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Abstract

We study the problem of approximating the eigenspectrum of a symmetric matrix
A € R™ with bounded entries (i.e., ||[Allcc < 1). We present a simple sublin-
ear time algorithm that approximates all eigenvalues of A up to additive error +en

; 5 (log3n log n P .
using those of a randomly sampled O =~ ) X O | ==~ ) principal submatrix. Our

result can be viewed as a concentration bound on the complete eigenspectrum of a
random submatrix, significantly extending known bounds on just the singular values
(the magnitudes of the eigenvalues). We give improved error bounds of 4-¢+/nnz(A)
and *¢€||A| r when the rows of A can be sampled with probabilities proportional to
their sparsities or their squared £> norms respectively. Here nnz(A) is the number of
non-zero entries in A and ||A||r is its Frobenius norm. Even for the strictly easier
problems of approximating the singular values or testing the existence of large nega-
tive eigenvalues (Bakshi, Chepurko, and Jayaram, FOCS ’20), our results are the first
that take advantage of non-uniform sampling to give improved error bounds. From
a technical perspective, our results require several new eigenvalue concentration and
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perturbation bounds for matrices with bounded entries. Our non-uniform sampling
bounds require a new algorithmic approach, which judiciously zeroes out entries of
arandomly sampled submatrix to reduce variance, before computing the eigenvalues
of that submatrix as estimates for those of A. We complement our theoretical results
with numerical simulations, which demonstrate the effectiveness of our algorithms in
practice.

Keywords Eigenvalue approximation - Sublinear algorithms - Randomized
algorithms - Symmetric matrices

1 Introduction

Approximating the eigenvalues of a symmetric matrix is a fundamental problem—
with applications in engineering, optimization, data analysis, spectral graph theory,
and beyond. For an n x n matrix, all eigenvalues can be computed to high accuracy
using direct eigendecomposition in O (n®) time, where w ~ 2.37 is the exponent of
matrix multiplication [1, 2]. When just a few of the largest magnitude eigenvalues are
of interest, the power method and other iterative Krylov methods can be applied [3].
These methods repeatedly multiply the matrix of interest by query vectors, requiring
O (n?) time per multiplication when the matrix is dense and unstructured.

For large n, it is desirable to have even faster eigenvalue approximation algorithms,
running in o(nz) time—i.e., sublinear in the size of the input matrix. Unfortunately, for
general matrices, no non-trivial approximation can be computed in o(n?) time: without
reading Q (n?) entries, it is impossible to distinguish with reasonable probability if
all entries (and hence all eigenvalues) are equal to zero, or if there is a single pair of
arbitrarily large entries at positions (i, j) and (j, i), leading to a pair of arbitrarily
large eigenvalues. Given this, we seek to address the following question:

Under what assumptions on a symmetric n X n input matrix, can we compute
non-trivial approximations to its eigenvalues in o(n>) time?

It is well known that o(n?) time eigenvalue computation is possible for highly
structured inputs, like tridiagonal or Toeplitz matrices [4]. For sparse or structured
matrices that admit fast matrix vector multiplication, one can compute a small number
of the largest in magnitude eigenvalues in o(n?) time using iterative methods. Through
the use of robust iterative methods, fast top eigenvalue estimation is also possible for
matrices that admit fast approximate matrix—vector multiplication, such as kernel
similarity matrices [5—7]. Our goal is to study simple, sampling-based sublinear time
algorithms that work under much weaker assumptions on the input matrix.

1.1 Our Contributions
Our main contribution is to show that a very simple algorithm can be used to approxi-

mate all eigenvalues of any symmetric matrix with bounded entries. In particular, for
any A € R™*" with maximum entry magnitude ||A||s < 1, sampling an s x s princi-
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pal submatrix Ag of A withs = O (lof#) and scaling its eigenvalues by /s yields a
+en additive error approximation to all eigenvalues of A with good probability.! This
result is formally stated below, where [n] def {1,...,n}

Theorem 1 (Sublinear Time Eigenvalue Approximation) Let A € R"*" be symmetric
with ||Allecc < 1 and eigenvalues A1(A) > ... > X, (A). Let S C [n] be formed by
including each index independently with probability s/n as in Algorithm 1. Let Ag
be the corresponding principal submatrix of A, with eigenvalues A (Ag) > ... >
Asi(As).

For alli € [|S]|] with 1;(Ag) > O, let 5\,-(A) = % - Li(Ag). Foralli € [|S|] with
Ai(Ag) < 0, let Ay—(s1—i)(A) = 2 - A (Ag). For all other i € [n], let X;(A) = 0. If

3
s > dog(l/fw, for large enough constant c, then with probability > 1 — §, for

alli € [n],
Xi(A) —en < Ai(A) < A (A) + en.

See Fig.1 for an illustration of how the |S| eigenvalues of Ag are mapped to esti-
mates for all n eigenvalues of A. Since A satisfies [|[A|loc < 1, it must hold that
||A||%v =y, )»,.Q(A) < n?, so there are at most 1/€> eigenvalues greater than en.
Therefore, we may set A; (A) to zero for all but 1/€2 eigenvalues and still satisfy the
stated error guarantee. Note that the principal submatrix A g sampled in Theorem 1 will

~ 3
have O(s) = O <1°g ") rows/columns with high probability. Thus, with high proba-

€38
log® n
€652

bility, the algorithm reads just 0 ( ) entries of A and runs in poly(logn, 1/€, 1/§)

time. Standard matrix concentration bounds imply that one can sample O ( Slogé#)

random entries from the O(s) x O(s) random submatrix Ag and preserve its eigen-
values to error €5 with probability 1 — § [8]. See “Appendix F” for a proof. This can
be directly combined with Theorem 1 to give improved sample complexity:

Corollary 1 (Improved Sample Complexity via Entrywise Sampling) Let A € R"*"
be symmetric with ||Allcc < 1 and eigenvalues Li(A) > ... > A,(A). For any

~ 3
€,6 € (0, 1), there is an algorithm that reads O (1():’;8"

probability at least 1 — 8, 1; (A) for each i € [n] satisfying |xi (A) — A (A)| < en.

) entries of A and returns, with

Observe that the dependence on § in Theorem 1 and Corollary 1 can be improved via
standard arguments: running the algorithm with failure probability 8’ = 2/3, repeating
O(log(1/6)) times, and taking the median estimate for each A;(A). This guarantees
that the algorithm will succeed with probability at most 1 — § at the expense of a
log(1/6) dependence in the complexity.

Comparison to known bounds Theorem 1 can be viewed as a concentration inequality
on the full eigenspectrum of a random principal submatrix Ag of A. This significantly

! Here and throughout, O (-) hides logarithmic factors in the argument. Note that by scaling, our algorithm
gives a €n - ||A] oo approximation for any A.
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Fig. 1 Alignment of eigenvalues in Theorem 1 and Algorithm 1. We illustrate how the eigenvalues of Ag,
scaled by %, are used to approximate all eigenvalues of A. If Ag has p — 1 positive eigenvalues, they are set
to the top p — 1 eigenvalue estimates. Its |S| — p + 1 negative eigenvalues are set to the bottom eigenvalue
estimates. All remaining eigenvalues are simply approximated as zero

extends prior work, which was able to bound just the spectral norm (i.e., the magnitude
of the top eigenvalue) of a random principal submatrix [9, 10]. Bakshi et al. [11]
recently identified developing such full eigenspectrum concentration inequalities as
an important step in expanding our knowledge of sublinear time property testing
algorithms for bounded entry matrices.

Standard matrix concentration bounds [12] can be used to show that the singular
values of A (i.e., the magnitudes of its eigenvalues) are approximated by those of

a0 (loegzn) x O (log") random submatrix (see “Appendix G”) with independently

sampled rows and columns. However, such a random matrix will not be symmetric or
even have real eigenvalues in general as the sampling of the rows is independent of the
columns, and thus no analogous bounds were previously known for the eigenvalues
themselves.

Recently, Bakshi et al. [11] studied the closely related problem of testing positive
semidefiniteness in the bounded entry model. They show how to test whether the
minimum eigenvalue of A is either greater than O or smaller than —en by reading just
0 (eiz) entries. They show that this result is optimal in terms of query complexity, up to
logarithmic factors. Like our approach, their algorithm is based on random principal
submatrix sampling. Our eigenvalue approximation guarantee strictly strengthens the
testing guarantee—given +en approximations to all eigenvalues, we immediately
solve the testing problem. Thus, our query complexity is tight up to a poly(logn, 1/¢€)
factor. It is open if our higher sample complexity is necessary to solve the harder full
eigenspectrum estimation problem. See Sect. 1.4 for further discussion.

Improved bounds for non-uniform sampling Our second main contribution is
to show that, when it is possible to efficiently sample rows/columns of A with
probabilities proportional to their sparsities or their squared £, norms, significantly
stronger eigenvalue estimates can be obtained. In particular, letting nnz(A) denote
the number of nonzero entries in A and ||A|| ¢ denote its Frobenius norm, we show
that sparsity-based sampling yields eigenvalue estimates with error e y/nnz(A) and
norm-based sampling gives error +€||A||r. See Theorems 2 and 3 for formal state-
ments. Observe that when ||A|s < 1, its eigenvalues are bounded in magnitude by
Al < |AllF < 4/nnz(A) < n. Thus, Theorems 2 and 3 are natural strengthen-
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ings of Theorem 1. Row norm-based sampling (Theorem 3) additionally removes the
bounded entry requirement of Theorems 1 and 2.

As discussed in Sect. 1.3.1, sparsity-based sampling can be performed in sublinear
time when A is stored in a slightly augmented sparse matrix format or when A is
the adjacency matrix of a graph accessed in the standard graph query model of the
sublinear algorithms literature [13]. Norm-based sampling can also be performed
efficiently with an augmented matrix format, and is commonly studied in randomized
and ‘quantum-inspired’ algorithms for linear algebra [14, 15].

Theorem 2 (Sparse Matrix Eigenvalue Approximation) Let A € R"*" be symmetric
with |Alleo < 1 and eigenvalues L1(A) > ... > Ay (A). Let S C [n] be formed by

including the i™ index independently with probability p; = min (1, %) as in

Algorithm 2. Here nnz(A;) is the number of non-zero entries in the i ™ row of A. Let
Ag be the corresponding principal submatrix of A, and let 1; (A) be the estimate of

8
i (A) computed from Ag as in Algorithm 2. If s > Ciog%, for large enough constant

¢, then with probability > 1 — §, for alli € [n], [2i(A) — 2 (A)] < e+/nnz(A).

Theorem 3 (Row Norm Based Matrix Eigenvalue Approximation) Let A € R"" be
symmetric and eigenvalues L1(A) > ... > X, (A). Let S C [n] be formed by including
sIAi I3
IAIF

the i™ index independently with probability p; = min | 1, + n%) as in Algo-

rithm 3. Here ||A;||2 is the £, norm of the i"" row of A. Let As be the corresponding
principal submatrix of A, and let A;(A) be the estimate of L;(A) computed from Ag
as in Algorithm 3. If s > ¢ 1:564 " for large enough constant c, then with probability

> 1 -6, foralli € [n], |Ai(A) — 1 (A)| < €||AllF.

The above non-uniform sampling theorems immediately yield algorithms for test-
ing the presence of a negative eigenvalue with magnitude at least e /nnz(A) or €||A|| ¢
respectively, strengthening the testing results of [11], which require eigenvalue mag-
nitude at least en. In the graph property testing literature, there is a rich line of work
exploring the testing of bounded degree or sparse graphs [13, 16]. Theorem 2 can be
thought of as a first step in establishing a related theory of sublinear time approximation
algorithms and property testers for sparse matrices.

Surprisingly, in the non-uniform sampling case, the eigenvalue estimates derived
from A g cannot simply be its scaled eigenvalues, as in Theorem 1. E.g., when A is the
identity, our row sampling probabilities are uniform in all cases. However, the scaled
submatrix % - Ag will be a scaled identity, and have eigenvalues equal to n/s—failing
to give a e /nnz(A) = +¢||A||f = +e/n approximation to the true eigenvalues

(all of which are 1) unless s 2> ‘/Tﬁ To handle this, and related cases, we must argue
that selectively zeroing out entries in sufficiently low probability rows/columns of
A (see Algorithms 2 and 3) does not significantly change the spectrum, and ensures
concentration of the submatrix eigenvalues. It is not hard to see that simple random
submatrix sampling fails even for the easier problem of singular value estimation.
Theorems 2 and 3 give the first results of their kinds for this problem as well.
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1.2 Related Work

Eigenspectrum estimation is a key primitive in numerical linear algebra, typically
known as spectral density estimation. The eigenspectrum is viewed as a distribution
with mass 1/n at each of the n eigenvalues, and the goal is to approximate this distribu-
tion [17, 18]. Applications include identifying motifs in social networks [19], studying
Hessian and weight matrix spectra in deep learning [20-22], ‘spectrum splitting’ in
parallel eigensolvers [23], and the study of many systems in experimental physics and
chemistry [24-26].

Recent work has studied sublinear time spectral density estimation for graph struc-
tured matrices—Braverman et al. [27] show that the spectral density of a normalized
graph adjacency or Laplacian matrix can be estimated to € error in the Wasserstein
distance in O(n/ poly(e)) time. Cohen-Steiner, Kong, Sohler, and Valiant study a
similar setting, giving runtime 29(1/€) [28]. We note that the additive error eigenvalue
approximation result of Theorem 1 (analogously Theorems 2 and 3) directly gives
an en approximation to the spectral density in the Wasserstein distance—extending
the above results to a much broader class of matrices. When ||[A|o < 1, A can have
eigenvalues as large as n, while the normalized adjacency matrices studied in [27,
28] have eigenvalues in [—1, 1]. So, while the results are not directly comparable, our
Wasserstein error can be thought as on order of their error of € after scaling.

Our work is also closely related to a line of work on sublinear time property test-
ing for bounded entry matrices, initiated by Balcan et al. [29]. In that work, they
study testing of rank, Schatten-p norms, and several other global spectral proper-
ties. Sublinear time testing algorithms for the rank and other properties have also
been studied under low-rank and bounded row norm assumptions on the input matrix
[30, 31]. Recent work studies positive semidefiniteness testing and eigenvalue esti-
mation in the matrix—vector query model, where each query computes Ax for some
x € R As in Theorem 3, +¢||A| r eigenvalue estimation can be achieved with
poly(logn, 1/€) queries in this model [32]. Finally, several works study streaming
algorithms for eigenspectrum approximation [33-35]. These algorithms are not sub-
linear time—they require at least linear time to process the input matrix. However,
they use sublinear working memory. Note that Theorem 1 immediately gives a sub-
linear space streaming algorithm for eigenvalue estimation. We can simply store the
sampled submatrix Ag as its entries are updated.

1.3 Technical Overview

In this section, we overview the main techniques used to prove Theorem 1, and then
how these techniques are extended to prove Theorems 2 and 3. We start by defining a
decomposition of any symmetric A into the sum of two matrices containing its large
and small magnitude eigendirections which correspond to the “outlying” and “middle”
eigenvalues respectively.

Definition 1.1 (Eigenvalue Split) Let A € R"*" be symmetric. For any €, § € (0, 1),
let A, = V,,A,,VZ where A, is diagonal, with the eigenvalues of A with magnitude
> €+/8n on its diagonal, and V, has the corresponding eigenvectors as columns.

@ Springer



1770 Algorithmica (2024) 86:1764-1829

Similarly, let A,,, = VmAmV,Z; where A,, has the eigenvalues of A with magnitude
< €+/8n on its diagonal and V,, has the corresponding eigenvectors as columns. Then,
A can be decomposed as

A=A, +A, =V,A V! +V,A, V]
Any principal submatrix of A, Ag, can be similarly written as
As=Aos+Ans=VosAV. ¢+ VusAnV] .

where V, 5, V,, s are the corresponding submatrices obtained by sampling rows of
Vo, Vi

Since Ag, A, s and A, s are all symmetric, we can use Weyl’s eigenvalue pertur-
bation theorem [36] to show that for all eigenvalues of Ag,

i (As) — Xi (Ao )| < A, sll2. (1

We will argue that the eigenvalues of A, s approximate those of A,—i.e. all eigen-
values of A with magnitude > €+/3n. Further, we will show that A, sll2 is small
with good probability. Thus, via (1), the eigenvalues of Ag approximate those of A,.
In the estimation procedure of Theorem 1, all other small magnitude eigenvalues of
A are estimated to be 0, which will immediately give our +en approximation bound
when the original eigenvalue has magnitude < en.

Bounding the eigenvalues of A, 5. The first step is to show that the eigenvalues
of A, s well-approximate those of A,. As in [11], we critically use that the eigen-
vectors corresponding to large eigenvalues are incoherent—intuitively, since ||Also
is bounded, their mass must be spread out in order to witness a large eigenvalue.
Specifically, [11] shows that for any eigenvector v of A with corresponding eigen-
value > €/, ||V]so < W We give related bounds on the Euclidean norms of

the rows of V,, (the leverage scores of A,), and on these rows after weighting by A,.

Using these incoherence bounds, we argue that the eigenvalues of A, s approx-
imate those of A, up to +en error. A key idea is to bound the eigenvalues of
A(l)/ ZV(i SVg,sA(l;/ 2, which are identical to the non-zero eigenvalues of A, s =
Vo. SAOVg 5 Via a matrix Bernstein bound and our incoherence bounds on V,, we

show that this matrix is close to A, with high probability. However, since A,lj/ 2 may
be complex, the matrix is not necessarily Hermitian and standard perturbation bounds
[37, 38] do not apply. Thus, to derive an eigenvalue bound, we apply a perturbation
bound from Kahan [39, 40], which generalizes Weyl’s inequality to the non-Hermitian
case, with alog n factor loss. To the best of our knowledge, this is the first time that per-
turbation theory bounds for non-Hermitian matrices have been used to prove improved
algorithmic results in the theoretical computer science literature.

We note that in “Appendix B”, we give an alternate bound, which instead analyzes
the Hermitian matrix (V£ SVo,s)l/ 2A0(V£ sVo.s) 172 whose eigenvalues are again
identical to those of A, s. This approach only requires Weyl’s inequality, and yields
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logn

an overall bound of s = O ( ) improving the logn factors of Theorem 1 at the

cost of worse € dependence.

