the sum of two matrices containing its large
and small magnitude eigendirections which correspond to the “outlying” and “middle”
eigenvalues respectively.

Definition 1.1 (Eigenvalue Split) Let A ∈ R
n×n be symmetric. For any ε, δ ∈ (0, 1),

let Ao = Vo�oVT
o where �o is diagonal, with the eigenvalues of A with magnitude

≥ ε
√

δn on its diagonal, and Vo has the corresponding eigenvectors as columns.

123



1770 Algorithmica (2024) 86:1764–1829

Similarly, let Am = Vm�mVT
m where �m has the eigenvalues of A with magnitude

< ε
√

δn on its diagonal andVm has the corresponding eigenvectors as columns. Then,
A can be decomposed as

A = Ao + Am = Vo�oVT
o + Vm�mVT

m .

Any principal submatrix of A, AS , can be similarly written as

AS = Ao,S + Am,S = Vo,S�oVT
o,S + Vm,S�mVT

m,S,

where Vo,S,Vm,S are the corresponding submatrices obtained by sampling rows of
Vo,Vm .

Since AS , Am,S and Ao,S are all symmetric, we can use Weyl’s eigenvalue pertur-
bation theorem [36] to show that for all eigenvalues of AS ,

|λi (AS) − λi (Ao,S)| ≤ ‖Am,S‖2. (1)

We will argue that the eigenvalues ofAo,S approximate those ofAo—i.e. all eigen-
values of A with magnitude ≥ ε

√
δn. Further, we will show that ‖Am,S‖2 is small

with good probability. Thus, via (1), the eigenvalues of AS approximate those of Ao.
In the estimation procedure of Theorem 1, all other small magnitude eigenvalues of
A are estimated to be 0, which will immediately give our ±εn approximation bound
when the original eigenvalue has magnitude ≤ εn.

Bounding the eigenvalues of Ao,S . The first step is to show that the eigenvalues
of Ao,S well-approximate those of Ao. As in [11], we critically use that the eigen-
vectors corresponding to large eigenvalues are incoherent—intuitively, since ‖A‖∞
is bounded, their mass must be spread out in order to witness a large eigenvalue.
Specifically, [11] shows that for any eigenvector v of A with corresponding eigen-
value ≥ ε

√
δn, ‖v‖∞ ≤ 1

ε
√

δ·√n
. We give related bounds on the Euclidean norms of

the rows of Vo (the leverage scores of Ao), and on these rows after weighting by �o.
Using these incoherence bounds, we argue that the eigenvalues of Ao,S approx-

imate those of Ao up to ±εn error. A key idea is to bound the eigenvalues of
�

1/2
o VT

o,SVo,S�
1/2
o , which are identical to the non-zero eigenvalues of Ao,S =

Vo,S�oVT
o,S . Via a matrix Bernstein bound and our incoherence bounds on Vo, we

show that this matrix is close to �o with high probability. However, since �
1/2
o may

be complex, the matrix is not necessarily Hermitian and standard perturbation bounds
[37, 38] do not apply. Thus, to derive an eigenvalue bound, we apply a perturbation
bound fromKahan [39, 40], which generalizesWeyl’s inequality to the non-Hermitian
case, with a log n factor loss. To the best of our knowledge, this is the first time that per-
turbation theory bounds for non-Hermitianmatrices have been used to prove improved
algorithmic results in the theoretical computer science literature.

We note that in “Appendix B”, we give an alternate bound, which instead analyzes
the Hermitian matrix (VT

o,SVo,S)
1/2�o(VT

o,SVo,S)
1/2, whose eigenvalues are again

identical to those of Ao,S . This approach only requires Weyl’s inequality, and yields
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an overall bound of s = O
(
log n
ε4δ

)
, improving the log n factors of Theorem 1 at the

cost of worse ε dependence.

Bounding the spectral norm of Am,S . The next step is to show that all eigenvalues
of Am,S are small provided a sufficiently large submatrix is sampled. This means that
the “middle” eigenvalues of A, i.e. those with magnitude ≤ ε

√
δn do not contribute

much to any eigenvalue λi (AS). To do so, we apply a theorem of [9, 10] which shows
concentration of the spectral norm of a uniformly random submatrix of an entrywise
bounded matrix Observe that while ‖A‖∞ ≤ 1, such a bound will not in general hold
for ‖Am‖∞. Nevertheless, we can use the incoherence of Vo to show that ‖Ao‖∞ is
bounded, which via triangle inequality, yields a bound on ‖Am‖∞ ≤ ‖A‖∞+‖Ao‖∞.
In the end, we show that if s ≥ O(

log n
ε2δ

), with probability at least 1−δ, ‖Am,S‖2 ≤ εs.
After the n/s scaling in the estimation procedure of Theorem 1, this spectral norm
bound translates into an additive εn error in approximating the eigenvalues of A.

Completing the argument Once we establish the above bounds on Ao,S and Am,S ,
Theorem 1 is essentially complete. Any eigenvalue in A with magnitude ≥ εn will
correspond to a nearby eigenvalue in n

s ·Ao,S and in turn, ns ·AS given our spectral norm
bound onAm,S . An eigenvalue inAwith magnitude ≤ εn may or may not correspond
to a nearby by eigenvalue inAo,S (it will only if it lies in the range [ε√δn, εn]). In any
case however, in the estimation procedure of Theorem 1, such an eigenvalue will either
be estimated using a small eigenvalue of AS , or be estimated as 0. In both instances,
the estimate will give ±εn error, as required.

Can we beat additive error? It is natural to ask if our approach can be improved to
yield sublinear time algorithms with stronger relative error approximation guarantees
for A’s eigenvalues. Unfortunately, this is not possible—consider a matrix with just
a single pair of entries Ai, j ,A j,i set to 1. To obtain relative error approximations to
the two non-zero eigenvalues, we must find the pair (i, j), as otherwise we cannot
distinguish A from the all zeros matrix. This requires reading a �(n2) of A’s entries.
More generally, consider A with a random n/t × n/t principal submatrix populated
by all 1s, and with all other entries equal to 0. A has largest eigenvalue n/t . However,
if we read s � t2 entries of A, with good probability, we will not see even a single
one, and thus we will not be able to distinguish A from the all zeros matrix. This
example establishes that any sublinear time algorithm with query complexity s must
incur additive error at least �(n/

√
s).

1.3.1 Improved Bounds via Non-uniform Sampling

We now discuss how to give improved approximation bounds via non-uniform
sampling. We focus on the ±ε

√
nnz(A) bound of Theorem 2 using sparsity-based

sampling. The proof of Theorem 3 for row norm sampling follows the same general
ideas, but with some additional complications.

Theorem 2 requires sampling a submatrix AS , where each index i is included in
S with probability pi = min(1, s nnz(Ai )

nnz(A)
). We reweight each sampled row/column by

1√
pi
. Thus, if entryAi j is sampled, it is scaled by 1√

pi ·p j
. When the rows have uniform
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sparsity (so all pi = s/n), this ensures that the full submatrix is scaled by n/s, as in
Theorem 1.

The proof of Theorem 2 follows the same outline as that of Theorem 1: we first
argue that the outlying eigenvectors in Vo are incoherent, giving a bound on the norm
of each row of Vo in terms of nnz(Ai ). We then apply a matrix Bernstein bound and
Bhatia’s non-Hermitian eigenvalue perturbation bound to show that the eigenvalues
of Ao,S approximate those of Ao up to ±ε

√
nnz(A).

Bounding the spectral norm of Am,S . The major challenge is showing that the
subsampled middle eigendirections do not significantly increase the approximation
error, which we accomplish by bounding ‖Am,S‖2 by ε

√
nnz(A). This is difficult

since the indices in Am,S are sampled nonuniformly, so existing bounds [10] on the
spectral norm of uniformly random submatrices do not apply. We extend these bounds
to the non-uniform sampling case, but still face an issue due to the rescaling of entries
by 1√

pi p j
. In fact, without additional algorithmic modifications, ‖Am,S‖2 is simply

not bounded by ε
√
nnz(A)! For example, as already discussed, ifA = I is the identity

matrix, we get Am,S = n
s · I and so ‖Am,S‖2 = n

s > ε
√
nnz(A), assuming s <

√
n

ε
.

Relatedly, suppose that A is tridiagonal, with zeros on the diagonal and ones on the
first diagonals above and below the main diagonal. Then, if s ≥ √

n, with constant
probability, one of the ones will be sampled and scaled by n

s . Thus, we will again

have ‖Am,S‖2 ≥ n
s ≥ ε

√
nnz(A), assuming s <

√
n

2ε . Observe that this implies
σ1(Am,S) is a poor estimate for σ1(A). Thus, while an analogous bound to the uniform
sampling result of Theorem 1 can easily be given for singular value estimation via
matrix concentration inequalities (see “Appendix G”), to the best of our knowledge,
Theorems 2 and 3 are the first of their kind even for singular value estimation.

Zeroing out entries in sparse rows/columns To handle the above cases, we prove
a novel perturbation bound, arguing that if we zero out any entry Ai j of A where√
nnz(Ai ) · nnz(A j ) ≤ ε

√
nnz(A)

c log n , then the eigenvalues of A are not perturbed by

more than ε
√
nnz(A). This can be thought of as a strengthening of Girshgorin’s circle

theorem, whichwould ensure that zeroing out entries in rows/columnswith nnz(Ai ) ≤
ε
√
nnz(A) does not perturb the eigenvalues by more than ε

√
nnz(A). Armed with this

perturbation bound, we argue that if we zero out the appropriate entries of AS before
computing its eigenvalues, then since we have removed entries in very sparse rows
and columns which would be scaled by a large 1√

pi p j
factor in AS , we can bound

‖Am,S‖2. This requires relating the magnitudes of the entries in Am,S to those in AS

using the incoherence of the top eigenvectors, which gives bounds on the entries of
Ao,S = AS − Am,S .

Sampling modelWe note that the sparsity-based sampling of Theorem 2 can be effi-
ciently implemented in several natural settings. Given amatrix stored in sparse format,
i.e., as a list of nonzero entries, we can easily sample a row with probability nnz(Ai )

nnz(A)
by sampling a uniformly random non-zero entry and looking at its corresponding row.
Via standard techniques, we can convert several such samples into a sampled set S
close in distribution to having each i ∈ [n] included independently with probability
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min
(
1, s nnz(Ai )

nnz(A)

)
. If we store the values of nnz(A), nnz(A1), . . . , nnz(An), we can

also efficiently access each pi , which is needed for rescaling and zeroing out entries.
Also observe that if A is the adjacency matrix of a graph, in the standard graph query
model [13], it is well known how to approximately count edges and sample them uni-
formly at random, i.e., compute nnz(A) and sample its nonzero entries, in sublinear
time [41, 42]. Further, it is typically assumed that one has access to the node degrees,
i.e., nnz(A1), . . . , nnz(An). Thus, our algorithm can naturally be used to estimate
spectral graph properties in sublinear time.

The �2 norm-based sampling of Theorem 3 can also be performed efficiently using
an augmented data structure for storing A. Such data structures have been used exten-
sively in the literature on quantum-inspired algorithms, and require just O(nnz(A))

time to construct, O(nnz(A)) space, and O(log n) time to update give an update to an
entry of A [15, 43].

1.4 Towards Optimal Query Complexity

As discussed, Bakshi et al. [11] show that any algorithmwhich can test with good prob-
ability whether A has an eigenvalue ≤ −εn or else has all non-negative eigenvalues

must read �̃
(

1
ε2

)
entries of A. This testing problem is strictly easier than outputting

±εn error estimates of all eigenvalues, so gives a lower bound for our setting. If the
queried entries are restricted to fall in a submatrix, [11] shows that this submatrix must

have dimensions �
(

1
ε2

)
× �

(
1
ε2

)
, giving total query complexity �

(
1
ε4

)
. Closing

the gap between our upper bound of Õ
(
log3 n

ε3

)
× Õ

(
log3 n

ε3

)
and the lower bound of

�
(

1
ε2

)
× �

(
1
ε2

)
for submatrix queries is an intriguing open question.

We show in “AppendixA” that this gap can be easily closed via a surprisingly simple
argument if A is positive semidefinite (PSD). In that case, A = BBT with B ∈ R

n×n .
Writing AS = STAS for a sampling matrix S ∈ R

n×|S|, the non-zero eigenvalues of
AS are identical to those ofBSSTBT . Via a standard approximatematrixmultiplication
analysis [44], one can then show that, for s ≥ 1

ε2δ
, with probability at least 1 − δ,

‖BBT − BSSTB‖F ≤ εn. Via Weyl’s inequality, this shows that the eigenvalues of
BSSTB, and hence AS , approximate those of A up to ±εn error.2

Unfortunately, this approach breaks down when A has negative eigenvalues, and
so cannot be factored as BBT for real B ∈ R

n×n . This is more than a technical issue:
observe that when A is PSD and has ‖A‖∞ ≤ 1, it can have at most 1/ε eigenvalues
larger than εn—since its trace, which is equal to the sum of its eigenvalues, is bounded
by n, and since all eigenvalues are non-negative. When A is not PSD, it can have
�(1/ε2) eigenvalues with magnitude larger than εn. In particular, if A is the tensor
product of a 1/ε2×1/ε2 random±1matrix and the ε2n×ε2n all ones matrix, the bulk
of its eigenvalues (of which there are 1/ε2) will concentrate around 1/ε · ε2n = εn.
As a result it remains unclear whether we can match the 1/ε2 dependence of the PSD
case, or if a stronger lower bound can be shown for indefinite matrices.

2 In fact, via more refined eigenvalue perturbation bounds [40] one can show an �2 norm bound on the
eigenvalue approximation errors, which can be much stronger than the �∞ norm bound of Theorem 1.
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Outside the ε dependence, it is unknown if full eigenspectrum approximation can
be performed with sample complexity independent of the matrix size n. [11] achieve
this for the easier positive semidefiniteness testing problem, giving sample complex-
ity Õ(1/ε2). However our bounds have additional log n factors. As discussed, in
“Appendix B” we give an alternate analysis for Theorem 1, which shows that sam-

pling a O
(
log n
ε4δ

)
× O

(
log n
ε4δ

)
submatrix suffices for ±εn eigenvalue approximation,

saving a log2 n factor at the cost of worse ε dependence. However, removing the final
log n seems difficult—it arises when bounding ‖Am,S‖2 via bounds on the spectral
norms of random principal submatrices [9]. Removing it seems as though it would
require either improving such bounds, or taking a different algorithmic approach.

Also note that our log n and ε dependencies for non-uniform sampling (Theorems 2
and 3) are likely not tight. It is not hard to check that the lower bounds of [11] still
hold in these settings. For example, in the sparsity-based sampling setting, by simply
having the matrix entirely supported on a

√
nnz(A) × √

nnz(A) submatrix, the lower
bounds of [11] directly carry over. Giving tight query complexity bounds here would
also be interesting. Finally, it would be interesting to go beyond principal submatrix
based algorithms, to achieve improved query complexity, as in Corollary 1. Finding

an algorithm matching the Õ
(

1
ε2

)
overall query complexity lower bound of [11] is

open even in the much simpler PSD setting.

2 Roadmap

We introduce notation and preliminary theorems in Sect. 3. In Sect. 4, we show that
using a simple algorithm, we can approximate all the eigenvalues of a bounded-entry
symmetric matrix. In Sect. 5, we improve the error of eigenvalue approximation to
ε
√
nnz(A) when rows and columns are sampled with probability proportional to their

sparsities. In Sect. 6, we demonstrate the empirical performance of the sampling algo-
rithms given inSects. 4 and 5 to approximate all the eigenvalues of several synthetic and
real world matrices. In “Appendix A”, we prove optimal sampling bounds for eigen-
value approximation of PSD matrices using uniform sampling. In “Appendix B”, we
present an alternate proof which improves the log n dependence of the upper bounds
for sampling complexity for the uniform sampling algorithm at the cost of O(1/ε)
worse dependence. In “Appendix C”, we give tighter approximation factors of the
algorithm in Sect. 4 under certain assumptions. In “Appendix D”, we give improved
spectral norm bounds for non-uniform random submatrices. In “Appendix E”, we
achieve analogous bounds to Sect. 5 with error ε‖A‖F , using an algorithm that sam-
ples rows and columns with probability proportional to the �2-norm of each row. We
improve the sampling complexity for the uniform sampling algorithm in Sect. 4 by
using entrywise sampling in “Appendix F” by a factor of O(ε/ log3 n). Finally in
“Appendix G”, we show that all the singular values of a bounded-entry matrix can be
approximated using O(log n)-factor optimal random sampling of rows and columns
of the matrix.
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3 Notation and Preliminaries

We now define notation and foundational results that we use throughout our work. For
any integer n, let [n] denote the set {1, 2, . . . , n}.Wewrite matrices and vectors in bold
literals—e.g., A or x. We denote the eigenvalues of a symmetric matrix A ∈ R

n×n by
λ1(A) ≥ . . . ≥ λn(A), in decreasing order.A symmetricmatrix is positive semidefinite
if all its eigenvalues are non-negative. For two matrices A,B, we let A � B denote
that A − B is positive semidefinite. For any matrix A ∈ R

n×n and i ∈ [n], we let Ai

denote the i th row of A, nnz(Ai ) denote the number of non-zero elements in this row,
and ‖Ai‖2 denote its �2 norm. We let nnz(A) denote the total number of non-zero
elements A. For a vector x, we let ‖x‖2 denote its Euclidean norm. For a matrix A,
we let ‖A‖∞ denote the largest magnitude of an entry, ‖A‖2 = maxx

‖Ax‖2‖x‖2 denote

the spectral norm, ‖A‖F = (
∑

i, j A
2
i j )

1/2 denote the Frobenius norm, and ‖A‖1→2

denote the maximum Euclidean norm of a column. For A ∈ R
n×n and S ⊆ [n] we let

AS denote the principal submatrix corresponding to S. We let E2 denote the L2 norm
of a random variable, E2[X ] = (E[X2])1/2, where E[·] denotes expectation.

Weuse the followingbasic facts and identities on eigenvalues throughout our proofs.

Fact 1 (Eigenvalue of Matrix Product) For any two matrices A ∈ C
n×m,B ∈ C

m×n,
the non-zero eigenvalues of AB are identical to those of BA.

Fact 2 (Girshgorin’s circle theorem [45]) Let A ∈ C
n×n with entries Ai j . For i ∈

[n], let Ri be the sum of absolute values of non-diagonal entries in the i th row. Let
D(Ai i ,Ri ) be the closed disc centered at Ai i with radius Ri . Then every eigenvalue
of A lies within one of the discs D(Ai i ,Ri ).

Fact 3 (Weyl’s Inequality [36]) For any two Hermitian matrices A,B ∈ C
n×n with

A − B = E,

max
i

|λi (A) − λi (B)| ≤ ‖E‖2.

Weyl’s inequality ensures that a small Hermitian perturbation of a Hermitian matrix
will not significantly change its eigenvalues. The bound can be extended to the case
when the perturbation is not Hermitian, with a loss of an O(log n) factor; to the best
of our knowledge this loss is necessary:

Fact 4 (Non-Hermitian perturbation bound (ProblemVI.8.6 in [40], Claim (i) in [39]))
Let A ∈ C

n×n be Hermitian and B ∈ C
n×n be any matrix whose eigenvalues

are λ1(B), . . . , λn(B) such that Re(λ1(B)) ≥ . . . ≥ Re(λn(B)) (where Re(λi (B))

denotes the real part of λi (B)). Let A − B = E. For some universal constant C,

max
i

|λi (A) − λi (B)| ≤ C log n‖E‖2.

Beyond the above facts, we use several theorems to obtain eigenvalue concentration
bounds. We first state a theorem from [10], which bounds the spectral norm of a
principal submatrix sampled uniformly at random from a bounded entry matrix. We
build on this to prove the full eigenspectrum concentration result of Theorem 1.
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Theorem 4 (Random principal submatrix spectral norm bound [9, 10]) LetA ∈ C
n×n

be Hermitian, decomposed into diagonal and off-diagonal parts:A = D+H. Let S ∈
R
n×n be a diagonal sampling matrix with the j th diagonal entry set to 1 independently

with probability s/n and 0 otherwise. Then, for some universal constant C,

E2‖SAS‖2

≤ C

[
log n · E2‖SHS‖∞ +

√
s log n

n
· E2‖HS‖1→2 + s

n
· ‖H‖2

]
+ E2‖SDS‖2.

For Theorems 2 and 3, we need an extension of Theorem 4 to the setting where rows
are sampled non-uniformly.Wewill use two bounds here. The first is a decoupling and
recoupling result for matrix norms. One can prove this lemma following an analogous
result in [10] for sampling rows/columns uniformly. The proof is almost identical so
we omit it.

