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Abstract
The purpose of a phase I dose-finding clinical trial is to investigate the toxicity 
profiles of various doses for a new drug and identify the maximum tolerate dose. 
Over the past three decades, various dose-finding designs have been proposed and 
discussed, including conventional model-based designs, new model-based designs 
using toxicity probability intervals, and rule-based designs. We present a simple 
decision framework that can generate several popular designs as special cases. We 
show that these designs share common elements under the framework, such as the 
same likelihood function, the use of the loss functions, and the nature of the optimal 
decisions as Bayes rules. They differ mostly in the choice of the prior distributions. 
We present theoretical results on the decision framework and its link to specific and 
popular designs like mTPI, BOIN, and CRM. These results provide useful insights 
into the similar theoretical foundations of these designs. We also show that the 
designs exhibit similar operating characteristics. Therefore, the choice of a design 
for a practical trial among the ones we reviewed may be up to the statistician’s and 
clinician’s own preference, such as preference of more model-based approach or 
more simple and transparent decisions.
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1  Introduction

A phase I clinical trial is the first stage of in-human investigation of a new drug or 
therapy. Phase I dose-finding designs aim to identify the maximum tolerate dose 
(MTD) and to provide dose recommendation for later phase trials. In the vast major-
ity of phase I trials, a set of ascending candidate doses is tested for toxicity and the 
dose toxicity probability is assumed to be monotonically increasing with the dose 
level. Typically, the MTD is defined as the highest dose with a dose limiting toxic-
ity (DLT) probability closest to, or not higher than a target toxicity probability pT . 
Usually pT ranges from 0.17 and 0.3. In addition, some designs include the notion of 
an equivalence interval (EI) to allow for variations in the definition of the MTD. For 
example, one may choose to set pT = 0.3 and EI = (pT − �1, pT + �2) = (0.25, 0.35) . 
This means that the target DLT probability of the MTD is 0.3, but doses with DLT 
probabilities between 0.25 and 0.35 can also be considered as the MTD. In other 
words, the EI allows investigators to consider doses with toxicity probabilities 
within the EI interval as appropriate MTD candidates.

A variety of statistical designs for phase I dose-finding trials has been discussed 
in the literature. A design consecutively assigns patients to recommended dose lev-
els based on the observed DLT outcomes from previously enrolled patients. Existing 
designs can broadly be divided into two categories, rule-based designs and model-
based designs. Among model-based designs, some use simple models and are some-
times called “model-assisted” designs. See Fig. 1 for an illustration. We provide a 
brief introduction of the designs in Fig. 1 next.

Fig. 1   Illustration of some Phase I designs. Dotted lines connect designs across different categories, and 
solid lines connect designs within the same category. Arrows imply chronological orders
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The 3+3 design [1] is rule-based and consecutively assigns patients to the cur-
rent dose or the adjacent higher or lower doses based on observed DLT outcomes. 
For example, if current dose at which patients are assigned is d, then 3+3 assigns 
the next patient cohort to doses (d + 1) , (d − 1) , or d itself. This is called the “up-
and-down” rule. Based on the same up-and-down rule, a smarter rule-based design, 
i3+3, is proposed in Liu et  al. [2] by accounting for higher sampling variability 
when the sample size at a dose is small. The i3+3 design maintains simplicity of 
rule-based designs, and exhibits operating characteristics comparable to more com-
plex model-based/assisted designs.

The continual reassessment method (CRM) [3], as the first model-based design 
in the literature, is based on an inference model with a parsimoniously parameter-
ized dose-response curve. During the trial, CRM continuously updates the estimated 
dose-response curve based on the observed DLT data throughout the trial. CRM has 
motivated subsequent important work on model-based designs, including the Bayes-
ian logistic regression method (BLRM) in Neuenschwander et al. [4] and the escala-
tion with over-dose control (EWOC) in Tighiouart and Rogatko [5], among many 
others, all leveraging parametric dose-response models for statistical inference.

Recently, a class of designs, collectively known as “interval-based designs” 
take advantage of the notion of an EI to simplify statistical modeling and decision 
making for phase I trials. Notable examples include the toxicity probability inter-
val (TPI) design [6] and its two modifications, mTPI [7], mTPI-2 [8] (equivalently, 
Keyboard [9]), the cumulative cohort (CCD) design [10], and the Bayesian optimal 
interval (BOIN) design [11]. These designs use simple models such as the beta/bino-
mial hierarchical model and assume independence across dose toxicity probabilities, 
without attempting to explicitly model a dose-response curve. While the independ-
ence model assumption is apparently not true because dose toxicity is assumed to be 
monotonically increasing, it does not affect the operating characteristics of the inter-
val-based designs due to various reasons like the safety restrictions in practice (e.g., 
no skipping in dose escalation). As a result, interval-based designs show robust per-
formance based on simple up-and-down rules, restricting dosing decisions to be no 
more than one dose-level change from the current dose used in the trial. In other 
words, a simple independent beta/binomial model coupled with a simple up-and-
down rule leads to desirable simulation performance that justifies the application of 
these designs. Importantly, the interval-based designs often generate a decision table 
that greatly simplifies the trial conduct and allow investigators to easily execute the 
dosing decisions provided in the table.