Bounding the spectral norm of A,, 5. The next step is to show that all eigenvalues
of A, s are small provided a sufficiently large submatrix is sampled. This means that
the “middle” eigenvalues of A, i.e. those with magnitude < e«/gn do not contribute
much to any eigenvalue A; (As). To do so, we apply a theorem of [9, 10] which shows
concentration of the spectral norm of a uniformly random submatrix of an entrywise
bounded matrix Observe that while ||A ||~ < 1, such a bound will not in general hold
for ||A; |lco- Nevertheless, we can use the incoherence of V,, to show that ||A,||co iS
bounded, which via triangle inequality, yields a bound on [|A; [co < |Allco + | A6 || o-
In the end, we show that if s > O(IOgn) with probability at least 1 — 8, ||Ay, sll2 < €s.
After the n/s scaling in the estlmatlon procedure of Theorem 1, this spectral norm
bound translates into an additive en error in approximating the eigenvalues of A.

Completing the argument Once we establish the above bounds on A, s and A, s,
Theorem 1 is essentially complete. Any eigenvalue in A with magnitude > en will
correspond to a nearby eigenvalue in |- A, s and in turn, % - A g given our spectral norm
bound on A, s. An eigenvalue in A W1th magnitude < en may or may not correspond
to a nearby by eigenvalue in A, s (it will only if it lies in the range [ [ex/8n, €n)). In any
case however, in the estimation procedure of Theorem 1, such an eigenvalue will either
be estimated using a small eigenvalue of Ag, or be estimated as 0. In both instances,
the estimate will give £en error, as required.

Can we beat additive error? It is natural to ask if our approach can be improved to
yield sublinear time algorithms with stronger relative error approximation guarantees
for A’s eigenvalues. Unfortunately, this is not possible—consider a matrix with just
a single pair of entries A; j, A;; set to 1. To obtain relative error approximations to
the two non-zero eigenvalues, we must find the pair (i, j), as otherwise we cannot
distinguish A from the all zeros matrix. This requires reading a Q (n?) of A’s entries.
More generally, consider A with a random n/t x n/t principal submatrix populated
by all 1s, and with all other entries equal to 0. A has largest eigenvalue n /7. However,
if we read s < 12 entries of A, with good probability, we will not see even a single
one, and thus we will not be able to distinguish A from the all zeros matrix. This
example establishes that any sublinear time algorithm with query complexity s must
incur additive error at least Q(n/./5).

1.3.1 Improved Bounds via Non-uniform Sampling

We now discuss how to give improved approximation bounds via non-uniform
sampling. We focus on the +e./nnz(A) bound of Theorem 2 using sparsity-based
sampling. The proof of Theorem 3 for row norm sampling follows the same general
ideas, but with some additional complications.

Theorem 2 requires sampling a submatrix Ag, where each index i is included in
S with probability p; = min(1, 2284y We reweight each sampled row/column by

> nnz(A)
1 . R e 1
T Thus, if entry A;; is sampled, it is scaled by NIk
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sparsity (so all p; = s/n), this ensures that the full submatrix is scaled by n/s, as in
Theorem 1.

The proof of Theorem 2 follows the same outline as that of Theorem 1: we first
argue that the outlying eigenvectors in V,, are incoherent, giving a bound on the norm
of each row of V,, in terms of nnz(A;). We then apply a matrix Bernstein bound and
Bhatia’s non-Hermitian eigenvalue perturbation bound to show that the eigenvalues
of A, s approximate those of A, up to +e+/nnz(A).

Bounding the spectral norm of A, s. The major challenge is showing that the
subsampled middle eigendirections do not significantly increase the approximation
error, which we accomplish by bounding [|A,, s[> by e4/nnz(A). This is difficult
since the indices in A,, s are sampled nonuniformly, so existing bounds [10] on the
spectral norm of uniformly random submatrices do not apply. We extend these bounds
to the non-uniform sampling case, but still face an issue due to the rescaling of entries

by \/[717] In fact, without additional algorithmic modifications, [|A,; s|l2 is simply
not bounded by €+/nnz(A)! For example, as already discussed, if A = I is the identity

matrix, we get A, s = £ -Tand so [|[Ay sll2 = § > ey/nnz(A), assuming s < 4
Relatedly, suppose that A is tridiagonal, with zeros on the diagonal and ones on the
first diagonals above and below the main diagonal. Then, if s > /n, with constant

probability, one of the ones will be sampled and scaled by 7. Thus, we will again
have ||A,;.sll2 > % > e4/nnz(A), assuming s < “2/—3 Observe that this implies

01(Ay,s) is a poor estimate for o1 (A). Thus, while an analogous bound to the uniform
sampling result of Theorem 1 can easily be given for singular value estimation via
matrix concentration inequalities (see “Appendix G”), to the best of our knowledge,

Theorems 2 and 3 are the first of their kind even for singular value estimation.

Zeroing out entries in sparse rows/columns To handle the above cases, we prove
a novel perturbation bound, arguing that if we zero out any entry A;; of A where

J/mnz(A;) -nnz(A;) < ev/mnzA) *hen the eigenvalues of A are not perturbed by

clogn

more than €4/nnz(A). This can be thought of as a strengthening of Girshgorin’s circle
theorem, which would ensure that zeroing out entries in rows/columns with nnz(A;) <
€+4/nnz(A) does not perturb the eigenvalues by more than € /nnz(A). Armed with this
perturbation bound, we argue that if we zero out the appropriate entries of Ag before
computing its eigenvalues, then since we have removed entries in very sparse rows
and columns which would be scaled by a large \/[]17! factor in Ag, we can bound
IAsn, sll2. This requires relating the magnitudes of the entries in A, s to those in Ag
using the incoherence of the top eigenvectors, which gives bounds on the entries of
Aps =As — Aps.

Sampling model We note that the sparsity-based sampling of Theorem 2 can be effi-
ciently implemented in several natural settings. Given a matrix stored in sparse format,
i.e., as a list of nonzero entries, we can easily sample a row with probability ‘;I;IZZ(&))
by sampling a uniformly random non-zero entry and looking at its corresponding row.
Via standard techniques, we can convert several such samples into a sampled set S

close in distribution to having each i € [n] included independently with probability
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min (1, %). If we store the values of nnz(A), nnz(Ap), ..., nnz(A,), we can
also efficiently access each p;, which is needed for rescaling and zeroing out entries.
Also observe that if A is the adjacency matrix of a graph, in the standard graph query
model [13], it is well known how to approximately count edges and sample them uni-
formly at random, i.e., compute nnz(A) and sample its nonzero entries, in sublinear
time [41, 42]. Further, it is typically assumed that one has access to the node degrees,
i.e., nnz(Ay), ..., nnz(A,). Thus, our algorithm can naturally be used to estimate
spectral graph properties in sublinear time.

The ¢> norm-based sampling of Theorem 3 can also be performed efficiently using
an augmented data structure for storing A. Such data structures have been used exten-
sively in the literature on quantum-inspired algorithms, and require just O (nnz(A))
time to construct, O (nnz(A)) space, and O (logn) time to update give an update to an
entry of A [15, 43].

1.4 Towards Optimal Query Complexity

As discussed, Bakshi et al. [11] show that any algorithm which can test with good prob-
ability whether A has an eigenvalue < —en or else has all non-negative eigenvalues

must read Q (fz) entries of A. This testing problem is strictly easier than outputting

+en error estimates of all eigenvalues, so gives a lower bound for our setting. If the
queried entries are restricted to fall in a submatrix, [11] shows that this submatrix must

have dimensions 2 (ﬁ) x Q (%2), giving total query complexity €2 (6%) Closing

th 5 (log3 n ~ (logn
e gap between our upper bound of O ( =5~ ) x O | =5~ ) and the lower bound of

Q (elz) x Q (%2) for submatrix queries is an intriguing open question.

We show in “Appendix A” that this gap can be easily closed via a surprisingly simple
argument if A is positive semidefinite (PSD). In that case, A = BB” with B € R"*",
Writing Ag = ST AS for a sampling matrix § € R"*I5!, the non-zero eigenvalues of
A are identical to those of BSS” B . Via a standard approximate matrix multiplication
analysis [44], one can then show that, for s > ﬁ, with probability at least 1 — §,

IBBY — BSS”B||r < en. Via Weyl’s inequality, this shows that the eigenvalues of
BSS”B, and hence Ay, approximate those of A up to %en error.”

Unfortunately, this approach breaks down when A has negative eigenvalues, and
so cannot be factored as BB” for real B € R™*". This is more than a technical issue:
observe that when A is PSD and has ||A|~x < 1, it can have at most 1/¢ eigenvalues
larger than en—since its trace, which is equal to the sum of its eigenvalues, is bounded
by n, and since all eigenvalues are non-negative. When A is not PSD, it can have
Q(1/€?) eigenvalues with magnitude larger than en. In particular, if A is the tensor
product of a 1/€2 x 1/€* random =1 matrix and the €2n x €2n all ones matrix, the bulk
of its eigenvalues (of which there are 1/€2) will concentrate around 1/e¢ - €2n = en.
As a result it remains unclear whether we can match the 1/ dependence of the PSD
case, or if a stronger lower bound can be shown for indefinite matrices.

2 In fact, via more refined eigenvalue perturbation bounds [40] one can show an > norm bound on the
eigenvalue approximation errors, which can be much stronger than the £+, norm bound of Theorem 1.
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Outside the € dependence, it is unknown if full eigenspectrum approximation can
be performed with sample complexity independent of the matrix size n. [11] achieve
this for the easier positive semidefiniteness testing problem, giving sample complex-
ity o /€%). However our bounds have additional logn factors. As discussed, in
“Appendix B” we give an alternate analysis for Theorem 1, which shows that sam-

pling a O (lzfan) x O (ff;) submatrix suffices for +en eigenvalue approximation,

saving a log® n factor at the cost of worse € dependence. However, removing the final
logn seems difficult—it arises when bounding [|A., s||2 via bounds on the spectral
norms of random principal submatrices [9]. Removing it seems as though it would
require either improving such bounds, or taking a different algorithmic approach.
Also note that our log n and € dependencies for non-uniform sampling (Theorems 2
and 3) are likely not tight. It is not hard to check that the lower bounds of [11] still
hold in these settings. For example, in the sparsity-based sampling setting, by simply
having the matrix entirely supported on a v/nnz(A) x /nnz(A) submatrix, the lower
bounds of [11] directly carry over. Giving tight query complexity bounds here would
also be interesting. Finally, it would be interesting to go beyond principal submatrix
based algorithms, to achieve improved query complexity, as in Corollary 1. Finding

an algorithm matching the 0 (%2) overall query complexity lower bound of [11] is
open even in the much simpler PSD setting.

2 Roadmap

We introduce notation and preliminary theorems in Sect.3. In Sect.4, we show that
using a simple algorithm, we can approximate all the eigenvalues of a bounded-entry
symmetric matrix. In Sect.5, we improve the error of eigenvalue approximation to
€+/nnz(A) when rows and columns are sampled with probability proportional to their
sparsities. In Sect. 6, we demonstrate the empirical performance of the sampling algo-
rithms given in Sects. 4 and 5 to approximate all the eigenvalues of several synthetic and
real world matrices. In “Appendix A”, we prove optimal sampling bounds for eigen-
value approximation of PSD matrices using uniform sampling. In “Appendix B”, we
present an alternate proof which improves the logn dependence of the upper bounds
for sampling complexity for the uniform sampling algorithm at the cost of O(1/¢)
worse dependence. In “Appendix C”, we give tighter approximation factors of the
algorithm in Sect.4 under certain assumptions. In “Appendix D, we give improved
spectral norm bounds for non-uniform random submatrices. In “Appendix E”, we
achieve analogous bounds to Sect. 5 with error €||A|| r, using an algorithm that sam-
ples rows and columns with probability proportional to the £,-norm of each row. We
improve the sampling complexity for the uniform sampling algorithm in Sect.4 by
using entrywise sampling in “Appendix F” by a factor of O(e/log>n). Finally in
“Appendix G”, we show that all the singular values of a bounded-entry matrix can be
approximated using O (log n)-factor optimal random sampling of rows and columns
of the matrix.
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3 Notation and Preliminaries

We now define notation and foundational results that we use throughout our work. For
any integer n, let [n] denote the set {1, 2, . . ., n}. We write matrices and vectors in bold
literals—e.g., A or x. We denote the eigenvalues of a symmetric matrix A € R"*" by
A (A) > ... > X, (A),indecreasing order. A symmetric matrix is positive semidefinite
if all its eigenvalues are non-negative. For two matrices A, B, we let A > B denote
that A — B is positive semidefinite. For any matrix A € R"*" and i € [n], we let A;
denote the i’ row of A, nnz(A;) denote the number of non-zero elements in this row,
and ||A;||» denote its £, norm. We let nnz(A) denote the total number of non-zero
elements A. For a vector x, we let ||x||> denote its Euclidean norm. For a matrix A,

we let [|A]|oo denote the largest magnitude of an entry, ||A|l2 = maxy ”m!z denote

the spectral norm, [|AllF = (}; f A%j)l/ 2 denote the Frobenius norm, and ||A||;_2

denote the maximum Euclidean norm of a column. For A € R"*" and § C [n] we let
A denote the principal submatrix corresponding to S. We let [E; denote the L, norm
of a random variable, E;[X] = (E[X 2])1/ 2 where E[-] denotes expectation.

We use the following basic facts and identities on eigenvalues throughout our proofs.

Fact1 (Eigenvalue of Matrix Product) For any two matrices A € C"*" B € C™*",
the non-zero eigenvalues of AB are identical to those of BA.

Fact2 (Girshgorin’s circle theorem [45]) Let A € C**" with entries A;;. For i €
[n], let R; be the sum of absolute values of non-diagonal entries in the i"™ row. Let
D(A;i, R;) be the closed disc centered at A;; with radius R;. Then every eigenvalue
of A lies within one of the discs D(A;i, R;).

Fact3 (Weyl’s Inequality [36]) For any two Hermitian matrices A, B € C"*" with
A—-B=E,

max [Ai(A) = 1;(B)| < [E|2.

Weyl’s inequality ensures that a small Hermitian perturbation of a Hermitian matrix
will not significantly change its eigenvalues. The bound can be extended to the case
when the perturbation is not Hermitian, with a loss of an O (logn) factor; to the best
of our knowledge this loss is necessary:

Fact4 (Non-Hermitian perturbation bound (Problem VI.8.6 in [40], Claim (i) in [39]))
Let A € C"" be Hermitian and B € C"*" be any matrix whose eigenvalues
are A\ (B), ..., A, (B) such that Re(A{(B)) > ... > Re(1A,(B)) (where Re(1;(B))
denotes the real part of A;(B)). Let A — B = E. For some universal constant C,

max 12i (A) — 2;(B)| = Clognl|E]|>.

Beyond the above facts, we use several theorems to obtain eigenvalue concentration
bounds. We first state a theorem from [10], which bounds the spectral norm of a
principal submatrix sampled uniformly at random from a bounded entry matrix. We
build on this to prove the full eigenspectrum concentration result of Theorem 1.
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Theorem 4 (Random principal submatrix spectral norm bound [9, 10]) Let A € C"*"
be Hermitian, decomposed into diagonal and off-diagonal parts: A = D+H. LetS €
R™ " be a diagonal sampling matrix with the j'* diagonal entry set to 1 independently
with probability s /n and 0 otherwise. Then, for some universal constant C,

E>[ISAS|2

logn

N
=C [bgn - E2[|SHS o0 + E2[[HS[l1-2 + o IIHllz} + E2[|SDS|J>.

For Theorems 2 and 3, we need an extension of Theorem 4 to the setting where rows
are sampled non-uniformly. We will use two bounds here. The first is a decoupling and
recoupling result for matrix norms. One can prove this lemma following an analogous
result in [10] for sampling rows/columns uniformly. The proof is almost identical so
we omit it.

Lemma 1 (Decoupling and recoupling) Let H be a Hermitian matrix with zero diag-
onal. Let §; be a sequence of independent random variables such that §; = —L_ with

N

probability p; and 0 otherwise. Let S be a square diagonal sampling matrix with j th
diagonal entry set to § . Then:

E||SHS |2 < 2E|ISHS|l2 and B |SHS||oo < 4E2[SHS|| oo,

where S is an independent diagonal sampling matrix drawn from the same distribution
as S.

The second theorem bounds the spectral norm of a non-uniform random column sample
of a matrix. We give a proof in “Appendix D”, again following a theorem in [46] for
uniform sampling.

Theorem 5 (Non-uniform column sampling—spectral norm bound) Let A be anm x n
matrix with rank r. Let §; be a sequence of independent random variables such that

8 = \/Lpf, with probability p; and 0 otherwise. Let S be a square diagonal sampling
X J

matrix with j'" diagonal entry set to § .

E2||AS|l2 < 5y/logr - E2[|AS|l1-2 + |All2

We use a standard Matrix Bernstein inequality to bound the spectral norm of random
submatrices.

Theorem 6 (Matrix Bernstein [47]) Consider a finite sequence {Si} of independent
random matrices in R9*4. Assume that for all k, E[S;] = 0 and |Skl2 < L.
Let Z = Y, Sk and let Vi, V3 be semidefinite upper-bounds for the matrix valued
variances Var|(Z) and Var;(Z):

V, = Var,(Z) ¥ E (ZZT) -YE (sks[) . and
k
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Va > Va2 & E (ZTZ) -YE (s,{sk) .
k
Then, letting v = max(||Vi|l2, |V2ll2), for any t > 0,

—12)2
P(|Z|, >1t) <2d - — ).
(1Z]2 = 1) < eXp<v+Lt/3)

For real valued random variables, we use the standard Bernstein inequality.

Theorem 7 (Bernstein inequality [48]) Let {z;} for j € [n] be independent random
variables with zero mean such that |zj| < M for all j. Then for all positive t,

Xn: >t | <exp /2
Zjl = = .
=" Y El22] + Mt/3

4 Sublinear Time Eigenvalue Estimation Using Uniform Sampling

We now prove our main eigenvalue estimation result—Theorem 1. We give the pseu-
docode for our principal submatrix based estimation procedure in Algorithm 1. We
will show that any positive or negative eigenvalue of A with magnitude > en will
appear as an approximate eigenvalue in Ag with good probability. Thus, in step 5 of
Algorithm 1, the positive and negative eigenvvalues of Ag are used to estimate the
outlying largest and smallest eigenvalues of A. All other interior eigenvalues of A are
estimated to be 0, which will immediately give our =en approximation bound when
the original eigenvalue has magnitude < en.

Algorithm 1 Eigenvalue estimator using uniform sampling

1: Input: Symmetric A € R"*" with [|Allcc < 1, Accuracy € € (0, 1), failure prob. § € (0, 1).

clog(1/(e8))-log3 n N
38

2: Fixs = where c is a sufficiently large constant.