Lemma 1 (Decoupling and recoupling) Let H be a Hermitian matrix with zero diag-
onal. Let δ j be a sequence of independent random variables such that δ j = 1√

p j
with

probability p j and 0 otherwise. Let S be a square diagonal sampling matrix with j th

diagonal entry set to δ j . Then:

E2‖SHS‖2 ≤ 2E2‖SHŜ‖2 and E2‖SHŜ‖∞ ≤ 4E2‖SHS‖∞,

where Ŝ is an independent diagonal sampling matrix drawn from the same distribution
as S.

The second theorembounds the spectral normof a non-uniform randomcolumnsample
of a matrix. We give a proof in “Appendix D”, again following a theorem in [46] for
uniform sampling.

Theorem 5 (Non-uniform column sampling—spectral norm bound) LetA be anm×n
matrix with rank r . Let δ j be a sequence of independent random variables such that
δ j = 1√

p j
with probability p j and 0 otherwise. Let S be a square diagonal sampling

matrix with j th diagonal entry set to δ j .

E2‖AS‖2 ≤ 5
√
log r · E2‖AS‖1→2 + ‖A‖2

We use a standard Matrix Bernstein inequality to bound the spectral norm of random
submatrices.

Theorem 6 (Matrix Bernstein [47]) Consider a finite sequence {Sk} of independent
random matrices in R

d×d . Assume that for all k, E[Sk] = 0 and ‖Sk‖2 ≤ L.

Let Z = ∑
k Sk and let V1,V2 be semidefinite upper-bounds for the matrix valued

variances Var1(Z) and Var2(Z):

V1 � Var1(Z)
def= E

(
ZZT

)
=
∑
k

E

(
SkSTk

)
, and

123



Algorithmica (2024) 86:1764–1829 1777

V2 � Var2(Z)
def= E

(
ZTZ

)
=
∑
k

E

(
STk Sk

)
.

Then, letting v = max(‖V1‖2, ‖V2‖2), for any t ≥ 0,

P(‖Z‖2 ≥ t) ≤ 2d · exp
( −t2/2

v + Lt/3

)
.

For real valued random variables, we use the standard Bernstein inequality.

Theorem 7 (Bernstein inequality [48]) Let {z j } for j ∈ [n] be independent random
variables with zero mean such that |z j | ≤ M for all j . Then for all positive t ,

P

⎛
⎝
∣∣∣∣∣∣

n∑
j=1

z j

∣∣∣∣∣∣
≥ t

⎞
⎠ ≤ exp

(
−t2/2∑n

i=1 E[z2i ] + Mt/3

)
.

4 Sublinear Time Eigenvalue Estimation Using Uniform Sampling

We now prove our main eigenvalue estimation result—Theorem 1. We give the pseu-
docode for our principal submatrix based estimation procedure in Algorithm 1. We
will show that any positive or negative eigenvalue of A with magnitude ≥ εn will
appear as an approximate eigenvalue in AS with good probability. Thus, in step 5 of
Algorithm 1, the positive and negative eigenvvalues of AS are used to estimate the
outlying largest and smallest eigenvalues of A. All other interior eigenvalues of A are
estimated to be 0, which will immediately give our ±εn approximation bound when
the original eigenvalue has magnitude ≤ εn.

Algorithm 1 Eigenvalue estimator using uniform sampling
1: Input: Symmetric A ∈ R

n×n with ‖A‖∞ ≤ 1, Accuracy ε ∈ (0, 1), failure prob. δ ∈ (0, 1).

2: Fix s = c log(1/(εδ))·log3 n
ε3δ

where c is a sufficiently large constant.

3: Add each index i ∈ [n] to the sample set S independently with probability s
n . Let the principal submatrix

of A corresponding S be AS .
4: Compute the eigenvalues of AS : λ1(AS) ≥ . . . ≥ λ|S|(AS).

5: For all i ∈ [|S|] with λi (AS) ≥ 0, let λ̃i (A) = n
s · λi (AS). For all i ∈ [|S|] with λi (AS) < 0, let

λ̃n−(|S|−i)(A) = n
s · λi (AS). For all remaining i ∈ [n], let λ̃i (A) = 0.

6: Return: Eigenvalue estimates λ̃1(A) ≥ . . . ≥ λ̃n(A).

Running time Observe that the expected number of indices chosen by Algorithm 1 is

s = c log(1/(εδ))·log3 n
ε3δ

. A standard concentration bound can be used to show that with
high probability (1 − 1/ poly(n)), the number of sampled entries is O(s). Thus, the
algorithm reads a total of O(s2) entries of A and runs in O(sω) time—the time to
compute a full eigendecomposition of AS .
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4.1 Outer andMiddle Eigenvalue Bounds

Recall that we will split A into two symmetric matrices (Definition 1.1): Ao =
Vo�oVT

o which contains its large magnitude (outlying) eigendirections with eigen-
value magnitudes ≥ ε

√
δn and Am = Vm�mVT

m which contains its small magnitude
(middle) eigendirections.

We first show that the eigenvectors in Vo are incoherent. That is, that their (eigen-
value weighted) squared row norms are bounded. This ensures that the outlying
eigenspace of A is well-approximated via uniform sampling.

Lemma 2 (Incoherence of outlying eigenvectors) Let A ∈ R
n×n be symmetric with

‖A‖∞ ≤ 1. Let Vo be as in Definition 1.1. Let Vo,i denote the i th row of Vo. Then,

‖�1/2
o Vo,i‖22 ≤ 1

ε
√

δ
and ‖Vo,i‖22 ≤ 1

ε2δn
.

Proof Observe that AVo = Vo�o. Let [AVo]i denote the i th row of the AVo. Then we
have

‖[AVo]i‖22 = ‖[Vo�o]i‖22 =
r∑
j=1

λ2j · V2
o,i, j , (2)

where r = rank(Ao),Vo,i, j is the (i, j)th element ofVo and λ j = �o( j, j). ‖A‖∞ ≤
1 by assumption and since Vo has orthonormal columns, its spectral norm is bounded
by 1, thus we have

‖[AVo]i‖22 = ‖[A]iVo‖22 ≤ ‖[A]i‖22 · ‖Vo‖22 ≤ n.

Therefore, by (2), we have:

r∑
j=1

λ2j · V2
o,i, j ≤ n. (3)

Since by definition of �o, |λ j | ≥ ε
√

δn for all j , we finally have

‖�1/2
o Vo,i‖22 =

r∑
j=1

λ j · V2
o,i, j ≤ n

ε
√

δn
= 1

ε
√

δ

and

‖Vo,i‖22 =
r∑
j=1

V2
o,i, j ≤ n

ε2δn2
= 1

ε2δn
.

��
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Let S̄ ∈ R
n×|S| be the scaled sampling matrix satisfying S̄TAS̄ = n

s · AS . We
next apply Lemma 2 in conjunction with a matrix Bernstein bound to show that
�

1/2
o VT

o S̄S̄
TVo�

1/2
o concentrates around its expectation, �o. Since by Fact 1, this

matrix has identical eigenvalues to n
s · Ao,S = S̄TVo�oVT

o S̄, this allows us to argue
that the eigenvalues of n

s · Ao,S approximate those of �o.

Lemma 3 (Concentration of outlying eigenvalues) Let S ⊆ [n] be sampled as in
Algorithm 1 for s ≥ c log(1/(εδ))

ε3
√

δ
where c is a sufficiently large constant. Let S̄ ∈ R

n×|S|

be the scaled sampling matrix satisfying S̄TAS̄ = n
s · AS. Letting �o,Vo be as in

Definition 1.1, with probability at least 1 − δ,

‖�1/2
o VT

o S̄S̄
TVo�

1/2
o − �o‖2 ≤ εn.

Proof Define E = �
1/2
o VT

o S̄S̄
TVo�

1/2
o − �o. For all i ∈ [n], let Vo,i be the i th row

of Vo and define the matrix valued random variable

Yi =
{

n
s �

1/2
o Vo,iVT

o,i�
1/2
o , with probability s/n

0 otherwise.
(4)

Define Qi = Yi − E [Yi ]. Observe that Q1, . . . ,Qn are independent random vari-
ables and that

∑n
i=1Qi = �

1/2
o VT

o S̄S̄
TVo�

1/2
o − �o = E. Further, observe that

‖Qi‖2 ≤ max
(
1, n

s − 1
) · ‖�1/2

o Vo,iVT
o,i�

1/2
o ‖2 ≤ max

(
1, n

s − 1
) · ‖�1/2

o Vo,i‖22.
Now, ‖�1/2

o Vo,i‖22 ≤ 1
ε
√

δ
by Lemma 2. Thus, ‖Qi‖2 ≤ n

ε
√

δs
. The variance

Var(E)
def= E(EET ) = E(ETE) = ∑n

i=1 E[Q2
i ] can be bounded as:

n∑
i=1

E[Q2
i ] =

n∑
i=1

[
s

n
·
(n
s

− 1
)2 +

(
1 − s

n

)]
· (�

1/2
o Vo,iVT

o,i�oVo,iVT
o,i�

1/2
o )

�
n∑

i=1

n

s
· ‖�1/2

o Vo,i‖22 · (�
1/2
o Vo,iVT

o,i�
1/2
o ). (5)

Again by Lemma 2, ‖�1/2
o Vo,i‖22 ≤ 1

ε
√

δ
. Plugging back into (5) we can bound,

n∑
i=1

E[Q2
i ] �

n∑
i=1

n

s
· 1

ε
√

δ
· (�

1/2
o Vo,iVT

o,i�
1/2
o ) = n

sε
√

δ
�o � n2

sε
√

δ
· I.

Since Q2
i is PSD, this establishes that ‖Var(E)‖2 ≤ n2

sε
√

δ
. We then apply Theorem 6

(the matrix Bernstein inequality) with L = n
sε

√
δ
, v = n2

sε
√

δ
, and d ≤ 1

ε2δ
since there

are at most
‖A‖2F
δε2n2

≤ 1
ε2δ

outlying eigenvalues with magnitude ≥ √
δεn in �o. This

gives:
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P (‖E‖2 ≥ εn) ≤ 2

ε2δ
· exp

( −ε2n2/2

v + Lεn/3

)

≤ 2

ε2δ
· exp

⎛
⎝ −ε2n2/2

n2

sε
√

δ
+ εn2

3sε
√

δ

⎞
⎠

≤ 2

ε2δ
· exp

(
−sε3

√
δ

4

)
.

Thus, if we set s ≥ c log(1/(εδ))
ε3

√
δ

for large enough c, then the probability is bounded
above by δ, completing the proof. ��

We cannot prove an analogous leverage score bound to Lemma 2 for the interior
eigenvectors of A appearing in Vm . Thus we cannot apply a matrix Bernstein bound
as in Lemma 3. However, we can use Theorem 4 to show that the spectral norm of
the random principal submatrix Am,S is not too large, and thus that the eigenvalues of
AS = Ao,S + Am,S are close to those of Ao,S .

Lemma 4 (Spectral norm bound—sampled middle eigenvalues) Let A ∈ R
n×n be

symmetric with ‖A‖∞ ≤ 1. Let Am be as in Definition 1.1. Let S be sampled as in
Algorithm 1. If s ≥ c log n

ε2δ
for some sufficiently large constant c, then with probability

at least 1 − δ, ‖Am,S‖2 ≤ εs.

Proof Let Am = Dm + Hm where Dm is the matrix of diagonal elements and Hm the
matrix of off-diagonal elements. Let S ∈ R

n×|S| be the binary sampling matrix with
Am,S = STAmS. From Theorem 4, we have for some constant C ,

E2[‖Am,S‖2] ≤ C

[
log n · E2[‖STHmS‖∞]

+
√
s log n

n
E2[‖HmS‖1→2] + s

n
‖Hm‖2

]
+ E2[‖STDmS‖2]. (6)

Considering the various terms in (6), we have ‖STHmS‖∞ ≤ ‖Am‖∞ and
‖STDmS‖2 = ‖STDmS‖∞ ≤ ‖Am‖∞. We also have

‖Hm‖2 ≤ ‖Am‖2 + ‖Dm‖2 ≤ ‖Am‖2 + ‖Am‖∞ ≤ εδ1/2n + ‖Am‖∞

and

‖HmS‖1→2 ≤ ‖AmS‖1→2 ≤ ‖Am‖1→2 ≤ √
n.

The final bound follows since Am = VmVT
mA, where VmVT

m is an orthogonal projec-
tion matrix. Thus, ‖Am‖1→2 ≤ ‖A‖1→2 ≤ √

n by our assumption that ‖A‖∞ ≤ 1.
Plugging all these bounds into (6) we have, for some constant C ,

E2[‖Am,S‖2] ≤ C

[
log n · ‖Am‖∞ +√

log n · s + s · εδ1/2
]
. (7)
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It remains to bound ‖Am‖∞. We have A = Am + Ao and thus by triangle inequality,

‖Am‖∞ ≤ ‖A‖∞ + ‖Ao‖∞ = 1 + ‖Ao‖∞. (8)

WritingAo = Vo�oVT
o (see Definition 1.1), and lettingVo,i denote the i th row ofVo,

the (i, j)th element of Ao has magnitude

|Ao,i, j | = |Vo,i�oVT
o, j | ≤ ‖Vo,i‖2 · ‖�oVT

o, j‖2,

by Cauchy-Schwarz. From Lemma 2, we have ‖Vo,i‖2 ≤ 1
εδ1/2

√
n
. Also, from (2),

‖�oVT
o, j‖2 = ‖[AVo] j‖2 ≤ √

n. Overall, for all i, j we haveAo,i, j ≤ 1
εδ1/2

√
n
·√n =

1
εδ1/2

, giving ‖Ao‖∞ ≤ 1
εδ1/2

. Plugging back into (8) and in turn (7), we have for some
constant C ,

E2[‖Am,S‖2] ≤ C

[
log n

εδ1/2
+√

s log n + sεδ1/2
]
.

Setting s ≥ c log n
ε2δ

for sufficiently large c, all terms in the right hand side of the above

equation are bounded by ε
√

δs and so

E2[‖Am,S‖2] ≤ 3ε
√

δs

Thus, byMarkov’s inequality, with probability at least 1−δ, we have ‖Am,S‖2 ≤ 3εs.
We can adjust ε by a constant to obtain the required bound. ��

4.2 Main Accuracy Bounds

We now restate our main result, and give its proof via Lemmas 3 and 4.

Theorem 1 (Sublinear Time Eigenvalue Approximation) LetA ∈ R
n×n be symmetric

with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by
including each index independently with probability s/n as in Algorithm 1. Let AS

be the corresponding principal submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥
λ|S|(AS).

For all i ∈ [|S|] with λi (AS) ≥ 0, let λ̃i (A) = n
s · λi (AS). For all i ∈ [|S|] with

λi (AS) < 0, let λ̃n−(|S|−i)(A) = n
s · λi (AS). For all other i ∈ [n], let λ̃i (A) = 0. If

s ≥ c log(1/(εδ))·log3 n
ε3δ

, for large enough constant c, then with probability ≥ 1 − δ, for
all i ∈ [n],

λi (A) − εn ≤ λ̃i (A) ≤ λi (A) + εn.

Proof Let S ∈ R
n×|S| be the binary sampling matrix with a single one in each column

such that STAS = AS . Let S̄ = √
n/s · S Following Definition 1.1, we write A =

Ao +Am . By Fact 1 we have that the nonzero eigenvalues of n
s ·Ao,S = S̄TVo�oVT

o S̄
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are identical to those of �
1/2
o VT

o S̄S̄
TVo�

1/2
o where �

1/2
o is the square root matrix of

�o such that �1/2
o �

1/2
o = �o.

Note that �o is Hermitian. However �
1/2
o may be complex, and hence �

1/2
o VT

o

S̄S̄TVo�
1/2
o is not necessarily Hermitian, although it does have real eigenvalues.

Thus, we can apply the perturbation bound of Fact 4 to �o and �
1/2
o VT

o S̄S̄
TVo�

1/2
o

to claim for all i ∈ [n], and some constant C ,

|λi (�1/2
o VT

o S̄S̄
TVo�

1/2
o ) − λi (�o)| ≤ C log n‖�1/2

o VT
o S̄S̄

TVo�
1/2
o − �o‖2.

By Lemma 3 applied with error ε
2C log n , with probability at least 1 − δ, for any

s ≥ c log(1/(εδ))·log3 n
ε3

√
δ

(for a large enough constant c) we have ‖�1/2
o VT

o S̄S̄
TVo�

1/2
o −

�o‖2 ≤ εn
2C log n . Thus, for all i ,

∣∣∣λi (�1/2
o VT

o S̄S̄
TVo�

1/2
o ) − λi (�o)

∣∣∣ <
εn

2
. (9)

We note that the conceptual part of the proof is essentially complete: the nonzero
eigenvalues of n

s · Ao,S are identical to those of �
1/2
o VT

o S̄S̄
TVo�

1/2
o , which we have

shown well approximate those of �o and in turn Ao. i.e., the non-zero eigenvalues of
n
s ·Ao,S approximate all outlying eigenvalues of A. It remains to carefully argue how
these approximations should be ‘lined up’ given the presence of zero eigenvalues in
the spectrum of these matrices. We also must account for the impact of the interior
eigenvalues in Am,S , which is limited by the spectral norm bound of Lemma 4.

Eigenvalue alignment and effect of interior eigenvalues. First recall that AS =
Ao,S + Am,S . By Lemma 4 applied with error ε/2, we have ‖Am,S‖2 ≤ ε/2 · s with
probability at least 1 − δ when s ≥ c log n

ε2δ
. By Weyl’s inequality (Fact 3), for all

i ∈ [|S|] we thus have
∣∣∣n
s
λi (AS) − n

s
λi (Ao,S)

∣∣∣ ≤ n

s
· εs

2
= εn

2
. (10)

Consider i ∈ [|S|] with λi (Ao,S) > 0. Since the nonzero eigenvalues of n
s · Ao,S are

identical to those of �
1/2
o VT

o S̄S̄
TVo�

1/2
o , n

s · λi (Ao,S) = λi (�
1/2
o VT

o S̄S̄
TVo�

1/2
o ),

and so by (9),

∣∣∣n
s

· λi (Ao,S) − λi (�o)

∣∣∣ <
εn

2
. (11)

Analogously, consider i ∈ [|S|] such that λi (Ao,S) < 0. We have n
s · λi (Ao,S) =

λr−(|S|−i)(�
1/2
o VT

o S̄S̄
TVo�

1/2
o ), where r = rank(Ao,S) is the dimension of �o—i.e.,

the number of outlying eigenvalues in A. Again by (9) we have

∣∣∣n
s

· λi (Ao,S) − λr−(|S|−i)(�o)

∣∣∣ <
εn

2
. (12)
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Now the nonzero eigenvalues of Ao are identical to those of �o. Consider i ∈ [|S|]
such that λi (AS) ≥ εs. In this case, by (10), (11), and the triangle inequality, we have
λi (�o) > 0 and thus we have λi (�o) = λi (Ao). In turn, again applying (10), (11),
and the triangle inequality, we have

∣∣∣n
s
λi (AS) − λi (Ao)

∣∣∣ ≤
∣∣∣n
s
λi (Ao,S) − λi (Ao)

∣∣∣+
∣∣∣n
s
λi (AS) − λi (Ao,S)

∣∣∣ ≤ εn.

Analogously, for i ∈ [|S|] such that λi (AS) ≤ −εs, we have by (10) and (12) that
λr−(|S|−i)(�o) < 0. Thus λr−(|S|−i)(�o) = λn−(|S|−i)(Ao). Again by (10), (12), and
triangle inequality this gives

∣∣∣n
s

· λi (AS) − λn−(|S|−i)(Ao)

∣∣∣ ≤ εn.

Now, consider all i ∈ [n] such that λi (Ao) is not well approximated by one of
the outlying eigenvalues of AS as argued above. By (10), (11), and (12), all such
eigenvalues must have |λi (Ao)| ≤ 2εn. Thus, if we approximate them in any way
either by the remaining eigenvalues of AS with magnitude ≤ εs, or else by 0, we
will approximate all to error at most 3εn. Thus, if (as in Algorithm 1) for i ∈ [|S|]
with λi (AS) ≥ 0, we let λ̃i (A) = n

s · λi (AS) and for i ∈ [|S|] with λi (AS) < 0, let
λ̃n−(|S|−i)(A) = n

s · λi (AS), and let λ̃i (A) = 0 for all other i , we will have for all i ,

∣∣∣λ̃i (A) − λi (Ao)

∣∣∣ ≤ 3εn.