In the past three decades, many designs (CRM, mTPI, mTPI-2, BOIN, etc.) 
have been successfully applied to real-world trials. It is natural to wonder which 
design or designs are suitable for a practical trial. Recent reviews [12, 13] pro-
vide some assessment of these designs, mainly from the perspective of simulation 
performance. Occasionally, conflicting conclusions might arise from different 
reviews based on the criteria used for design evaluation, or from different sce-
narios considered in the comparison. While simulation results can provide impor-
tant information on the numerical performance of the designs, we argue that a 
theoretical investigation would complement the simulation results. In this article, 
we show that using the same optimal decision rule under the proposed decision 
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framework, one can generate several published designs as special cases. In other 
words, we show a theoretical connection across different designs. These designs 
include mTPI, mTPI-2, BOIN, and CCD. In addition, based on the proposed deci-
sion framework, we develop a new version of the CRM design, called Int-CRM, 
that is founded on the same model assumption with the original CRM design but 
a different decision rule. We show that Int-CRM achieves comparable simulation 
performance as the original CRM design and other interval-based designs. The 
general decision framework provides insight into the similarities and differences 
across various designs and may assist investigators to select the right design for 
their specific needs.

The remainder of the paper is structured as follows. In Sect. 2, we introduce 
the unified decision framework and its main components. Section 3 shows how 
known designs fit into this framework, including the mTPI, mTPI-2, BOIN, 
CCD, and Int-CRM designs. In Sect. 4, we conduct simulation studies to assess 
the operating characteristics of the designs using the i3+3 and CRM designs as 
benchmarks. Finally, we conclude and end the paper with a discussion in Sect. 5.

2 � Decision Framework

2.1 � Overview

We cast the problem of dose finding as an optimization in a decision problem. 
In particular we focus on the myopic decision problem of selecting the dose for 
the next patient (cohort). It is myopic because the problem does not address the 
global decision of stopping the trial and dose selection; instead, the problem 
only concerns about the local optimal decision of finding the next dose for future 
patients. The main components of the decision framework have been briefly illus-
trated in Guo et  al. [8] for the mTPI and mTPI-2 designs. A decision problem 
is characterized by an action space for decisions a, a probability model for all 
unknown quantities, and a loss function [14]. Table 1 shows a summary of these 
components.

Table 1   Components of the proposed decision framework

Component Notation Notes

Probability model f (y ∣ �)�(� ∣ m)�(m) A hierarchical model with parameters � and m
Action a Up-and-down dosing decisions, including D (de-

escalate), S (stay), and E (escalate)
Loss function �(a,�) The loss for taking action a where � is the true 

parameter
Optimal rule R = argmina ∫ �(a,�)p(� ∣ y)d� Bayes’ rule that chooses the action with the 

minimal posterior expected loss
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2.2 � General Framework

In dose-finding trials with binary DLT endpoints, the parameter of interest is a set 
of toxicity probabilities, � = (p1, ..., pT ) at dose levels xd , d = 1,… , T , where T is 
the number of dose levels, and pd is the toxicity probability at dose d. Let yd denote 
the number of patients who experience DLTs out of nd patients treated at dose d, and 
let y = (y1, ..., yT ) . For all methods in the upcoming discussion the sampling model 
f (y ∣ �) in Table 1 is a binomial distribution with parameter pd , i.e.,

implying a likelihood function,

For model-based designs with a dose-response curve, toxicity probabilities are mod-
eled as a function of the dose levels xd . For example, a version of the CRM assumes 
pd = q

exp(�)

d
 , and a single parameter � = � (the values qd are fixed and are known as the 

“skeleton”). The BLRM design uses pd = logit−1(� + �xd) with parameters � = (�, �).
The proposed decision framework uses a concept of probability intervals. 

The parameter of interest is pd , and the parameter space of pd is I = [0, 1] . Con-
sider a set of intervals within I, denoted as Ω = {Ik, k = 1, ...,K} , which form 
a partition of the parameter space I. That is, 

⋃K

k=1
Ik = I and Ik ∩ Ik� = �, k ≠ k� . 