3: Add each index LE € [n] to the sample set S independently with probability % Let the principal submatrix
of A corresponding S be Ag.

4: Compute the eigenvalues of Ag: A1 (Ag) > ... = Ais|(Ag).

5: Forall i € [|S|] with A;(Ag) > 0, let A;(A) = ’TI - Ai(Ag). For all i € [|S]|] with A;(Ag) < 0, let
Xn—(\S\—i)(A) =" .2 (Ag). For all remaining i € [n], let *i(A) =0.

6: Return: Eigenvalue estimates A1 (A) > ... > A, (A).

Running time Observe that the expected number of indices chosen by Algorithm 1 is
s = M . A standard concentration bound can be used to show that with
high probablhty (1 — 1/ poly(n)), the number of sampled entries is O(s). Thus, the
algorithm reads a total of 0(s2) entries of A and runs in O(s®) time—the time to

compute a full eigendecomposition of Ag.
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4.1 Outer and Middle Eigenvalue Bounds

Recall that we will split A into two symmetric matrices (Definition 1.1): A, =
V,,AOVZ which contains its large magnitude (outlying) eigendirections with eigen-
value magnitudes > €v/$n and A,, = VmAmV,E which contains its small magnitude
(middle) eigendirections.

We first show that the eigenvectors in V,, are incoherent. That is, that their (eigen-
value weighted) squared row norms are bounded. This ensures that the outlying
eigenspace of A is well-approximated via uniform sampling.

Lemma 2 (Incoherence of outlying eigenvectors) Let A € R"*" be symmetric with
lAlloc < 1. Let V,, be as in Definition 1.1. Let V,, ; denote the i row of V,,. Then,

1/2 1
1Ay Vo,,-u%_m and  |[V,il3 <

Proof Observe that AV, = V,A,. Let [AV,]; denote the i™ row of the AV,,. Then we
have

€28n’

AV, 1113 = I[VoA,] ||2—ZA2 20 )
j=1

where r = rank(A,), V,,;, j is the (i, ! element of V,, and Aj=As(j, ) Al <
1 by assumption and since V,, has orthonormal columns, its spectral norm is bounded
by 1, thus we have

IAVOLi I3 = 1AL Vol3 < IALi1IZ - [Vol3 < n.

Therefore, by (2), we have:

sz o =n 3)

Since by definition of A,, |A;| > e~/8n for all J, we finally have

1

efn NG

1/2
||A/V0,||2—ZA V2, s
j=l1

and

1
IVo.ill3 = ZV,,, ;< 25n = 25
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Let S € R"*I5I be the scaled sampling matrix satisfying STAS = < - Ag. We
next apply Lemma 2 in conjunction with a matrix Bernstein bound to show that
AY 2VTSSTV0 '/ concentrates around its expectation, A,. Since by Fact 1, this
matrix has 1dentlcal eigenvalues to % - A, 5 = STV, A, \'4 S, this allows us to argue

that the eigenvalues of % - A, g approximate those of A,.

Lemma 3 (Concentration of outlying eigenvalues) Let S C [n] be sampled as in

Algorithm 1 fors > %&ga)) where c is a sufficiently large constant. Let S € R"*15!

be the scaled sampling matrix satisfying STAS = T - As. Letting A,, V, be as in
Definition 1.1, with probability at least 1 — 6,

1/2

IAS*VISSTV,AY? — Alla < en.

Proof Define E = AY2VISSTV,AY? — A,. Forall i € [n], let V, be the i row
of V, and define the matrix valued random variable

2 7A*Voi VI Ay/%,  with probability s /n
Y = , (4)
0 otherwise.
Define Q; = Y; — E[Y;]. Observe that Qy, ..., Q, are independent random vari-
ables and that ) /_, Q; = 1/ZVTSSTV A, v A, = E. Further, observe that
1/2 1 172
1Qill2 < max (1,2 — 1) - Ay Vo, VI, A%l < max (1,2 — 1) - |4y > Vo113

Now, [|AY?V < by Lemma 2. Thus, [|Qill» <

0 i ” 7
Var(E) € E(EET) = E(ETE) = Y"_, E[Q?] can be bounded as:

" The variance
e«/gA

n n
21 — S (MY _ 1/2 T T AL2
Z}E[Q;]—;[n (-1 +( n)] (A Vo i VI AGVo i VI AL
i= i=
n
52 A Vo113 - (A PV VI A ©)

1/2

Again by Lemma 2, ||A, "V, ; ||% < jg Plugging back into (5) we can bound,

2

n n
n 1 1/2 T 1/2 n n
E[Q/ =Y — —= (A Vo, VI A/ = A, < 1L
; ! ;s 6\/3 ? . se«/g ’ se\/g

Since Q2 is PSD, this establishes that || Var(E)|j» < > We then apply Theorem 6

[
(the matrix Bernstein inequality) with L = f’ = f’ andd < E— since there

A . . .
are at most 3 ” ”F < i outlying eigenvalues with magnitude > +/Sen in A,. This
gives:
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2 —en?)2
P(IEl; > en) < - -exp| ————=
€

28 v+ Len/3
2 —e2n?)2
- m - exp n? en?

se /8 3se/8
- 2 —se3/8
—-exp| —— ) -
=2 P 4

Thus, if we set s > Clogggl—\//f;é)) for large enough c, then the probability is bounded
above by §, completing the proof. O

We cannot prove an analogous leverage score bound to Lemma 2 for the interior
eigenvectors of A appearing in V,,. Thus we cannot apply a matrix Bernstein bound
as in Lemma 3. However, we can use Theorem 4 to show that the spectral norm of
the random principal submatrix A,, s is not too large, and thus that the eigenvalues of
As=A, s+ A, s are close to those of A, s.

Lemma4 (Spectral norm bound—sampled middle eigenvalues) Let A € R"*" be
symmetric with |Allcc < 1. Let Ay, be as in Definition 1.1. Let S be sampled as in
Algorithm 1. If s > Cl(;%" for some sufficiently large constant c, then with probability
at least 1 — 8, |[Ay. s]l2 < e€s.

Proof Let A,, = D,, + H,, where D,, is the matrix of diagonal elements and H,, the
matrix of off-diagonal elements. Let S € R"*!5| be the binary sampling matrix with
Aps= ST A,,S. From Theorem 4, we have for some constant C,

Ea[l|Am,sll2] < c[logn Eo[IS"H,,S 0ol

slogn
i g

N
;. Eo[lHnSll1—2] + ;||Hm||2:| + Eo[ ST D, S|2]. (6)

Considering the various terms in (6), we have [|STH,Slc < [Amlloo and
ISTDSIl2 = S"DSlloc < |Amlloo. We also have

IHyll2 < [Anll2 4+ 1Dumll2 < 1Amll2 + 1A lloo < €821 + |An lloo

and

”Hms||l—>2 = ||AmS||1—>2 = ||Am||1—>2 = \/ﬁ

The final bound follows since A,, = VmV,flA, where VmVZ,: is an orthogonal projec-
tion matrix. Thus, ||A,|l1=2 < |Alli—2 < /7 by our assumption that ||A|lo < 1.
Plugging all these bounds into (6) we have, for some constant C,

Ez[|Am,sll2] < C[IOgn N Amlloo + /logn - s +5 - 65]/2:|. @)
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It remains to bound ||A, |- We have A = A, + A, and thus by triangle inequality,

[Amlloo < IAlloo + lAolloo =1 + Ao llco- ®)

Writing A, = V(,A(,VZ (see Definition 1.1), and letting V,, ; denote the i™ row of V,,,
the (i, j)" element of A, has magnitude

T T
0,i,jIl = I Vo,idoV, il = 0,ill2 - oV, ill2,
1Ao,i,jl = Vo,iMoV, ;| < IVo,ill2- 1AV, ;i

by Cauchy-Schwarz. From Lemma 2, we have ||V, ;]2 < m Also, from (2),
||A0V£j||2 = [I[AV,]jll2 < «/n.Overall, foralli, j wehave A, ; ; < mﬁ =

68+/2, giving [|Ayllco < 65+/2 Plugging back into (8) and in turn (7), we have for some
constant C,

I
Ea[|Am,sll2] < C[:S% + /slogn + se81/2i|.

clogn
€28
equation are bounded by €+/8s and so

Setting s >

for sufficiently large c, all terms in the right hand side of the above

Eol||Am sll2] < 3ev/ss

Thus, by Markov’s inequality, with probability at least 1 — &, we have ||A,,; 5|2 < 3e€s.
We can adjust € by a constant to obtain the required bound. O

4.2 Main Accuracy Bounds

We now restate our main result, and give its proof via Lemmas 3 and 4.

Theorem 1 (Sublinear Time Eigenvalue Approximation) Let A € R"*" be symmetric
with |Alleo < 1 and eigenvalues L1(A) > ... > Ay (A). Let S C [n] be formed by
including each index independently with probability s/n as in Algorithm 1. Let Ag
be the corresponding principal submatrix of A, with eigenvalues A (Ag) > ... >
Ais)(As).

For all i € [|S|] with 1;(As) = 0, let 1;(A) = = - Ai(Ag). Foralli € [|S|] with
ri(As) < 0, let Ay—s)—i)(A) = 2 - Xi(As). For all other i € [n], let X;(A) = 0. If

3
s > M, for large enough constant c, then with probability > 1 — 4, for

€
alli € [n],
2i(A) —en < 1;i(A) < A(A) + en.
Proof LetS e R"*IS! be the binary sampling matrix with a single one in each column

such that STAS = Ag. Let S = \/n/s - S Following Definition 1.1, we write A =
A, +A;,. By Fact 1 we have that the nonzero eigenvalues of - A, s = STVOAOVOTS

@ Springer



1782 Algorithmica (2024) 86:1764-1829

are identical to those of A(l,/ ZVZSSTVOA(I,/ % where A(l,/ 2 is the square root matrix of
A, such that AI/ZA(I,/2 = A,.

Note that A, is Hermitian. However Atl)/ 2 may be complex, and hence A(l,/ 2V0T
SSTv, A]/ 2 is not necessarily Hermitian, although it does have real eigenvalues.

Thus, we can apply the perturbation bound of Fact 4 to A, and Al/ 2VTSSTV Al/ 2

to claim for all i € [n], and some constant C,
12T GG 1/2 2T aa 2
4 (A VISSTV,A %) — 2i(A,)| < Clognl Ay *VISSTV,AY* — Ao llo.

By Lemma 3 applied with error chm, with probability at least 1 — §, for any

5> W (for a large enough constant ¢) we have ||A1/2VTSSTV0 1z _
Aolr < 2010gn Thus, for all i,
1/2 oo 1/2 €n
1 (A PVISSTV AL — hi(A0)| < . ©)

We note that the conceptual part of the proof is essentially complete: the nonzero
eigenvalues of 2. A, s are identical to those of Al/ ZVTSSTV,,A(I,/ 2, which we have
shown well appr0x1mate those of A, and in turn A,. i.e., the non-zero eigenvalues of
= - A, s approximate all outlying eigenvalues of A. It remains to carefully argue how
these approximations should be ‘lined up’ given the presence of zero eigenvalues in
the spectrum of these matrices. We also must account for the impact of the interior

eigenvalues in A, 5, which is limited by the spectral norm bound of Lemma 4.

Eigenvalue alignment and effect of interior eigenvalues. First recall that Ag =
A, s + Ay s. By Lemma 4 applied with error €/2, we have ||A,, sll2 < €/2 - s with
probability at least 1 — § when s > CIOg %. By Weyl’s inequality (Fact 3), for all
i € [|S]] we thus have

n

n n S
—Li(As) — —Ai(Ao )| = =+ 5 = . (10)
N N N

€
2 2

Consider i € [|S]] with A; (A, s) > 0. Since the nonzero eigenvalues of % - A, s are

identical to those of Ay *VISSTV,A)% 2. 3i(Ays) = A (Al/ZVTssTVOA”Z)
and so by (9),

n €en
—Ai(Aps) —Ai(Ap)| < —. (11)
s 2

Analogously, consider i € [|S]|] such that A; (A, s) < 0. We have % - Ai(Aps) =

Ar—(s1—iy (Ao VIS8TV, AY?), where r = rank(A,.s) is the dimension of A,—i.c.,
the number of outlying eigenvalues in A. Again by (9) we have

n Een
" “Ai(Aos) — Ar—(151—i)(Ao)| < ER (12)
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Now the nonzero eigenvalues of A, are identical to those of A,. Consider i € [|S]]
such that A; (Ag) > es. In this case, by (10), (11), and the triangle inequality, we have
Xi(Ay) > 0 and thus we have X;(A,) = X;(A,). In turn, again applying (10), (11),
and the triangle inequality, we have

’EMAs) — (A

n
< ‘;)\i (Ap,s) — Li(Ay)

n
+ );)»i (As) — Ai(Ap,5)| < en.

Analogously, for i € [|S]] such that 1;(Ag) < —es, we have by (10) and (12) that
)»,_(|S‘_,')(A0) < 0. Thus )»r_(|5|_,')(A0) = )&n—(\Sl—i)(Aol Again by (10), (12), and
triangle inequality this gives

n
" “Ai(As) — Ap—(s)-i)(Ao) | < en.

Now, consider all i € [n] such that A;(A,) is not well approximated by one of
the outlying eigenvalues of Ag as argued above. By (10), (11), and (12), all such
eigenvalues must have |A;(A,)| < 2en. Thus, if we approximate them in any way
either by the remaining eigenvalues of Ag with magnitude < es, or else by 0, we
will approximate all to error at most 3en. Thus, if (as in Algorithm 1) fori € [|S]]
with A;(Ag) > 0, we let 1;(A) = T - Ai(Ag) and for i € [|S]] with 1;(As) < 0, let
An—(s—i)(A) = 2 - 1;(As), and let X; (A) = O for all other i, we will have for all i,

Ai(A) — 2 (A,)| < 3en.

Finally by definition, for all 7, |A; (A) — X; (Ay)| < €v/dn < en and thus, via triangle
inequality, ‘ii(A) — )»,-(A)‘ < 4en. This gives our final error bound after adjusting

constants on €.

3
Recall that we require s > <iegl/(€d)-log’n

=NE
(9) to hold with probability 1 — §. We require s > Ci‘)% for |Am sl < €/2 -
s to hold with probability 1 — § by Lemma 4. Thus, for both conditions to hold
simultaneously with probability 1 — 2§ by a union bound, if suffices to set s =
clog(l/(:;fs))~log3n > max (clog(l/egej?.log3n’ cl(;%n
O (logn), as otherwise our algorithm can take A to be the full matrix A. Adjusting §
to §/2 completes the theorem. O

for the outer eigenvalue bound of

), where we use that log(1/(e§) <

Remark: The proof of Lemma 3 and consequently, Theorem 1 can be modified to give
better bounds for the case when the eigenvalues of A, lie in a bounded range—between
€%/85n and €’n where 0 < b < a < 1. See Theorem 9 in “Appendix C” for details.

For example, if all the top eigenvalues are equal, one can show that s = 0 (logj ")
€

suffices to give £en error, nearly matching the lower bound of [11]. This seems to
indicate that improving Theorem 1 in general requires tackling the case when the
outlying eigenvalues in A, have a wide range.
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5 Improved Bounds via Sparsity-Based Sampling

We now prove the e/nnz(A) approximation bound of Theorem 2, assuming the
ability to sample each row with probability proportional to I:lr:lzz(&)) . Pseudocode for our
algorithm is given in Algorithm 2. Unlike in the uniform sampling case (Algorithm 1),
we cannot simply sample a principal submatrix of A and compute its eigenvalues. We
must carefully zero out entries lying at the intersection of sparse rows and columns
to ensure accuracy of our estimates. A similar approach is taken for the norm-based

sampling result of Theorem 3. We defer that proof to “Appendix E”.

5.1 Preliminary Lemmas

Our first step is to argue that zeroing out entries in sparse rows/columns in step
5 of Algorithm 2 does not introduce significant error. We define A’ € R"*" to
be the extension of A’ to the original matrix—i.e., Agj = 0 whenever i = j or
nnz(A;)nnz(A;) < %;g:). Otherwise A’ ;= A;;. We argue via a strengthening of
Girshgorin’s theorem that |A; (A) — A; (A")| < e4/nnz(A) for all i.

After this step is complete, our proof follows the same general outline as that
of Theorem 1 in Sect. 3. We split A’ = A/ + A/ , arguing that (1) after sampling
||A:n’ sll2 < ev/nnz(A) and (2) that the eigenvalues of A/o’ ¢ are £e/nnz(A) approx-
imations to those of A/. In both cases, we critically use that the rescaling factors
introduced in line 4 of Algorithm 2 do not introduce too much variance, due to the
zeroing out of entries in A’.

Algorithm 2 Eigenvalue estimator using sparsity-based sampling

1: Input: Symmetric A € R"*" with ||A|lc < 1, Accuracy € € (0, 1), failure prob. § € (0, 1). nnz(A;)
for all i € [n] and nnz(A).

8
2: Fixs = lelé) §4 " where ¢ is a sufficiently large constant.

snnz(A;)
> nnz(A)

3: Add each i € [n] to sample set S independently, with probability p; = min (1 ) Let the

principal submatrix of A corresponding to S be Ag.

4: Let Ag = DAgD where D € RISIXIST g diagonal with D; ; = ﬁ if the i' element of § is Jj-

5: Construct A’ € RISIXISI from A as follows:
E2 n

ning) for sufficient large constant ¢
cplog=n

i 0 ifi = j or nnz(A;) nnz(A ;) <
[Aglij =
[Asl;,j otherwise.

6: Compute the eigenvalues of Ag: A1 (A) > ... > A5/(A).

7: For all i € [|S]] with A; (Afg) > 0, let X,-(A) = )‘i(Afg)' For all i € [|S|] with A.i(Afsv) < 0, let
an(\s\fi)(A) = (Afs). For all remaining i € [n], let &; (A) = 0.

8: Return: Eigenvalue estimates 11 (A) > ... > 1, (A).

Remark Throughout, we will assume that A does not have any rows/columns that
are all 0, as such rows will never be sampled and will have no effect on the output of
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Algorithm 2. Additionally, we will assume that nnz(A) > %ﬁ", as otherwise, A

cl 108

has at most s = non-zero rows. Thus, rather than running Algorithm 2, we
can directly compute the eigenvalues of A.

Lemma5 Let A € R™™ be symmetric with |[Allsc < 1 and nnz(A) > 2/€%. Let
2
A’ € R have A, = 0 ifi = j or nnz(A;) - nnz(A;) < %fora sufficiently

large constant c¢; and Al. = = A;;j otherwise. Then, for all i € [n]

% (A) = 4i(A")] < ey/nnz(A).