Finally by definition, for all i , |λi (A) − λi (Ao)| ≤ ε
√

δn ≤ εn and thus, via triangle

inequality,
∣∣∣λ̃i (A) − λi (A)

∣∣∣ ≤ 4εn. This gives our final error bound after adjusting
constants on ε.

Recall that we require s ≥ c log(1/(εδ))·log3 n
ε3

√
δ

for the outer eigenvalue bound of

(9) to hold with probability 1 − δ. We require s ≥ c log n
ε2δ

for ‖Am,S‖2 ≤ ε/2 ·
s to hold with probability 1 − δ by Lemma 4. Thus, for both conditions to hold
simultaneously with probability 1 − 2δ by a union bound, if suffices to set s =
c log(1/(εδ))·log3 n

ε3δ
≥ max

(
c log(1/(εδ))·log3 n

ε3
√

δ
,
c log n
ε2δ

)
, where we use that log(1/(εδ) ≤

O(log n), as otherwise our algorithm can take AS to be the full matrix A. Adjusting δ

to δ/2 completes the theorem. ��

Remark: The proof of Lemma 3 and consequently, Theorem 1 can bemodified to give
better bounds for the casewhen the eigenvalues ofAo lie in a bounded range—between
εa

√
δn and εbn where 0 ≤ b ≤ a ≤ 1. See Theorem 9 in “Appendix C” for details.

For example, if all the top eigenvalues are equal, one can show that s = Õ
(
log2 n

ε2

)

suffices to give ±εn error, nearly matching the lower bound of [11]. This seems to
indicate that improving Theorem 1 in general requires tackling the case when the
outlying eigenvalues in �o have a wide range.
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5 Improved Bounds via Sparsity-Based Sampling

We now prove the ±ε
√
nnz(A) approximation bound of Theorem 2, assuming the

ability to sample each rowwith probability proportional to nnz(Ai )
nnz(A)

. Pseudocode for our
algorithm is given in Algorithm 2. Unlike in the uniform sampling case (Algorithm 1),
we cannot simply sample a principal submatrix of A and compute its eigenvalues. We
must carefully zero out entries lying at the intersection of sparse rows and columns
to ensure accuracy of our estimates. A similar approach is taken for the norm-based
sampling result of Theorem 3. We defer that proof to “Appendix E”.

5.1 Preliminary Lemmas

Our first step is to argue that zeroing out entries in sparse rows/columns in step
5 of Algorithm 2 does not introduce significant error. We define A′ ∈ R

n×n to
be the extension of A′ to the original matrix—i.e., A′

i j = 0 whenever i = j or

nnz(Ai ) nnz(A j ) <
ε2 nnz(A)

c2 log2 n
. Otherwise A′

i j = Ai j . We argue via a strengthening of

Girshgorin’s theorem that |λi (A) − λi (A′)| ≤ ε
√
nnz(A) for all i .

After this step is complete, our proof follows the same general outline as that
of Theorem 1 in Sect. 3. We split A′ = A′

o + A′
m , arguing that (1) after sampling

‖A′
m,S‖2 ≤ ε

√
nnz(A) and (2) that the eigenvalues of A′

o,S are ±ε
√
nnz(A) approx-

imations to those of A′
o. In both cases, we critically use that the rescaling factors

introduced in line 4 of Algorithm 2 do not introduce too much variance, due to the
zeroing out of entries in A′.

Algorithm 2 Eigenvalue estimator using sparsity-based sampling
1: Input: Symmetric A ∈ R

n×n with ‖A‖∞ ≤ 1, Accuracy ε ∈ (0, 1), failure prob. δ ∈ (0, 1). nnz(Ai )

for all i ∈ [n] and nnz(A).

2: Fix s = c1 log
8 n

ε8δ4
where c1 is a sufficiently large constant.

3: Add each i ∈ [n] to sample set S independently, with probability pi = min
(
1, s nnz(Ai )

nnz(A)

)
. Let the

principal submatrix of A corresponding to S be AS .
4: Let AS = DASD where D ∈ R

|S|×|S| is diagonal with Di,i = 1√p j
if the i th element of S is j .

5: Construct A′
S ∈ R

|S|×|S| from AS as follows:

[A′
S ]i, j =

⎧⎨
⎩
0 if i = j or nnz(Ai ) nnz(A j ) <

ε2 nnz(A)

c2 log2 n
for sufficient large constant c2

[AS ]i, j otherwise.

6: Compute the eigenvalues of A′
S : λ1(A

′
S) ≥ . . . ≥ λ|S|(A′

S).

7: For all i ∈ [|S|] with λi (A′
S) ≥ 0, let λ̃i (A) = λi (A′

S). For all i ∈ [|S|] with λi (A′
S) < 0, let

λ̃n−(|S|−i)(A) = λi (A′
S). For all remaining i ∈ [n], let λ̃i (A) = 0.

8: Return: Eigenvalue estimates λ̃1(A) ≥ . . . ≥ λ̃n(A).

Remark Throughout, we will assume that A does not have any rows/columns that
are all 0, as such rows will never be sampled and will have no effect on the output of
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Algorithm 2. Additionally, we will assume that nnz(A) ≥ c1 log8 n
ε8δ4

, as otherwise, A

has at most s = c1 log8 n
ε8δ4

non-zero rows. Thus, rather than running Algorithm 2, we
can directly compute the eigenvalues of A.

Lemma 5 Let A ∈ R
n×n be symmetric with ‖A‖∞ ≤ 1 and nnz(A) ≥ 2/ε2. Let

A′ ∈ R
n×n have A′

i j = 0 if i = j or nnz(Ai ) · nnz(A j ) <
ε2 nnz(A)

c2 log2 n
for a sufficiently

large constant c2 and A′
i j = Ai j otherwise. Then, for all i ∈ [n],

|λi (A) − λi (A′)| ≤ ε
√
nnz(A).

Proof We consider the matrix A′′, which is defined identically to A′ except we only
set A′′

i j = 0 if nnz(Ai ) · nnz(A j ) <
ε2 nnz(A)

c2 log2 n
. That is, we do not have the condition

requiring setting the diagonal to 0. We will show that |λi (A) − λi (A′′)| ≤ ε/2 ·√
nnz(A). By Weyl’s inequality, and the assumption that nnz(A) ≥ 2/ε2, we then

have |λi (A) − λi (A′)| ≤ ε/2 · √
nnz(A) + 1 ≤ ε · √

nnz(A) as required.

LetIk ⊂ [n] be the set of rows/columnswith nnz(Ai ) ∈
[
nnz(A)

2k
,
nnz(A)

2k−1

)
andAkl =

A(Ik, Il) be the submatrix of A formed with rows in Ik and columns in Il . Define
A′′
kl in the same way and observe that A′′

kl = Akl whenever 2k+l ≤ c2 nnz(A) log2 n
ε2

.

When 2k+l >
c2 nnz(A) log2 n

ε2
, we may zero out some entries of Akl to produce

A′′
kl . Let Âkl be equal to Akl on this set of zeroed out entries, and 0 everywhere

else. Observe that (ÂklÂT
kl)m,: = (Âkl)m,:ÂT

kl . Next observe that (Âkl)m,: has at most

nnz(Am) ≤ nnz(A)

2k−1 non-zero entries. Similarly, each row of ÂT
kl has at most nnz(A)

2l−1

non-zero elements. Thus, for all m ∈ |Ik |, using that ‖A‖∞ ≤ 1,

‖(ÂklÂT
kl)m,:‖1 ≤ nnz(A)2

2k+l−2 = 4 nnz(A)2

2k+l
.

Applying Girshgorin’s circle theorem (Theorem 2) we thus have:

‖Âkl‖22 = ‖ÂklÂT
kl‖2 ≤ max

m
‖(ÂklÂT

kl)m,:‖1 ≤ 4 nnz(A)2

2k+l
. (13)

Let Ākl ∈ R
n×n be a symmetricmatrix such that Ākl(Ik, Il) = Âkl , Ākl(Il , Ik) = Âlk ,

and Ākl is zero everywhere else. By triangle inequality and the bound of (13),

‖Ākl‖2 ≤ ‖Âkl‖2 + ‖Âlk‖2 ≤ 4 nnz(A)

2(k+l)/2
.

Observe that, since we assume all rows have at least one non-zero entry, nnz(Ai ) ≥ 1
and nnz(A) ≤ n2. Therefore, k, l can range from 1 to log(n2) = 2 log n. By triangle
inequality,

‖A − A′′‖2 ≤
∑

(k,l):2k+l>
c2 nnz(A) log2 n

ε2

‖Ākl‖
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≤
2 log n∑
k=1

4ε
√
nnz(A)√

c2 · log n ·
2 log n∑
i=1

1

2i−1

≤ 16ε
√
nnz(A)√
c2

.

Finally, setting c2 large enough and using Weyl’s inequality (Fact 4) we have the
required bound:

|λi (A) − λi (A′′)| ≤ ε/2
√
nnz(A).

��

We next give a bound on the coherence of the outlying eigenvectors of A′. This
bound is analogous to Lemma 2, but is more refined, taking into account the sparsity
of each row.

Lemma 6 (Incoherence of outlying eigenvectors in terms of sparsity) Let A,A′ ∈
R
n×n be as in Lemma 5. LetA′

o = V′
o�

′
oV

′T
o where �′

o is diagonal, with the eigenval-
ues of A′ with magnitude ≥ ε

√
δ
√
nnz(A) on its diagonal, and V′

o has columns equal
to the corresponding eigenvectors. Let V′

o,i denote the i
th row of V′

o. Then,

‖�′1/2
o V′

o,i‖22 ≤ nnz(Ai )

ε
√

δ
√
nnz(A)

and ‖V′
o,i‖22 ≤ nnz(Ai )

ε2δ nnz(A)
.

Proof The proof is nearly identical to that of Lemma 2. Observe that A′V′
o = V′

o�
′
o.

Letting [A′V′
o]i denote the i th row of the A′V′

o, we have

‖[A′V′
o]i‖22 = ‖[V′

o�
′
o]i‖22 =

r∑
j=1

λ2j · V′2
o,i, j , (14)

where r = rank(A′
o),V

′
o,i, j is the (i, j)th element ofV′

o and λ j = �′
o( j, j). SinceV

′
o

has orthonormal columns, we thus have ‖[A′V′
o]i‖22 ≤ ‖A′

i‖22 ≤ ‖Ai‖22 ≤ nnz(Ai ).
Therefore, by (14),

r∑
j=1

λ2j · V′2
o,i, j ≤ nnz(Ai ). (15)

Sincebydefinition |λ j | ≥ ε
√

δ
√
nnz(A) for all j ,we can concluse that‖�′1/2

o V′
o,i‖22 =∑r

j=1 λ j ·V′2
o,i, j ≤ nnz(Ai )

ε
√

δ
√
nnz(A)

and ‖V′
o,i‖22 = ∑r

j=1V
′2
o,i, j ≤ nnz(Ai )

ε2δ nnz(A)
, which com-

pletes the lemma. ��
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5.2 Outer andMiddle Eigenvalue Bounds

Using Lemma 6, we next argue that the eigenvalues of A′
o,S will approximate those

of A′, and in turn those of A. The proof is very similar to Lemma 3 in the uniform
sampling case.

Lemma 7 (Concentration of outlying eigenvalues with sparsity-based sampling) Let
A,A′ ∈ R

n×n be as in Lemmas 5 and 6. Let A′ = A′
m + A′

o, where A′
m =

V′
m�′

mV
′T
m, andA

′
o = V′

o�
′
oV

′T
o are projections onto the eigenspaces with magnitude

< ε
√

δ
√
nnz(A) and≥ ε

√
δ
√
nnz(A) respectively (analogous to Definition 1.1) As in

Algorithm 2, for all i ∈ [n] let pi = min
(
1, s nnz(Ai )

nnz(A)

)
and let S̄ be a scaled diagonal

sampling matrix such that the S̄i i = 1√
pi

with probability pi and S̄i i = 0 otherwise.

If s ≥ c log(1/(εδ))
ε3

√
δ

for a large enough constant c, then with probability at least 1 − δ,

‖�′1/2
o V

′T
o S̄S̄TV′

o�
′1/2
o − �′

o‖2 ≤ ε
√
nnz(A).

Proof Define E = �
′1/2
o V

′T
o S̄S̄TV′

o�
′1/2
o − �′

o. For all i ∈ [n], let Vo,i be the i th row
of V′

o and define the matrix valued random variable

Yi =
{

1
pi

�
′1/2
o V′

o,iV
′T
o,i�

′1/2
o , with probability pi

0 otherwise.
(16)

Define Qi = Yi − E [Yi ]. We can observe that Q1,Q2, . . . ,Qn are independent

random variables and that
∑n

i=1Qi = �
′1/2
o V

′T
o S̄S̄TV′

o�
′1/2
o − �′

o = E. Let P =
{i ∈ [n] : pi < 1}. Then, observe that

∑
i∈[n]\P Qi = 0. So, E = ∑

i∈P Qi .
Then, similar to the proof of Lemma 3, we need to bound ‖Qi‖2 for all i ∈ P and

Var(E)
def= E(EET ) = E(ETE) = ∑

i∈P E[Q2
i ] using the improved row norm bounds

of Lemma 5. In particular, we have

∑
i∈P

E[Q2
i ] =

∑
i∈P

[
pi ·

(
1

pi
− 1

)2

+ (1 − pi )

]
· (�

1/2
o Vo,iVT

o,i�oVo,iVT
o,i�

1/2
o )

�
∑
i∈P

1

pi
· ‖�1/2

o Vo,i‖22 · (�
1/2
o Vo,iVT

o,i�
1/2
o ). (17)

By Lemma 6, ‖�1/2
o Vo,i‖22 ≤ nnz(Ai )

ε
√

δ
√
nnz(A)

. Plugging back into (17),

∑
i∈P

E[Q2
i ] �

∑
i∈P

1

pi
· nnz(Ai )

ε
√

δ
√
nnz(A)

· (�
1/2
o Vo,iVT

o,i�
1/2
o )

�
√
nnz(A)

sε
√

δ
(
∑
i∈P

	
1/2
o Vo,iVT

o,i�
1/2
o )

=
√
nnz(A)

sε
√

δ
�o � nnz(A)

sε
√

δ
· I.
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Since Q2
i is PSD this establishes that v ≤ ‖Var(E)‖2 ≤ nnz(A)

sε
√

δ
. Since there are at

most nnz(A)

δε2 nnz(A)
= 1

ε2δ
eigenvalues with absolute value ≥ ε

√
δ
√
nnz(A), we can apply

the matrix Bernstein inequality exactly as in the proof of Lemma 3 with d = 1
ε2δ

to

show that when s ≥ c log(1/(εδ))
ε3

√
δ

for large enough c, with probability at least 1 − δ,

‖E‖2 ≤ ε
√
nnz(A). ��

We next bound the spectral norm of A′
m,S . This is the most challenging part of the

proof—the rows of this matrix are sampled non-uniformly and scaled proportional to
their inverse sampling probabilities, sowe cannot apply existing bounds on the spectral
norms of uniformly sampled random submatrices [9]. We extend these bounds to the
non-uniform case, critically using that entries which would be scaled up significantly
after sampling (i.e. those lying in sparse rows/columns), have already been set to 0 in
A′
m,S , and thus do not contribute to the spectral norm.

Lemma 8 (Concentration of middle eigenvalues with sparsity-based sampling) Let
A,A′ ∈ R

n×n be as in Lemmas 5 and 6. Let A′ = A′
m + A′

o, where A′
m =

V′
m�′

mV
′T
m, andA

′
o = V′

o�
′
oV

′T
o are projections onto the eigenspaces with magnitude

< ε
√

δ
√
nnz(A) and ≥ ε

√
δ
√
nnz(A) respectively (analogous to Definition 1.1). As

in Algorithm 2, for all i ∈ [n] let pi = min
(
1, s nnz(Ai )

nnz(A)

)
and let S̄ be a scaled diagonal

sampling matrix such that the S̄i i = 1√
pi

with probability pi and S̄i i = 0 otherwise.

If s ≥ c log8 n
ε8δ4

for a large enough constant c, then with probability at least 1 − δ,

‖S̄A′
m S̄‖2 ≤ ε

√
nnz(A).

Proof The initial part of the proof follows the outline of proof of the spectral norm
bound for uniformly random submatrices (Theorem 4) of [10]. From Lemma 6,

we have ‖V′
o,i‖2 ≤

√
nnz(Ai )

ε
√

δ
√
nnz(A)

. Also, following the proof of Lemma 6, we have

‖�′
oV′T

o, j‖2 = ‖[A′V′
o] j‖2 ≤ √

nnz(A j ). Thus, for all i, j ∈ [n], using Cauchy
Schwarz’s inequality, we have

|A′
o,i, j | = |V′

o,i�
′
oV′T

o, j | ≤ ‖V′
o,i‖2 · ‖�′

oV′T
o, j‖2 ≤

√
nnz(Ai )

ε
√

δ
√
nnz(A)

·
√
nnz(A j ).

(18)

LetA′
m = Hm+Dm whereHm andDm contain the off-diagonal and diagonal elements

of A′
m respectively. Note that while A′ is zero on the diagonal, A′

m may not be. We
have:

E2‖S̄A′
m S̄‖2 ≤ E2‖S̄Hm S̄‖2 + E2‖S̄Dm S̄‖2.

Using Lemma 1 (decoupling) on E2‖SHm S̄‖2, we get

E2‖S̄A′
m S̄‖2 ≤ 2E2‖S̄Hm Ŝ‖2 + E2‖S̄Dm S̄‖2, (19)
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where Ŝ is an independent copy of S̄. Upper bounding the rank ofHm as n and applying
Theorem 5 twice to E2‖S̄Hm Ŝ‖2, once for each operator, we get

E2‖S̄Hm Ŝ‖2 ≤ 5
√
log nE2‖S̄Hm Ŝ‖1→2 + E2‖ŜHm‖2

≤ 5
√
log nE2‖S̄Hm Ŝ‖1→2 + 5

√
log nE2‖Hm Ŝ‖1→2 + ‖Hm‖2. (20)

Plugging (20) into (19), we have:

E2‖S̄A′
m S̄‖2 ≤ 10

√
log n

(
E2‖S̄Hm Ŝ‖1→2 + E2‖Hm Ŝ‖1→2

)

+ 2‖Hm‖2 + E2‖S̄Dm S̄‖2 (21)

We now proceed to bound each of the terms on the right hand side of (21). We start
with E2‖S̄Dm S̄‖2. First, observe that E2‖S̄Dm S̄‖2 ≤ maxi 1

pi
|(Dm)i i |. We consider

two cases.

Case 1 pi < 1. Then, pi = s nnz(Ai )
nnz(A)

and |(Dm)i i | = |(A′
m)i i | = |(A′

o)i i | (since
A′
i i = 0). Then by (18), we have 1

pi
|(Dm)i i | ≤

√
nnz(A)

sε
√

δ
.

Case 2 pi = 1. Then we have 1
pi

|(Dm)i i | = |(Dm)i i | ≤ max j |(Dm) j j | ≤ ‖A′
m‖2 ≤

ε
√

δ
√
nnz(A).

From the two cases above, for s ≥ 1
ε2δ

, we have:

E2‖S̄Dm S̄‖2 ≤ ε
√

δ
√
nnz(A). (22)

We can bound ‖Hm‖2 similarly. SinceHm = A′
m −Dm and ‖A′

m‖2 ≤ ε
√

δ
√
nnz(A),

‖Hm‖2 ≤ ‖A′
m‖2 + ‖Dm‖2

≤ ε
√

δ
√
nnz(A) + ε

√
δ
√
nnz(A)

= 2ε
√

δ
√
nnz(A) (23)

where the second step follows from the fact that ‖Dm‖2 ≤ maxi |(Dm)i i | ≤ ‖A′
m‖2.

We next bound the termE2‖Hm Ŝ‖1→2. Observe thatE2‖Hm Ŝ‖1→2 ≤ maxi ‖A′
m,i‖2√

pi
,

whereA′
m,i is the i th column/row ofA′

m .We again consider the two caseswhen pi = 1
and pi < 1:

Case 1 pi = 1. Then ‖A′
m,i‖2 ≤ ‖A′

m‖2 ≤ ε
√

δ
√
nnz(A).