The true value of pd belongs to one and only one of the intervals. For example, 
Ω = {I1 = [0, 0.5], I2 = (0.5, 1)} is a partition, and if pd = 0.3 , pd ∈ I1 . We introduce 
a latent indicator md (or, for short, just m) with md = k if pd ∈ Ik , and define a hier-
archical model prior �(m) and �(pd ∣ m) . For example, �(m = k) =

1

K
, k = 1, ...,K, 

and �(� ∣ m = k) ∝
∏T

d=1
Be (�, �)�(pd ∈ Ik), a truncated beta distribution. Here, 

�(⋅) is an indicator function. That is, pd are conditionally independent with pdf

where beta(pd;𝛼, 𝛽) =
p(𝛼+𝛽)

p(𝛼)p(𝛽)
p𝛼−1
d

(1 − pd)
𝛽−1, 𝛼 > 0, 𝛽 > 0 is a Be (�, �) p.d.f.

We consider a special partition Ω = {I1, I2, I3} where 
I2 ≜ IS = EI = (pT − �1, pT + �2) , I1 ≜ IE = [0, pT − �1] , and I3 ≜ ID = [pT + �2, 1] . 
Therefore, K = 3 and we use notations IS , IE , and ID to associate the intervals with 
corresponding up-and-down dose-finding decisions S, E, and D, respectively. We 
summarize the proposed decision framework below.

Likelihood:

where pd is the toxicity probability for dose d, d = 1,… ,D.

yd ∣ pd ∼ Bin (nd, pd), d = 1, ..., T

f (y ∣ �) ∝

T∏
d=1

p
yd
d
(1 − pd)

nd−yd

p(pd ∣ m = k) =
beta(pd;�, �)�(pd ∈ Ik)

∫
Ik
beta(pd;�, �)dpd

(1)f (y ∣ �) ∝

D∏
d=1

p
yd
d
(1 − pd)

nd−yd
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Prior: We assume pd are a priori independent and

For example, g(pd) = beta(pd;�, �).
Partition: Ω = {IE(I1), IS(I2), ID(I3)} , where 

IE = [0, pT − �1], IS = (pT − �1, pT + �2) , and ID = [pT + �2, 1] , and I1 = IE , I2 = IS , 
and I3 = ID.

Actions:
The actions are the three up-and-down decisions for dose-finding, i.e.,

where A denotes the action space. Here E, S, D denote the dosing decisions “Escala-
tion”, “Stay”, and “De-escalation,” respectively. In particular, if the last patient was 
assigned dose d, then E, S, or D means treating future patients at dose (d + 1) , d, or 
(d − 1) , respectively.

Loss: We proceed with a myopic perspective, focusing on the decision for the 
respective next patient (cohort), and therefore specify a loss function for the next 
dose assignment a only.

We use a 0–1 loss function,

In words, when the action corresponds to an interval which contains the true param-
eter, the loss takes the value 0; otherwise, the loss equals 1. The loss function 
�(a, pd) is stated in Table 2.

In other words, the loss function �(a, pd) defines a 0–1 estimation loss for m, i.e., 
the interval that contains pd.

Two more comments about the loss function and the setup of the decision prob-
lem. First, in general a loss (or, equivalently, utility) function could also be an argu-
ment of the outcome yd . This is relevant, for example, if instead of inference loss we 
focus on the patients’ preferences. However, the intention of this discussion is only 
to highlight common structure in existing dose finding methods, for which we only 
need this restricted inference loss. Another important limitation is the myopic nature 
of the setup. We consider the dose allocation for each patient (or patient cohort) in 

�(pd ∣ m = k) ∝ g(pd)�(pd ∈ Ik), k = 1, ...,K,

�(m = k) =
1

K
, k = 1, ...,K.

a ∈ A = {E, S,D},

(2)�(a, pd) =

{
1, pd ∉ Ia
0, pd ∈ Ia

, a ∈ A = {E, S,D}.

Table 2   The 0–1 loss function 
�(a, �)

�(a, pd) pd ∈

[0, pT − �
1

] (pT − �
1

, pT + �
2

) [pT + �
2

, 1]

a = D 1 1 0
S 1 0 1
E 0 1 1
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isolation, ignoring that dose allocation now might help later decisions. That is, we 
ignore the sequential nature of the problem. Again, for the upcoming exposition of 
common underlying structure for the considered dose finding methods we will only 
refer to this myopic decision problem.

Bayes’ rule: The optimal decision rule for dose d is the Bayes’ rule, defined as

which minimizes the posterior expected loss. Here, p(pd ∣ y) is the posterior distri-
bution of pd.

In general, under a 0–1 estimation loss for a discrete parameter the Bayes rule 
is simply the posterior mode. The following result states this in the context of our 
problem. The Bayes’ rule is equivalent to the result of finding the interval with the 
maximal posterior probability.