Proof We consider the matrix A”, which is defined identically to A’ except we only

set A” = 0 if nnz(A;) - nnz(A ;) < %?A) That is, we do not have the condition

requiring setting the diagonal to 0. We will show that |1;(A) — A;(A")| < €/2 -
V/nnz(A). By Weyl’s inequality, and the assumption that nnz(A) > 2/€%, we then
have |A; (A) — A (A)| < €/2-/nnz(A) + 1 < ¢ - /nnz(A) as required.

LetZ; C [n]be the set of rows/columns withnnz(A;) € [““;ﬁA), “'2‘,3(?)) and Ay =
A(Zy, ;) be the submatrix of A formed with rows in Z; and columns in Z;. Define
o> nnz(A) log2 n
e -

A}, in the same way and observe that A}, = Aj; whenever 2kH < .

2
When 2K+ > Cznnz(?#, we may zero out some entries of Ay to produce

AZI Let Kkl be equal to Ay; on this set of zeroed out entries, and 0 everywhere
else. Observe that (AHA Dm.: (Akl)m,;A,{I. Next observe that (Ag;) .. has at most

nnz(A,) < “g,ff‘?) non-zero entries. Similarly, each row of KIZI has at most %SA)
non-zero elements. Thus, for all m € |Zy|, using that ||[Aljcc < 1,
nnZ(A)2 4nnz(A)?
Applying Girshgorin’s circle theorem (Theorem 2) we thus have:
~ ~ ~ ~ = 4nnz(A)?
113 = 1AuA 2 < max | ALl < =557 (13)

Let A_k[ € R™*" be asymmetric matrix such that AuTe, T)) = Xkl, AT, Ty) = Klk,
and Ay is zero everywhere else. By triangle inequality and the bound of (13),

4nnz(A)
1Az < 1Aull2 + 1Akl < &

Observe that, since we assume all rows have at least one non-zero entry, nnz(A;) > 1
and nnz(A) < n?. Therefore, k, [ can range from 1 to log(n?) = 2logn. By triangle

inequality,

IA —A"|l> < > 1Ak

okt c'znnZ(A)logzn
e
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ZIig:n m ZIig:n 1
Jc2 -logn 2
_ 166«/1‘1]1Z(A)

< NG .

Finally, setting c¢> large enough and using Weyl’s inequality (Fact 4) we have the
required bound:

i (A) — 1 (A")| < €/2y/nnz(A).
O

We next give a bound on the coherence of the outlying eigenvectors of A’. This
bound is analogous to Lemma 2, but is more refined, taking into account the sparsity
of each row.

Lemma 6 (Incoherence of outlying eigenvectors in terms of sparsity) Let A, A’ €
R™" be as in Lemma 5. Let A, = V! A" VT where A!, is diagonal, with the eigenval-
ues of A with magnitude > €+/8/nnz(A) on its diagonal, and V., has columns equal
to the corresponding eigenvectors. Let V’O’ ; denote the i " row of V.. Then,

N2 12 nnz(A;) P nnz(A;)
A,V <— and |V, |5 £ ———.
l iz < 3oz A V,.illz < JEr—

Proof The proof is nearly identical to that of Lemma 2. Observe that A’V = V/ A .
Letting [A'V/]; denote the i th row of the A'V] we have

IAV, 113 = 11V, AL 13 = Zkz 0 (9

where r = rank(A)), V;l J is the (i, j)™ element of V/, andAj = A/ (j, j).Since V),

has orthonormal columns, we thus have ||[[A'V]]; ||2 < ||A’||2 I|A; ||2 < nnz(A;).
Therefore, by (14),

Z)Lz 0idj = nnz(A;). (15)

Since by definition |A /| > e+/8/nnz(A) forall J,wecan concluse that || A;I/ZV’OJ ||% =

_ nnz(A;) / nnz(A;) p _
Zj LA V(” R ey and ||V0’,-||2 Z] 1 01 = —525nnz(A)’WhIChC0m
pletes the lemma. O
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5.2 Outer and Middle Eigenvalue Bounds

Using Lemma 6, we next argue that the eigenvalues of A] ¢ will approximate those
of A’, and in turn those of A. The proof is very similar to Lemma 3 in the uniform
sampling case.

Lemma 7 (Concentration of outlying eigenvalues with sparsity-based sampling) Let
A, A" € R be as in Lemmas 5 and 6. Let A’ = Al + Al where A], =

VI, ALV ; and A, =V, A}V’ Z are projections onto the eigenspaces with magnitude
< e/8y/mnz(A) and > €+/8/nnz(A) respectively (analogous to Definition 1.1) As in

Algorithm 2, for all i € [n] let p; = min (1, Y;’SZZ((Q))) and let S be a scaled diagonal

sampling matrix such that the S;; = \/#[7’ with probability p; and S;; = 0 otherwise.

If s CIOL\/;GB)) for a large enough constant c, then with probability at least 1 — §,

1AL VISSTVI AL — ALll2 < ey/nnz(A).
1/2

Proof Define E = A, e VISSTV/ A,’* — Al . Foralli € [n],let V,; be the i'* row
of V/ and define the matrix valued random variable

(16)

. 'l /2V/ VI A M2 with probability p;
i 0 otherwise.

Define Q; = Y; — E[Y;]. We can observe that Q1,Q2, ..., Q, are independent
random variables and that ) 7_, = APV JSSTV/ A - 2 — A, =E.Let P =
{i € [n] : pi < 1}. Then, observe that 3 pQi = 0.So, E = 37, p Q.

Then, similar to the proof of Lemma 3, we need to bound ||Q;||> for all i € P and
Var(E) = def EEET) = E(ETE) = Dicp E[Ql.z] using the improved row norm bounds

of Lemma 5. In particular, we have

1 2
Y EIQI=)" [m : (—, - 1) +( - p;)} (A2 Vo VI A Voi VI A
ieP ieP pi

< Z A Vo i 13 - (A PV VI AG). (17

teP

By Lemma 6, ||A{1,/2V0,,- 13 < J‘;‘Z—\/%. Plugging back into (17),

1 nnz(A;) 172 NG
EQ <Y — ——2C AV, VT,
; Qi1 = ;Pi ev/8/nnz(A) +( )

HHZ(A 12 T AL2
( A,V V )

/nnz(A) A, < nnz (A)
sev/s sev/s
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Since Q7 is PSD this establishes that v < ||Var(E)|> < %\%ﬁ). Since there are at

nnz(A)
82 nnz(A)
the matrix Bernstein inequality exactly as in the proof of Lemma 3 with d = e%s to

most = $ eigenvalues with absolute value > €+/8,/nnz(A), we can apply

show that when s > % for large enough ¢, with probability at least 1 — §,
IEll; < e+/nnz(A). i

We next bound the spectral norm of A] . This is the most challenging part of the
proof—the rows of this matrix are sampled non-uniformly and scaled proportional to
their inverse sampling probabilities, so we cannot apply existing bounds on the spectral
norms of uniformly sampled random submatrices [9]. We extend these bounds to the
non-uniform case, critically using that entries which would be scaled up significantly
after sampling (i.e. those lying in sparse rows/columns), have already been set to 0 in
A;n, g0 and thus do not contribute to the spectral norm.

Lemma 8 (Concentration of middle eigenvalues with sparsity-based sampling) Let
A, A" € R be as in Lemmas 5 and 6. Let A’ = Al + Al where A], =
v, A;nV’;, and A, =V, AV’ Z are projections onto the eigenspaces with magnitude
< €4/8/nnz(A) and > e/S/nnz(A) respectively (analogous to Definition 1.1). As
inAlgorithm 2, foralli € [n]let p; = min (1, %) and let S be a scaled diagonal
sampling matrix such that the S;; = T with probability p; and S;; = 0 otherwise.

Ifs > clo g " for a large enough constant c, then with probability at least 1 — 6,

ISA! S|l> < ey/nnz(A).

Proof The initial part of the proof follows the outline of proof of the spectral norm
bound for uniformly random submatrices (Theorem 4) of [10]. From Lemma 6,

’ . _/nnz(A;)
we have ||V, ]2 < Vv Also, following the proof of Lemma 6, we have

||A/0V’£j||2 = [I[A'V/,]jll2 < /nnz(A ;). Thus, for all i, j € [n], using Cauchy
Schwarz’s inequality, we have

T /nnz(A;)
Ao il = IV/o,iA/oV/o,jI <IVill2- 1AV 0,jll2 = «/_«/m - /nnz(A ;).
(18)

LetA’,, = H,,,+D,,, where H,,, and D, contain the off-diagonal and diagonal elements
of A/, respectively. Note that while A’ is zero on the diagonal, A/, may not be. We
have:

E2[SA’»Sll2 < E2[|SH,SIl2 + E2[ISD,, S|l
Using Lemma 1 (decoupling) on E; ||SH,,, S|, we get

E2[|SA’»Sl2 < 2E2[|SH,,Sl2 + E2[ISD,,S|l2, (19)
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where S is an independent copy of S. Upper bounding the rank of H,,, as n and applying
Theorem 5 twice to E;||SH,,S||2, once for each operator, we get

B2 [SH,S|2 < 5v/10g nE, |SH,,S|[1 -2 + B2 [|SH,, |12
< 5/lognE |SH,,S |12 + 5y/log nEs [H,, Sl 12 + [Hy 2. (20)

Plugging (20) into (19), we have:
E218A'nSl12 < 10y/logn (B2 SH,S 12 + E2H,81l1-2)
+2|Hpll2 + E2[ISDS|l2 (21)
We now proceed to bound each of the terms on the right hand side of (21). We start

with E||SD,,S|». First, observe that E»||SD,,S|l» < max; #(Dm)ii |. We consider
two cases.

Case 1 p; < 1. Then, pi = “BQ) and [(D)ii| = [(Aw)iil = 1(AD)iil (since
1 A)
Aj; = 0). Then by (18), we have 1 [(D,,);q| < Y48,
Case 2 p; = 1. Then we have ﬁ|(Dm),~i| = |(Dw)ii| < max;|(Dy) ;] < IA},ll2 <
e+/8/nnz(A).
From the two cases above, for s > %, we have:
E2[ISD,,S]2 < ev/5/nnz(A). 22)

We can bound ||H,,, ||» similarly. Since H,, = A’,, =D, and || A", |2 < €+/8y/nnz(A),

IHpll2 < 1A nll2 4+ 1D ll2
< e\/gw/nnz(A) + 6\/3\/HHZ(A)
= 26«/5\/nnz(A) (23)

where the second step follows from the fact that | Dy, ||2 < max;|(Dy)ii] < 1A}, l|2.

We next bound the term [ ||[H,,S|| | 2. Observe that Es | H,, S| |, < 22X 1Amil2 \”/%’""' 2|

where A’ ; is the i column/row of A/, . We again consider the two cases when p; = 1
and p; < 1:

Casel p; = 1. Then [|[A’) i[> < [A'n]l2 < €4/8/nnz(A).
Case 2 p; < 1. Then ||A'p.ill2 < ||A'i]l2 < +/nnz(A;). Thus, setting s > E% we

s
have:
A illa nnz(A) , nnz(A)
- < A < < 8/ A).
Vi T\ snz(A)) Wil = = < €8 y/na(A)
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Thus, from the two cases above, for all i € [r], adjusting € by a \/7 factor, we have

logn ,

>
fors > o5

ev/5/nnz(A)
Jlogn

Overall, plugging (22), (23), and (24) back into (21), we have:

Eo || Hy Sl < (24)

E»|ISA’,S|l2 < 10y/logn - Es||[SH,, S| 1—2 + 156+v/8y/nnz(A). (25)

It remains to bound Ko ISH,, S|| 12, which is the most complex part of the proof.
Since S is an independent copy of S, we upper bound the norm of the i col-

SH,, SH,,).
umn of SHmS by % Then E2||SHmS||1_>2 < E; (maxi:ie[n] %)

We will argue that max;.; ] ”(Sl{% is bounded by ev/5/nnz(A) with probabil-

ity 1 — 1/ poly(n). Since our sampling probabilities are all at least 1/n> and since
IH,.|lF < ||AllF < n, this value is also deterministically bounded by n?. Thus, our

high probability bound implies the needed bound on E, (maxi;ie[n] MSI{%)

We begin by observing that since A’,, = Hy, + Dy, [[(SA')-ill2 > [|(SHy)- i ll2s

H(SHm) ill2 ISA;,)-.ill2
——=0s Lt suffices to bound T for all i € [n].

and so to bound max;.ie[n]
Towards this end, for a fixed i and any j € [n], define

f = plj|A’m,i)j|2 with probability p;
0 otherwise.

< nnz(A;).

Then 377y zj = (SA'w).;l13 and E[}75_ ;] = 1A}, ;15 < Afl13
Since Z?:l zj = [(SA'p)..i ||§ is a sum of independent random variables, we can
bound this quantity by applying Bernstein’s inequality. To do this, we must bound |z

for all j € [n] and Var (Z"

=12 j). We will again consider the cases of p; < 1 and

pi = 1 separately.
Case 1: p; < 1. Then, we have p; = snnz(A;)/nnz(A). If A’; ; # 0 then

1 nnz(A)
< —I|A > < max (1, ———— | |A i i1
|Zj| Pj| m,l,j| _IHX( snnZ(Aj)>| m,z,/|

IA

2nnz(A) P , 2
= (1A A

snnz(A ;) (l il + 1A )
2nnz(A) A .|2 nnz(A;) nnz(A ;)
snnz(A ) " €28 nnz(A)
2nnz(A) ., 2 2nnz(A;)

<A P ST A ;
= 1Al +snnz(Aj)| o €285

IA

2
|A i jI7+

2
=< |A/m,i,j|
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where the fourth inequality uses (18). By the thresholding procedure which defines
A’ if A] 5 #0,

A 2 nnz(A
nnz(Ai) . nnz(Aj) LZ() = nnz(A ) > *Z()’ (26)
' c2log’n c2log” nnnz(A;)

and thus for p; < 1 and A’;; # 0 we have

2co 1og2 nnnz(A;) 2nnz(A;)
+ .
se2 €28s

2
1zj| < |A i jlI” +

If A’; ; = 0 then we simply have

nnz(A;)
se2s

|2j1 < |A il +
Overall for all j € [n],

2nnz(A;) n 2¢) log2 nnnz(A;)

/ 2
1271 < 1A mi j P+ = 27)
and since [A';, ;i j1* < Y1) [A i j P = 1A il13 < A3 < nnz(Ay),
2nnz(A; 2¢5 10g? n nnz(A;
|Zj|SHHZ(Ai)+ ( 1)+ 2 10g ( l)‘ (28)

s€28 s€?

Fors > ¢ log 1

+ 25) and large enough c, we thus have |z;| < 2nnz(A).
We next bound the variance by:

n n n
1
Var [ Yz | < ZE[Zi] = X:IU?IA’,,,J,H4
nnz(A) 4
Zma < snnz(A; )>| mw'
12 nnz(A)
< Z|Am,,| +Z oA (141 + 1A%, 1)

12 nnz(A) nnz(A;)% nnz(A ;)2
< A mill3 + Z —— <|A;~, A ‘ ),

— snnz(A;) €462 nnz(A)?
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where the last inequality uses (18). Now since A}, = 0 for all i and [[A]|oc < 1 we
have

n n 2
12 nnz(A) 12 nnz(A;)" nnz(A ;)
V , < A/ . 4 J
ar ZZJ < A mill7 + Z#)SHHZ(Aj) +Z 5452 mz(A)

j=1 JiA Jj=1

(29)

Combining (26) with the second term to the right of (29) we have

i 2

12¢5 log? n - nnz(A;)

Var sz < A"l + Z se2 |
j=1 JA j#0

n

12nnz(A;)? nnz(A ;)
+ Z se482nnz(A)

j=1

and since [{j : A’; j # 0}| = nnz(A;), we have

n 2 2 n 2

12¢; log” n - nnz(A;) 12nnz(A;)“ nnz(A ;)

\Y/ E < 1A 4 § J
ar j_IZ/ < 1&m il se? se*82 nnz(A)

(30)

j=1

Finally since Z'}:l nnz(A ;) = nnz(A) and [|A'), ; ||‘2‘ < ||A; ||‘2‘ < nnz(A;)? we have

12¢c2log? n - nnz(A;)>  12nnz(A;)>?
s€? s€482

n
Var ZZ]' < nnz(A)* +
=1

€19

Fors > ¢ (1o§jn + ﬁ) for large enough c, we have Var (27:1 zj) < 2nnz(A;)%.

2
Therefore, using (28) and (31) with s > ¢ (lof—z" + #), we can apply Bernstein
inequality (Theorem 7) (for some constant c) to get

n
P (1847413 = EIGA, )5 +1) <P [ Dz = nnz(A) +1
j=1

< Sk
= exp cnnz(A;)? + ctnnz(A;)/3 )

If we set r = log n - nnz(A;), for some constant ¢’ we have
P (15475413 = EISA),). 13 +logn - nnz(A)))
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—(logn)?/2 , ,
< —= " | < —c'1 < 1/n°.
< exp <C +elogn))3) = exp(—c'logn) < 1/n
Since A, = H,, +D,,, we have ||(SA’,,)..;|l2 = ||(SH,,)..; [|2. Then with probability
at least 1 — l/nc, > 1 — 4, for any row i with p; < 1, we have

1 R nnz(A) €28 nnz(A)
— - SHp)i 13 < ——— - c(logn) nnz(A;) < ————,
Di snnz(A;) logn
fors > ¢ (k’g L = 52) for large enough c. Observe that, as in Lemma 3 w.l.o.g.

we have assumed 1 — n¢ > 1 — 4, since otherwise, our algorithm would read all n?
entries of the matrix.

Case 2: p; = 1. Then, we have nnz(A;) > nnz(A)/s. As in the p; < 1 case, we have
from (27):

2nnz(A;)  2c log2 nnnz(A;)
2 + 2 :
S€48 S€

2
1zj| < |A i jl” +

Now, we observe that [A'y,; ;> < Y i | |Amij* < A, ;13 < A3 <

s

€28 nnz(A), which gives us

2nnz(A;) n 2¢) log2 nnnz(A;)

| < €28 nnz(A
I2jl = €7 nnz(A) + s€28 s€?