Case 2 pi < 1. Then ‖A′
m,i‖2 ≤ ‖A′

i‖2 ≤ √
nnz(Ai ). Thus, setting s ≥ 1

ε2δ
we

have:

‖A′
m,i‖2√
pi

≤
√

nnz(A)

s nnz(Ai )
· ‖A′

i‖2 ≤
√
nnz(A)

s
≤ ε

√
δ
√
nnz(A).
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Thus, from the two cases above, for all i ∈ [n], adjusting ε by a 1√
log n

factor, we have

for s ≥ log n
ε2δ

:

E2‖Hm Ŝ‖1→2 ≤ ε
√

δ
√
nnz(A)√
log n

. (24)

Overall, plugging (22), (23), and (24) back into (21), we have:

E2‖S̄A′
m S̄‖2 ≤ 10

√
log n · E2‖S̄Hm Ŝ‖1→2 + 15ε

√
δ
√
nnz(A). (25)

It remains to bound E2‖S̄Hm Ŝ‖1→2, which is the most complex part of the proof.
Since Ŝ is an independent copy of S̄, we upper bound the norm of the i th col-

umn of S̄Hm Ŝ by ‖(S̄Hm ):,i‖2√
pi

. Then E2‖S̄Hm Ŝ‖1→2 ≤ E2

(
maxi :i∈[n] ‖(S̄Hm):,i‖2√

pi

)
.

We will argue that maxi :i∈[n] ‖(S̄Hm):,i‖2√
pi

is bounded by ε
√

δ
√
nnz(A) with probabil-

ity 1 − 1/ poly(n). Since our sampling probabilities are all at least 1/n2 and since
‖Hm‖F ≤ ‖A‖F ≤ n, this value is also deterministically bounded by n2. Thus, our

high probability bound implies the needed bound on E2

(
maxi :i∈[n] ‖(S̄Hm):,i‖2√

pi

)
.

We begin by observing that since A′
m = Hm + Dm , ‖(S̄A′

m):,i‖2 ≥ ‖(S̄Hm):,i‖2,
and so to bound maxi :i∈[n] ‖(S̄Hm ):,i‖2√

pi
, it suffices to bound ‖(S̄A′

m ):,i‖2√
pi

for all i ∈ [n].
Towards this end, for a fixed i and any j ∈ [n], define

z j =
{

1
p j

|A′
m,i, j |2 with probability p j

0 otherwise.

Then
∑n

j=1 z j = ‖(S̄A′
m):,i‖22 and E[∑n

j=1 z j ] = ‖A′
m,i‖22 ≤ ‖A′

i‖22 ≤ nnz(Ai ).

Since
∑n

j=1 z j = ‖(S̄A′
m):,i‖22 is a sum of independent random variables, we can

bound this quantity by applying Bernstein’s inequality. To do this, we must bound |z j |
for all j ∈ [n] and Var

(∑n
j=1 z j

)
. We will again consider the cases of pi < 1 and

pi = 1 separately.

Case 1: pi < 1. Then, we have pi = s nnz(Ai )/ nnz(A). If A′
i, j �= 0 then

|z j | ≤ 1

p j
|A′

m,i, j |2 ≤ max

(
1,

nnz(A)

s nnz(A j )

)
|A′

m,i, j |2

≤ |A′
m,i, j |2 + 2 nnz(A)

s nnz(A j )

(
|A′

i, j |2 + |A′
o,i, j |2

)

≤ |A′
m,i, j |2 + 2 nnz(A)

s nnz(A j )

(
|A′

i, j |2 + nnz(Ai ) nnz(A j )

ε2δ nnz(A)

)

≤ |A′
m,i, j |2 + 2 nnz(A)

s nnz(A j )
|A′

i, j |2 + 2 nnz(Ai )

ε2δs
,
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where the fourth inequality uses (18). By the thresholding procedure which defines
A′, if A′

i j �= 0,

nnz(Ai ) · nnz(A j ) ≥ ε2 nnz(A)

c2 log2 n
⇒ nnz(A j ) ≥ ε2 nnz(A)

c2 log2 n nnz(Ai )
, (26)

and thus for pi < 1 and A′
i j �= 0 we have

|z j | ≤ |A′
m,i, j |2 + 2c2 log2 n nnz(Ai )

sε2
+ 2 nnz(Ai )

ε2δs
.

If A′
i, j = 0 then we simply have

|z j | ≤ |A′
m,i j |2 + nnz(Ai )

sε2δ
.

Overall for all j ∈ [n],

|z j | ≤ |A′
m,i, j |2 + 2 nnz(Ai )

sε2δ
+ 2c2 log2 n nnz(Ai )

sε2
, (27)

and since |A′
m,i, j |2 ≤ ∑n

j=1 |A′
m,i, j |2 = ‖A′

m,i‖22 ≤ ‖A′
i‖22 ≤ nnz(Ai ),

|z j | ≤ nnz(Ai ) + 2 nnz(Ai )

sε2δ
+ 2c2 log2 n nnz(Ai )

sε2
. (28)

For s ≥ c
(
log2 n

ε2
+ 1

ε2δ

)
and large enough c, we thus have |z j | ≤ 2 nnz(A).

We next bound the variance by:

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤

n∑
j=1

E[z2j ] ≤
n∑
j=1

p j
1

p2j
|A′

m,i, j |4

=
n∑
j=1

max

(
1,

nnz(A)

s nnz(A j )

)
|A′

m,i, j |4

≤
n∑
j=1

|A′
m,i, j |4 +

n∑
j=1

12 nnz(A)

s nnz(A j )

(
|A′

i, j |4 + |A′
o,i, j |4

)

≤ ‖A′
m,i‖42 +

n∑
j=1

12 nnz(A)

s nnz(A j )

(
|A′

i, j |4 + nnz(Ai )
2 nnz(A j )

2

ε4δ2 nnz(A)2

)
,
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where the last inequality uses (18). Now since A′
i i = 0 for all i and ‖A′‖∞ ≤ 1 we

have

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤ ‖A′

m,i‖42 +
∑

j :A′
i, j �=0

12 nnz(A)

s nnz(A j )
+

n∑
j=1

12 nnz(Ai )
2 nnz(A j )

sε4δ2 nnz(A)
.

(29)

Combining (26) with the second term to the right of (29) we have

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤ ‖A′

m,i‖42 +
∑

j :A′
i, j �=0

12c2 log2 n · nnz(Ai )

sε2

+
n∑
j=1

12 nnz(Ai )
2 nnz(A j )

sε4δ2 nnz(A)
,

and since |{ j : A′
i, j �= 0}| = nnz(Ai ), we have

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤ ‖A′

m,i‖42 + 12c2 log2 n · nnz(Ai )
2

sε2
+

n∑
j=1

12 nnz(Ai )
2 nnz(A j )

sε4δ2 nnz(A)
.

(30)

Finally since
∑n

j=1 nnz(A j ) = nnz(A) and ‖A′
m,i‖42 ≤ ‖A′

i‖42 ≤ nnz(Ai )
2 we have

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤ nnz(Ai )

2 + 12c2 log2 n · nnz(Ai )
2

sε2
+ 12 nnz(Ai )

2

sε4δ2
. (31)

For s ≥ c
(
log2 n

ε2
+ 1

ε4δ2

)
for large enough c, we have Var

(∑n
j=1 z j

)
≤ 2 nnz(Ai )

2.

Therefore, using (28) and (31) with s ≥ c
(
log2 n

ε2
+ 1

ε4δ2

)
, we can apply Bernstein

inequality (Theorem 7) (for some constant c) to get

P

(
‖(S̄A′

m):,i‖22 ≥ E‖(S̄A′
m):,i‖22 + t

)
≤ P

⎛
⎝

n∑
j=1

z j ≥ nnz(Ai ) + t

⎞
⎠

≤ exp

( −t2/2

c nnz(Ai )2 + ct nnz(Ai )/3

)
.

If we set t = log n · nnz(Ai ), for some constant c′ we have

P

(
‖(S̄A′

m):,i‖22 ≥ E‖(S̄A′
m):,i‖22 + log n · nnz(Ai )

)
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≤ exp

( −(log n)2/2

c + c(log n)/3

)
≤ exp(−c′ log n) ≤ 1/nc

′
.

Since A′
m = Hm +Dm , we have ‖(S̄A′

m):,i‖2 ≥ ‖(S̄Hm):,i‖2. Then with probability
at least 1 − 1/nc

′ ≥ 1 − δ, for any row i with pi < 1, we have

1

pi
· ‖(S̄Hm):,i‖22 ≤ nnz(A)

s nnz(Ai )
· c(log n) nnz(Ai ) ≤ ε2δ nnz(A)

log n
,

for s ≥ c
(
log2 n

ε2
+ 1

ε4δ2

)
for large enough c. Observe that, as in Lemma 3 w.l.o.g.

we have assumed 1 − nc
′ ≥ 1 − δ, since otherwise, our algorithm would read all n2

entries of the matrix.

Case 2: pi = 1. Then, we have nnz(Ai ) ≥ nnz(A)/s. As in the pi < 1 case, we have
from (27):

|z j | ≤ |A′
m,i, j |2 + 2 nnz(Ai )

sε2δ
+ 2c2 log2 n nnz(Ai )

sε2
.

Now, we observe that |A′
m,i, j |2 ≤ ∑n

j=1 |A′
m,i, j |2 ≤ ‖A′

m,i‖22 ≤ ‖A′‖22 ≤
ε2δ nnz(A), which gives us

|z j | ≤ ε2δ nnz(A) + 2 nnz(Ai )

sε2δ
+ 2c2 log2 n nnz(Ai )

sε2
. (32)

Thus, for s ≥ c
(
log2 n
ε4δ

+ 1
ε4δ2

)
for a large enough constant c and adjusting for other

constants we have |z j | ≤ 2ε2δ nnz(A). Also observe that the expectation of
∑

z j can
be bounded by:

E

⎛
⎝

n∑
j=1

z j

⎞
⎠ = E‖(S̄A′

m):,i‖22 = ‖A′
m,i‖22 ≤ ‖A′

m‖22 ≤ ε2δ nnz(A).

Next, the variance of the sum of the random variables {z j } can again be bounded by
following the analysis presented in and prior to (30) and (31) we have

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤ ‖A′

m,i, j‖42 + 12c2 log2 n · nnz(Ai )
2

sε2
+ 12 nnz(Ai )

2

sε4δ2

≤ ε4δ2 nnz(A)2 + 12c2 log2 n · nnz(Ai )
2

sε2
+ 12 nnz(Ai )

2

sε4δ2
, (33)
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where we again bound ‖A′
m,i, j‖42 using

|A′
m,i, j |2 ≤

n∑
j=1

|A′
m,i, j |2 ≤ ‖A′

m,i‖22 ≤ ‖A′‖22 ≤ ε2δ nnz(A).

Then for s ≥ c( log
2 n

ε6δ2
+ 1

ε8δ4
), we have Var

(∑n
j=1 z j

)
≤ 2ε4δ2 nnz(A)2 for large

enough constant c.

Using (32) and (33) and noting that
∑n

j=1 E

(
z2j

)
≥ Var

(∑n
j=1 z j

)
−E

2
(∑n

j=1 z j
)

we can apply the Bernstein inequality (Theorem 7):

P

(
‖(S̄A′

m):,i‖22 ≥ E‖(S̄A′
m):,i‖22 + t

)
≤ P

⎛
⎝

n∑
j=1

z j ≥ ε2δ nnz(Ai ) + t

⎞
⎠

≤ exp

( −t2/2

cε4δ2 nnz(A)2 + cε2δ nnz(A)t/3

)
.

If we set t = (log n)ε2δ nnz(A), then for some constant c′ we have

P

(
‖(S̄A′

m):,i‖22 ≥ E‖(S̄A′
m):,i‖22 + t

)
≤ exp(−c′ log n) ≤ 1/nc

′
.

This, since ‖(S̄Hm):,i‖22 ≤ ‖(S̄A′
m):,i‖22, when pi = 1, setting s ≥ c( log

2 n
ε6δ2

+ 1
ε8δ4

) for

large enough c, we havewith probability≥ 1−1/nc
′ 1
pi

‖(S̄Hm):,i‖22 = ‖(S̄Hm):,i‖22 ≤
‖(S̄A′

m):,i‖22 ≤ (log n)ε2δ nnz(A).

We thus have, that with probability ≥ 1 − 1/nc
′
, for both cases when pi < 1

and pi = 1,
‖(S̄Hm ):,i‖22

pi
≤ (log n)ε2δ nnz(A). Taking a union bound over all i ∈ [n],

with probability at least 1 − 1/nc
′−1, maxi

‖(S̄Hm):,i‖2√
pi

≤ √
log nε

√
δ
√
nnz(A) for

s ≥ c( log
2 n

ε6δ2
+ 1

ε8δ4
). As stated before, since pi ≥ 1

n2
for all i ∈ [n], and since

‖Hm‖F ≤ ‖A‖F ≤ n, we also have maxi
‖(S̄Hm):,i‖2√

pi
≤ n2. Thus,

E2

(
max
i :i∈[n]

‖(S̄Hm):,i‖2√
pi

)
≤ √

log nε
√

δ
√
nnz(A)(1 − 1

nc′−1
)

+ 1

nc′−3
≤ √

log nε
√

δ
√
nnz(A).

after adjusting ε by at most some constants. Overall, we finally get

E2‖S̄Hm Ŝ‖1→2 ≤ E2

(
max
i :i∈[n]

‖(S̄Hm):,i‖2√
pi

)
≤ ε

√
log n

√
δ
√
nnz(A).
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Plugging this bound into (25), we have for s ≥ c( log
2 n

ε6δ2
+ 1

ε8δ4
),

E2‖S̄A′
m S̄‖2 ≤ (log n)ε

√
δ
√
nnz(A).

Finally after adjusting ε by a 1
log n factor, we have for s ≥ c( log

8 n
ε6δ2

+ log8 n
ε8δ4

) or s ≥
c log8 n
ε8δ4

,

E2‖S̄A′
m S̄‖2 ≤ ε

√
δ
√
nnz(A).

The final bound then follows via Markov’s inequality on ‖S̄A′
m S̄‖2. ��

5.3 Main Accuracy Bound

We are finally ready to prove our main result for sparsity-based sampling, which we
restate below.

Theorem 2 (Sparse Matrix Eigenvalue Approximation) Let A ∈ R
n×n be symmetric

with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by

including the i th index independently with probability pi = min
(
1, s nnz(Ai )

nnz(A)

)
as in

Algorithm 2. Here nnz(Ai ) is the number of non-zero entries in the i th row of A. Let
AS be the corresponding principal submatrix of A, and let λ̃i (A) be the estimate of

λi (A) computed from AS as in Algorithm 2. If s ≥ c log8 n
ε8δ4

, for large enough constant

c, then with probability ≥ 1 − δ, for all i ∈ [n], |λ̃i (A) − λi (A)| ≤ ε
√
nnz(A).

Proof With Lemmas 7 and 8 in place, the proof is nearly identical to that of Theorem
1, with the additional need to apply Lemma 5 to show that the eigenvalues of A′ are
close to those of A.

For all i ∈ [n] let pi = min
(
1, s nnz(Ai )

nnz(A)

)
and let S̄ be a scaled diagonal sampling

matrix such that the S̄i i = 1√
pi
with probability pi and S̄i i = 0 otherwise. LetA′ be the

matrix constructed fromA by zeroing out its elements as described in Lemma 5. Then,
note that S̄A′S̄ = A′

S where A′
S is the submatrix constructed as in Algorithm 2. We

first show that the eigenvalues of A′
S approximate those of A′ up to error ε

√
nnz(A).

The steps are almost identical to those in the proof of Theorem 1. We provide a brief
outline of the steps but skip the details.

We split A′ as A′ = A′
o +A′

m where A′
o and A

′
m contain eigenvalues of A′ of mag-

nitudes < ε
√

δ
√
nnz(A) and≥ ε

√
δ
√
nnz(A). This implies A′

S = A′
o,S +A′

m,S where

A′
o,S = S̄A′

oS̄ and A′
m,S = S̄A′

m S̄. By Fact 1 we have that the nonzero eigenvalues

of A′
o,S = S̄V′

o�
′
oV

′T
o S̄ are identical to those of �

′1/2
o V

′T
o S̄S̄V′

o�
′1/2
o . Thus, applying

the perturbation bound of Fact 4, we have:

∣∣∣λi (�
′1/2
o V

′T
o S̄S̄V′

o�
′1/2
o ) − λi (�

′
o)

∣∣∣ ≤ C log n‖�′1/2
o V

′T
o S̄S̄V′

o�
′1/2
o − �′

o‖2.
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FromLemma7,we get ‖�′1/2
o V

′T
o S̄S̄V′

o�
′1/2
o −�′

o‖2 ≤ ε
√
nnz(A) for s ≥ c log(1/(εδ))

ε3
√

δ

with probability at least 1 − δ. Thus, setting the error parameter to ε
log n in Lemma 7,

for s ≥ c log(1/(εδ)) log3 n
ε3

√
δ

, with probability at least 1 − δ we have:

∣∣∣λi (�
′1/2
o V

′T
o S̄S̄V′

o�
′1/2
o ) − λi (�

′
o)

∣∣∣ < ε
√
nnz(A). (34)

We have thus shown that the non-zero eigenvalues of A′
o,S approximate all outlying

eigenvalues of A′. Note that by Lemma 8, we also have ‖A′
m,S‖2 ≤ ε

√
nnz(A) with

probability at least 1 − δ for s ≥ c log8 n
ε8δ4

. Then, similarly to the section on eigenvalue
alignment of Theorem 1, we can argue how these approximations ‘line up’ in the
presence of zero eigenvalues in the spectrum of these matrices, concluding that, for
all i ∈ [n],

∣∣∣λ̃i (A) − λi (A′)
∣∣∣ ≤ ε

√
nnz(A).

Finally, by Lemma 5, we have |λi (A′)−λi (A)| ≤ ε
√
nnz(A) for all i ∈ [n]. Thus, via

triangle inequality,
∣∣∣λ̃i (A) − λi (A)

∣∣∣ ≤ 2ε
√
nnz(A), which gives the required bound

after adjusting ε to ε/2.

Recall that we require s ≥ c log(1/(εδ))·log3 n
ε3

√
δ

for (34) to hold with probability 1− δ.

We also require s ≥ c log8 n
ε8δ4

for ‖A′
m,S‖2 ≤ ε

√
nnz(A) to hold with probability 1 − δ

by Lemma 8. Thus, for both conditions to hold simultaneously with probability 1−2δ

by a union bound, it suffices to set s = c log8 n
ε8δ4

≥ max
(
c log(1/(εδ))·log3 n

ε3
√

δ
,
c log8 n
ε8δ4

)
,

where we use that log(1/(εδ) ≤ O(log n), as otherwise our algorithm can take AS to
be the full matrix A. Adjusting δ to δ/2 completes the theorem. ��

6 Empirical Evaluation

We complement our theoretical results by evaluatingAlgorithms 1 (uniform sampling)
andAlgorithm2 (sparsity-based sampling) in approximating the eigenvalues of several
symmetric matrices. We defer an evaluation of Algorithm 3 (norm-based sampling) to
later work. Algorithm 1 and Algorithm 2 perform very well. They seem to have error
dependence roughly 1/ε2 in practice, as compared to the 1/ε3 dependence proven in
Theorem 1 and 1/ε8 dependence in Theorem 2. Closing the gap between the theory
and observed results would be very interesting.

6.1 Datasets

We test Algorithm 1 (uniform sampler) on three dense matrices. We also compare the
relative performance of Algorithm 1 and Algorithm 2 (sparsity sampler) on three other
synthetic and real world matrices.
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Fig. 2 Kong dataset. The image on the left is the original synthetic binary image and the image on the right
shows the 5000 sampled points from the outline used as dataset in our experiments

The first two dense matrices, following [49], are created by sampling 5000 points
from a binary image. We then normalize all the points in the range [0, 1] in both axes.
The original image and resulting set of points are shown in Fig. 2. We then compute a
similaritymatrix for the points using two common similarity functions used inmachine

learning and computer graphics: δ(x, y) = tanh
( 〈x,y〉

2

)
, the hyperbolic tangent; and

δ(x, y) = ‖x − y‖22 · log (‖x − y‖22
)
, the thin plane spline. These measures lead to

symmetric, indefinite, and entrywise bounded similarity matrices.
Our next dense matrix (called the block matrix) is based on the construction of the

hard instance for the lower bound in [11]which shows thatwe need�(1/ε2)×�(1/ε2)
samples to compute εn approximations to the eigenvalues of a bounded entry matrix.
It is a 5000×5000 matrix containing a 2500×2500 principal submatrix of all 1s, with
the rest of the entries set to 0. It has λ1(A) = 2500 and all other eigenvalues equal to
0.