Proposition 1  Denote Ω ≜ {I1, I2, I3} = {IE, IS, ID} , where I1 = IE , I2 = IS , 
I3 = ID . Suppose dose d is the current dose. Let {m = k} be an equivalent event to 
{pd ∈ Ik}, k ∈ {1, 2, 3} . Let A = {E, S,D} . Assume �(m = k) =

1

3
, k ∈ {1, 2, 3} . 

The Bayes’ rule under the 0–1 loss in Eq. (3) is given by

See Appendix D in Supplementary for a proof.

3 � Design Examples

We show how various designs fit as special cases into this framework. That is, we 
provide examples of the decision framework that give rise to well-known designs 
including mTPI, BOIN, CCD, mTPI-2, and a new version of CRM, called the Int-
CRM design.

3.1 � Interval‑Based Designs

We first introduce the connection between the decision framework and the interval-
based designs, mTPI, mTPI-2, BOIN and CCD. These designs share some common 
components under the framework, but also include some elements specific to each 
design.

Common components: Likelihood, Prior �(m) , Loss function, and the nature of 
the defined dose allocation as Bayes’ rule.

Individual components: Prior �(pd ∣ m) , the specific partition 
Ω = {Ik, k = 1, ...,K}, and the definition of the action set A.

All four interval-based designs use the binomial sampling model. And the 
designs share the same discrete uniform prior �(m) , the 0–1 loss function and the 
use of Bayes’ rule to select a decision. They divide the [0, 1] parameter space of 

(3)Rd ≜ argmin
a∈A �

�(a, pd)p(pd ∣ y)dpd,

(4)Rd = argmax
a∈A

Pr(pd ∈ Ia ∣ y) = arg max
k∈{1,2,3}

Pr(m = k ∣ y)
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pd into different intervals and use different priors. See Table 3 as a summary. We 
discuss details for each design next.

3.1.1 � The mTPI Design

For the mTPI design, given the equivalence interval EI= (pT − �1, pT + �2) , 
the [0,  1] parameter space is naturally partitioned into three intervals 
Ω = {I1 = IE = [0, pT − �1], I2 = IS = (pT − �1, pT + �2), I3 = ID = [pT + �2, 1]} that 
correspond to the actions A = {E, S,D} , as shown in Table 3. The mTPI decision 
is equivalent to the Bayes’ rule Rd under the decision framework. See Corollary 1 
below for a formal mathematical description.

Corollary 1  The mTPI decision in Ji et al. [7] is given by

where UPM stands for “unit probability mass” and UPM (Ia) = Pr∗(pd ∈ Ia)∕||Ia|| ; 
here ||Ia|| is the length of Ia , and

is calculated based on pd ∼ Be (yd + 1, nd − yd + 1) . Let I1 = IE = [0, pT − �1] , 
I2 = IS = (pT − �1, pT + �2) , and I3 = ID = [pT + �2, 1] . Then RmTPI = Rd , the Bayes 
rule under

where beta(⋅;1, 1) denotes the density function of Be (1, 1) distribution and 
Ck =

1

∫
Ik
beta(p;1,1)dp

 is a normalizing constant.

See Appendix D  in Supplementary for a proof.

RmTPI = arg max
a∈{E,S,D}

UPM (Ia),

Pr∗(pd ∈ Ia) = ∫
B(yd + 1, nd − yd + 1) ⋅ p

yd
d
(1 − pd)

nd−yd ⋅ �(pd ∈ Ia)dpd

�(pd ∣ m = k) = Ck ⋅ beta(pd;1, 1)�(pd ∈ Ik),

Table 3   Individual components of the proposed decision framework for some interval-based designs

*See Theorem 1 for details

mTPI mTPI-2 BOIN/CCD

Actions A = {E, S,D}   A = {1, ...,K}   A = {E, S,D}  
Intervals IE = [0, pT − �1]

IS = (pT − �1, pT + �2)

ID = [pT + �2, 1]

IE = IE,1 ∪⋯ ∪ IE,K1

IS = (pT − �1, pT + �2)

ID = ID,1 ∪⋯ ∪ ID,K2

IE = [0,�E]
IS = (�E ,�D)

ID = [�D, 1]

Priors �(pd ∣ m = k) ∝
Be(1, 1)�(pd ∈ Ik)

�(pd ∣ m = k) ∝
Be(1, 1)�(pd ∈ Ik)

�(pd ∣ m = k) =
�(pd = �k)