(32)

Thus, for s > ¢ (l°g + = ) for a large enough constant ¢ and adjusting for other

constants we have |z;| < 2¢28 nnz(A). Also observe that the expectation of ) z; can
be bounded by:

n
> 7 | =EISA Wil = A mill5 < [A'nl5 < €8 nnz(A).
j=1

Next, the variance of the sum of the random variables {z;} can again be bounded by
following the analysis presented in and prior to (30) and (31) we have

12¢; log2 n-mnz(A)?  12nnz(A;)?
se2 se*82

n
Y| < A w3+
j=1
12¢c2log? n - nnz(A;)>  12nnz(A;)?

< 452 nnz(A)2

(33)
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where we again bound ||A/), ; ; ||‘21 using

n
/ 2 / 2 / 2 2 2
A <D 1A mij1* < 1A, 15 < A3 < €25 nnz(A).
j=1

Then for s > c(lzé;" + ﬁ), we have Var (Z’;Zl zj> < 2¢*82nnz(A)? for large
enough constant c.
Using (32) and (33) and noting that "', E (z?) > Var (Z’,Ll Z j) R (Z?=1 z ,-)

we can apply the Bernstein inequality (Theorem 7):

n
P (I165A)):il13 = ENGA) 1 +1) <P | Yz = 5mnz(A)) +1
j=1

—12)2
<exp )
ce*82nnz(A)? + ce28 nnz(A)t/3
If we set t = (log n)e28 nnz(A), then for some constant ¢’ we have
P (I(8A,):i 13 = EISA,):il3 +1) < exp(—clogm) < 1/n"

— — 2
This, since [|(SH,.)-.i (13 < |(SA},)..i |13, when p; = 1, setting s > c(*%7" + ) for

large enough ¢, we have with probability > 1—1/n¢ %H(SHm);,,- 13 = II(SH): 113 <
I(SA;,)-.ill3 < (logn)e?s nnz(A).

We thus have, that with probability > 1 — l/nc/, for both cases when p; < 1
I(SH,

12
% < (log n)e2s nnz(A). Taking a union bound over all i € [n],

with probability at least 1 — l/nc,*l, max; % < Jlogne/8/mnz(A) for

and p; = 1,

2
s > c(lzf—azn + 68%). As stated before, since p; > n]—z for all i € [n], and since

IHylr < l|AllF < n, we also have max; % < n2. Thus,
1

itieln] /Di

E; (max M) < \/lognex/g\/nnz(A)(l — %)
X n

1
+ 3 < \/logne\/g\/nnz(A).

after adjusting € by at most some constants. Overall, we finally get

itieln] Di

_ . SHm .
Ez[ISHuSl1-2 < Ea (max w) < e/logn+/8,/nnz(A).
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log? n

Plugging this bound into (25), we have for s > ¢( o2 T ﬁ)’

E[SAS]l2 < (logn)ev/8y/nnz(A).

1 log® n + log® n

Finally after adjusting € by a Togn factor, we have for s > (55 851 ) OF s =
clog®n
€884
E2[ISA’,Sl2 < ev/8/nnz(A).
The final bound then follows via Markov’s inequality on ||SA’,,S||>. O

5.3 Main Accuracy Bound

We are finally ready to prove our main result for sparsity-based sampling, which we
restate below.

Theorem 2 (Sparse Matrix Eigenvalue Approximation) Let A € R"*" be symmetric

with |Alleo < 1 and eigenvalues L1(A) > ... > Ay (A). Let S C [n] be formed by

including the i™ index independently with probability p; = min (1, YSSZZ((II:)’)) as in

Algorithm 2. Here nnz(A;) is the number of non-zero entries in the i ™ row of A. Let
Ag be the corresponding principal submatrix of A, and let A; (A) be the estimate of

8
i (A) computed from Ag as in Algorithm 2. If s > Cl%if, for large enough constant

¢, then with probability > 1 — 8, for all i € [n], |Ai(A) — A (A)| < e/nnz(A).

Proof With Lemmas 7 and 8 in place, the proof is nearly identical to that of Theorem
1, with the additional need to apply Lemma 5 to show that the eigenvalues of A’ are
close to those of A.

For all i € [n] let p; = min (1, %) and let S be a scaled diagonal sampling

matrix such that the S;; = \/L,T, with probability p; and S;; = Ootherwise. Let A’ be the
matrix constructed from A by zeroing out its elements as described in Lemma 5. Then,
note that SA’S = As where A is the submatrix constructed as in Algorithm 2. We
first show that the eigenvalues of A’s approximate those of A’ up to error €4/nnz(A).
The steps are almost identical to those in the proof of Theorem 1. We provide a brief
outline of the steps but skip the details.

We split A" as A’ = A/ + A/, where A/, and A}, contain eigenvalues of A" of mag-
nitudes < €+/8+/nnz(A) and> €+/8/nnz(A). This implies Ay = A ¢+A;, ¢ where
Al g = SA.S and A g= SA!.S. By Fact 1 we have that the nonzero eigenvalues
of A/ ¢ = SV/,A,V,'S are identical to those of APV TSSV! A2 Thus, applying
the perturbation bound of Fact 4, we have:

A (ALPVISSV ALY — ai(AL)| < Clogn | AY*VISSV AL — AL .
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From Lemma 7, weget||A;1/2V;TSSV;A;,1/2—A;||2 < e/nnz(A) fors > %

with probability at least 1 — &. Thus, setting the error parameter to 15~ in Lemma 7,
gn

clog(1/(€8)) log® n

fors >
- 63\/5

, with probability at least 1 — § we have:

< ey/nnz(A). (34)

WAV PVTISSVI ALY — 3 (AL)

We have thus shown that the non-zero eigenvalues of A’O’ 5 approximate all outlying
eigenvalues of A’. Note that by Lemma 8, we also have ||A:n sll2 < e/nnz(A) with

8
probability at least 1 — § for s > Cl%%f. Then, similarly to the section on eigenvalue

alignment of Theorem 1, we can argue how these approximations ‘line up’ in the
presence of zero eigenvalues in the spectrum of these matrices, concluding that, for
alli € [n],

< ey/nnz(A).

Finally, by Lemma 5, we have |1; (A") — 1; (A)| < e4/nnz(A) foralli € [n]. Thus, via
triangle inequality, ‘Xi (A) — Ai(A)‘ < 2e4/nnz(A), which gives the required bound
after adjusting € to €/2.

3
Recall that we require s > % for (34) to hold with probability 1 — §.

8

We also require s > 012%4" for [|A;, ll2 < ey/nnz(A) to hold with probability 1 — &

by Lemma 8. Thus, for both conditions to hold simultaneously with probability 1 — 2§
log® log(1/(€8))-log? log®

C€%§4n > max (c og /exi/g og n’ cs(;%4n)’

where we use that log(1/(e8) < O(logn), as otherwise our algorithm can take A to

be the full matrix A. Adjusting § to §/2 completes the theorem. O

2i(A) — A (A)

by a union bound, it suffices to set s =

6 Empirical Evaluation

We complement our theoretical results by evaluating Algorithms 1 (uniform sampling)
and Algorithm 2 (sparsity-based sampling) in approximating the eigenvalues of several
symmetric matrices. We defer an evaluation of Algorithm 3 (norm-based sampling) to
later work. Algorithm 1 and Algorithm 2 perform very well. They seem to have error
dependence roughly 1/€? in practice, as compared to the 1/¢3 dependence proven in
Theorem 1 and 1/€® dependence in Theorem 2. Closing the gap between the theory
and observed results would be very interesting.

6.1 Datasets
We test Algorithm 1 (uniform sampler) on three dense matrices. We also compare the

relative performance of Algorithm 1 and Algorithm 2 (sparsity sampler) on three other
synthetic and real world matrices.
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Original image Sampled points
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y co-ordinates
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x co-ordinates x co-ordinates

Fig.2 Kong dataset. The image on the left is the original synthetic binary image and the image on the right
shows the 5000 sampled points from the outline used as dataset in our experiments

The first two dense matrices, following [49], are created by sampling 5000 points
from a binary image. We then normalize all the points in the range [0, 1] in both axes.
The original image and resulting set of points are shown in Fig. 2. We then compute a
similarity matrix for the points using two common similarity functions used in machine

learning and computer graphics: §(x, y) = tanh ((Xéy >), the hyperbolic tangent; and

s(x,y) = ||Ix— y||% - log (||x - y||%), the thin plane spline. These measures lead to
symmetric, indefinite, and entrywise bounded similarity matrices.

Our next dense matrix (called the block matrix) is based on the construction of the
hard instance for the lower bound in [11] which shows that we need €2 (1/ eHx Q1 / 62)
samples to compute en approximations to the eigenvalues of a bounded entry matrix.
Itis a 5000 x 5000 matrix containing a 2500 x 2500 principal submatrix of all 1s, with
the rest of the entries set to 0. It has A1 (A) = 2500 and all other eigenvalues equal to
0.

We now describe the three matrices used to compare Algorithm 1 and Algorithm 2.
All three are graph adjacency matrices, which are symmetric, indefinite, entrywise
bounded and sparse. Spectral density estimation for graph structured matrices is an
important primitive in network analysis [19]. The first is a dense Erdos-Rényi graph
with 5000 nodes and connection probability 0.1. The second two are real world graphs,
taken from SNAP [50]; namely Facebook [51] and Arxiv COND-MAT [52]. The
Facebook graph contains 4039 nodes and 88234 directed edges. We symmetrize the
adjacency matrix. Arxiv COND-MAT is a collaboration network between authors of
Condensed Matter papers published on arXiv, containing 23,133 nodes and 93497
undirected edges. Both these graphs are very sparse—the number of edges is < 1% of
the total edges in a complete graph with same number of nodes. The true eigenvalue
spectra of each of these matrices are plotted in Fig. 3.

6.2 Implementation Details

Apart from uniform random sampling (Algorithm 1), we also apply the sparsity-based
sampling technique in Algorithm 2 and a modification to Algorithm 2, where we do
not zero out the elements of the sampled submatrix Ag (we call this simple sparsity
sampler). In practice, to apply Algorithm 2, we zero out element [Ag]; ; (line 5 of
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Kong dataset using thin plane spline similarity
1ot

Kong dataset using hyperbolic tangent similarity Block matrix
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Fig.3 Eigenspectrum plots. Plots of the eigenspectra of the matrices we studied in Sect. 6. The eigenvalues
are ranked in decreasing ordered

Algorithm 2) if i = j or nnz(A;) nnz(A ;) < nn%(SA), where ¢; is a constant and s is
the size of the sample. We set c; = 0.1 experimentally as this results in consistent

behavior across datasets.

6.3 Experimental Setup

We subsample each matrix and compute its eigenvalues using numpy [53]. We then
use our approximation algorithms to estimate the eigenvalues of A by scaling the
eigenvalues of the sampled submatrix. For ¢ trials, we report the logarithm of the
it (A)—2i (A)]

/nnz(A)
eigenvalue in the ™ trial, A;(A) is the true eigenvalue and nnz(A) is the number of
non-zero elements in A. Recall that /nnz(A) > ||A|r is an upper bound on all
eigenvalue magnitudes. Also note that for the fully dense matrices, «/nnz(A) ~ n

We repeat our experiments for # = 50 trials at different sampling rates and aggregate
the results. The resultant errors of estimation for dense matrices are plotted in Fig.4
and for the graph matrices are plotted in Fig.5. The x-axis is the log proportion of
the number of random samples chosen from the matrix. If we sample 1% of the
rows/columns, then the log comes to around —4.5. In these log-log plots, if the sample
size has polynomial dependence on €, e.g., en or €4/nnz(A) error is achieved with
sample size proportional to 1 /e”, we expect to see error falling off linearly, with slope
equal to —1/p where p is the exponent on €.

As a baseline we also show the error if we approximate all eigenvalues with 0

which results in an error of —==.—. This helps us to observe how the approximation
«/T p pp

average absolute scaled error, log ( > Pis ()2 W)l ), where ):i,, (A) is the estimated
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algorithms perform for both large and small order eigenvalues, as opposed to just
approximating everything by 0.

Code. All codes are written in Python and available at https://github.com/archanray/
eigenvalue_estimation.

6.4 Summary of Results

Our results are plotted in Figs.4 and 5. We observe relatively small error in approxi-
mating all eigenvalues, with the error decreasing as the number of samples increases.
What is more interesting is that the relationship between sample size and error en
seems to be generally on the order of 1/€2, our expected lower bound for approxi-
mating eigenvalues by randomly sampling a principal submatrix. This can be seen by
observing the slope of approximately —1/2 on the log-log error plots. In some cases,
we do better in approximating small eigenvalues of A—if the eigenvalue lies well
within the range of middle eigenvalues, i.e. {—en, en}), we may achieve a very good
absolute error estimate simply by approximating it to O.

As expected, on the graph adjacency matrices (in Fig.5), sparsity-based sampling
techniques generally achieve better error than uniform sampling. For the Erdos-Rényi
graph, we expect the node degrees (and hence row sparsities) to be similar. Thus
the sampling probability for each row will be roughly uniform, which leads to sim-
ilar performance of sparsity-based techniques and uniform sampling. For the real
world graphs, which have power law degree distributions, sparsity-based sampling
techniques has a significant effect. As a result Algorithm 2, and the simple sparsity
sampler variant significantly outperform uniform sampling.

Algorithm 2 almost always dominates simple sparsity sampler. In some cases sim-
ple sparsity sampler performs better or equivalent to Algorithm 2. This may happen
because for two reasons: (1) if Algorithm 2 zeroes out almost all of the sampled
submatrix Ag for small samples, the algorithm will underestimate the corresponding
eigenvalue, and (2) the cut-off threshold for the term nnz(A;) nnz(A ;) may be too
high leading to no difference between simple sparsity sampler and Algorithm 2.

We also observe that approximating all eigenvalues with O results in very good
approximation for small eigenvalues of the Erdos-Rényi graph. We believe this is
because the smaller eigenvalues are significantly less than the largest eigenvalue (of
the order of 3500). We see similar trends of approximating eigenvalues with zero
for the real world graphs too. But since eigenvalues at the extreme spectrum are of
a larger order, we see reasonably good approximation for the sampling algorithms.
Algorithm 2 outperforms approximation by 0 in all of these cases.

In the dense matrices uniform sampling almost always outperforms approximation
by O when estimating any reasonably large eigenvalues. Additionally, note that the
block matrix is rank-1 with true eigenvalues {2500, 0, ..., 0}. Any sampled principal
submatrix will also have rank at most 1. Thus, outside the top eigenvalue, the submatrix
will have all zero eigenvalues, which are perfectly approximated by our algorithm.
The only non-trivial approximation for this matrix is for the top eigenvalue. This
approximation seems to have error dependency around 1/€2, as expected.

@ Springer


https://github.com/archanray/eigenvalue_estimation
https://github.com/archanray/eigenvalue_estimation

1800 Algorithmica (2024) 86:1764-1829

7 Conclusion

We present efficient algorithms for estimating all eigenvalues of a symmetric matrix
with bounded entries up to additive error en, by reading just a poly(logn, 1/€) x
poly(logn, 1/€) random principal submatrix. We give improved error bounds of
e4/nnz(A) and €||A| r when the rows/columns are sampled with probabilities pro-
portional to their sparsities or squared £, norms, respectively.

As discussed, our work leaves several open questions. In particular, it is open if our
query complexity for +en approximation can be improved, possibly to é(logc n/e)
total entries using principal submatrix queries or é(log" /€2) entries using general
queries. The later bound is open even when A is PSD, a setting where we know that
sampling a O(1 /€2) x O(1/€?) principal submatrix (with O (1/ ) total entries) does
suffice. Additionally, it is open if we can achieve sample complexity independent of
n, by removing all log n factors, as have been done for the easier problem of testing
positive semidefiniteness [11]. See Sect. 1.4 for more details.

It would also be interesting to extend our results to give improved approximation
bounds for other properties of the matrix spectrum, such as various Schatten-p norms
and spectral summaries. For many of these problems large gaps in understanding
exist—e.g., for £n3/2 approximation to the Schatten-1 norm, which requires (1)
queries, but for which no o(n?) query algorithm is known. Applying our techniques
to improve sublinear time PSD testing algorithms under an ¢, rather than £, approx-
imation requirement [11] would also be interesting. Finally, it would be interesting
to identify additional assumptions on A or on the sampling model where stronger
approximation guarantees (e.g., relative error) can be achieved in sublinear time.
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A Eigenvalue Approximation for PSD Matrices

Here we give a simple proof that shows if Algorithm 1 is used to approximate the
eigenvalues of positive semidefinite (PSD) matrices (i.e., with all non-negative eigen-
values) usinga O (1/ 62) x0(1/ 62) random submatrix, then the £, norm of the error of
eigenvalue approximations is bounded by en. This much stronger result immediately
implies that each eigenvalue of a PSD matrix can be approximated to +en additive
error using just a O(1/€%) x O(1/€%) random submatrix. The proof follows from a
bound in [40] which bounds the £, norm of the difference vector of eigenvalues of
a Hermitian matrix and any other random matrix by the Frobenius norm of the dif-
ference of the two matrices. This improves on the bound of Theorem 1 for general
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(a) Hyperbolic tangent similarity matrix.
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(b) Thin plane spline similarity matrix.
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(c) Block matrix.

Fig. 4 Approximation error of eigenvalues of dense matrices. Log scale absolute error versus log sam-
pling rate for Algorithm 1 and approximation by 0, as described in Sect.6.3, for approximating the
largest, smallest and fourth largest of three of the example matrices. The corresponding true eigenval-
ues for each matrix in-order are: (hyperbolic tangent) {4.52e+03, —7.85e+00, 3.18e—01}, (thin plane
spline) {3.54e+02, —1.22e+4-03, 1.28e+02} and (block matrix) {2.50e+03, 0, 0}. For the block matrix, all
eigenvalues except the largest magnitude one are 0, and so our algorithm perfectly approximates these
eigenvalues. Therefore, we only plot the error of approximation for the largest eigenvalue of the block
matrix

entrywise bounded matrices by a 1/€? factor, and matches the O (1/e*) lower bound
for principal submatrix queries in [11]. Note that the hard instance used to prove the
lower bound in [11] can in fact be negated to be PSD, thus showing that our upper
bound here is tight.

We first state the result from [40] which we will be using in our proof.

Fact5 (£>-norm bound on eigenvalues [40]) Let A € C"*" be Hermitian and B €
C™" be any matrix whose eigenvalues are A1(B), ..., A,(B) such that Re().1(B)) >
... > Re(A,(B)) (where Re();(B)) denotes the real part of .;(B)). Let A — B = E.
Then

1/2

D@ = nB)I ) < V2IE| .

i=1
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(a) Erdés-Rényi graph adjacency matrix [54].
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(c) ArXiv collaboration network adjacency matrix [51].