We now describe the three matrices used to compare Algorithm 1 and Algorithm 2.
All three are graph adjacency matrices, which are symmetric, indefinite, entrywise
bounded and sparse. Spectral density estimation for graph structured matrices is an
important primitive in network analysis [19]. The first is a dense Erdös-Rényi graph
with 5000 nodes and connection probability 0.1. The second two are real world graphs,
taken from SNAP [50]; namely Facebook [51] and Arxiv COND-MAT [52]. The
Facebook graph contains 4039 nodes and 88234 directed edges. We symmetrize the
adjacency matrix. Arxiv COND-MAT is a collaboration network between authors of
Condensed Matter papers published on arXiv, containing 23,133 nodes and 93497
undirected edges. Both these graphs are very sparse—the number of edges is≤ 1% of
the total edges in a complete graph with same number of nodes. The true eigenvalue
spectra of each of these matrices are plotted in Fig. 3.

6.2 Implementation Details

Apart from uniform random sampling (Algorithm 1), we also apply the sparsity-based
sampling technique in Algorithm 2 and a modification to Algorithm 2, where we do
not zero out the elements of the sampled submatrix AS (we call this simple sparsity
sampler). In practice, to apply Algorithm 2, we zero out element [AS]i, j (line 5 of
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Fig. 3 Eigenspectrum plots. Plots of the eigenspectra of the matrices we studied in Sect. 6. The eigenvalues
are ranked in decreasing ordered

Algorithm 2) if i = j or nnz(Ai ) nnz(A j ) <
nnz(A)
c2s

, where c2 is a constant and s is
the size of the sample. We set c2 = 0.1 experimentally as this results in consistent
behavior across datasets.

6.3 Experimental Setup

We subsample each matrix and compute its eigenvalues using numpy [53]. We then
use our approximation algorithms to estimate the eigenvalues of A by scaling the
eigenvalues of the sampled submatrix. For t trials, we report the logarithm of the

average absolute scaled error, log
(
1
t

∑ |λ̃i,t (A)−λi (A)|√
nnz(A)

)
, where λ̃i,t (A) is the estimated

eigenvalue in the t th trial, λi (A) is the true eigenvalue and nnz(A) is the number of
non-zero elements in A. Recall that

√
nnz(A) ≥ ‖A‖F is an upper bound on all

eigenvalue magnitudes. Also note that for the fully dense matrices,
√
nnz(A) ≈ n.

We repeat our experiments for t = 50 trials at different sampling rates and aggregate
the results. The resultant errors of estimation for dense matrices are plotted in Fig. 4
and for the graph matrices are plotted in Fig. 5. The x-axis is the log proportion of
the number of random samples chosen from the matrix. If we sample 1% of the
rows/columns, then the log comes to around−4.5. In these log-log plots, if the sample
size has polynomial dependence on ε, e.g., εn or ε

√
nnz(A) error is achieved with

sample size proportional to 1/ε p, we expect to see error falling off linearly, with slope
equal to −1/p where p is the exponent on ε.

As a baseline we also show the error if we approximate all eigenvalues with 0
which results in an error of λi√

nnz(A)
. This helps us to observe how the approximation

123



Algorithmica (2024) 86:1764–1829 1799

algorithms perform for both large and small order eigenvalues, as opposed to just
approximating everything by 0.

Code. All codes are written in Python and available at https://github.com/archanray/
eigenvalue_estimation.

6.4 Summary of Results

Our results are plotted in Figs. 4 and 5. We observe relatively small error in approxi-
mating all eigenvalues, with the error decreasing as the number of samples increases.
What is more interesting is that the relationship between sample size and error εn
seems to be generally on the order of 1/ε2, our expected lower bound for approxi-
mating eigenvalues by randomly sampling a principal submatrix. This can be seen by
observing the slope of approximately −1/2 on the log-log error plots. In some cases,
we do better in approximating small eigenvalues of A—if the eigenvalue lies well
within the range of middle eigenvalues, i.e. {−εn, εn}), we may achieve a very good
absolute error estimate simply by approximating it to 0.

As expected, on the graph adjacency matrices (in Fig. 5), sparsity-based sampling
techniques generally achieve better error than uniform sampling. For the Erdös-Rényi
graph, we expect the node degrees (and hence row sparsities) to be similar. Thus
the sampling probability for each row will be roughly uniform, which leads to sim-
ilar performance of sparsity-based techniques and uniform sampling. For the real
world graphs, which have power law degree distributions, sparsity-based sampling
techniques has a significant effect. As a result Algorithm 2, and the simple sparsity
sampler variant significantly outperform uniform sampling.

Algorithm 2 almost always dominates simple sparsity sampler. In some cases sim-
ple sparsity sampler performs better or equivalent to Algorithm 2. This may happen
because for two reasons: (1) if Algorithm 2 zeroes out almost all of the sampled
submatrix AS for small samples, the algorithm will underestimate the corresponding
eigenvalue, and (2) the cut-off threshold for the term nnz(Ai ) nnz(A j ) may be too
high leading to no difference between simple sparsity sampler and Algorithm 2.

We also observe that approximating all eigenvalues with 0 results in very good
approximation for small eigenvalues of the Erdös-Rényi graph. We believe this is
because the smaller eigenvalues are significantly less than the largest eigenvalue (of
the order of 3500). We see similar trends of approximating eigenvalues with zero
for the real world graphs too. But since eigenvalues at the extreme spectrum are of
a larger order, we see reasonably good approximation for the sampling algorithms.
Algorithm 2 outperforms approximation by 0 in all of these cases.

In the dense matrices uniform sampling almost always outperforms approximation
by 0 when estimating any reasonably large eigenvalues. Additionally, note that the
block matrix is rank-1 with true eigenvalues {2500, 0, . . . , 0}. Any sampled principal
submatrixwill also have rank atmost 1. Thus, outside the top eigenvalue, the submatrix
will have all zero eigenvalues, which are perfectly approximated by our algorithm.
The only non-trivial approximation for this matrix is for the top eigenvalue. This
approximation seems to have error dependency around 1/ε2, as expected.

123

https://github.com/archanray/eigenvalue_estimation
https://github.com/archanray/eigenvalue_estimation


1800 Algorithmica (2024) 86:1764–1829

7 Conclusion

We present efficient algorithms for estimating all eigenvalues of a symmetric matrix
with bounded entries up to additive error εn, by reading just a poly(log n, 1/ε) ×
poly(log n, 1/ε) random principal submatrix. We give improved error bounds of
ε
√
nnz(A) and ε‖A‖F when the rows/columns are sampled with probabilities pro-

portional to their sparsities or squared �2 norms, respectively.
As discussed, our work leaves several open questions. In particular, it is open if our

query complexity for ±εn approximation can be improved, possibly to Õ(logc n/ε4)

total entries using principal submatrix queries or Õ(logc /ε2) entries using general
queries. The later bound is open even when A is PSD, a setting where we know that
sampling a O(1/ε2)×O(1/ε2) principal submatrix (with O(1/ε4) total entries) does
suffice. Additionally, it is open if we can achieve sample complexity independent of
n, by removing all log n factors, as have been done for the easier problem of testing
positive semidefiniteness [11]. See Sect. 1.4 for more details.

It would also be interesting to extend our results to give improved approximation
bounds for other properties of the matrix spectrum, such as various Schatten-p norms
and spectral summaries. For many of these problems large gaps in understanding
exist—e.g., for ±n3/2 approximation to the Schatten-1 norm, which requires �(n)

queries, but for which no o(n2) query algorithm is known. Applying our techniques
to improve sublinear time PSD testing algorithms under an �2 rather than �∞ approx-
imation requirement [11] would also be interesting. Finally, it would be interesting
to identify additional assumptions on A or on the sampling model where stronger
approximation guarantees (e.g., relative error) can be achieved in sublinear time.
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A Eigenvalue Approximation for PSDMatrices

Here we give a simple proof that shows if Algorithm 1 is used to approximate the
eigenvalues of positive semidefinite (PSD) matrices (i.e., with all non-negative eigen-
values) using a O(1/ε2)×O(1/ε2) random submatrix, then the �2 norm of the error of
eigenvalue approximations is bounded by εn. This much stronger result immediately
implies that each eigenvalue of a PSD matrix can be approximated to ±εn additive
error using just a O(1/ε2) × O(1/ε2) random submatrix. The proof follows from a
bound in [40] which bounds the �2 norm of the difference vector of eigenvalues of
a Hermitian matrix and any other random matrix by the Frobenius norm of the dif-
ference of the two matrices. This improves on the bound of Theorem 1 for general
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Fig. 4 Approximation error of eigenvalues of dense matrices. Log scale absolute error versus log sam-
pling rate for Algorithm 1 and approximation by 0, as described in Sect. 6.3, for approximating the
largest, smallest and fourth largest of three of the example matrices. The corresponding true eigenval-
ues for each matrix in-order are: (hyperbolic tangent) {4.52e+03, −7.85e+00, 3.18e−01}, (thin plane
spline) {3.54e+02, −1.22e+03, 1.28e+02} and (block matrix) {2.50e+03, 0, 0}. For the block matrix, all
eigenvalues except the largest magnitude one are 0, and so our algorithm perfectly approximates these
eigenvalues. Therefore, we only plot the error of approximation for the largest eigenvalue of the block
matrix

entrywise bounded matrices by a 1/ε2 factor, and matches the O(1/ε4) lower bound
for principal submatrix queries in [11]. Note that the hard instance used to prove the
lower bound in [11] can in fact be negated to be PSD, thus showing that our upper
bound here is tight.

We first state the result from [40] which we will be using in our proof.

Fact 5 (�2-norm bound on eigenvalues [40]) Let A ∈ C
n×n be Hermitian and B ∈

C
n×n be any matrix whose eigenvalues are λ1(B), . . . , λn(B) such that Re(λ1(B)) ≥

. . . ≥ Re(λn(B)) (where Re(λi (B)) denotes the real part of λi (B)). Let A − B = E.
Then

(
n∑

i=1

|λi (A) − λi (B)|2
)1/2

≤ √
2‖E‖F .
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Fig. 5 Approximation error of eigenvalues of sparse matrices. Log scale absolute error vs. log sampling
rate for Algorithms 1, 2, simple sparsity sampler and approximation by 0, as described in Sect. 6.3, for
approximating the largest, smallest, and fourth largest of remaining three example matrices. The corre-
sponding true eigenvalues for eachmatrix in-order are: (Erdös-Rényi) {500.57,−42.52, 42.02}, (Facebook)
{162.37,−23.75, 73.28} and (arXiv) {37.95,−15.58, 26.92}

Our result is based on the following Lemma, we prove at the end of the section.

Lemma 9 Consider a PSD matrix A = BBT with ‖A‖∞ ≤ 1. Let S be sampled as
in Algorithm 1 for s ≥ 1

ε2δ
. Let S̄ ∈ R

n×|S| be the scaled sampling matrix satisfying

S̄TAS̄ = n
s · AS. Then with probability at least 1 − δ,

‖BT S̄S̄TB − BTB‖F ≤ εn.

From the above Lemma we have:

Corollary 2 (Spectral norm bound—PSD matrices) Consider a PSD matrix A with
‖A‖∞ ≤ 1. Let S be a subset of indices formed by including each index in [n]
independently with probability s/n as in Algorithm 1. Let AS be the corresponding
principal submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥ λ|S|(AS).
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For all i ∈ [|S|] with λi (AS) ≥ 0, let λ̃i (A) = n
s · λi (AS). For all other i ∈ [n], let

λ̃i (A) = 0. Then if s ≥ 2
ε2δ

, with probability at least 1 − δ,

(
n∑

i=1

∣∣∣λ̃i (A) − λi (A)

∣∣∣
2
)1/2

≤ εn,

which implies that for all i ∈ [n],

λi (A) − εn ≤ λ̃i (A) ≤ λi (A) + εn.

Proof Let S be sampled as in Algorithm 1 and let S̄ ∈ R
n×|S| be the scaled sampling

matrix satisfying S̄TAS̄ = n
s · AS . Since A is PSD, we can write A = BBT for some

matrix B ∈ R
n×rank(A). From Lemma 9, for s ≥ 1

ε2δ
, we have with probability at least

1 − δ:

‖BT S̄S̄TB − BTB‖F ≤ εn

Using Fact 5, we have,

⎛
⎝

rank(A)∑
i=1

∣∣∣λi (BT S̄S̄TB) − λi (BTB)

∣∣∣
2

⎞
⎠

1/2

≤ √
2‖BT S̄S̄TB − BTB‖F ≤ √

2εn.

(35)

Also from Fact 1, we have λi (BTB) = λi (BBT ) = λi (A) for all i ≤ rank(A). Thus,

⎛
⎝

rank(A)∑
i=1

∣∣∣λi (BT S̄S̄TB) − λi (A)

∣∣∣
2

⎞
⎠

1/2

≤ √
2εn

Also by Fact 1, all non-zero eigenvalues of BT S̄S̄TB are equal to those of S̄TBBT S̄ =
n
s · AS . All other eigenvalue estimates are set to 0. Further, for all i > rank(A),
λi (A) = 0. Thus,

(
n∑

i=1

∣∣∣λ̃i (A) − λi (A)

∣∣∣
2
)1/2

≤ √
2εn.

Adjusting ε to ε/
√
2 then gives us the bound. ��

WenowproveLemma9, using a standard approach for sampling based approximate
matrix multiplication—see e.g. [44].
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Proof of Lemma 9 For k = 1, . . . , n let Yk = n
s − 1 with probability s

n and Yk = −1
with probability 1 − s

n . Thus E[Yk] = 0 and

‖BT S̄S̄TB − BTB‖2F =
n∑

i=1

n∑
j=1

(
n∑

k=1

Yk · BikB jk

)2

.

Fixing i, j , each the Yk · BikB jk are 0 mean independent random variables. Thus we
have:

E

[
‖BT S̄S̄TB − BTB‖2F

]
=

n∑
i=1

n∑
j=1

E

⎡
⎣
(

n∑
k=1

Yk · BikB jk

)2
⎤
⎦

=
n∑

i=1

n∑
j=1

Var

[
n∑

k=1

Yk · BikB jk

]

=
n∑

i=1

n∑
j=1

n∑
k=1

Var
[
Yk · BikB jk

]

≤
n∑

i=1

n∑
j=1

n∑
k=1

n

s
· B2

ikB
2
jk .

since Var[Yk] = ( n
s − 1

)2 · s
n + (1 − s

n

) = n
s − 2+ s

n + 1− s
n = n

s − 1. Rearranging
the sums we have:

E[‖BT S̄S̄TB − BTB‖2F ] ≤ n

s

n∑
k=1

n∑
i=1

B2
ik

n∑
j=1

B2
jk .

Observe that
∑n

j=1 B
2
jk = Akk ≤ ‖A‖∞ ≤ 1, thus overall we have:

E[‖BT S̄S̄TB − BTB‖2F ] ≤ n2

s
≤ ε2δn2.

So by Markov’s inequality, with probability ≥ 1 − δ, ‖BT S̄S̄TB − BTB‖2F ≤ ε2n2.
This completes the theorem after taking a square root. ��

Remark: The proof of Lemma 9 can be easily modified to show that the i th row of A
can be sampled with probability proportional to |Ai i |

tr(A)
to approximate the eigenvalues

of any PSD A up to ±ε · tr(A) error (tr(A) is the trace of A). When sampling with
probability proportional to |Ai i |

tr(A)
, we do not require a bounded entry assumption on A.
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B Alternate Bound for Uniform Sampling

In this section we provide an alternate bound for approximating eigenvalues with
uniform sampling. The sample complexity isworse by a factor of 1/ε for this approach,
but better by a factor log2 n as compared to Theorem 1. We start with an analog
to Lemma 3, showing that the outlying eigenspace remains nearly orthogonal after
sampling. In particular, we show concentration of the Hermitian matrix VT

o S̄S̄
TVo

about its expectationVT
o Vo = I rather than the non-Hermitian�

1/2
o VT

o S̄S̄
TVo�

1/2
o as

in Lemma 3. This allows us to use Weyl’s inequality in our final analysis, rather than
the non-Hermitian eigenvalue perturbation bound of Fact 4, saving a log2 n factor in
the sample complexity.

Lemma 10 (Near orthonormality—sampled outlying eigenvalues) Let S be sampled
as in Algorithm 1 for s ≥ c log(1/(εδ))

ε4δ
where c is a sufficiently large constant. Let

S̄ ∈ R
n×|S| be the scaled sampling matrix satisfying S̄TAS̄ = n

s · AS. Then with
probability at least 1 − δ, ‖VT

o S̄S̄
TVo − I‖2 ≤ ε.

Proof The result is standard in randomized numerical linear algebra—see e.g., [55].
For completeness, we give a proof here. Define E = VT

o S̄S̄
TVo − I. For all i ∈ [n],

let Vo,i be the i th row of Vo and define the matrix valued random variable

Yi =
{

n
sVo,iVT

o,i , with probability s/n

0 otherwise.

Then, similar to the proof of Lemma3, defineQi = Yi−E [Yi ]. SinceQ1,Q2, . . . ,Qn

are independent random variables and
∑n

i=1Qi = VT
o S̄S̄

TVo − I = E, we need to

bound ‖Qi‖2 for all i ∈ [n] and Var(E)
def= E(EET ) = E(ETE) = ∑n

i=1 E[Q2
i ].

Observe ‖Qi‖2 ≤ max
(
1, n

s − 1
) ‖Vo,iVT

o,i‖2 = max
(
1, n

s − 1
) ‖Vo,i‖22 ≤ 1

ε2δs
, by

row norm bounds of Lemma 2. Again, using Lemma 2 we have

n∑
i=1

E[Q2
i ] =

n∑
i=1

s

n
·
(n
s

− 1
)2

(Vo,iVT
o,i )

2 +
(
1 − s

n

)
(Vo,iVT

o,i )
2

�
n∑

i=1

n

s
‖Vo,i‖22(Vo,iVT

o,i )

�
n∑

i=1

n

s

1

ε2δn
(Vo,iVT

o,i )

� 1

sε2δ
· I

where I is the identity matrix of appropriate dimension. By setting d = 1
ε2δ

, we can
finally bound the probability of the event ‖E‖2 ≥ εn using Theorem 6 (the matrix
Bernstein inequality) with δ if s ≥ c log(1/(εδ))

ε4δ
. Since these steps follow Lemma 3

nearly exactly, we omit them here. ��
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With Lemma 10 in place, we can now give our alternate sample complexity bound.

Theorem 8 (Sublinear Time Eigenvalue Approximation) LetA ∈ R
n×n be symmetric

with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by
including each index independently with probability s/n as in Algorithm 1. Let AS

be the corresponding principal submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥
λ|S|(AS).

For all i ∈ [|S|] with λi (AS) ≥ 0, let λ̃i (A) = n
s · λi (AS). For all i ∈ {1, . . . , |S|}

with λi (AS) < 0, let λ̃n−(|S|−i)(A) = n
s · λi (AS). For all other i ∈ [n], let λ̃i (A) = 0.

If s ≥ c log n
ε4δ

, for a large enough constant c, then with probability ≥ 1 − δ, for all
i ∈ [n],

λi (A) − εn ≤ λ̃i (A) ≤ λi (A) + εn.

Proof Let S ∈ R
n×|S| be the binary sampling matrix with a single one in each column

such that STAS = AS . Let S̄ = √
n/s · S. Following Definition 1.1, we write A =

Ao +Am . By Fact 1 we have that the nonzero eigenvalues of n
s ·Ao,S = S̄TVo�oVT

o S̄
are identical to those of �oVT

o S̄S̄
TVo.

Note that H = VT
o S̄S̄

TVo is positive semidefinite. Writing its eigendecomposition
H = UWUT wecandefine thematrix squarerootH1/2 = UW1/2UT withH1/2H1/2 =
H. By Lemma 10 applied with error ε/6, with probability at least 1−δ, all eigenvalues
ofH lie in the range [1− ε/6, 1+ ε/6]. In turn, all eigenvalues ofH1/2 also lie in this
range. Again using Fact 1, we have that the nonzero eigenvalues of �oH, and in turn
those of n

s · Ao,S , are identical to those of H1/2�oH1/2.
Let E = H1/2 − I = UW1/2UT − UUT = U(W1/2 − I)UT . Since the diagonal

entries ofW1/2 lie in [1− ε/6, 1+ ε/6], those ofW1/2 − I lie in [−ε/6, ε/6]. Thus,
‖E‖2 ≤ ε/6. We can write

λi (H1/2�oH1/2) = λi ((I + E)�o(I + E)) = λi (�o + E�o + �oE + E�oE).