∗
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3.1.2 � The mTPI‑2 Design

Ockham’s razor is a principle in statistical inference calling for an explanation 
of the facts to be no more complicated than necessary (Thorburn [15]; Jefferys 
and Berger [16]). In the context of model selection, the Ockham’s razor prefers 
parsimonious models that describe the data equally well as more complex mod-
els. In the proposed decision framework, {m = k}, k = 1, ...,K , is equivalent to 
K models {Mk ∶ m = k} , and choosing the value of m is equivalent to a model 
selection problem. Bayesian model selection chooses the model with the larg-
est posterior probability (compare Proposition 1), i.e., Pr(m = k ∣ y) , and mod-
els are automatically penalized for their complexity. In other words, Bayes’ rule 
Rd = argmaxk∈{1,2,3} Pr(m = k ∣ y) implements Ockham’s razor if we define model 
complexity as ||Ik|| . Therefore, when the three models are I1 = IE = [0, pT − �1] , 
I2 = IS = (pT − �1, pT + �2) , I3 = ID = [pT + �2] , the “simplest” model is I2 = IS , 
since �1 and �2 are typically small probabilities ( ≤ 0.05).

Guo et  al. [8] explain mTPI-2 as aiming to blunt Ockham’s razor by rede-
fining a (finer) partition Ω∗ = {I∗

E
, IS = EI, I∗

D
}, where I∗

E
= {IE,1, ..., IE,K1

} 
and I∗

D
= {ID,1, ..., ID,K2

} . Probability intervals {IE,k}
K1

k=2
 and {ID,k}

K2

k=2
 have the 

same length as IS = EI . Let K = K1 + K2 + 1. The selected model m under the 
mTPI-2 design can then be shown to be Bayes’ rule Rd , under an action set 
Am = {1, ...,K} . Corollary 2 next summarizes the results.

Corollary 2  Under mTPI-2, Ω∗ = {I∗
E
= {I

E,1
,⋯ , I

E,K
1

}, I
S
= (p

T
− �

1

, p
T
+ �

2

),

I
∗
D
= {I

D,1
,⋯ , I

D,K
2

}} , Am = {1, ...,K} . Assume the prior on pd is conditionally 
independent and given by

Then Bayes’ rule is

See Appendix D in Supplementary for a proof. Corollary 2 establishes the 
Bayes’ rule Rd as an action in Am = {1, ...,K} . To see the connection to the dose-
finding decision in mTPI-2, we refer to the next result.

Corollary 3  Let

Then

�(pd ∣ m = k) = Ck ⋅ beta(pd;1, 1)�(pd ∈ Ik).

Rd = arg max
m∈Am

Pr(m = k ∣ y) = arg max
m∈Am

UPM(Im).

R mTPI-2 =

⎧
⎪⎨⎪⎩

E, argmaxIm UPM (Im) ⊂ (0, pT − 𝜖1),

S, argmaxIm UPM (Im) = (pT − 𝜖1, pT + 𝜖2),

D, argmaxIm UPM (Im) ⊂ (pT + 𝜖2, 1).
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In other words, if Rd = m∗ , then Im∗ is the interval with the largest UPM, for 
m∗ ∈ Am . And if IM∗ is below, equal to, or above the EI= (pT − �1, pT + �2) , the deci-
sion is E, S, or D, respectively. This is the same as the up-and-down rule in the 
mTPI-2 design in Guo et al. [8]. Proof of Corollary 3 is immediate and omitted.

3.1.3 � The BOIN Design

The BOIN design (Liu and Yuan [11]) uses a decision rule

where p̂d =
yd

nd
 , �1 = �(�E;�S), �2 = �(�D;�S), and

In particular, �S = pT , 𝜙E(< pT ) and 𝜙D(> pT ) are pre-specified values. Here, �E and 
�D play a similar rule as (pT − �1) and (pT + �2) in the mTPI and mTPI-2 designs, 
which defines the boundaries of an initial equivalence interval elicited from clini-
cians. We show that the decision rule RBOIN is also a Bayes’ rule under the proposed 
decision framework next.

Theorem  1  Assume yd ∣ pd ∼ Bin (nd, pd) , �(pd ∣ m = k) = �(pd = �k) , for 
k = 1, 2, 3 , and �1 = �E , �2 = �S = pT , and �3 = �D . Under the 0–1 loss �(a, pd) in 
Eq. (2), the Bayes’ rule is equivalent to RBOIN , i.e.,

where p̂d =
yd

nd
 , �1 = �(�E;�S), �2 = �(�D;�S), and � is defined as in Eq. (5)

See Appendix D in Supplementary for a proof. By Theorem  1 the BOIN design 
takes the form of the Bayes’ rule under the same decision framework using the 0–1 
loss. BOIN uses a point-mass prior for pd on three values, �E , �S , �D , while mTPI/
mTPI-2 using truncated beta priors instead. Next, we show that the BOIN design is 
almost the same as the CCD design. This is easiest seen under the perspective of the 

R mTPI-2 =

⎧
⎪⎨⎪⎩

E, I
Rd

⊂ (0, pT − 𝜖1),

S, I
Rd

= (pT − 𝜖1, pT + 𝜖2),

D, I
Rd

⊂ (pT + 𝜖2, 1).

