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Abstract

The purpose of a phase I dose-finding clinical trial is to investigate the toxicity
profiles of various doses for a new drug and identify the maximum tolerate dose.
Over the past three decades, various dose-finding designs have been proposed and
discussed, including conventional model-based designs, new model-based designs
using toxicity probability intervals, and rule-based designs. We present a simple
decision framework that can generate several popular designs as special cases. We
show that these designs share common elements under the framework, such as the
same likelihood function, the use of the loss functions, and the nature of the optimal
decisions as Bayes rules. They differ mostly in the choice of the prior distributions.
We present theoretical results on the decision framework and its link to specific and
popular designs like mTPI, BOIN, and CRM. These results provide useful insights
into the similar theoretical foundations of these designs. We also show that the
designs exhibit similar operating characteristics. Therefore, the choice of a design
for a practical trial among the ones we reviewed may be up to the statistician’s and
clinician’s own preference, such as preference of more model-based approach or
more simple and transparent decisions.
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1 Introduction

A phase I clinical trial is the first stage of in-human investigation of a new drug or
therapy. Phase I dose-finding designs aim to identify the maximum tolerate dose
(MTD) and to provide dose recommendation for later phase trials. In the vast major-
ity of phase I trials, a set of ascending candidate doses is tested for toxicity and the
dose toxicity probability is assumed to be monotonically increasing with the dose
level. Typically, the MTD is defined as the highest dose with a dose limiting toxic-
ity (DLT) probability closest to, or not higher than a target toxicity probability p;.
Usually p; ranges from 0.17 and 0.3. In addition, some designs include the notion of
an equivalence interval (EI) to allow for variations in the definition of the MTD. For
example, one may choose to set p; = 0.3 and EI = (p; — €, pr + €,) = (0.25,0.35).
This means that the target DLT probability of the MTD is 0.3, but doses with DLT
probabilities between 0.25 and 0.35 can also be considered as the MTD. In other
words, the EI allows investigators to consider doses with toxicity probabilities
within the EI interval as appropriate MTD candidates.

A variety of statistical designs for phase I dose-finding trials has been discussed
in the literature. A design consecutively assigns patients to recommended dose lev-
els based on the observed DLT outcomes from previously enrolled patients. Existing
designs can broadly be divided into two categories, rule-based designs and model-
based designs. Among model-based designs, some use simple models and are some-
times called “model-assisted” designs. See Fig. 1 for an illustration. We provide a
brief introduction of the designs in Fig. 1 next.
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Fig. 1 Illustration of some Phase I designs. Dotted lines connect designs across different categories, and
solid lines connect designs within the same category. Arrows imply chronological orders
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The 343 design [1] is rule-based and consecutively assigns patients to the cur-
rent dose or the adjacent higher or lower doses based on observed DLT outcomes.
For example, if current dose at which patients are assigned is d, then 3+3 assigns
the next patient cohort to doses (d + 1), (d — 1), or d itself. This is called the “up-
and-down” rule. Based on the same up-and-down rule, a smarter rule-based design,
1343, is proposed in Liu et al. [2] by accounting for higher sampling variability
when the sample size at a dose is small. The i13+3 design maintains simplicity of
rule-based designs, and exhibits operating characteristics comparable to more com-
plex model-based/assisted designs.

The continual reassessment method (CRM) [3], as the first model-based design
in the literature, is based on an inference model with a parsimoniously parameter-
ized dose-response curve. During the trial, CRM continuously updates the estimated
dose-response curve based on the observed DLT data throughout the trial. CRM has
motivated subsequent important work on model-based designs, including the Bayes-
ian logistic regression method (BLRM) in Neuenschwander et al. [4] and the escala-
tion with over-dose control (EWOC) in Tighiouart and Rogatko [5], among many
others, all leveraging parametric dose-response models for statistical inference.