Fig. 5 Approximation error of eigenvalues of sparse matrices. Log scale absolute error vs. log sampling
rate for Algorithms 1, 2, simple sparsity sampler and approximation by 0, as described in Sect.6.3, for
approximating the largest, smallest, and fourth largest of remaining three example matrices. The corre-
sponding true eigenvalues for each matrix in-order are: (Erdos-Rényi) {500.57, —42.52, 42.02}, (Facebook)
{162.37, —23.75, 73.28} and (arXiv) {37.95, —15.58, 26.92}

Our result is based on the following Lemma, we prove at the end of the section.

Lemma9 Consider a PSD matrix A = BB with |Allsc < L. Let S be sampled as
in Algorithm 1 for s > %. Let S € R™I5| be the scaled sampling matrix satisfying

STAS = % - As. Then with probability at least 1 — ,
IBTSS”B — BB| r < en.

From the above Lemma we have:

Corollary 2 (Spectral norm bound—PSD matrices) Consider a PSD matrix A with
lAlloo < 1. Let S be a subset of indices formed by including each index in [n]
independently with probability s /n as in Algorithm 1. Let Ag be the corresponding
principal submatrix of A, with eigenvalues ,1(Ag) > ... > As|(As).
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Foralli € [|S|] with L; (As) > 0, let 5»,- (A) = % - Ai (Ag). For all otheri € [n], let
Li(A) = 0. Then if s > 2 with probability at least 1 — 6,

€28’

0 A2
(Z Xi(A)—Ai(A)’ ) <en,

i=1
which implies that for all i € [n],

ri(A) —en < Ai(A) < Ai(A) + en.

Proof Let S be sampled as in Algorithm 1 and let S € R"*I5I be the scaled sampling
matrix satisfying STAS = T - Ags. Since A is PSD, we can write A = BB for some
matrix B € R">12k@A) From Lemma 9, for s >
1 -4

ﬁ, we have with probability at least

IB'SSTB — B’ B||r < ¢en

Using Fact 5, we have,

rank (A) 5 12
3 )/\i(BTSSTB) — (BB < V2|B"SS”B — BTB|f < v2en.
i=l1

(35)

Also from Fact 1, we have A; (BTB) = 1;(BBY) = A;(A) for all i < rank(A). Thus,
rank (A) 2 1/2
> [n®TSSTB — )| = Vaen
i=1

Also by Fact 1, all non-zero eigenvalues of B SST B are equal to those of STBB” S =
T - Ag. All other eigenvalue estimates are set to 0. Further, for all i > rank(A),
Ai(A) = 0. Thus,

n 12
(Z LA — Ai(A)’2> < 2en.

i=1
Adjusting € to €/+/2 then gives us the bound. O

We now prove Lemma 9, using a standard approach for sampling based approximate
matrix multiplication—see e.g. [44].
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ProofofLemma9 Fork = 1,...,nlet Yy = T — 1 with probability 5 and Y; = —
with probability 1 — = Thus E[Yk] =0 and

2
IB"SS"B — B"BJ|;. = ZZ (ZYk szjk> -

i=1 j=1

Fixing i, j, each the Y - B;;B jx are 0 mean independent random variables. Thus we
have:

n n n 2
E [||BTSSTB - BTBII%] = Z ZE <1<Z:; Y - BikBjk>

i=1 j=1

- Z ZVar |:2Yk ,kBjk}

11]]

= Z Z Z Var [Y - BB i ]

i=1 j:l k=1

SHHI

tl/lkl

since Var[Y;] = (% — 1)2~%+(1 — %) =5—-2+5+1—7 ="%—1. Rearranging
the sums we have:

E[IBTSS"B — B"B||? ]<_ZZB ZB

k=1 i=1

Observe that Z?:l B?k = Axr < ||Allco < 1, thus overall we have:

n2

E[|B’SS"B — B'B||%.] < — < €%sn°.
S

So by Markov’s inequality, with probability > 1 — &, |[BTSSTB — BTB||3. < €?n”.
This completes the theorem after taking a square root. O

Remark: The proof of Lemma 9 can be easily modified to show that the i row of A
can be sampled with probability proportional to ‘ (”g to approximate the eigenvalues
of any PSD A up to £e€ - tr(A) error (tr(A) is the trace of A). When sampling with
probability proportional to tlr‘? A; , we do not require a bounded entry assumption on A.
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B Alternate Bound for Uniform Sampling

In this section we provide an alternate bound for approximating eigenvalues with
uniform sampling. The sample complexity is worse by a factor of 1 /¢ for this approach,
but better by a factor log? n as compared to Theorem 1. We start with an analog
to Lemma 3, showing that the outlying eigenspace remains nearly orthogonal after
sampling. In particular, we show concentration of the Hermitian matrix VZSSTVO
about its expectation V'V, = I rather than the non-Hermitian Ay 2V0T SSTV,A,/* as
in Lemma 3. This allows us to use Weyl’s inequality in our final analysis, rather than
the non-Hermitian eigenvalue perturbation bound of Fact 4, saving a log? n factor in
the sample complexity.

Lemma 10 (Near orthonormality—sampled outlying eigenvalues) Let S be sampled

as in Algorithm 1 for s > %

where c is a sufficiently large constant. Let
S € R IS| pe the scaled sampling matrix satisfying STAS = = - Ag. Then with
probability at least 1 — 6, ||VZSSTV0 —1I)2 <e.

Proof The result is standard in randomized numerical linear algebra—see e.g., [55].
For completeness, we give a proof here. Define E = VOTSSTV,, — I Foralli € [n],
let V,.; be the i’ " row of V, and define the matrix valued random variable

T
%V(’»ivo,
0 otherwise.

;» With probability s/n

Y, =

Then, similar to the proof of Lemma 3, define Q; = Y; —E[Y;]. Since Q1, Q2, ..., Q,

are independent random variables and Y "_, Q; = VISSTV, — I = E, we need to
bound [|Q; [l for all i € [n] and Var(E) & E(EET) = E(ETE) = > EIQA.
Observe [|Q;ll2 < max (1, % — 1) [|Vo,: V7 [l = max (1, 2 — 1) [V, 3 < -, by
row norm bounds of Lemma 2. Again, using Lemma 2 we have

n
i=1

IX::E[Q,Z] = Xn: S (g — 1)2 (VO,,'VZJ.)2 + (1 _ %) (Vo,iVOT)i)z

n
n
<D S IVoil3(VoiVs,)

i=1

“n o1
25 gy VoiVod
1

i=

IA

< ! I
~ s€28

where I is the identity matrix of appropriate dimension. By setting d = ﬁ, we can
finally bound the probability of the event |E|; > en using Theorem 6 (the matrix
Bernstein inequality) with § if s > %. Since these steps follow Lemma 3
nearly exactly, we omit them here. O
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With Lemma 10 in place, we can now give our alternate sample complexity bound.

Theorem 8 (Sublinear Time Eigenvalue Approximation) Let A € R"*" be symmetric
with |Alleo < 1 and eigenvalues L1(A) > ... > Ay (A). Let S C [n] be formed by
including each index independently with probability s/n as in Algorithm 1. Let Ag

be the corresponding principal submatrix of A, with eigenvalues A (Ag) > ... >
Apsi(Ag). )
Foralli € [|S|] with Aj(As) > 0, let 1;(A) = 5 - Xi(As). Foralli € {1,...,]S]}

with 7 (As) < 0, let Ay—(s1—i)(A) = 2 - 1;(As). For all otheri € [n], let 1;(A) = 0.

If s > C?%", for a large enough constant c, then with probability > 1 — §, for all

i €[n],

Li(A) —en < Ai(A) < Ai(A) + en.

Proof Let S € R"*I5| be the binary sampling matrix with a single one in each column
such that STAS = Ag. Let S = /n/s - S. Following Definition 1.1, we write A =
Ao+ Ay By Fact 1 we have that the nonzero eigenvalues of 2 - A, s = STV,A,VI'S
are identical to those of A,V SSTV,,.

Note that H = V[SSTVO is positive semidefinite. Writing its eigendecomposition
H = UWU7 we can define the matrix squareroot H!/? = UW!/2U” with H!/?H!/? =
H. By Lemma 10 applied with error € /6, with probability at least 1 —§, all eigenvalues
of H lie in the range [1 — €/6, 1 + €/6]. In turn, all eigenvalues of H'/? also lie in this
range. Again using Fact 1, we have that the nonzero eigenvalues of A,H, and in turn
those of % - Ay, s, are identical to those of H!/ZA H!/2.

LetE = H'/2 — 1 = UW!2UT — UUT = UW!/2 — 1)U Since the diagonal
entries of W!/2 lie in [1 — €/6, 1 + €/6], those of W!/2 — T lie in [—€/6, €/6]. Thus,
IE|l> < €/6. We can write

A (H2AHY2) = 3 (I4+ E)A,(I+ E)) = %;(A, + EA, + ALE + EA,E).
We can then bound

IEA, + AoE + EALE|2 < [[EA, |2 + [AGE(2 + [EALE
< IEl2llAoll2 + 1AGlI21Ell2 + [IEl2l Ao ll2 1 E]l2
< en/6+ne/6 +€*n/36
<e€/2-n.

Applying Weyl’s eigenvalue perturbation theorem (Fact 3), we thus have for all 7,

L H'ZAHY?) — 2 (Ay)| < €/2 - n. (36)
Note that we have shown that the nonzero eigenvalues of ’S—l -A,,s are identical to those
of H'/2A,H'/?, which we have shown well approximate those of A, and in turn A,,

i.e., the non-zero eigenvalues of % - A, s approximate all outlying eigenvalues of A.
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We can also bound the middle eigenvalues using Lemma 4 as in Theorem 1. Now the
only thing left is to argue how these approximations ‘line up’ in the presence of zero
eigenvalues in the spectrum of these matrices. This part of the proof again proceeds
similarly to that of Theorem 1 in Sect. 4.2.

Analogous to Theorem 1, from Lemma 10 equation (36) holds with probability 1 —§
ifs > w. We also require s > cl(;%" for | A sll2 < en to hold with probabil-
ity 1—8 by Lemma 4. Thus, for both conditions to hold simultaneously with probability

1 — 28 by a union bound, it suffices to set s = Cl:% > max (M, M),

€48 €28
where we use that log(1/(€8)) = O(logn), as otherwise our algorithm can take Ag
to be all of A. Adjusting 8 to /2 completes the theorem. O
C Refined Bounds

In this section, we show how it is possible to get better query complexity or tighter
approximation factors by modifying the proof of Theorem 1 and Lemmas 3 and 2
under some assumptions. We give an extension to Theorem 1 in Theorem 9 for the
case when the eigenvalues of A, lie in a bounded range—between €“+/5n and €’n
where 0 < b <a <1.

Theorem 9 Let A € R™" be symmetric with ||A|ls < 1 and eigenvalues i1 (A) >

. > An(A). Let A, be as in Definition 1.1 such that for all eigenvalues \;(A,) we
have either €%/sn < X (Ay)| < ebn or Ai(Ay) = Owhere0 < b <a < 1. Let
S C [n] be formed by including each index independently with probability s /n as in
Algorithm 1. Let Ag be the corresponding principal submatrix of A, with eigenvalues
AM(As) > ... = Ais|(Ag).

For all i € [|S|] with 1;(As) > 0, let 1;(A) = % - Li(Ag). Foralli € [|S]] with
Ai(Ag) < 0, let Ay_s—i)(A) = 2 - 1i(As). For all other i € [n], let %;(A) = 0. If

clog(1/(e8))log?t*=b p
s 2 €2+“_b5
alli € [n],

, for large enough c, then with probability at least 1 — &, for

ri(A) —en < A (A) < A (A) + en.

Proof The proof follows by modifying the proofs of Theorem 1, Lemmas 2 and 3 to
account for the tighter intervals. First observe that since |1;(Ay)| > €/8n for all i,
we can give a tighter row norm bound for V,, from the proof of Lemma 2. In particular,
from equation (3) we get:

1
e“«/g

We can then bound the number of samples we need to take such that for
1/2v;TaaT 1/2 . 1/2v;TaaT 1/2
A,/ V,SS"V,A," (as defined in Theorem 8) we have [|A,/"V,SS"V,A," —
A,ll2 < en with probability at least 1 — § via a matrix Bernstein bound. By appro-
priately modifying the proof of Lemma 3 to incorporate the stronger row norm bound

12 no 1
€2agn?  e2a§p’

2 2
A0 Voillz = and  [[Vo,ill3 <
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for V,,, we can show that sampling with probability s/n for s > %/(5;)) for large

enough c suffices. Specifically, we get L < “:1[? < 2 '}i[ and d < log(1/(€28))

for the Bernstein bound in Lemma 3 which enables us to get the tighter bound. Thus,

172 1,2
we have | A/ VISSTV,A A2 Z Al < en with probability 1 —§ fors > Ci(;fil—fjg))

following Lemma 3. We also require s > - for [|Ay;,sll2 < €n to hold with prob-
ability 1 — § by Lemma 4. Then, following the proof of Theorem 1, by Fact 4, for all
i € [n], and some constant C, we have:

clogn

1/2 S 1/2 2 S 2
1L (ASPVISSTV,AY?) = hi(A,)| < Clogn||AY*VISSTV,ALZ — A, 2.

As in the proof of Theorem 1, adjusting € by a factor, we get |X; (Al/ ZVT

Clogn log n

24+a—. b
SSTV,ALY%) — 1;(Ay)| < en with probability 1 — & for s > °‘°g(‘£ 51?3,105; .

Then we follow the proof of Theorem 1 to align the eigenvalues completing the proof.
O

D Spectral Norm Bounds for Non-uniform Random Submatrices

In this section, we prove an extension of Theorem 4 to the setting where rows are
sampled non-uniformly. This allows us to show that the middle eigenvalues do not grow
too large when sampling and rescaling with the non-uniform sampling probabilities
used by Algorithms 2 and 3.

Theorem 5 (Non-uniform column sampling—spectral norm bound) Let A be anm x n
matrix with rank r. Let §; be a sequence of independent random variables such that

d; = \/Lpf, with probability p; and 0 otherwise. Let S be a square diagonal sampling
X J

matrix with j'" diagonal entry set to .

E>[|AS|l2 < 5y/logr - E2[|AS|1-2 + |All2

Proof The proof follows from [46]. We begin by first defining the following term
E:=E;||AS]2.

Now we have

n
= E||AS|3 = E|[ASSA*|, = E ZafAjAj ,
j=1 2

where §; is the sequence of independent random variables such that §; = —L_ with

VPi
probability p; and 0 otherwise, and A ; is the j column of A. Then, 1; = E[(8;)*] =
1. Let {8}} be an independent copy of the sequence {3;}. Subtracting the mean and
applying triangle inequality we have
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n n
E* <E|) (67 —EIG)’DAAY| + > AA"
j=1 j=1

2 2

Using Jensen’s inequality we have

n
E’<E Z(af — )DHAjAY| + |AA*
Jj=1 2

I

The random variables (82 — (8'.)%) are symmetric and independent. Let {e;} be i.i.d
Rademacher random variables for all j € [n]. Then applying the standard symmetriza-
tion argument followed by triangle inequality, we have:

n
E* <2E | €e;87A,A% | +[AA*|,.
j=1

2

LetQ={j:4; = \/;p*j}- Let [E¢ be the partial expectation with respect to {e;} while

keeping the other random variables fixed, and let Eq be the partial expectation with
respect to 2. Then, we get:

E* < 2Eq |:]Ee D ej8iAAT ] + IAl5.
Q 2
Using Rudelson’s Lemma 11 of [46] for any matrix X with columns x{, X3, - -+ , X,
and any g = 2logn we have
" a\ /4
E > exx; < 151X 120X 2.
j:1 2

Since (.)!/4 is concave for ¢ > 1, using Jensen’s inequality we get:

n
E|Y exxi| < 1L5yglIX[h-2lX]2
j=1 2

Applying the above result to the matrix AS, we get:
E? < 34 [E(|ASIli-2[| ASII2)] + |AJ3.
Applying Cauchy Schwartz we get:

E? <3./q(E|AS|i_,) " *(E|AS|3)"* + A3
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The above equation is of the form E 2 < bE + c. Thus, the values of E from which
the above equation is true is given by E < bivb tde V};MC < b+ \/c. Thus, we get:

E2|ASIl2 = 3/qE2[|AS]l1-2 + [[All2.

This gives us the final bound. O

E Improved Bounds via Row-Norm-Based Sampling

Building on the sparsity-based sampling results presented in Sect. 5, we now show how
to obtain improved approximation error of +¢||A || r assuming we can sample the rows
of A with probabilties proportional to their squared £, norms. The ability to sample
by norms also allows us to remove the assumption that A has bounded entries—our
results apply to any symmetric matrix.
For technical reasons, we mix row norm sampling with uniform sampling, forming
a random principal submatrix by sampling each index i € [n] independently with
sIAil5
Al
1/./pi- Asin the sparsity-based sampling setting, we must carefully zero out entries of
the sampled submatrix to ensure concentration of the sampled eigenvalues. Pseudocode
for the full algorithm is given in Algorithm 3.

probability p; = min (1, + n%) and rescaling each sampled row/column by

E.1 Preliminary Lemmas

Our proof closely follows that of Theorem 2 in Sect.5. We start by defining A’ €
R™ " obtained by zeroing out entries of A as described in Algorithm 3. We have
Aj; = 0 whenever 1)i = j and A5 < §||A||§ or2)i # jand |A;]3 - A3 <
AN A
c2 log* n
that the eigenvalues of A’ are close to A i.e., zeroing out entries of A according to
the given condition doesn’t change it’s eigenvalues by too much (Lemma 11. Then,
we again split A’ = A/ + A/ such that |A} [l < ev/5||A]F. We argue that after
sampling, we have ||A;n, sll2 < €llA|lF and the eigenvalues of A;’ 5 approximate those
of A/ up to +e€||A| F error.

. Otherwise A’ ;= A;;j. Similar to the sparsity sampling case, we argue

Lemma 11 Let A € R™" be symmetric. Let A" € R"™" have A}, = 0 if either 1)
. . 2 . X 2 A 2'A,“ 2
i = jand |A;/|3 < SIAI% or2)i # j and |A;ll3 - 1A;13 < < IAI%- 1A

c2log*n for a
sufficiently large constant c3. Otherwise, A ;= A;j. Then, for alli € [n],

4 (A) — 4i(A)] < €llAllF.