RBOIN =

⎧
⎪⎨⎪⎩

E, p̂d ≤ 𝜆1,

S, 𝜆1 < p̂d < 𝜆2,

D, p̂d ≥ 𝜆2,

(5)�(�i;�j) =

log
(

1−�i

1−�j

)

log
(

�j(1−�i)

�i(1−�j)

) .

Rd = RBOIN =

⎧
⎪⎨⎪⎩

E, p̂d ≤ 𝜆1,

S, 𝜆1 < p̂d < 𝜆2,

D, p̂d ≥ 𝜆2,
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proposed decision framework. The difference between the two designs are the locations 
of the point-mass priors.

3.1.4 � The CCD design

The CCD design compares p̂d with (pT − �1) and (pT + �2) , and uses the following up-
and-down rule,

Corollary 4 shows that the decision of the CCD design is the same Bayes’ rule in the 
same framework as BOIN but with a different prior distribution.

Corollary 4  The CCD decision R CCD = Rd with

where ��
E
= �−1(pT − �1) , ��

D
= �−1(pT + �2) , ��

S
= �S = pT , and �(�) ≡ �(�, pT ) in 

Eq. (5).

See Appendix D in Supplementary for a proof.
Corollary 4 shows that BOIN and CCD are identical designs with the only differ-

ence being that BOIN uses a point-mass prior �(pd ∣ m = k) = �(pd = �k) , whereas 
CCD uses �(pd ∣ m = k) = �(pd = ��

k
).

3.2 � The Int‑CRM Design

Using the same decision framework, we propose a variation of the CRM design, called 
Int-CRM. We assume the same parametric dose-response model as in the CRM design 
[3], with the probability of toxicity monotonically increasing with dose. Let di denote 
the dose for the ith patient, di ∈ {1, ..., T} , and Yi the binary indicator of DLT. The 
dose-response curve is assumed to be the power model as in the CRM,

where (q1, .., qT ) (“skeleton”) are a priori pre-specified dose toxicity probabilities. 
Other sensible dose-response models, such as a logit model, may be considered as 
well. The toxicity rates are dependent across doses through the dose-response curve 
and the inference is based on the parameter � . The likelihood function is given by

where n is the number of patients in the trial.

R CCD =

⎧
⎪⎨⎪⎩

E p̂d ≤ pT − 𝜖1
S pT − 𝜖1 < p̂d < pT + 𝜖2
D p̂d ≥ pT + 𝜖2

�(pd ∣ m = k) = �(pd = ��
k
), k = E, S,D,

F(d, �) = q
exp(�)

d

f (y ∣ �) ∝

n∏
i=1

F(di, �)
yi{1 − F(di, �)}

1−yi
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Following Cheung and Chappell [17], we define an interval [A1,AT+1] for � that 
is wide enough to allow for a wide range of dose-response curves. For exam-
ple, set A1 and AT+1 so that qexp(A1)

1
> 1 − 10−5 and qexp(AT+1)

T
< 10−5 , which cor-

respond to response curves constantly equal to 1.0 and 0.0, respectively, and 
� ∈ [A1,AT+1] allows choices in-between these extremes. Using A1 and AT+1 , we 
define sub-intervals for � as the set of values that imply dk having toxicity prob-
ability closest to pT,

As shown in Cheung and Chappell [17], Ik is an interval, denoted as 
I1 = [�1 = A1,�2) , Ik = [�k,�k+1), k = 2, ..., (T − 1) , IT = [�T ,�T+1 = AT+1] , 
where �k is implicitly defined as the solution of

Given the “skeleton” (q1, ..., qT ) , we can obtain the numerical result of the interval 
boundaries �k ’s by solving the equation above. See Appendix B in Supplementary 
for details. Each interval consists of a set of � values where dose k’s toxicity prob-
ability is the closest to pT among all the doses. We use these intervals Ik ’s in our 
framework for Int-CRM. We propose hierarchical priors

and

where �(�) is the density function of the normal distribution N(0, �2).
The action space of the Int-CRM design is A = {1, ..., T} , corresponding to the 

dose for treating the next patient. Following the proposed decision framework, 
we use the 0–1 loss function and the Bayes’ rule that minimizes the posterior 
expected loss for the Int-CRM decision.

Theorem 2  Under the 0–1 loss, i.e.,

the Int-CRM decision is the Bayes’ rule

Ik = {𝜃 ∈ [A1,AT+1] ∶ |F(k, 𝜃) − pT | < |F(d, 𝜃) − pT |,∀d ≠ k}, k = 1,… , T

F(k − 1,�k) + F(k,�k) = 2pT , k = 2, ..., T .