Recently, a class of designs, collectively known as “interval-based designs”
take advantage of the notion of an EI to simplify statistical modeling and decision
making for phase I trials. Notable examples include the toxicity probability inter-
val (TPI) design [6] and its two modifications, mTPI [7], mTPI-2 [8] (equivalently,
Keyboard [9]), the cumulative cohort (CCD) design [10], and the Bayesian optimal
interval (BOIN) design [11]. These designs use simple models such as the beta/bino-
mial hierarchical model and assume independence across dose toxicity probabilities,
without attempting to explicitly model a dose-response curve. While the independ-
ence model assumption is apparently not true because dose toxicity is assumed to be
monotonically increasing, it does not affect the operating characteristics of the inter-
val-based designs due to various reasons like the safety restrictions in practice (e.g.,
no skipping in dose escalation). As a result, interval-based designs show robust per-
formance based on simple up-and-down rules, restricting dosing decisions to be no
more than one dose-level change from the current dose used in the trial. In other
words, a simple independent beta/binomial model coupled with a simple up-and-
down rule leads to desirable simulation performance that justifies the application of
these designs. Importantly, the interval-based designs often generate a decision table
that greatly simplifies the trial conduct and allow investigators to easily execute the
dosing decisions provided in the table.

In the past three decades, many designs (CRM, mTPI, mTPI-2, BOIN, etc.)
have been successfully applied to real-world trials. It is natural to wonder which
design or designs are suitable for a practical trial. Recent reviews [12, 13] pro-
vide some assessment of these designs, mainly from the perspective of simulation
performance. Occasionally, conflicting conclusions might arise from different
reviews based on the criteria used for design evaluation, or from different sce-
narios considered in the comparison. While simulation results can provide impor-
tant information on the numerical performance of the designs, we argue that a
theoretical investigation would complement the simulation results. In this article,
we show that using the same optimal decision rule under the proposed decision
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framework, one can generate several published designs as special cases. In other
words, we show a theoretical connection across different designs. These designs
include mTPI, mTPI-2, BOIN, and CCD. In addition, based on the proposed deci-
sion framework, we develop a new version of the CRM design, called Int-CRM,
that is founded on the same model assumption with the original CRM design but
a different decision rule. We show that Int-CRM achieves comparable simulation
performance as the original CRM design and other interval-based designs. The
general decision framework provides insight into the similarities and differences
across various designs and may assist investigators to select the right design for
their specific needs.

The remainder of the paper is structured as follows. In Sect. 2, we introduce
the unified decision framework and its main components. Section 3 shows how
known designs fit into this framework, including the mTPI, mTPI-2, BOIN,
CCD, and Int-CRM designs. In Sect. 4, we conduct simulation studies to assess
the operating characteristics of the designs using the i3+3 and CRM designs as
benchmarks. Finally, we conclude and end the paper with a discussion in Sect. 5.

2 Decision Framework
2.1 Overview

We cast the problem of dose finding as an optimization in a decision problem.
In particular we focus on the myopic decision problem of selecting the dose for
the next patient (cohort). It is myopic because the problem does not address the
global decision of stopping the trial and dose selection; instead, the problem
only concerns about the local optimal decision of finding the next dose for future
patients. The main components of the decision framework have been briefly illus-
trated in Guo et al. [8] for the mTPI and mTPI-2 designs. A decision problem
is characterized by an action space for decisions a, a probability model for all
unknown quantities, and a loss function [14]. Table 1 shows a summary of these
components.

Table 1 Components of the proposed decision framework

Component Notation Notes

Probability model f(y | @)z(0 | m)z(m) A hierarchical model with parameters 6 and m

Action a Up-and-down dosing decisions, including D (de-
escalate), S (stay), and E (escalate)

Loss function ?(a,0) The loss for taking action a where @ is the true
parameter

Optimal rule R = argmin, [ £(a,0)p(6 | y)d6 Bayes’ rule that chooses the action with the

minimal posterior expected loss

@ Springer



Statistics in Biosciences (2024) 16:69-85 73

2.2 General Framework

In dose-finding trials with binary DLT endpoints, the parameter of interest is a set
of toxicity probabilities, @ = (p,, ..., py) at dose levels x;, d =1,...,T, where T is
the number of dose levels, and p, is the toxicity probability at dose d. Let y, denote
the number of patients who experience DLTs out of n, patients treated at dose d, and
let y = (y,,...,yy). For all methods in the upcoming discussion the sampling model
S | 8)in Table 1 is a binomial distribution with parameter p, i.e.,

Vgl ps~ Bin(ngp,), d=1,..,T

implying a likelihood function,

T
fo 10 o« [ria-pyr
d=1

For model-based designs with a dose-response curve, toxicity probabilities are mod-
eled as a function of the dose levels x,. For example, a version of the CRM assumes
pa=4d;" @ and a single parameter @ = « (the values g, are fixed and are known as the
“skeleton”). The BLRM design uses p, = logit~'(a + fx,) with parameters 6 = (a, ).