Proof Consider the matrix A”, which is defined identically to A’ except we only set

e ElAlE A1
Al = 0ifi # jand [|A]5 - A5 < —Lr

T . That is, we do not zero out
cylog™n
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Algorithm 3 Eigenvalue estimator using £, norm-based sampling

1: Input: Symmetric A € R"*" Accuracy € € (0, 1), failure prob. § € (0, 1). |A; |2 foralli € [n].
,10
2: Fixs = Cli‘é# where ¢ is a sufficiently large constant.

slA; 13
A3

3: Add eachi € [n] to sample set S independently, with probability p; = min <1, + n%) Let the

principal submatrix of A corresponding to S be Ag.
4: Let Ay = DAgD where D € RISIXIS i diagonal with D; ; = ﬁ if the i’ element of S is j.

5: Construct A’S € RISIXISI from Ag as follows:

e . 2
0 ifi = jand |A;]5 < FIAIG

¢ nAnF |A,,\

[AGlij =10 ifi # jand [|A;]3- A3 < for sufficient large constant ¢

¢y loghn
[As);,; otherwise.

6: Compute the eigenvalues of A: A1(A) > ... > A;5(A%).

7: For all i € [|S]] with 2; (A ) 0, let X;(A) = A; (A’) For all i € [|S]] with Ai(A’S) < 0, let
An—(1S|—i)(A) = A; (A ). For all remaining i € [n], letk (A) =0.

8: Return: Eigenvalue estimates A] A) > ...> i (A).

any entries on the diagonal as in A’. We will show that [[A — A”|l, < S|A|F. If

A;; is zeroed out in A’ this implies that [|A; |3 < TZ IA]I%.. Thus, |A;i| < [Aill2 <
SIAllF and so |[A” — A’|l2 < §||Allr. So, by triangle inequality, we will then have
IA — A’|l2 < €-||A||F. The lemma then follows from Weyl’s inequality

To show that |[A — A”|2 < 5||Al|r, we use a variant of Girshgorin’s theorem, as
in the proof of Lemma 5. First, we split the entries of A into level sets, according to

their magnitudes. Let A = Z:EOZ A where (Ag);; = A;jif |A;j] € [ 5||A||p) and

(Ag)ij = 0 otherwise. For 1 < k < log, (Ap);; = A,, if |A;j| € [”A”F, ”;z—ﬂf) and

(Ag)ij = O otherwise. We can also define A” =} ~ log ¢ ‘ A} where each A} are defined

similarly. By triangle inequality, |A — A" ||, < Zlog"/e |Ax — A7|l. First observe
that |[Ag — Ajll2 < Ao — Agllr < n - [[Agllec < €l|Allf. Further, we can assume
without loss of generality that € > 1/n and so log(n/e) < 2logn, as otherwise our
algorithm can afford to read all of A. So, it suffices to show that for all k£ > 1,

€
Ak — Afll2 < Togn IAllF. (37)

This will give |A — A”ll2 < € - |Allr + X5 25 - IAllF < 3¢ - |Allr, which
gives the lemma after adjusting € by a constant factor.
We now prove (37) for each k > 1. For p € {0, 1, log(nz)} let Z, C [n] be

the set of rows/columns in Ay with nnz((Ag);) € [nnZ(A"), m;Zp(Al")

ALy, 1,) be the submatrlx of A; formed with rows inZ, and columns in Z,. Define
the submatrlx of A7 in the same way. Let Akpq = Appg — and finally,

) and let Agpy =

"
kpq kpq
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let Akpq € R™" be the symmetric error matrix such that Akpq Ty, 1y) = Akpq and
Aipg(Ty. Tp) = AL .

Note that all rows from which we zero out entries must have at least one non-zero
entry nnz((Ag);) > 1 (otherwise all entries in that row/column are already zero), thus
all such rows have nnz((Ag);) > “"Z(Ak ) and so are covered by the submatrices Agq.
Thus, by triangle inequality, we can bound

log(nz) log(nz)

1A =AY < Y0 > 1Nl (38)

p=0 ¢=0

To prove (37), we need to bound [Ag,q — A7

kpq||2 forall k > 1 and p, g. We use a
case analysis.

2
Case 1 % > 2P%4 1In this case, first observe that since the nonzero
entries of A lie in [”’;,UF, ”A”F) foranyi € Z,, j € Z;,

LA - 1A 13 = A3 - 1 (Ax) 13
A%

=S
IAI7

nz((Ax);) - nnz((Ag) )

Z 30k aptd ~nnz(Ak)2.

Thus, by the assumed bound on 27 *4_ we have for any i, j where (Ay);; is nonzero,

ClAIE  _ EIAIE - 1A,
4.2%cylog*n — calogtn

2 2
A - A1 =

where the second inequality follows again from the fact that the nonzero entries of Ak
lie in [”1;# ”gz—ﬂf) Thus, any i, j with (Agpq)i; nonzero is not zeroed out in line 5

of Algorithm 3. So Nkpq = 0. Plugging into (38), we thus have:

log(nz)
1A —Afla < Y > N pg 12 (39)
p=0 g2+ 16nnz(1:;2(?222'22 log#n
16 nnz(A)2-c2 1 . NN
Case 2 % < 2714 In this case, observe that (Ak,,quTp P
(Akpq)m kpq- We can see that (Akpq)m has at most nnz((Ag);,) < %i"‘) non-zero

entries. Similarly, each row of AT has at most nnZ(A") non-zero elements. Thus, for
allm € |Zp|, using the fact that all non-zero entrles of Aypq are bounded by ”ﬁ”f , we
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have:

nnz(Ap)?  [All7
pta—2  92%k-2

| Akpg Afpgdm It <
Applying Girshgorin’s circle theorem (Theorem 2) we thus have:

nnz(A)* AlZ
2p+q-2 22k—2

S
1Rkpg 13 = Akpg AL, ll2 <

and so

8- |A|lF - nnz(Ay)

”Akpq”Z = 2||Akpq||2 =

2/«2%
Plugging to (39), we thus have:
log(r?) 8- |IAllF - nnz(Ay)
: F- k
IAx =AYl < > > Sy
p=0 q:2p+q216nnz(A,2(?222-;210g4n 2
log(n? )
< Z ||A||F Z 86||A||F
Setting ¢ > 64, we thus have (37), and in turn the lemma. O

We next give a bound on the incoherence of the outlying eigenvectors of A’. This
bound is again similar to Lemmas 2 and 6.

Lemma 12 (Incoherence of outlying eigenvectors in terms of £, norms) Let A, A’ €
R™" be as in Lemma 11. Let A, = VA, V.I where A!, is diagonal, with the eigen-
values of A’ with magnitude > e~/8||A|| r on its diagonal, and V., has columns equal
to the corresponding eigenvectors. Let V., ; denote the i " row of V! Then,

1A 113

N L S e O L
2= “ T S|l

/3IAlF

Proof The proof is again nearly identical to that of Lemma 2. Observe that A'V) =
V/ A/ Letting [A'V!]; denote the i row of the A’V , we have

IAV, 113 = 11V, A )13 = ZAZ 0 “0)

where r = rank(A)), V;l J is the (i, j)™ element of V), and A; = A} (j, j). Since

V! has orthonormal columns, we have [[[A"V]]; ||2 < IA] ||2 < ||A; ||2. Therefore, by
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(40),
r
Y A3 VE < IIAIB. (41)

Since by definition |A ;| > ev/8||A|  for all J, we can conclude that || A, 1/2 ’i||% =

r A ||2 / _ 2 11413
DA Vm = A and ||V0’l.||2 = Zj 1 Vi, < 28”AH%,whlchcompletes

the lemma. O

E.2 Outer and Middle Eigenvalue Bounds

Using Lemma 12, we next argue that the eigenvalues of A’ o.s Will approximate those
of A’, and in turn those of A. The proof is very similar to Lemmas 3 and 7.

Lemma 13 (Concentration of outlying eigenvalues with £, norm based sampling) Let
A, A" € R"" be as in algorithm 3. Let A" = A, + A, where A, =V, A, V’;l, nd
A = V;,A/OV’; are projections onto the eigenspaces with magnitude < €~/8||A||
sIA I3
A7
S be a scaled diagonal sampling matrix such that the S;; = ﬁ with probability p;

and > e/5||A| F respectively. For all i € [n] let p; = min (1, + n]—2> and let

and Si; = 0 otherwise. If s > % for a large enough constant c, then with
probability at least 1 — 6, || A,/>VTSSTV. ALY — Al |1, < e[| Allp.
Proof We define the random variables Qy, ---Q,, and the set P = {i € [n] : p; < 1}

exactly as in the proof of Lemma 7. Then, as explained in the proof of Lemma 7

it is sufficient to bound ), p E[Q2] From 17 we have ) ; _p ]E[QZ] < Yiep ;l

IAS*V,il%- (AI/ZVO,VZZ 1/2) Also from Lemma 11, we have [|Ay/*V, ;|2 <
1A 13 IAIZ
VAP and foralli € P, SIAIE We thus get,
ZE[Q2]<Z_ IA; 113 _ A1/2V VT Al/2)
P eVolAlr
ANl 12 NG
=< ( Ay 7V, )
_ ||A||FA - A3 L
sen/8 sex/d

2
Since Ql.2 is PSD this establishes that v < ||Var(E)||, < %. We can then apply the
matrix Bernstein inequality exactly as in the proof of Lemma 3 to show that when
s > ﬁg for large enough ¢, with probability at least 1 — &, |E|l, < €||A| F. O
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We now bound the middle eignevalues.

Lemma 14 (Concentration of middle eigenvalues with £;- norm based sampling) Let
A, A" € R"" be as in Lemma 12. Let A’ = A, + A, where A}, =V, A/, V/T nd

o’

Al = V;,A/OV’Z are projections onto the eigenspaces with magnitude < e\/_||A||F
and > €~/8|A || F respectively (analogous to Definition 1.1). As in Algorithm 2, for all

12 -
i €[n]let p; = min | 1, Slll‘:lllgz + nl—z> and let S be a scaled diagonal sampling matrix
F
_ _ 10
such that the S;; = \/;/T, with probability p; and S;; = 0 otherwise. If s > 61:8’554 ~ for

a large enough constant c, then with probability at least 1 — §,
ISA,Sl> < ellAllF.

Proof First observe that since s > ;iz (for large enough c¢), the results of Lemmas 11
and 12 still hold. The proof follows the same structure as the proof of bounding
the middle eigenvalues for sparsity sampling in Lemma 8. From Lemma 12, we have

- IA;1l2 : v, =
IVipill2 < AT Also, following the proof of Lemma 12, we have ||A",V 0.j I2

ITA’V'51ll2 < lIAjll2. Thus, for all i, j € [n], using Cauchy Schwarz’s inequality,
we have

IAill2

A0 il = IV o ihoVg (| < IV oill2 - 1AV, 112
\/_”A”F

A2, (42)

LetA’,, = H,,,+D,,, where H,,, and D, contain the off-diagonal and diagonal elements
of A, respectively. Then following the proof of Lemma 8, we get:

E2[1SA", 812 < 10y/logn (E2ISH,SI1-2 + E2[HouS] 12 )
+2[Hpll2 + E2[ISD,S|l2 (43)
We now proceed to bound each of the terms on the right hand side of (43). We start

with [, ||SD,,S||». First, observe that E,|SD,,S|l>» < max; #(Dm)i,- |. We consider
two cases.

Case 1: p; < 1. Then, as p; > g||\|:\|!2 we have ||A||F <y 1A ||2 since l %. So we
must have that have |(D,,);;| = |(A/n1)ii| = |(A});i| (since A}, = 0). Then by (42),
we have -|(Dy)ii] < 1L,

Case 2: p; = 1. Then we have %|(Dm),’,~| = |Dp)iil < max;|(Dy);;il < A, l2 <

eVS|AllF.

From the two cases above, for s > we have:

1
€28’
E2[SD,S|2 < ev/5||A]l . (44)
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We can bound |[H,, ||, similarly. Since H,, = A’,, — D,, and |A’,, |l2 < ev/8|All F.,

Hyll2 < 1A 12 + 1Dyl
< eVS|AllF +eVS|A|F.

= 2¢v/5]AllF. (45)
where the second step follows from the fact that | Dy, ||2 < max;|(Dy,)ii| < || A;n II>.
We next bound the term Es [|H,,,S|| 2. Observe that E» || H,, S|l 12 < —maxil‘/l?,—_’”’i 2,

where A’,, ; is the i column/row of A/, . We again consider the two cases when p; = 1
and p; < 1:

Case 1: p; = 1. Then A’ ;ll2 < |A'sll2 < /3| A|lF.
Case 2: p; < 1. Then ||A'),ill2 < |Aill2 < ||A]lF. Thus, setting s > —- we have:

Qo

||A/m,i||2< Al F
VPi T WslAill

Al
< < eVS|A|lF.
=77 < eVilAlF

A 112

Thus, from the two cases above, for all i € [r], adjusting € by a \/7 factor, we have

1
forsz%.
. eVS|AlF
Eo|H,,S|ljmn < ———— . 46
2IHSllh—2 < Togn (46)

Overall, plugging (44), (45), and (46) back into (43), we have:
E,[ISA",Sl2 < 10y/logn - E2|SH,, S|l 12 + 156 V5[ A|l . (47)

Finally we bound E, ||SHmS|| 1—2. Asinthe proof of Lemma 8, we have [E; ISH,,, §|| 12

%) and we will argue that max;.; e[ % is bounded

by e+/8||Al p with probability 1 —1/ poly(n). Also as argued in the proof of Lemma 8,

2, it suffices to bound w for all i € [n] with high probability.
Again, for a ﬁxedt and any j € [n], define the random variables z; as:

<k (maxi:ie[n]

since p; >

- p%.|A/m,i,j|2 with probability p;
0 otherwise.

Then 377_; zj = (SA'n):il3 and E[Y}_ 2] = 1A}, ;15 < [Afl13 < |A]l7. We
will again use Bernstein’s inequality to bound ) " j=12j = I(SA,)-.i ||% by bounding
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bound |z;| for all j € [n] and Var (Z';-:l zj). We consider the cases of p; < 1 and
pi = 1 separately.

Case 1: p; < 1. Then, we have p; > s||A;[|3/I|A[I%. If A’; ; # O then

1 A3
;|A/m,i, 1? < max (1 ENIA i
J

IA

|z

"sIAIB
2|AlI%
2 F 2 2
<A mi P+ RTWE (|A/l~,j| + A, ] )
2]Al7 Aill31IA; 113
S |A/m,i,j|2 + ”—”2 |A/i’j|2 + M
sIIA 3 e5)IA|l%
2]Al% 211A; 13
<A/, .2+—FA/. .2+—2’
_| m,l,]l S||A]||%| l,]| 6255‘

where the fourth inequality uses (42). By the thresholding procedure which defines
Al ifi # jand Aj; # 0,

20A 2 (A 2 2
e“lAlEIA;l IA; 13 - Al

2 2
Az - 1AlI5 = > ,
> log*n A7 12 7 cp-loghn - A3

(48)

and thus for p; < 1 and A’;; # 0 we have

2c2logn - Al | 2IA; 113

2
lzjl < |A'mijI”+
/ ity se2 €28s

Also A}, = 0 since we must have ||Al~||% < 54—2||A||2F as pi < ILIfA; j=0ori = j,
then we simply have

2]1A; 113

. 7o g2y 2R
|Z]|§|Am,l,]| + se2s

Overall for all j € [n],

201Al3 n 2¢2log* n - || Ai13

/ 2
l2j1 < 1A+ =55 — , (49)
and since |A'p.i j1* < D5 (A i j? = 1A l3 < A3 < A3,
20Ail5 22 - logn - A3
1Z] < A3 + =52 + 12, (50)

s€28 se2

4
Fors > ¢ (l"f—z” + ﬁ) and large enough c, we thus have |z;| < 2||A; ||%.
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We next bound the variance by:

n n
Var sz- SZ]E[Z ij |A/mt/|4
=1 =1

J

= (1 e ) W
m,t,

s||A B ’
12]Al3%

<Z'A/’"”'4+Z STA 12 F (Wt +181)
2

n 4 4
12||A||F s IACI3IA 13

< IAmillz + AL T |
" ; slA;I3 7 Al

where the last inequality uses (42). We thus get:

n 20 AIZIAGY & 120A 121A, 13
Var 2 - A/ 4 n ij + 2 J 2' 51
§ : i = 1AWl § : s||A.,'||% Z se452||A||%; D

j=1 jZA,i’j#O ]=1

Now A}, = 0as p; < 1 (and thus, ||A||? < %HAH%). Combining (48) with the second
term to the right of (51) we have

. 12¢2 log* n - A |13 - 1A} 2
Var [ Yz | < IA3+ ) se2 ’

j=1 JAj#0

n 4 2
12)| A 15 11A
iy A3 1A 115

462 2
= selsJAlG

and since ) _; |A’ 1> = [|A;[|3, we have

12¢c2log*n - |A; 13
se2

n
Var [ Yz | < 1Al +
j=1

UL 120|A 13 11A 113
'y 1Al 1415 (52)

492 2
o serElAlE
Finally si " AIZ = |A|% and A 13 < A2 < |AG]12 we h
inally since } 7 |A;ll3 = [All% and [[A"i]l; < [Aill; < [|A; I3 we have

n 4 4 4

12c2log* n - A 1201A: 113
V. A < 1A : 53
ar ;z, < IA; 113 + — + a5 (53)
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Fors > ¢ (log z 4+ 452) for large enough ¢, we have Var (Z?:l zj-) <2||A;]5.
log* n

Therefore, using (50) and (53) with s > ¢ (
inequality (Theorem 7) (for some constant c) to get

+ ﬁ), we can apply Bernstein

n
P (ISA).13 = EIGA Ll +1) <P Dz = A3+
j=1

_ —12)2
R WP Ail3/3 )
clAill3 + ctllAill5/

If wesett =logn - ||A; ||%, for some constant ¢’ we have

P (11SAL).i13 = EIGAT,). 13 + logn - 1A:15)

_ 2
- eXp( (logn)~/2

— ) < —c'1 <1/n°.
c+c(10gn)/3) = exp(=c'logn) < 1/n

Since A, = H,, +D,,, we have ||(SA’,)..;|l2 > ||(SH,,)..; [|2. Then with probability
at least 1 — l/n", > 1 — 4, for any row i with p; < 1, we have

[ IA]7 ALV
— [(SH,): ;117 < —E . c(logn) |A; |3 < ———£
o [(SHp )i ll3 < STA 2 (ogm)[|Aillz = logn
fors > ¢ <1°g L4+ 452) for large enough c. Observe that, as in Lemma 3 w.l.o.g.

we have assumed 1 — —(_, > 1 — 8, since otherwise, our algorithm would read all n?
n
entries of the matrix.