�(m = k) =
1

T
, k = 1, ...,T

�(� ∣ m = k) =
�(�)�(� ∈ Ik)

∫
Ik
�(�)d�

�(a, �) =

{
1, � ∉ Ia
0, � ∈ Ia

, a ∈ A = {1, ..., T}

RInt−CRM = argmax
k∈A

Pr(m = k ∣ y) = argmax
k∈A �

p(y ∣ �)�(� ∣ m = k)d�

= argmax
k∈A �

n∏
i=1

F(di, �)
yi{1 − F(di, �)

1−yi}
�(�)�(� ∈ Ik)

∫ �(�)�(� ∈ Ik)d�
d�.
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The proof is immediate by the definition of Bayes’ rule. Below is the proposed 
Int-CRM dose-finding algorithm.

The Int-CRM Algorithm:

Dose Finding Rules: After each cohort of patients completes the DLT follow-up period, the

dose to be assigned is the RInt-CRM, the Bayes’ rule, unless the following safety rules apply.

Safety Rules: Four additional rules are applied for safety.

Rule 1: Dose Exclusion: If the current dose is considered excessively toxic, i.e., Prob{pd >

pT | data} > ξ (see below about evaluating this probability), where the threshold ξ is

close to 1, say 0.95, the current and all higher doses will be excluded in the remainder of

the trial to avoid assigning any patients to those doses.

Rule 2: Early Stopping: If the current dose is the lowest dose (first dose) and is considered

excessively toxic, i.e., p{p1 > pT | data} > ξ, where the threshold ξ is close to 1, say 0.95,

stop the trial early and declare no MTD.

To evaluate p{pd > pT | data} in Rules 1 and 2 we use a Be(α0 + yd, β0 + nd − yd)

distribution with α0 = β0 = 1.

Rule 3: No-Skipping Escalation: If the dose-finding rule recommends escalation, such es-

calation shall not increase the dose by more than one level. Dose-escalation cannot in-

crease by more than one level. That is, suppose the current dose is d. If the next

recommended dose RInt-CRM is such that (RInt-CRM− d) > 1, escalate to dose (d+1)

instead.

Rule 4: Coherence: No escalation is permitted if the empirical rate of DLT for the most

recent cohort is higher than pT , according to the coherence principle [18].

Trial Termination: The trial proceeds unless any of the following stopping criteria is met:

• If the pre-specified maximum total sample size n is reached.

• Rule 2 above.

MTD Selection: Once all the enrolled patients complete the DLT observation and the trial

is not stopped early, the last dose level RInt-CRM is selected as the MTD.

4 � Simulation Studies

4.1 � Simulation Settings

We set up simulation studies to evaluate the operating characteristics of the different 
designs that we have shown to be special cases of the proposed general framework, 
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including the mTPI, mTPI-2, BOIN, CCD and the Int-CRM designs. We aim to 
show the similarity of designs’ performance since they are based on the same deci-
sion framework. We also compare to the i3+3 design and the original CRM design 
as benchmarks.

4.1.1 � Fixed Scenarios

We use a total of 15 scenarios, with a set of T = 4, 5 or 6 doses. Assume the target 
toxicity probability pT = �S = 0.3 ( �S is the notation in BOIN), and maximum sam-
ple size is 30. For all designs we apply the same safety rules as in the mTPI, mTPI-
2, and Int-CRM designs. See Appendix A in Supplementary for details. For inter-
val-based designs we use EI = (pT − �1, pT + �2) , �1 = �2 = 0.05 . For the Int-CRM 
and CRM design, the skeleton qd is generated using the approach proposed in Lee 
and Cheung [19], which selects the skeleton based on indifference intervals for the 
MTD. Also, we set the half width of the indifference intervals, � = 0.05 . The coher-
ence principle [18] is applied, avoiding immediate escalation after toxic outcomes.

For the BOIN design, we set �1 = pT − �1 , �2 = pT + �2 . This is equivalent to set-
ting �E = �−1(pT − �1) , and �D = �−1(pT + �2) . By Theorem 1, these values for �1 
and �2 make the BOIN decision identical to the CCD design, leading to same operat-
ing characteristics of the two designs.

4.1.2 � Random Scenarios

We generate additional 1000 random scenarios to further evaluate the designs. Sce-
narios are generated based on the pseudo-uniform algorithm in Clertant et al. [20]. 
Figure 2 plots the first 20 scenarios. Other settings of the designs are the same as 
the fixed scenarios, such as pT and EI, �1, �2 for the BOIN design, and � for the Int-
CRM and CRM designs.