We can then bound

‖E�o + �oE + E�oE‖2 ≤ ‖E�o‖2 + ‖�oE‖2 + ‖E�oE‖2
≤ ‖E‖2‖�o‖2 + ‖�o‖2‖E‖2 + ‖E‖2‖�o‖2‖E‖2
≤ εn/6 + nε/6 + ε2n/36

≤ ε/2 · n.

Applying Weyl’s eigenvalue perturbation theorem (Fact 3), we thus have for all i ,

∣∣∣λi (H1/2�oH1/2) − λi (�o)

∣∣∣ < ε/2 · n. (36)

Note that we have shown that the nonzero eigenvalues of n
s ·Ao,S are identical to those

of H1/2	oH1/2, which we have shown well approximate those of �o and in turn Ao

i.e., the non-zero eigenvalues of n
s · Ao,S approximate all outlying eigenvalues of A.
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We can also bound the middle eigenvalues using Lemma 4 as in Theorem 1. Now the
only thing left is to argue how these approximations ‘line up’ in the presence of zero
eigenvalues in the spectrum of these matrices. This part of the proof again proceeds
similarly to that of Theorem 1 in Sect. 4.2.

Analogous to Theorem1, fromLemma 10 equation (36) holdswith probability 1−δ

if s ≥ c log(1/(εδ))
ε4δ

. We also require s ≥ c log n
ε2δ

for ‖Am,S‖2 ≤ εn to hold with probabil-
ity 1−δ byLemma4. Thus, for both conditions to hold simultaneouslywith probability

1 − 2δ by a union bound, it suffices to set s = c log n
ε4δ

≥ max
(
c log(1/(εδ))

ε4δ
,
c log n
ε2δ

)
,

where we use that log(1/(εδ)) = O(log n), as otherwise our algorithm can take AS

to be all of A. Adjusting δ to δ/2 completes the theorem. ��

C Refined Bounds

In this section, we show how it is possible to get better query complexity or tighter
approximation factors by modifying the proof of Theorem 1 and Lemmas 3 and 2
under some assumptions. We give an extension to Theorem 1 in Theorem 9 for the
case when the eigenvalues of Ao lie in a bounded range—between εa

√
δn and εbn

where 0 ≤ b ≤ a ≤ 1.

Theorem 9 Let A ∈ R
n×n be symmetric with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥

. . . ≥ λn(A). Let Ao be as in Definition 1.1 such that for all eigenvalues λi (Ao) we
have either εa

√
δn ≤ |λi (Ao)| ≤ εbn or λi (Ao) = 0 where 0 ≤ b ≤ a ≤ 1. Let

S ⊆ [n] be formed by including each index independently with probability s/n as in
Algorithm 1. Let AS be the corresponding principal submatrix of A, with eigenvalues
λ1(AS) ≥ . . . ≥ λ|S|(AS).

For all i ∈ [|S|] with λi (AS) ≥ 0, let λ̃i (A) = n
s · λi (AS). For all i ∈ [|S|] with

λi (AS) < 0, let λ̃n−(|S|−i)(A) = n
s · λi (AS). For all other i ∈ [n], let λ̃i (A) = 0. If

s ≥ c log(1/(εδ)) log2+a−b n
ε2+a−bδ

, for large enough c, then with probability at least 1 − δ, for
all i ∈ [n],

λi (A) − εn ≤ λ̃i (A) ≤ λi (A) + εn.

Proof The proof follows by modifying the proofs of Theorem 1, Lemmas 2 and 3 to
account for the tighter intervals. First observe that since |λi (Ao)| ≥ εa

√
δn for all i ,

we can give a tighter row norm bound forVo from the proof of Lemma 2. In particular,
from equation (3) we get:

‖�1/2
o Vo,i‖22 ≤ 1

εa
√

δ
and ‖Vo,i‖22 ≤ n

ε2aδn2
= 1

ε2aδn
.

We can then bound the number of samples we need to take such that for
�

1/2
o VT

o S̄S̄
TVo�

1/2
o (as defined in Theorem 8) we have ‖�1/2

o VT
o S̄S̄

TVo�
1/2
o −

�o‖2 ≤ εn with probability at least 1 − δ via a matrix Bernstein bound. By appro-
priately modifying the proof of Lemma 3 to incorporate the stronger row norm bound
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for Vo, we can show that sampling with probability s/n for s ≥ c log(1/(εδ))
ε2+a−bδ

for large

enough c suffices. Specifically, we get L ≤ n
εa

√
δs
, v ≤ n2

εa−b
√

δs
and d ≤ log(1/(ε2δ))

for the Bernstein bound in Lemma 3 which enables us to get the tighter bound. Thus,
we have ‖�1/2

o VT
o S̄S̄

TVo�
1/2
o −�o‖2 ≤ εn with probability 1−δ for s ≥ c log(1/(εδ))

ε2+a−b
√

δ

following Lemma 3. We also require s ≥ c log n
ε2δ

for ‖Am,S‖2 ≤ εn to hold with prob-
ability 1 − δ by Lemma 4. Then, following the proof of Theorem 1, by Fact 4, for all
i ∈ [n], and some constant C , we have:

|λi (�1/2
o VT

o S̄S̄
TVo�

1/2
o ) − λi (�o)| ≤ C log n‖�1/2

o VT
o S̄S̄

TVo�
1/2
o − �o‖2.

As in the proof of Theorem 1, adjusting ε by a 1
C log n factor, we get |λi (�1/2

o VT
o

S̄S̄TVo�
1/2
o ) − λi (�o)| ≤ εn with probability 1 − δ for s ≥ c log(1/(εδ)) log2+a−b n

ε2+a−b
√

δ
.

Then we follow the proof of Theorem 1 to align the eigenvalues completing the proof.
��

D Spectral Norm Bounds for Non-uniform Random Submatrices

In this section, we prove an extension of Theorem 4 to the setting where rows are
sampled non-uniformly. This allows us to show that themiddle eigenvalues do not grow
too large when sampling and rescaling with the non-uniform sampling probabilities
used by Algorithms 2 and 3.

Theorem 5 (Non-uniform column sampling—spectral norm bound) LetA be anm×n
matrix with rank r . Let δ j be a sequence of independent random variables such that
δ j = 1√

p j
with probability p j and 0 otherwise. Let S be a square diagonal sampling

matrix with j th diagonal entry set to δ j .

E2‖AS‖2 ≤ 5
√
log r · E2‖AS‖1→2 + ‖A‖2

Proof The proof follows from [46]. We begin by first defining the following term

E :=E2‖AS‖2.

Now we have

E2 = E‖AS‖22 = E‖ASSA∗‖2 = E

∥∥∥∥∥∥
n∑
j=1

δ2jA jA∗
j

∥∥∥∥∥∥
2

,

where δ j is the sequence of independent random variables such that δ j = 1√
p j

with

probability p j and 0 otherwise, andA j is the j th column ofA. Then,μ j = E[(δ j )2] =
1. Let {δ′

j } be an independent copy of the sequence {δ j }. Subtracting the mean and
applying triangle inequality we have

123



Algorithmica (2024) 86:1764–1829 1809

E2 ≤ E

∥∥∥∥∥∥
n∑
j=1

(δ2j − E[(δ̂)2])A jA∗
j

∥∥∥∥∥∥
2

+
∥∥∥∥∥∥

n∑
j=1

A jA∗
j

∥∥∥∥∥∥
2

.

Using Jensen’s inequality we have

E2 ≤ E

∥∥∥∥∥∥
n∑
j=1

(δ2j − (δ′
j )
2)A jA∗

j

∥∥∥∥∥∥
2

+ ∥∥AA∗∥∥
2 .

The random variables (δ2j − (δ′
j )
2) are symmetric and independent. Let {ε j } be i.i.d

Rademacher random variables for all j ∈ [n]. Then applying the standard symmetriza-
tion argument followed by triangle inequality, we have:

E2 ≤ 2E

∥∥∥∥∥∥
n∑
j=1

ε jδ
2
jA jA∗

j

∥∥∥∥∥∥
2

+ ∥∥AA∗∥∥
2 .

Let � = { j : δ j = 1√
p j

}. Let Eε be the partial expectation with respect to {ε j } while
keeping the other random variables fixed, and let E� be the partial expectation with
respect to �. Then, we get:

E2 ≤ 2E�

[
Eε

∥∥∥∥∥
∑
�

ε jδ
2
jA jAT

j

∥∥∥∥∥
2

]
+ ‖A‖22.

Using Rudelson’s Lemma 11 of [46] for any matrix X with columns x1, x2, · · · , xn
and any q = 2 log n we have

⎛
⎝E

∥∥∥∥∥∥
n∑
j=1

ε jx jx∗
j

∥∥∥∥∥∥

q

2

⎞
⎠

1/q

≤ 1.5
√
q‖X‖1→2‖X‖2.

Since (.)1/q is concave for q ≥ 1, using Jensen’s inequality we get:

E

∥∥∥∥∥∥
n∑
j=1

ε jx jx∗
j

∥∥∥∥∥∥
2

≤ 1.5
√
q‖X‖1→2‖X‖2

Applying the above result to the matrix AS, we get:

E2 ≤ 3
√
q [E(‖AS‖1→2‖AS‖2)] + ‖A‖22.

Applying Cauchy Schwartz we get:

E2 ≤ 3
√
q(E‖AS‖21→2)

1/2(E‖AS‖22)1/2 + ‖A‖22.
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The above equation is of the form E2 ≤ bE + c. Thus, the values of E from which

the above equation is true is given by E ≤ b+√
b2+4c
2 ≤ b + √

c. Thus, we get:

E2‖AS‖2 ≤ 3
√
qE2‖AS‖1→2 + ‖A‖2.

This gives us the final bound. ��

E Improved Bounds via Row-Norm-Based Sampling

Building on the sparsity-based sampling results presented in Sect. 5, we now show how
to obtain improved approximation error of±ε‖A‖F assuming we can sample the rows
of A with probabilties proportional to their squared �2 norms. The ability to sample
by norms also allows us to remove the assumption that A has bounded entries—our
results apply to any symmetric matrix.

For technical reasons, we mix row norm sampling with uniform sampling, forming
a random principal submatrix by sampling each index i ∈ [n] independently with

probability pi = min

(
1,

s‖Ai‖22
‖A‖2F

+ 1
n2

)
and rescaling each sampled row/column by

1/
√
pi . As in the sparsity-based sampling setting, wemust carefully zero out entries of

the sampled submatrix to ensure concentrationof the sampled eigenvalues. Pseudocode
for the full algorithm is given in Algorithm 3.

E.1 Preliminary Lemmas

Our proof closely follows that of Theorem 2 in Sect. 5. We start by defining A′ ∈
R
n×n obtained by zeroing out entries of A as described in Algorithm 3. We have

A′
i j = 0 whenever 1) i = j and ‖Ai‖22 < ε2

4 ‖A‖2F or 2) i �= j and ‖Ai‖22 · ‖A j‖22 <

ε2‖A‖2F ·|Ai j |2
c2 log4 n

. Otherwise A′
i j = Ai j . Similar to the sparsity sampling case, we argue

that the eigenvalues of A′ are close to A i.e., zeroing out entries of A according to
the given condition doesn’t change it’s eigenvalues by too much (Lemma 11. Then,
we again split A′ = A′

o + A′
m such that ‖A′

m‖2 ≤ ε
√

δ‖A‖F . We argue that after
sampling, we have ‖A′

m,S‖2 ≤ ε‖A‖F and the eigenvalues ofA′
o,S approximate those

of A′
o up to ±ε‖A‖F error.

Lemma 11 Let A ∈ R
n×n be symmetric. Let A′ ∈ R

n×n have A′
i j = 0 if either 1)

i = j and ‖Ai‖22 < ε2

4 ‖A‖2F or 2) i �= j and ‖Ai‖22 · ‖A j‖22 <
ε2‖A‖2F ·|Ai j |2

c2 log4 n
for a

sufficiently large constant c2. Otherwise, A′
i j = Ai j . Then, for all i ∈ [n],

|λi (A) − λi (A′)| ≤ ε‖A‖F .

Proof Consider the matrix A′′, which is defined identically to A′ except we only set

A′′
i j = 0 if i �= j and ‖Ai‖22 · ‖A j‖22 <

ε2‖A‖2F |Ai j |2
c2 log4 n

. That is, we do not zero out
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Algorithm 3 Eigenvalue estimator using �2 norm-based sampling
1: Input: Symmetric A ∈ R

n×n , Accuracy ε ∈ (0, 1), failure prob. δ ∈ (0, 1). ‖Ai‖2 for all i ∈ [n].
2: Fix s = c1 log

10 n
ε8δ4

where c1 is a sufficiently large constant.

3: Add each i ∈ [n] to sample set S independently, with probability pi = min

(
1,

s‖Ai ‖22
‖A‖2F

+ 1
n2

)
. Let the

principal submatrix of A corresponding to S be AS .
4: Let AS = DASD where D ∈ R

|S|×|S| is diagonal with Di,i = 1√p j
if the i th element of S is j .

5: Construct A′
S ∈ R

|S|×|S| from AS as follows:

[A′
S ]i, j =

⎧⎪⎪⎨
⎪⎪⎩

0 if i = j and ‖Ai‖22 < ε2

4 ‖A‖2F
0 if i �= j and ‖Ai‖22 · ‖A j‖22 <

ε2‖A‖2F ·|Ai j |2
c2 log4 n

for sufficient large constant c2

[AS ]i, j otherwise.

6: Compute the eigenvalues of A′
S : λ1(A

′
S) ≥ . . . ≥ λ|S|(A′

S).

7: For all i ∈ [|S|] with λi (A′
S) ≥ 0, let λ̃i (A) = λi (A′

S). For all i ∈ [|S|] with λi (A′
S) < 0, let

λ̃n−(|S|−i)(A) = λi (A′
S). For all remaining i ∈ [n], let λ̃i (A) = 0.

8: Return: Eigenvalue estimates λ̃1(A) ≥ . . . ≥ λ̃n(A).

any entries on the diagonal as in A′. We will show that ‖A − A′′‖2 ≤ ε
2‖A‖F . If

Ai i is zeroed out in A′ this implies that ‖Ai‖22 < ε2

4 ‖A‖2F . Thus, |Ai i | ≤ ‖Ai‖2 ≤
ε
2‖A‖F and so ‖A′′ − A′‖2 ≤ ε

2‖A‖F . So, by triangle inequality, we will then have
‖A − A′‖2 ≤ ε · ‖A‖F . The lemma then follows from Weyl’s inequality

To show that ‖A − A′′‖2 ≤ ε
2‖A‖F , we use a variant of Girshgorin’s theorem, as

in the proof of Lemma 5. First, we split the entries of A into level sets, according to

their magnitudes. Let A = ∑log n
ε

k=0 Ak where (A0)i j = Ai j if |Ai j | ∈ [0, ε
n ‖A‖F

)
and

(A0)i j = 0 otherwise. For 1 ≤ k ≤ log n
ε
, (Ak)i j = Ai j if |Ai j | ∈

[ ‖A‖F
2k

,
‖A‖F
2k−1

)
and

(Ak)i j = 0 otherwise. We can also defineA′′ = ∑log n
ε

k=0 A′′
k where eachA

′′
k are defined

similarly. By triangle inequality, ‖A − A′′‖2 ≤ ∑log n/ε

k=0 ‖Ak − A′′
k‖2. First observe

that ‖A0 − A′′
0‖2 ≤ ‖A0 − A′′

0‖F ≤ n · ‖A0‖∞ ≤ ε‖A‖F . Further, we can assume
without loss of generality that ε > 1/n and so log(n/ε) ≤ 2 log n, as otherwise our
algorithm can afford to read all of A. So, it suffices to show that for all k ≥ 1,

‖Ak − A′′
k‖2 ≤ ε

log n
· ‖A‖F . (37)

This will give ‖A − A′′‖2 ≤ ε · ‖A‖F +∑log n/ε

k=1
ε

log n · ‖A‖F ≤ 3ε · ‖A‖F , which
gives the lemma after adjusting ε by a constant factor.

We now prove (37) for each k ≥ 1. For p ∈ {0, 1, . . . log(n2)}, let Ip ⊂ [n] be
the set of rows/columns in Ak with nnz((Ak)i ) ∈

[
nnz(Ak )

2p ,
nnz(Ak )

2p−1

)
and let Akpq =

Ak(Ip, Iq) be the submatrix ofAk formed with rows in Ip and columns in Iq . Define
the submatrix A′′

kpq of A′′
k in the same way. Let Âkpq = Akpq − A′′

kpq and finally,
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let Ākpq ∈ R
n×n be the symmetric error matrix such that Ākpq(Ip, Iq) = Âkpq and

Ākpq(Iq , Ip) = ÂT
kpq .

Note that all rows from which we zero out entries must have at least one non-zero
entry nnz((Ak)i ) ≥ 1 (otherwise all entries in that row/column are already zero), thus
all such rows have nnz((Ak)i ) ≥ nnz(Ak )

n2
and so are covered by the submatrices Akpq .

Thus, by triangle inequality, we can bound

‖Ak − A′′
k‖2 ≤

log(n2)∑
p=0

log(n2)∑
q=0

‖NAkpq‖2. (38)

To prove (37), we need to bound ‖Akpq − A′′
kpq‖2 for all k ≥ 1 and p, q. We use a

case analysis.

Case 1 4 nnz(Ak )
2·c2 log4 n

ε2·22k > 2p+q . In this case, first observe that since the nonzero

entries of Ak lie in
[ ‖A‖F

2k
,

‖A‖F
2k−1

)
, for any i ∈ Ip, j ∈ I j ,

‖Ai‖22 · ‖A j‖22 ≥ ‖(Ak)i‖22 · ‖(Ak) j‖22
≥ ‖A‖4F

24k
· nnz((Ak)i ) · nnz((Ak) j )

≥ ‖A‖4F
24k · 2p+q

· nnz(Ak)
2.

Thus, by the assumed bound on 2p+q , we have for any i, j where (Ak)i j is nonzero,

‖Ai‖22 · ‖A j‖22 ≥ ε2‖A‖4F
4 · 22kc2 log4 n

≥ ε2‖A‖2F · |Ai j |2
c2 log4 n

,

where the second inequality follows again from the fact that the nonzero entries of Ak

lie in
[ ‖A‖F

2k
,

‖A‖F
2k−1

)
. Thus, any i, j with (Akpq)i j nonzero is not zeroed out in line 5

of Algorithm 3. So NAkpq = 0. Plugging into (38), we thus have:

‖Ak − A′′
k‖2 ≤

log(n2)∑
p=0

∑

q:2p+q≥ 16 nnz(Ak )2 ·c2 log4 n

ε2 ·22k

‖NAkpq‖2. (39)

Case 2 16 nnz(Ak )
2·c2 log4 n

ε2·22k ≤ 2p+q . In this case, observe that (ÂkpqÂT
kpq)m =

(Âkpq)mÂT
kpq . We can see that (Âkpq)m has at most nnz((Ak)m) ≤ nnz(Ak )

2p−1 non-zero

entries. Similarly, each row of ÂT
kpq has at most nnz(Ak )

2q−1 non-zero elements. Thus, for

all m ∈ |Ip|, using the fact that all non-zero entries of Akpq are bounded by
‖A‖F
2k−1 , we
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have:

‖(ÂkpqÂT
kpq)m‖1 ≤ nnz(Ak)

2

2p+q−2 · ‖A‖2F
22k−2 .

Applying Girshgorin’s circle theorem (Theorem 2) we thus have:

‖Âkpq‖22 = ‖ÂkpqÂT
kpq‖2 ≤ nnz(Ak)

2

2p+q−2 · ‖A‖2F
22k−2

and so

‖Ākpq‖2 ≤ 2‖Âkpq‖2 ≤ 8 · ‖A‖F · nnz(Ak)

2k2
(p+q)

2

.

Plugging to (39), we thus have:

‖Ak − A′′
k‖2 ≤

log(n2)∑
p=0

∑

q:2p+q≥ 16 nnz(Ak )2 ·c2 log4 n

ε2 ·22k

8 · ‖A‖F · nnz(Ak)

2k2
(p+q)

2

≤
log(n2)∑
p=0

2ε · ‖A‖F√
c2 log2 n

·
∞∑
i=0

1√
2

≤ 8ε‖A‖F√
c2

.

Setting c2 ≥ 64, we thus have (37), and in turn the lemma. ��
We next give a bound on the incoherence of the outlying eigenvectors of A′. This

bound is again similar to Lemmas 2 and 6.