Case 2: p; = 1. Then, we have ||A,-||% > ||A||2F/s. As in the p; < 1 case, when
A;; =0, (and this A}, = A;; = 0) we have from (49):

2[1A; 113 n 2c2log n - || A3
s€28 se? '

2
lzjl < 1A i jI” +

Now, we observe that [Ay; ;> < Y ; |A/m 12
€28||A||%, which gives us

2 2
< Al < ALl <

< 1A, B <

211A; 13 L2 log*n - |A; 15

2 2
|zi] < €*8|A|l% +
J F s€28 s€2

(54)

2] A%
slIA 13

2628||A||%fors > O(i).ThuS, fors > ¢ <log =+ 432> for alarge enough constant

2
Note that if A;; # 0, the second term in (49) is bounded as . |A’..|2 < w <
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¢ and adjusting for other constants we have |z;| < 2€28 ||A||%,. Also observe that the
expectation of ) _ z; can be bounded by:

n
E[> 2 | =EISAW.ill3 = 1A mill3 < 1A W15 < 5]A17.
Jj=1

Next, the variance of the sum of the random variables {z;} can again be bounded by
following the analysis presented in and prior to (52) and (53) we have

12¢21log” n - ||A; 13 N 12]|A; 113

n
Var | > "z | < 1A 15 +
! i se? se48?

j=1

12¢c2log? n - [|A; 13 . 12]|A; |13

4020 A 4
= €57NAlF + s€? se*s2

(55)

where we again bound ||A';, ; ; ||g using

n

2 2 2 2 2 2

A i< S A i 1P < 1AL 13 < AN < 2S1AI%.
j=1

4
Then fors > c(lsfaf +€817),we have Var (Z’}Zl zj) < 2¢*82||A ||} for large enough

constant c.
Using (54) and (55) and noting that ", E (z?) > Var (2’}: z ,-) _E? (27:1 z ,-)
we can apply the Bernstein inequality (Theorem 7):

n
P (15413 = ENSA, )5 +1) <P [ Dz = €511 +1
j=1

- —1%2)2
ex .
= TP\ CAS2 AL + c2SAl%1/3
If we set t = (log n)e28||A||%, then for some constant ¢’ we have
P (1547413 = EISA;).i 1 +1) < exp(—c'logn) = 1/n.

This, since ||(SHy): i 15 < II(SAL,)..i |3, when p; = 1, setting s > c(% + —g57) for
large enough ¢, we have with probability > 1—1/n¢ #H(SHW,):,I-”% = [|(SHu): 13 <
I(SA,)-.ll3 < (logn)e®8 nnz(A).

We have proven that with probability > 1 —1/ n¢', for both cases when pi < land
Il (SH,,

12
1GHm). 11 < (log I’Z)GZ(SHAH%. Taking a union bound over all i € [n], with

pi =1, Py
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probabilityatleast1—1/nc/_1,rnax ”(Sly illz o JIogne/§|A| Ffors > c( 0552"

68164).A1s0, since p; > n—lz foralli € [n], H(ﬁj%,t la - Ale.Thus,
ISH,.).i ll2
) dllz
max; N n||A| r and we get,

SH
B, ( max 1OHnil2) e s 1Al + —— = ViogneV3l|Alr.
i:ie[n] / Pi

after adjusting € by at most some constants. Overall, we finally get

_ n SH
Ea|SHS1 o2 < Es [ max 1Hm:ill2) e /51l
i:ien] / Di

log4 n

Plugging this bound into (47), we have for s > C(W + ﬁ),

B2 |ISA ,S|l2 < (logn)ev/S||Al| .

0 8
Finally after adjusting € by a @ factor, we have for s > c(lzg;gz" + 1:§84") or
- clog!¥n
S Z T
E2[|SA"»Sll2 < ev/s[ Al F.
The final bound then follows via Markov’s inequality on ISA’,.S|l>. O

E.3 Main Accuracy Bound

We are finally ready to state our main result for £, norm based sampling.

Theorem 3 (Row Norm Based Matrix Eigenvalue Approximation) Let A € R™" be
symmetric and eigenvalues L1 (A) > ... > A, (A). Let S C [n] be formed by including
sIA; I3

the i™ index independently with probability p; = min | 1, 1AL
F

+ n%) as in Algo-

rithm 3. Here ||A;||2 is the £ norm of the i'"* row of A. Let Ag be the corresponding

principal submatrix of A, and let Xi (A) be the estimate of A;(A) computed from Ag

10
as in Algorithm 3. If s > 612584 " for large enough constant c, then with probability

> 1 -6, foralli € [n], |7 (A) — 1 (A)| < €||Al .

Proof The proof follows exactly the same structure as the proofs of Theorems 1 and 2
for uniform and sparsity based sampling respectively. We use the results of Lemmas 14
and 13 on the concentration of the middle and large eigenvalues for £, norm based
sampling.
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€
logn
values of A;’ ¢ approximate those of A}, up to error €||A|r with probability 1 — &

. X 1003 . . 10
if s > W. We also require s > ‘15564" for A}, sll2 < €llAllF

35
to hold with probability 1 — 6 by Lemma 14. Thus, for both conditions to hold
simultaneously with probability 1 — 2§ by a union bound, if suffices to set s =

Analogous to Theorem 2, from Lemma 13 with error parameter the eigen-

, Jo®n  clogld 10
max (‘l°g(”€§€j§ log'n, cl:ggM ") = 61:8“;54 ", where we use that log(1/(€8)) < logn,
as otherwise our algorithm can take A to be the full matrix A. Adjusting § to 6/2

completes the theorem. O

F Eigenvalue Approximation via Entrywise Sampling

In this section we show that sampling O (n/€?) entries from a bounded entry matrix
preserves its eigenvalues up to error =en. We use this result to improve the sample

~ /1e < o0
complexity of Theorem 1 from O (1056 ") to O 1055 u

pling to further sparsify the submatrix A that is sampled in Algorithm 1. Entrywise
sampling results similar to what we show are well-known in the literature. See for
example [8] and [56]. For completeness, we give a proof here using standard matrix
concentration bounds.

) by applying entrywise sam-

Theorem 10 (Entrywise sampling—spectral norm bound) Consider A € R"*" with
lAlloc < 1. Let C € R™™" be constructed by setting C; ; = A i foralli € [n] and

A; ; with probability p

0 otherwise.

1,
Cj,,‘zci,jz {p

For any €,6 € (0,1), if p > Clong—g/a) for a large enough constant c, then with
probability at least 1 — 6, ||A — C||2 < en.

Note that by Weyl’s inequality (Fact 3), Theorem 10 immediately implies that the
eigenvalues of C approximate those of A up to £en error with good probability.

Proof For any i < j, define the symmetric random matrix E¢/) with

i . -
g _ gl _ (; —1)-A;; with probability p
o/ I —A; otherwise.

Observe that C — A = Y7, 1 ;- ; B¢, Further, each E@/) has just two non-zero
values in different rows and columns. So

. 1 1
IE N2 = 1Ci.j — A j1I < (— - 1) AL < -
P p

where the last inequality uses that [|[Als < 1. Additionally, EVEIT s diag-
onal with two diagonal entries at (i, i) or (j, j) equal to (C; ; — A,-,j)z. Thus,
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V=3 icini<j BIEWEDT s also diagonal. We have

1 2
Vii=) ElCij—Ai;)"l=) A}, <p~ <; - 1) +1=p)- (—1)2)

J# J#i

1
=34 (1) =5
j#i P P
where in the final inequality we use that |A|lc < 1. Thus, since V is diagonal,
V]2 < %. Putting the above together using Theorem 6 we get,

iy —e2n?)2
P(”A—C”z >en) =P Z E([‘/) >en| < Zn-exp '—z—i——é—n .
i,jelnli<j 5 p " 3p

Thus, for p > Clong—i'z’/a) for large enough ¢, with probability at least 1 — § we have
JA — Cll2 < en. O

F.1 Improved Sample Complexity via Entrywise Sampling

We can combine Theorem 10 directly with Theorem 1 to give an improved sample
complexity for eigenvalue estimation. we have:

Corollary 1 (Improved Sample Complexity via Entrywise Sampling) Let A € R"*"
be symmetric with ||Allcoc < 1 and eigenvalues A1(A) > ... > An(A). For any

€,8 € (0, 1), there is an algorithm that reads 0 <106g538n

probability at least 1 — 6, ii(A) for eachi € [n] satisfying |5»,-(A) —Ai(A)] < en.

) entries of A and returns, with

3
Proof Letting s = M for large enough constant ¢, by Theorem 1, for a

random principal submatrix Ag formed by sampling each index with probability s /n,
the eigenvalues of Ag, after scaling up by a factor of n/s approximate those of A to
error =en with probability at least 1 — §. By Theorem 10, if we sample off-diagonal
entries of Ag with probability p > % to produce C, then we preserve its
eigenvalues to error &€ |S|. Thus, after scaling by %, the eigenvalues of C approximate
those of A to error + (en + 5 -€lS |). Finally, observe that by a standard Chernoff
bound, |S| < 2s with probability at least 1 —§. So adjusting € by a constant, the scaled
eigenvalues of C give +en approximations to A’s eigenvalues. The expected number

of entries read is |S| + p - IS = O (M) — 0 (%) Additionally, by a

standard Chernoff bound at most O (106%35") are read with probability at least 1 — 8. 00

@ Springer



1824 Algorithmica (2024) 86:1764-1829

G Singular Value Approximation via Sampling

We now show how to estimate the singular values of a bounded-entry matrix via
random subsampling. Unlike in eigenvalue estimation, instead of sampling a random
principal submatrix, here we sample a random submatrix with independent rows and
columns. This allows us to apply known interior eigenvalue matrix Chernoff bounds
to bound the perturbation in the singular values [11, 12]. We first state a simplified
version of Theorem 4.1 from [12] (also stated as Theorem 4.6 in [11]), simplified
using standard upper bounds on the Chernoff bounds in [57].

Theorem 11 (Interior Eigenvalue Matrix Chernoff bounds—Theorem 4.1 of [12]) Let
{X} be a finite sequence of independent, random, positive-semidefinite matrices with
dimension n, and assume that | X |2 < L for some value L almost surely. Given an
integer k < n, define

e =i | Y EIX;]
J

Then we have the tail inequalities:

P(xk(zj X;) > (1+ A)/Lk) <(—k+1).e 3 forA=1

Azuk

P(xk(zjxj) > (1 —i—A)ka) <—k+1)-e 3, forAel0,1)

Azp.
P(h(; X)) = (1= M) sk-e” ot for A €10, 1)

We are now ready to state and prove the main theorem.

Theorem 12 Let A € R"™" be a matrix with |Allc < 1 and singular values o A) =
. > 0,(A). Let S € R™" be a scaled diagonal sampling matrix such that S;; =

\/g with probability 7 and Sii = 0 otherwise. Let T € R™" be an independent

and identically distributed random sampling matrix. Let . = SAT be the sampled
submatrix from A with singular values o\(Z) > ... > o, (Z). Then, if s > w
for some constant c, with probability at least 1 — 6§, for all i € [n],

0i(A) —en < 0;(Z) < 0;(A) +€n.

Proof We first prove that singular values of SA are close to those of A. Let X; € R"*”
be matrix valued r.v.’s for i € [n] such that:

“A;A], with probability s/n

X; = .
0 otherwise
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where A; is the i™ row of A written as a column vector. Then, Y Xi = (SA)T (SA)
and E[); X;] = ATA. We have ||X;|2 < max; T[|A; ||2 < ”— and A (E[); X;]) =
Mm(ATA) = o 2(A) for k € [n].

Case 1 We will first prove that ox (A) — en < oy (SA) for all k € [n]. Note that when
ok(A) < en, ox(A) —en < or(SA) is trivially true. We now consider all k € [n] such
that o (A) > en. Setting ux = A (ATA), L = ”S—z and A = % (note that A < 1)
in Theorem 11, we get:

T
A2A1((ATA) 22 (AT A)

(’\k((SA) (SA))<(1—A))»I<(ATA)> <k e T ke OO

where c¢ is constant. So, for s > O(log("/‘s)) for any k, we have Ax((SA)T (SA)) =

(SA) > (1 — A)a (A) with probability at least 1 — < Taklng a square root on
both sides we get oy (SA) > /T = Aok(A) > (1 — Aoy (A) = ox(A) — en. Taking
a union bound over all £ with o3 (A) > €n, ox(A) — en < 0x(SA) holds for all such
k with probability at least 1 — §.

Case 2 We now prove that ak(SA) < ox(A)+enforall k € [n]. We ﬁrst consider the
case when o;(A) < en. Setting ur = M (ATA), L = "—: and A = (note that

2(A>
A > 1) in Theorem 11, we get (for some constant c):

cAr (AT A)

P (Ak((SA)T(SA)) > 1+ A)Xk(ATA)) <ne T

__ce2n? }‘k(ATA)
<n-e AT @2

Thus, if s > O(252)), we have i ((SA)T (SA)) < (1+A)Ac(ATA) < i (ATA) +
€2n? for all k € [n] such that oy, (A) < en with probability at least 1 — § via a union
bound. Taking square root on both sides and using the facts that 1, (ATA) = o Z(A),
M ((SA)T (SA)) = o} 2(SA) and Va + b < Ja + /b, we get 03 (SA) < o (A) + €n.

We now consider the case oy (A) > en. Setting ur = A (ATA), L = "s—z and
A= G:(’I’&) (note that A < 1) in Theorem 11, we get (for some constant c):

eA?r AT A)

P (1(BAT GA) = (1 + A ATA)) sne™ ™

ce2n? )\k(ATA)
<n-e wATA @

Thus, if s > O (*225/2), we have i ((SA)” (SA)) < (1+ A)A(ATA) forall k € [n]
such that oy (A) > en with probability at least 1 — § via a union bound. Taking square
root on both sides and using the fact that A (ATA) = 0Z(A), A ((SA)T(SA)) =
okz(SA) and /a < a forany a > 1, we get 03 (SA) < (1 + A)ox(A) < ox(A) + en.
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Thus, via a union bound over all k € [n], we have ox(SA) < ox(A) + en with
probability 1 — 26.

Thus, via a union bound over the two cases above, for all k € [r] with probability
atleast 1 — 36 for s > O(bgi#) we have, for all k € [n],

|0k (SA) — 0k (A)] < en. (56)

Next we prove that the singular values of SAT are close to those of SA, using essentially
the same approach as above. Let Y; be a matrix values random variable for i € [n]
such that:

Y, = 2(SA)i(SA)], with probability s/n
0 otherwise

where (SA); is the i™ column of SA. Then, }"; Y; = (SAT)” (SAT). Also, we have

MELY; YiD) = A((SA)T (SA)) = 02 (SA). First, using a standard Chernoff bound,

we can claim that S will sample at most 2s rows from A with probability at least 1 —§

for any s > O(log(1/8)). Thus, we have [|[Y;[> = 2[SA[3 < 2 -2 .25 < 22 with

s
probability 1 — §. Let this event be called E>. We now consider two cases conditioned
on the event E.

Case 1 We first prove that o (SA) — en < oy (SAT) for all k € [n]. Again note
that when o} (SA) < en this is trvially true. So we consider all k € [n] such that
ok (SA) > en. Setting gy = M (SA)T(SA)), L = 2’;—2 (as we have conditioned on

_ en : .
Ey)and A = S GA) (note that A < 1) in Theorem 11, we get:

P (1(GADT GAD) = (1 - )u(ATA))

A%)\k((SA)T(gA)) _ 2n2 _Ak((SA)T(SA))
o D12k B
L

c — =
<k-e HOGNTEA) @l

<k-e”

where ¢ is some constant. So, fors > O (logE#) forany k, we have Ay ((SAT)T (SAT))
O’kz (SAT) > (1 - A)Uk2 (SA) with probability at least 1 — % Taking a square root on
both sides we get 0x (SAT) > /T — Ao (SA) > (1 — A)ox(SA) = ox(SA) — en.
Taking a union bound over all k£ with oy (A) > €n, o} (SA) — en < o3 (SAT) holds for
all such k with probability at least 1 — §.

Case 2 We now prove oy (SAT) < 04 (SA) +en forallk € [n]. We again first consider
the case 0% (SA) < en. Setting iy = A (ATA), L = é and A = (note that
A > 1) in Theorem 11:

€n

o7 (SA)
R TG A ()T SAy)

P (1(GAT) SAT) = (1 + A)(SA GAY) =n-e” 0

e (BaTEA)
<n-e HGOTEA) 02
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Then, similar to the case ox(A) < enin Ehe _previous case 2, taking square root of both
sides and via a union bound, we get 0% (SAT) < 0x(SA) 4 €n for all k € [n] such that
0k (SA) < en with probability at least 1 —§ fors > O (logi%). The case 0% (SA) > en

will again be similar as ox(A) > en in the previous case 2. We set A = = gg ™ and
k

apply Theorem 11 and take the square root on both sides to get o3 (SAT) < 03 (SA)+en
with probability 1 —§ forall k € [n]fors > O (logi#). Thus, with probability 1 —26,
conditioned on the event E», we have oy (SAT) < 0% (SA) +en forallk € [n]. Finally,
via a union bound over the two cases above, and conditioned on E», for all k € [n]
with probability at least 1 — 26 for s > O(k"({#) we get

|ox (SAT) — 0% (SA)| < en. (57)

Thus, taking a union bound over all the cases above (including E»), from equation
(56) and (57) and via a triangle inequality, we get: |ox (SAT) — o (A)| < 2en with
probability at least 1 — ¢§ (where c is a small constant) for s > O(bgi%). Adjusting
€ and § by constant factors gives us the final bound. O

Remark on Rectangular Matrices Though we have considered A to be a square
matrix for simplicity, notice that Theorem 12 also holds for any arbitrary (non-square)
matrix A € R"*"™, with n replaced by max(n, m) in the sample complexity bound.

Remark on Non-Uniform Sampling As discussed in Sect. 1.3.1, simple non-uniform
random submatrix sampling via row/column sparsities or norms does not suffice to
estimate the singular values up to improved error bounds of €4/nnz(A) or €||A||r. A
more complex strategy, such as the zeroing out used in Theorems 2 and 3 must be used.
It is worth noting that following the same proof as Theorem 12, it is easy to show that if
S is sampled according to row norms or sparsities and appropriately weighted, then the
singular values of SA do approximate those of A up to these improved error bounds.
The proof breaks down when analyzing SAT. T would have to be sampled according
to the row norms/sparsities of SA, not A, for the proof to go through. However, in
general, these sampling probabilities can differ significantly between SA and A.
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