4.2 � Simulation Results

We evaluate the performance of the phase I designs through a few metrics, based 
on their ability to identify the MTD and the safety in dose selection and patient 
allocation. Table  4 summarizes the means and standard deviations of key perfor-
mance metrics for the simulation with 1,000 scenarios. All designs show remark-
able similarity with the largest mean difference across designs only about 0.02. This 
highlights the underlying connection of these designs and echoes our findings based 
on the unified decision framework that can generate most designs as special cases. 
Table 4 and Tables 5 and 6 in Appendix C present the simulation results of the 15 
fixed scenarios.

In general, the five designs tested in the simulation studies exhibit remarkably 
similar performances. Specifically, they show comparable probabilities (across 
repeated simulation) of allocating patients to the true MTD, and similar risk of 
allocating patients to overly toxic doses. The BOIN/CCD and Int-CRM designs 
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yield slightly higher PCS (probability of correct selection of MTD) in some 
cases, such as scenarios 1 and 4 in Table 5. However, they also report a higher 
risk in selecting doses beyond the true MTD. For example, in scenarios 2, 3, and 
5 in Table 5, the probabilities of over-dosing selection under BOIN, CCD and Int-
CRM are higher compared to the other designs. However, these differences are 
small compared to the reported standard deviations and therefore could be due 
to random noise and the arbitrarily generated scenarios. In summary, all designs 
exhibit remarkable operating characteristics in our simulations.
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Fig. 2   Illustration of the first 20 random scenarios of true toxicity probabilities in the simulation

Table 4   Simulation results of 1000 random scenarios. Entries are the mean
sd

 (across the 1000 scenarios) 
proportion of simulated trials for each design and metric. For example, the first entry 0.60 means 60% of 
the trials correctly select the true MTD under the mTPI design. The last two metrics Tox. and None Sel. 
are the percentage of patients experienced DLT in all simulated trials and the proportion of simulated tri-
als in which no dose is selected as the MTD, respectively

Metrics mTPI mTPI-2 BOIN/CCD iCRM CRM i3+3

Correct Sel. of MTD 0.60(0.15) 0.62(0.14) 0.62(0.14) 0.62(0.14) 0.62(0.14) 0.62(0.14)

Sel. over MTD 0.10(0.11) 0.11(0.11) 0.12(0.12) 0.12(0.12) 0.11(0.11) 0.11(0.11)

Pat. at MTD 0.50(0.22) 0.50(0.21) 0.50(0.20) 0.51(0.20) 0.51(0.21) 0.50(0.21)

Pat. over MTD 0.11(0.10) 0.11(0.10) 0.12(0.11) 0.12(0.11) 0.12(0.10) 0.11(0.10)

Tox 0.26(0.05) 0.26(0.05) 0.26(0.05) 0.26(0.05) 0.26(0.05) 0.26(0.05)

None Sel 0.04(0.07) 0.04(0.07) 0.04(0.07) 0.04(0.07) 0.04(0.07) 0.04(0.07)
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5 � Discussion

We have developed a general decision framework for phase I dose-finding 
designs. We have shown that interval-based designs, like mTPI, mTPI-2, BOIN, 
CCD, and the model-based design Int-CRM fit into this unified framework.

All designs use the same 0–1 loss function, and all interval designs assume a 
binomial likelihood function. The prior construction for some designs involves 
the notion of candidate models. Candidate models are specified assuming differ-
ent toxic profiles for the doses. Given the model, the mTPI, mTPI-2 and Int-CRM 
assume continuous prior distributions, using beta or normal distributions trun-
cated to the limited parameter space implied by the given model. The BOIN and 
CCD designs use a different approach with a discrete prior on pd , supported at 
three distinct values. Choosing those atoms is challenging and may be difficult 
to interpret. However, through numerous simulations conducted and published in 
the literature, the BOIN and CCD designs perform very well in Phase I trials with 
relatively small sample size.

Additionally, different loss functions can be considered in the proposed frame-
work penalize undesirable actions and outcomes. For examples, the loss for mis-
takenly making an escalation decision may be larger than for a wrong de-esca-
lation. However, such loses usually lead to more complex and less interpretable 
decision rules.

It is demonstrated that the designs in this paper perform similarly with com-
parable reliability and safety. The i3 + 3 rule-based design is not a part of this 
framework, but also generates similar operating characteristics, comparable with 
the other designs. The i3 + 3 design shares a practically important feature with 
interval based designs. One can pre-tabulate decision tables, which is a critical 
feature for the implementation in actual trials. Clinicians can choose a desirable 
design for phase I clinical trial based on their preference, including the model-
based design CRM, the interval designs, mTPI, mTPI-2, BOIN and CCD, and the 
rule-based design i3+3.
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