Lemma 12 (Incoherence of outlying eigenvectors in terms of �2 norms) Let A,A′ ∈
R
n×n be as in Lemma 11. Let A′

o = V′
o�

′
oV

′T
o where �′

o is diagonal, with the eigen-
values of A′ with magnitude ≥ ε

√
δ‖A‖F on its diagonal, and V′

o has columns equal
to the corresponding eigenvectors. Let V′

o,i denote the i
th row of V′

o. Then,

‖�′1/2
o V′

o,i‖22 ≤ ‖Ai‖22
ε
√

δ‖A‖F
and ‖V′

o,i‖22 ≤ ‖Ai‖22
ε2δ‖A‖2F

.

Proof The proof is again nearly identical to that of Lemma 2. Observe that A′V′
o =

V′
o	

′
o. Letting [A′V′

o]i denote the i th row of the A′V′
o, we have

‖[A′V′
o]i‖22 = ‖[V′

o�
′
o]i‖22 =

r∑
j=1

λ2j · V′2
o,i, j , (40)

where r = rank(A′
o), V

′
o,i, j is the (i, j)th element of V′

o and λ j = �′
o( j, j). Since

V′
o has orthonormal columns, we have ‖[A′V′

o]i‖22 ≤ ‖A′
i‖22 ≤ ‖Ai‖22. Therefore, by
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(40),

r∑
j=1

λ2j · V′2
o,i, j ≤ ‖Ai‖22. (41)

Since by definition |λ j | ≥ ε
√

δ‖A‖F for all j , we can conclude that ‖�′1/2
o V′

o,i‖22 =
∑r

j=1 λ j ·V′2
o,i, j ≤ ‖Ai‖22

ε
√

δ‖A‖F and ‖V′
o,i‖22 = ∑r

j=1V
′2
o,i, j ≤ ‖Ai‖22

ε2δ‖A‖2F
, which completes

the lemma. ��

E.2 Outer andMiddle Eigenvalue Bounds

Using Lemma 12, we next argue that the eigenvalues of A′
o,S will approximate those

of A′, and in turn those of A. The proof is very similar to Lemmas 3 and 7.

Lemma 13 (Concentration of outlying eigenvalues with �2 norm based sampling) Let
A,A′ ∈ R

n×n be as in algorithm 3. Let A′ = A′
m +A′

o, where A
′
m = V′

m�′
mV

′T
m, and

A′
o = V′

o�
′
oV

′T
o are projections onto the eigenspaces with magnitude < ε

√
δ‖A‖F

and ≥ ε
√

δ‖A‖F respectively. For all i ∈ [n] let pi = min

(
1,

s‖Ai‖22
‖A‖2F

+ 1
n2

)
and let

S̄ be a scaled diagonal sampling matrix such that the S̄i i = 1√
pi

with probability pi

and S̄i i = 0 otherwise. If s ≥ c log(1/(εδ))
ε3

√
δ

for a large enough constant c, then with

probability at least 1 − δ, ‖�′1/2
o V

′T
o S̄S̄TV′

o�
′1/2
o − �′

o‖2 ≤ ε‖A‖F .
Proof We define the random variables Q1, · · ·Qn and the set P = {i ∈ [n] : pi < 1}
exactly as in the proof of Lemma 7. Then, as explained in the proof of Lemma 7
it is sufficient to bound

∑
i∈P E[Q2

i ]. From 17 we have
∑

i∈P E[Q2
i ] � ∑

i∈P
1
pi

·
‖�1/2

o Vo,i‖22 · (�
1/2
o Vo,iVT

o,i	
1/2
o ). Also from Lemma 11, we have ‖�1/2

o Vo,i‖22 ≤
‖Ai‖22

ε
√

δ‖A‖F and for all i ∈ P , 1
pi

≤ ‖A‖2F
s‖Ai‖22

. We thus get,

∑
i∈P

E[Q2
i ] �

∑
i∈P

1

pi
· ‖Ai‖22
ε
√

δ‖A‖F
· (�

1/2
o Vo,iVT

o,i�
1/2
o )

� ‖A‖F
sε

√
δ
(
∑
i∈P

	
1/2
o Vo,iVT

o,i�
1/2
o )

= ‖A‖F
sε

√
δ
�o � ‖A‖2F

sε
√

δ
· I.

Since Q2
i is PSD this establishes that v ≤ ‖Var(E)‖2 ≤ ‖A‖2F

sε
√

δ
. We can then apply the

matrix Bernstein inequality exactly as in the proof of Lemma 3 to show that when
s ≥ c

ε3
√

δ
for large enough c, with probability at least 1 − δ, ‖E‖2 ≤ ε‖A‖F . ��
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We now bound the middle eignevalues.

Lemma 14 (Concentration of middle eigenvalues with �2- norm based sampling) Let
A,A′ ∈ R

n×n be as in Lemma 12. Let A′ = A′
m + A′

o, where A
′
m = V′

m�′
mV

′T
m, and

A′
o = V′

o�
′
oV

′T
o are projections onto the eigenspaces with magnitude < ε

√
δ‖A‖F

and ≥ ε
√

δ‖A‖F respectively (analogous to Definition 1.1). As in Algorithm 2, for all

i ∈ [n] let pi = min

(
1,

s‖Ai‖22
‖A‖2F

+ 1
n2

)
and let S̄ be a scaled diagonal sampling matrix

such that the S̄i i = 1√
pi

with probability pi and S̄i i = 0 otherwise. If s ≥ c log10 n
ε8δ4

for

a large enough constant c, then with probability at least 1 − δ,

‖S̄A′
m S̄‖2 ≤ ε‖A‖F .

Proof First observe that since s ≥ 4
ε2

(for large enough c), the results of Lemmas 11
and 12 still hold. The proof follows the same structure as the proof of bounding
the middle eigenvalues for sparsity sampling in Lemma 8. From Lemma 12, we have
‖V′

o,i‖2 ≤ ‖Ai‖2
ε
√

δ‖A‖F . Also, following the proof of Lemma 12, we have ‖�′
oV′T

o, j‖2 =
‖[A′V′

o] j‖2 ≤ ‖A j‖2. Thus, for all i, j ∈ [n], using Cauchy Schwarz’s inequality,
we have

|A′
o,i, j | = |V′

o,i�
′
oV′T

o, j | ≤ ‖V′
o,i‖2 · ‖�′

oV′T
o, j‖2 ≤ ‖Ai‖2

ε
√

δ‖A‖F
· ‖A j‖2. (42)

LetA′
m = Hm+Dm whereHm andDm contain the off-diagonal and diagonal elements

of A′
m respectively. Then following the proof of Lemma 8, we get:

E2‖S̄A′
m S̄‖2 ≤ 10

√
log n

(
E2‖S̄Hm Ŝ‖1→2 + E2‖Hm Ŝ‖1→2

)

+ 2‖Hm‖2 + E2‖S̄Dm S̄‖2 (43)

We now proceed to bound each of the terms on the right hand side of (43). We start
with E2‖S̄Dm S̄‖2. First, observe that E2‖S̄Dm S̄‖2 ≤ maxi 1

pi
|(Dm)i i |. We consider

two cases.

Case 1: pi < 1. Then, as pi ≥ s‖Ai‖22
‖A‖2F

we have ‖A‖2F ≤ 1
s ‖Ai‖22 since 1

s < ε2

4 . So we

must have that have |(Dm)i i | = |(A′
m)i i | = |(A′

o)i i | (since A′
i i = 0). Then by (42),

we have 1
pi

|(Dm)i i | ≤ ‖A‖F
sε

√
δ
.

Case 2: pi = 1. Then we have 1
pi

|(Dm)i i | = |(Dm)i i | ≤ max j |(Dm) j j | ≤ ‖A′
m‖2 ≤

ε
√

δ‖A‖F .
From the two cases above, for s ≥ 1

ε2δ
, we have:

E2‖S̄Dm S̄‖2 ≤ ε
√

δ‖A‖F . (44)
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We can bound ‖Hm‖2 similarly. Since Hm = A′
m − Dm and ‖A′

m‖2 ≤ ε
√

δ‖A‖F .,

‖Hm‖2 ≤ ‖A′
m‖2 + ‖Dm‖2

≤ ε
√

δ‖A‖F + ε
√

δ‖A‖F .

= 2ε
√

δ‖A‖F . (45)

where the second step follows from the fact that ‖Dm‖2 ≤ maxi |(Dm)i i | ≤ ‖A′
m‖2.

We next bound the termE2‖Hm Ŝ‖1→2. Observe thatE2‖Hm Ŝ‖1→2 ≤ maxi ‖A′
m,i‖2√

pi
,

whereA′
m,i is the i th column/row ofA′

m .We again consider the two caseswhen pi = 1
and pi < 1:

Case 1: pi = 1. Then ‖A′
m,i‖2 ≤ ‖A′

m‖2 ≤ ε
√

δ‖A‖F .
Case 2: pi < 1. Then ‖A′

m,i‖2 ≤ ‖A′
i‖2 ≤ ‖A‖F . Thus, setting s ≥ 1

ε2δ
we have:

‖A′
m,i‖2√
pi

≤ ‖A‖F√
s‖Ai‖2 · ‖A′

i‖2

≤ ‖A‖F√
s

≤ ε
√

δ‖A‖F .

Thus, from the two cases above, for all i ∈ [n], adjusting ε by a 1√
log n

factor, we have

for s ≥ log n
ε2δ

:

E2‖Hm Ŝ‖1→2 ≤ ε
√

δ‖A‖F√
log n

. (46)

Overall, plugging (44), (45), and (46) back into (43), we have:

E2‖S̄A′
m S̄‖2 ≤ 10

√
log n · E2‖S̄Hm Ŝ‖1→2 + 15ε

√
δ‖A‖F . (47)

FinallyweboundE2‖S̄Hm Ŝ‖1→2.As in theproof ofLemma8,wehaveE2‖S̄Hm Ŝ‖1→2

≤ E2

(
maxi :i∈[n] ‖(S̄Hm ):,i‖2√

pi

)
and we will argue that maxi :i∈[n] ‖(S̄Hm ):,i‖2√

pi
is bounded

by ε
√

δ‖A‖F with probability 1−1/ poly(n). Also as argued in the proof of Lemma 8,

since pi ≥ 1
n2
, it suffices to bound ‖(S̄A′

m ):,i‖2√
pi

for all i ∈ [n] with high probability.
Again, for a fixed i and any j ∈ [n], define the random variables z j as:

z j =
{

1
p j

|A′
m,i, j |2 with probability p j

0 otherwise.

Then
∑n

j=1 z j = ‖(S̄A′
m):,i‖22 and E[∑n

j=1 z j ] = ‖A′
m,i‖22 ≤ ‖A′

i‖22 ≤ ‖A‖2F . We

will again use Bernstein’s inequality to bound
∑n

j=1 z j = ‖(S̄A′
m):,i‖22 by bounding
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bound |z j | for all j ∈ [n] and Var
(∑n

j=1 z j
)
. We consider the cases of pi < 1 and

pi = 1 separately.

Case 1: pi < 1. Then, we have pi ≥ s‖Ai‖22/‖A‖2F . If A′
i, j �= 0 then

|z j | ≤ 1

p j
|A′

m,i, j |2 ≤ max

(
1,

‖A‖2F
s‖A j‖22

)
|A′

m,i, j |2

≤ |A′
m,i, j |2 + 2‖A‖2F

s‖A j‖22
(
|A′

i, j |2 + |A′
o,i, j |2

)

≤ |A′
m,i, j |2 + 2‖A‖2F

s‖A j‖22

(
|A′

i, j |2 + ‖Ai‖22‖A j‖22
ε2δ‖A‖2F

)

≤ |A′
m,i, j |2 + 2‖A‖2F

s‖A j‖22
|A′

i, j |2 + 2‖Ai‖22
ε2δs

,

where the fourth inequality uses (42). By the thresholding procedure which defines
A′, if i �= j and A′

i j �= 0,

‖Ai‖22 · ‖A j‖22 ≥ ε2‖A‖2F |A′
i j |2

c2 log4 n
⇒ ‖A j‖22

|A′
i, j |2

≥ ε2‖A‖2F
c2 · log4 n · ‖Ai‖22

, (48)

and thus for pi < 1 and A′
i j �= 0 we have

|z j | ≤ |A′
m,i, j |2 + 2c2 log4 n · ‖Ai‖22

sε2
+ 2‖Ai‖22

ε2δs
.

Also A′
i i = 0 since we must have ‖Ai‖22 < ε2

4 ‖A‖2F as pi < 1. If A′
i, j = 0 or i = j ,

then we simply have

|z j | ≤ |A′
m,i, j |2 + 2‖Ai‖22

sε2δ
.

Overall for all j ∈ [n],

|z j | ≤ |A′
m,i, j |2 + 2‖Ai‖22

sε2δ
+ 2c2 log4 n · ‖Ai‖22

sε2
, (49)

and since |A′
m,i, j |2 ≤ ∑n

j=1 |A′
m,i, j |2 = ‖A′

m,i‖22 ≤ ‖A′
i‖22 ≤ ‖Ai‖22,

|z j | ≤ ‖Ai‖22 + 2‖Ai‖22
sε2δ

+ 2c2 · log4 n · ‖Ai‖22
sε2

. (50)

For s ≥ c
(
log4 n

ε2
+ 1

ε2δ

)
and large enough c, we thus have |z j | ≤ 2‖Ai‖22.
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We next bound the variance by:

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤

n∑
j=1

E[z2j ] ≤
n∑
j=1

p j
1

p2j
|A′

m,i, j |4

=
n∑
j=1

max

(
1,

‖A‖2F
s‖A j‖22

)
|A′

m,i, j |4

≤
n∑
j=1

|A′
m,i, j |4 +

n∑
j=1

12‖A‖2F
s‖A j‖22

(
|A′

i, j |4 + |A′
o,i, j |4

)

≤ ‖A′
m,i‖42 +

n∑
j=1

12‖A‖2F
s‖A j‖22

(
|A′

i, j |4 + ‖Ai‖42‖A j‖42
ε4δ2‖A‖4F

)
,

where the last inequality uses (42). We thus get:

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤ ‖A′

m,i‖42 +
∑

j :A′
i, j �=0

12‖A‖2F |A′
i j |4

s‖A j‖22
+

n∑
j=1

12‖Ai‖42‖A j‖22
sε4δ2‖A‖2F

. (51)

NowA′
i i = 0 as pi < 1 (and thus, ‖A‖2i < ε2

4 ‖A‖2F ). Combining (48) with the second
term to the right of (51) we have

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤ ‖A′

m,i‖42 +
∑

j :A′
i, j �=0

12c2 log4 n · ‖Ai‖22 · |A′
i j |2

sε2

+
n∑
j=1

12‖Ai‖42‖A j‖22
sε4δ2‖A‖2F

,

and since
∑

j |A′
i j |2 = ‖Ai‖22, we have

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤ ‖A′

m,i‖42 + 12c2 log4 n · ‖Ai‖42
sε2

+
n∑
j=1

12‖Ai‖42‖A j‖22
sε4δ2‖A‖2F

. (52)

Finally since
∑n

j=1 ‖A j‖22 = ‖A‖2F and ‖A′
m,i‖42 ≤ ‖A′

i‖42 ≤ ‖Ai‖42 we have

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤ ‖Ai‖42 + 12c2 log4 n · ‖Ai‖42

sε2
+ 12‖Ai‖42

sε4δ2
. (53)
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For s ≥ c
(
log4 n

ε2
+ 1

ε4δ2

)
for large enough c, we have Var

(∑n
j=1 z j

)
≤ 2‖Ai‖42.

Therefore, using (50) and (53) with s ≥ c
(
log4 n

ε2
+ 1

ε4δ2

)
, we can apply Bernstein

inequality (Theorem 7) (for some constant c) to get

P

(
‖(S̄A′

m):,i‖22 ≥ E‖(S̄A′
m):,i‖22 + t

)
≤ P

⎛
⎝

n∑
j=1

z j ≥ ‖Ai‖22 + t

⎞
⎠

≤ exp

(
−t2/2

c‖Ai‖42 + ct‖Ai‖22/3

)
.

If we set t = log n · ‖Ai‖22, for some constant c′ we have

P

(
‖(S̄A′

m):,i‖22 ≥ E‖(S̄A′
m):,i‖22 + log n · ‖Ai‖22

)

≤ exp

( −(log n)2/2

c + c(log n)/3

)
≤ exp(−c′ log n) ≤ 1/nc

′
.

Since A′
m = Hm +Dm , we have ‖(S̄A′

m):,i‖2 ≥ ‖(S̄Hm):,i‖2. Then with probability
at least 1 − 1/nc

′ ≥ 1 − δ, for any row i with pi < 1, we have

1

pi
· ‖(S̄Hm):,i‖22 ≤ ‖A‖2F

s‖Ai‖22
· c(log n)‖Ai‖22 ≤ ε2δ‖A‖2F

log n
,

for s ≥ c
(
log4 n

ε2
+ 1

ε4δ2

)
for large enough c. Observe that, as in Lemma 3 w.l.o.g.

we have assumed 1 − 1
nc′ ≥ 1 − δ, since otherwise, our algorithm would read all n2

entries of the matrix.

Case 2: pi = 1. Then, we have ‖Ai‖22 ≥ ‖A‖2F/s. As in the pi < 1 case, when
Ai i = 0, (and this A′

i i = Ai i = 0) we have from (49):

|z j | ≤ |A′
m,i, j |2 + 2‖Ai‖22

sε2δ
+ 2c2 log4 n · ‖Ai‖22

sε2
.

Now, we observe that |A′
m,i, j |2 ≤ ∑n

j=1 |A′
m,i, j |2 ≤ ‖A′

m,i‖22 ≤ ‖A′
m‖22 ≤

ε2δ‖A‖2F , which gives us

|z j | ≤ ε2δ‖A‖2F + 2‖Ai‖22
sε2δ

+ 2c2 log4 n · ‖Ai‖22
sε2

. (54)

Note that if Ai i �= 0, the second term in (49) is bounded as
2‖A‖2F
s‖Ai‖22

· |A′
i i |2 ≤ 2‖A‖2F

s ≤
2ε2δ‖A‖2F for s ≥ O( 1

ε2δ
). Thus, for s ≥ c

(
log4 n
ε4δ

+ 1
ε4δ2

)
for a large enough constant
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c and adjusting for other constants we have |z j | ≤ 2ε2δ‖A‖2F . Also observe that the
expectation of

∑
z j can be bounded by:

E

⎛
⎝

n∑
j=1

z j

⎞
⎠ = E‖(S̄A′

m):,i‖22 = ‖A′
m,i‖22 ≤ ‖A′

m‖22 ≤ ε2δ‖A‖2F .

Next, the variance of the sum of the random variables {z j } can again be bounded by
following the analysis presented in and prior to (52) and (53) we have

Var

⎛
⎝

n∑
j=1

z j

⎞
⎠ ≤ ‖A′

m,i, j‖42 + 12c2 log2 n · ‖Ai‖42
sε2

+ 12‖Ai‖42
sε4δ2

≤ ε4δ2‖A‖4F + 12c2 log2 n · ‖Ai‖42
sε2

+ 12‖Ai‖42
sε4δ2

, (55)

where we again bound ‖A′
m,i, j‖42 using

|A′
m,i, j |2 ≤

n∑
j=1

|A′
m,i, j |2 ≤ ‖A′

m,i‖22 ≤ ‖A′‖22 ≤ ε2δ‖A‖2F .

Then for s ≥ c( log
4 n

ε6δ2
+ 1

ε8δ4
), we haveVar

(∑n
j=1 z j

)
≤ 2ε4δ2‖A‖4F for large enough

constant c.
Using (54) and (55) and noting that

∑n
j=1 E

(
z2j

)
≥ Var

(∑n
j=1 z j

)
−E

2
(∑n

j=1 z j
)

we can apply the Bernstein inequality (Theorem 7):

P

(
‖(S̄A′

m):,i‖22 ≥ E‖(S̄A′
m):,i‖22 + t

)
≤ P

⎛
⎝

n∑
j=1

z j ≥ ε2δ‖Ai‖22 + t

⎞
⎠

≤ exp

(
−t2/2

cε4δ2‖A‖4F + cε2δ‖A‖2F t/3

)
.

If we set t = (log n)ε2δ‖A‖2F , then for some constant c′ we have

P

(
‖(S̄A′

m):,i‖22 ≥ E‖(S̄A′
m):,i‖22 + t

)
≤ exp(−c′ log n) ≤ 1/nc

′
.

This, since ‖(S̄Hm):,i‖22 ≤ ‖(S̄A′
m):,i‖22, when pi = 1, setting s ≥ c( log

4 n
ε6δ2

+ 1
ε8δ4

) for

large enough c, we havewith probability≥ 1−1/nc
′ 1
pi

‖(S̄Hm):,i‖22 = ‖(S̄Hm):,i‖22 ≤
‖(S̄A′

m):,i‖22 ≤ (log n)ε2δ nnz(A).

We have proven that with probability ≥ 1− 1/nc
′
, for both cases when pi < 1 and

pi = 1,
‖(S̄Hm):,i‖22

pi
≤ (log n)ε2δ‖A‖2F . Taking a union bound over all i ∈ [n], with
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probability at least 1−1/nc
′−1,maxi

‖(S̄Hm ):,i‖2√
pi

≤ √
log nε

√
δ‖A‖F for s ≥ c( log

4 n
ε6δ2

+
1

ε8δ4
). Also, since pi ≥ 1

n2
for all i ∈ [n], ‖(S̄Hm ):,i‖2√

pi
≤
√∑n

j=1
A2
m,i, j
pi ·p j

≤ n·‖A‖F√
s

. Thus,

maxi
‖(S̄Hm):,i‖2√

pi
≤ n‖A‖F and we get,

E2

(
max
i :i∈[n]

‖(S̄Hm):,i‖2√
pi

)
≤ √

log nε
√

δ‖A‖F + 1

nc′−3
≤ √

log nε
√

δ‖A‖F .

after adjusting ε by at most some constants. Overall, we finally get

E2‖S̄Hm Ŝ‖1→2 ≤ E2

(
max
i :i∈[n]

‖(S̄Hm):,i‖2√
pi

)
≤ ε

√
log n

√
δ‖A‖F .

Plugging this bound into (47), we have for s ≥ c( log
4 n

ε6δ2
+ 1

ε8δ4
),

E2‖S̄A′
m S̄‖2 ≤ (log n)ε

√
δ‖A‖F .

Finally after adjusting ε by a 1
log n factor, we have for s ≥ c( log

10 n
ε6δ2

+ log8 n
ε8δ4

) or

s ≥ c log10 n
ε8δ4

,

E2‖S̄A′
m S̄‖2 ≤ ε

√
δ‖A‖F .

The final bound then follows via Markov’s inequality on ‖S̄A′
m S̄‖2. ��

E.3 Main Accuracy Bound

We are finally ready to state our main result for �2 norm based sampling.

Theorem 3 (Row Norm Based Matrix Eigenvalue Approximation) Let A ∈ R
n×n be

symmetric and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including
the i th index independently with probability pi = min

(
1,

s‖Ai‖22
‖A‖2F

+ 1
n2

)
as in Algo-

rithm 3. Here ‖Ai‖2 is the �2 norm of the i th row of A. Let AS be the corresponding
principal submatrix of A, and let λ̃i (A) be the estimate of λi (A) computed from AS

as in Algorithm 3. If s ≥ c log10 n
ε8δ4

, for large enough constant c, then with probability

≥ 1 − δ, for all i ∈ [n], |λ̃i (A) − λi (A)| ≤ ε‖A‖F .

Proof The proof follows exactly the same structure as the proofs of Theorems 1 and 2
for uniform and sparsity based sampling respectively.We use the results of Lemmas 14
and 13 on the concentration of the middle and large eigenvalues for �2 norm based
sampling.

123



1822 Algorithmica (2024) 86:1764–1829

Analogous to Theorem 2, from Lemma 13 with error parameter ε
log n the eigen-

values of A′
o,S approximate those of A′

o up to error ε‖A‖F with probability 1 − δ

if s ≥ c log(1/(εδ))·log3 n
ε3

√
δ

. We also require s ≥ c log10 n
ε8δ4

for ‖A′
m,S‖2 ≤ ε‖A‖F

to hold with probability 1 − δ by Lemma 14. Thus, for both conditions to hold
simultaneously with probability 1 − 2δ by a union bound, if suffices to set s =
max

(
c log(1/(εδ))·log3 n

ε3
√

δ
,
c log10 n

ε8δ4

)
= c log10 n

ε8δ4
, where we use that log(1/(εδ)) ≤ log n,

as otherwise our algorithm can take AS to be the full matrix A. Adjusting δ to δ/2
completes the theorem. ��

F Eigenvalue Approximation via Entrywise Sampling

In this section we show that sampling Õ(n/ε2) entries from a bounded entry matrix
preserves its eigenvalues up to error ±εn. We use this result to improve the sample

complexity of Theorem 1 from Õ
(
log6 n

ε6

)
to Õ

(
log3 n

ε5

)
by applying entrywise sam-

pling to further sparsify the submatrix AS that is sampled in Algorithm 1. Entrywise
sampling results similar to what we show are well-known in the literature. See for
example [8] and [56]. For completeness, we give a proof here using standard matrix
concentration bounds.

Theorem 10 (Entrywise sampling—spectral norm bound) Consider A ∈ R
n×n with

‖A‖∞ ≤ 1. Let C ∈ R
n×n be constructed by setting Ci,i = Ai,i for all i ∈ [n] and

C j,i = Ci, j =
{

1
p · Ai, j with probability p

0 otherwise.

For any ε, δ ∈ (0, 1), if p ≥ c log(n/δ)

nε2
for a large enough constant c, then with

probability at least 1 − δ, ‖A − C‖2 ≤ εn.

Note that by Weyl’s inequality (Fact 3), Theorem 10 immediately implies that the
eigenvalues of C approximate those of A up to ±εn error with good probability.

Proof For any i < j , define the symmetric random matrix E(i j) with

E(i j)
i, j = E(i j)

j,i =
{

( 1p − 1) · Ai, j with probability p

−Ai, j otherwise.

Observe that C − A = ∑
i, j∈[n],i< j E

(i j). Further, each E(i j) has just two non-zero
values in different rows and columns. So

‖E(i j)‖2 = |Ci, j − Ai, j ]| ≤
(
1

p
− 1

)
· |Ai, j | ≤ 1

p
,

where the last inequality uses that ‖A‖∞ ≤ 1. Additionally, E(i j)E(i j)T is diag-
onal with two diagonal entries at (i, i) or ( j, j) equal to (Ci, j − Ai, j )

2. Thus,
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V = ∑
i, j∈[n],i< j E[E(i j)E(i j)T ] is also diagonal. We have

Vi,i =
∑
j �=i

E[(Ci, j − Ai, j )
2] =

∑
j �=i

A2
i, j ·

(
p ·
(
1

p
− 1

)2

+ (1 − p) · (−1)2
)

=
∑
j �=i

A2
i, j ·

(
1

p
− 1

)
≤ n

p
,

where in the final inequality we use that ‖A‖∞ ≤ 1. Thus, since V is diagonal,
‖V‖2 ≤ n

p . Putting the above together using Theorem 6 we get,

P (‖A − C‖2 ≥ εn) = P

⎛
⎝
∥∥∥∥∥∥

∑
i, j∈[n],i< j

E(i j)

∥∥∥∥∥∥
2

≥ εn

⎞
⎠ ≤ 2n · exp

(
−ε2n2/2
n
p + εn

3p

)
.

Thus, for p ≥ c log(n/δ)

nε2
for large enough c, with probability at least 1 − δ we have

‖A − C‖2 ≤ εn. ��

F.1 Improved Sample Complexity via Entrywise Sampling

We can combine Theorem 10 directly with Theorem 1 to give an improved sample
complexity for eigenvalue estimation. we have:

Corollary 1 (Improved Sample Complexity via Entrywise Sampling) Let A ∈ R
n×n

be symmetric with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). For any

ε, δ ∈ (0, 1), there is an algorithm that reads Õ
(
log3 n
ε5δ

)
entries ofA and returns, with

probability at least 1 − δ, λ̃i (A) for each i ∈ [n] satisfying |λ̃i (A) − λi (A)| ≤ εn.

Proof Letting s = c1 log(1/(εδ))·log3 n
ε3δ

for large enough constant c1, by Theorem 1, for a
random principal submatrix AS formed by sampling each index with probability s/n,
the eigenvalues of AS , after scaling up by a factor of n/s approximate those of A to
error ±εn with probability at least 1 − δ. By Theorem 10, if we sample off-diagonal
entries of AS with probability p ≥ c2 log(|S|/δ)

|S|·ε2 to produce C, then we preserve its

eigenvalues to error±ε|S|. Thus, after scaling by n
s , the eigenvalues ofC approximate

those of A to error ± (εn + n
s · ε|S|). Finally, observe that by a standard Chernoff

bound, |S| ≤ 2s with probability at least 1−δ. So adjusting ε by a constant, the scaled
eigenvalues of C give ±εn approximations to A’s eigenvalues. The expected number

of entries read is |S| + p · |S|2 = Õ
(
s·log(1/δ)

ε2

)
= Õ

(
log3 n
ε5δ

)
. Additionally, by a

standard Chernoff bound at most Õ
(
log3 n
ε5δ

)
are read with probability at least 1− δ. ��
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G Singular Value Approximation via Sampling

We now show how to estimate the singular values of a bounded-entry matrix via
random subsampling. Unlike in eigenvalue estimation, instead of sampling a random
principal submatrix, here we sample a random submatrix with independent rows and
columns. This allows us to apply known interior eigenvalue matrix Chernoff bounds
to bound the perturbation in the singular values [11, 12]. We first state a simplified
version of Theorem 4.1 from [12] (also stated as Theorem 4.6 in [11]), simplified
using standard upper bounds on the Chernoff bounds in [57].

Theorem 11 (Interior Eigenvalue Matrix Chernoff bounds—Theorem 4.1 of [12]) Let
{X j } be a finite sequence of independent, random, positive-semidefinite matrices with
dimension n, and assume that ‖X j‖2 ≤ L for some value L almost surely. Given an
integer k ≤ n, define

μk = λk

⎛
⎝∑

j

E[X j ]
⎞
⎠ .

Then we have the tail inequalities:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P

(
λk(
∑

j X j ) ≥ (1 + 
)μk

)
≤ (n − k + 1) · e− 
μk

3L , for 
 ≥ 1

P

(
λk(
∑

j X j ) ≥ (1 + 
)μk

)
≤ (n − k + 1) · e− 
2μk

3L , for 
 ∈ [0, 1)
P

(
λk(
∑

j X j ) ≤ (1 − 
)μk

)
≤ k · e− 
2μk

2L , for 
 ∈ [0, 1)

We are now ready to state and prove the main theorem.

Theorem 12 Let A ∈ R
n×n be a matrix with ‖A‖∞ ≤ 1 and singular values σ1(A) ≥

. . . ≥ σn(A). Let S̄ ∈ R
n×n be a scaled diagonal sampling matrix such that S̄i i =√

n
s with probability s

n and S̄i i = 0 otherwise. Let T̄ ∈ R
n×n be an independent

and identically distributed random sampling matrix. Let Z = S̄AT̄ be the sampled
submatrix from A with singular values σ1(Z) ≥ . . . ≥ σn(Z). Then, if s ≥ c log(n/δ)

ε2

for some constant c, with probability at least 1 − δ, for all i ∈ [n],

σi (A) − εn ≤ σi (Z) ≤ σi (A) + εn.

Proof We first prove that singular values of S̄A are close to those ofA. LetXi ∈ R
n×n

be matrix valued r.v.’s for i ∈ [n] such that:

Xi =
{

n
sAiAT

i , with probability s/n

0 otherwise
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where Ai is the i th row of A written as a column vector. Then,
∑

i Xi = (S̄A)T (S̄A)

and E[∑i Xi ] = ATA. We have ‖Xi‖2 ≤ max j
n
s ‖A j‖22 ≤ n2

s and λk(E[∑i Xi ]) =
λk(ATA) = σ 2

k (A) for k ∈ [n].
Case 1We will first prove that σk(A) − εn ≤ σk(S̄A) for all k ∈ [n]. Note that when
σk(A) ≤ εn, σk(A)− εn ≤ σk(S̄A) is trivially true. We now consider all k ∈ [n] such
that σk(A) > εn. Setting μk = λk(ATA), L = n2

s and 
 = εn
σk (A)

(note that 
 < 1)
in Theorem 11, we get:

P

(
λk((S̄A)T (S̄A)) ≤ (1 − 
)λk(ATA)

)
≤ k · e−c


2
1λk (AT A)

L ≤ k · e−c ε2n2

λk (AT A)
· λk (AT A)

(n2/s)

where c is constant. So, for s ≥ O(
log(n/δ)

ε2
) for any k, we have λk((S̄A)T (S̄A)) =

σ 2
k (S̄A) ≥ (1 − 
)σ 2

k (A) with probability at least 1 − δ
n . Taking a square root on

both sides we get σk(S̄A) ≥ √
1 − 
σk(A) ≥ (1 − 
)σk(A) = σk(A) − εn. Taking

a union bound over all k with σk(A) > εn, σk(A) − εn ≤ σk(S̄A) holds for all such
k with probability at least 1 − δ.

Case 2We now prove that σk(S̄A) ≤ σk(A)+ εn for all k ∈ [n]. We first consider the
case when σk(A) ≤ εn. Setting μk = λk(ATA), L = n2

s and 
 = ε2n2

σ 2
k (A)

(note that


 ≥ 1) in Theorem 11, we get (for some constant c):

P

(
λk((S̄A)T (S̄A)) ≥ (1 + 
)λk(ATA)

)
≤ n.e− c
λk (AT A)

L

≤ n · e− cε2n2

λk (AT A)
· λk (AT A)

(n2/s)

Thus, if s ≥ O(
log(n/δ)

ε2
), we have λk((S̄A)T (S̄A)) ≤ (1+
)λk(ATA) ≤ λk(ATA)+

ε2n2 for all k ∈ [n] such that σk(A) ≤ εn with probability at least 1 − δ via a union
bound. Taking square root on both sides and using the facts that λk(ATA) = σ 2

k (A),
λk((S̄A)T (S̄A)) = σ 2

k (S̄A) and
√
a + b <

√
a + √

b, we get σk(S̄A) ≤ σk(A) + εn.

We now consider the case σk(A) > εn. Setting μk = λk(ATA), L = n2
s and


 = εn
σk (A)

(note that 
 < 1) in Theorem 11, we get (for some constant c):

P

(
λk((S̄A)T (S̄A)) ≥ (1 + 
)λk(ATA)

)
≤ n.e− c
2λk (AT A)

L

≤ n · e− cε2n2

λk (AT A)
· λk (AT A)

(n2/s) .

Thus, if s ≥ O(
log(n/δ)

ε2
), we have λk((S̄A)T (S̄A)) ≤ (1+
)λk(ATA) for all k ∈ [n]

such that σk(A) > εn with probability at least 1− δ via a union bound. Taking square
root on both sides and using the fact that λk(ATA) = σ 2

k (A), λk((S̄A)T (S̄A)) =
σ 2
k (S̄A) and

√
a < a for any a > 1, we get σk(S̄A) ≤ (1 + 
)σk(A) ≤ σk(A) + εn.
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Thus, via a union bound over all k ∈ [n], we have σk(S̄A) ≤ σk(A) + εn with
probability 1 − 2δ.

Thus, via a union bound over the two cases above, for all k ∈ [n] with probability
at least 1 − 3δ for s ≥ O(

log(n/δ)

ε2
) we have, for all k ∈ [n],

|σk(S̄A) − σk(A)| ≤ εn. (56)

Nextweprove that the singular values of S̄AT̄ are close to those of S̄A, using essentially
the same approach as above. Let Yi be a matrix values random variable for i ∈ [n]
such that:

Yi =
{

n
s (S̄A)i (S̄A)Ti , with probability s/n

0 otherwise

where (S̄A)i is the i th column of S̄A. Then,
∑

i Yi = (S̄AT̄)T (S̄AT̄). Also, we have
λk(E[∑i Yi ]) = λk((S̄A)T (S̄A)) = σ 2

k (S̄A). First, using a standard Chernoff bound,
we can claim that S̄will sample at most 2s rows fromAwith probability at least 1− δ

for any s ≥ O(log(1/δ)). Thus, we have ‖Yi‖2 = n
s ‖S̄A‖22 ≤ n

s · n
s · 2 s ≤ 2n2

s with
probability 1− δ. Let this event be called E2. We now consider two cases conditioned
on the event E2.

Case 1 We first prove that σk(S̄A) − εn ≤ σk(S̄AT̄) for all k ∈ [n]. Again note
that when σk(S̄A) ≤ εn this is trvially true. So we consider all k ∈ [n] such that
σk(S̄A) > εn. Setting μk = λk((S̄A)T (S̄A)), L = 2n2

s (as we have conditioned on
E2) and 
 = εn

σk (S̄A)
(note that 
 < 1) in Theorem 11, we get:

P

(
λk((S̄AT̄)T (S̄AT̄)) ≤ (1 − 
)λk(ATA)

)

≤ k · e−c

2
1λk ((S̄A)T (S̄A))

L ≤ k · e−c ε2n2

λk ((S̄A)T (S̄A))
· λk ((S̄A)T (S̄A))

(n2/s)

where c is someconstant. So, for s ≥ O(
log(n/δ)

ε2
) for any k,wehaveλk((S̄AT̄)T (S̄AT̄)) =

σ 2
k (S̄AT̄) ≥ (1 − 
)σ 2

k (S̄A) with probability at least 1 − δ
n . Taking a square root on

both sides we get σk(S̄AT̄) ≥ √
1 − 
σk(S̄A) ≥ (1 − 
)σk(S̄A) = σk(S̄A) − εn.

Taking a union bound over all k with σk(A) > εn, σk(S̄A)− εn ≤ σk(S̄AT̄) holds for
all such k with probability at least 1 − δ.

Case 2We now prove σk(S̄AT̄) ≤ σk(S̄A)+εn for all k ∈ [n]. We again first consider
the case σk(S̄A) ≤ εn. Setting μk = λk(ATA), L = n2

s and 
 = ε2n2

σ 2
k (S̄A)

(note that


 ≥ 1) in Theorem 11:

P

(
λk((S̄AT̄)T (S̄AT̄)) ≥ (1 + 
)λk((S̄A)T (S̄A))

)
≤ n · e− c
λk ((S̄A)T (S̄A))

L

≤ n · e− cε2n2

λk ((S̄A)T (S̄A))
· λk ((S̄A)T (S̄A))

(n2/s)
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Then, similar to the case σk(A) ≤ εn in the previous case 2, taking square root of both
sides and via a union bound, we get σk(S̄AT̄) ≤ σk(S̄A)+ εn for all k ∈ [n] such that
σk(S̄A) ≤ εnwith probability at least 1−δ for s ≥ O(

log(n/δ)

ε2
). The case σk(S̄A) > εn

will again be similar as σk(A) > εn in the previous case 2. We set 
 = εn
σk (S̄A)

and

applyTheorem11 and take the square root on both sides to getσk(S̄AT̄) ≤ σk(S̄A)+εn
with probability 1−δ for all k ∈ [n] for s ≥ O(

log(n/δ)

ε2
). Thus, with probability 1−2δ,

conditioned on the event E2, we have σk(S̄AT̄) ≤ σk(S̄A)+εn for all k ∈ [n]. Finally,
via a union bound over the two cases above, and conditioned on E2, for all k ∈ [n]
with probability at least 1 − 2δ for s ≥ O(

log(n/δ)

ε2
) we get

|σk(S̄AT̄) − σk(S̄A)| ≤ εn. (57)

Thus, taking a union bound over all the cases above (including E2), from equation
(56) and (57) and via a triangle inequality, we get: |σk(S̄AT̄) − σk(A)| ≤ 2εn with
probability at least 1− cδ (where c is a small constant) for s ≥ O(

log(n/δ)

ε2
). Adjusting

ε and δ by constant factors gives us the final bound. ��
Remark on Rectangular Matrices Though we have considered A to be a square
matrix for simplicity, notice that Theorem 12 also holds for any arbitrary (non-square)
matrix A ∈ R

n×m , with n replaced by max(n,m) in the sample complexity bound.

Remark onNon-Uniform SamplingAs discussed in Sect. 1.3.1, simple non-uniform
random submatrix sampling via row/column sparsities or norms does not suffice to
estimate the singular values up to improved error bounds of ε

√
nnz(A) or ε‖A‖F . A

more complex strategy, such as the zeroing out used in Theorems 2 and 3must be used.
It is worth noting that following the same proof as Theorem 12, it is easy to show that if
S̄ is sampled according to row norms or sparsities and appropriately weighted, then the
singular values of S̄A do approximate those of A up to these improved error bounds.
The proof breaks down when analyzing S̄AT̄. T̄ would have to be sampled according
to the row norms/sparsities of S̄A, not A, for the proof to go through. However, in
general, these sampling probabilities can differ significantly between S̄A and A.
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