The proposed decision framework uses a concept of probability intervals.
The parameter of interest is p,, and the parameter space of p, is I = [0, 1]. Con-
sider a set of intervals within I, denoted as Q = {/;, k=1, ...,K}, which form
a partition of the parameter space /. That is, Ule I=Iand [ NI, =0, k#K.
The true value of p, belongs to one and only one of the intervals. For example,
Q= {I, =[0,0.5],1, = (0.5, 1)} is a partition, and if p;, = 0.3, p, € I,. We introduce
a latent indicator my (or, for short, just m) with m, = k if p, € I, and define a hier-
archical model prior z(m) and z(p, | m). For example, #(m = k) = %, k=1,..,K,
and 7(0 | m =k) x H§=1 Be (a, p)o(p, € I,,), a truncated beta distribution. Here,

6(+) is an indicator function. That is, p, are conditionally independent with pdf

beta(p z;a, f)6(py € 1)
flk beta(p s;a, B)dp,

Pyl m=k) =

where beta(p;a, ) = [‘)D((:)—;(ﬂ;)pz_l(l —p)PYa>0,p>0isaBe (a, f) p.d.f.

We consider a special partition Q={I,1;} where
LEIg=El=pr—e.pr+e) [, 21 =[0,pr—¢], and I; £ 1, = [p; + &, 1].
Therefore, K = 3 and we use notations /g, I, and I, to associate the intervals with
corresponding up-and-down dose-finding decisions S, E, and D, respectively. We
summarize the proposed decision framework below.

Likelihood:

D
fo10) « [Pl -pyre 0

d=1

where p, is the toxicity probability for dose d,d =1, ..., D.

@ Springer



74 Statistics in Biosciences (2024) 16:69-85

Prior: We assume p, are a priori independent and
zp; | m=k) xgp)élp; €), k=1,.,K,
1
=k=—=, k=1,...K.
z(m = k) X

For example, g(p;) = beta(p;a, p).

Partition: Q= {I;)), I, Ip(3)}, where
IE = [0,pT —_ €1],IS = (pT - €1’pT + 62), and ID = [pT +€2, 1], and Il = IE’ [2 = Is,
and I; = I,

Actions:

The actions are the three up-and-down decisions for dose-finding, i.e.,
aeA={E,S D},

where A denotes the action space. Here E, S, D denote the dosing decisions “Escala-
tion”, “Stay”, and “De-escalation,” respectively. In particular, if the last patient was
assigned dose d, then E, S, or D means treating future patients at dose (d + 1), d, or
(d — 1), respectively.

Loss: We proceed with a myopic perspective, focusing on the decision for the
respective next patient (cohort), and therefore specify a loss function for the next
dose assignment a only.

We use a 0-1 loss function,

19 pd ¢Ia

0,p, €L’ a€A={E,S D}. )

£la,py) = {

In words, when the action corresponds to an interval which contains the true param-
eter, the loss takes the value 0; otherwise, the loss equals 1. The loss function
¢(a,p,) is stated in Table 2.

In other words, the loss function (a, p,) defines a 0—1 estimation loss for m, i.e.,
the interval that contains p,,.

Two more comments about the loss function and the setup of the decision prob-
lem. First, in general a loss (or, equivalently, utility) function could also be an argu-
ment of the outcome y,. This is relevant, for example, if instead of inference loss we
focus on the patients’ preferences. However, the intention of this discussion is only
to highlight common structure in existing dose finding methods, for which we only
need this restricted inference loss. Another important limitation is the myopic nature
of the setup. We consider the dose allocation for each patient (or patient cohort) in

Table 2 The 0-1 loss function

£(a.0) £(a,py) Pa €
[0,pr — €] (r—e€,pr+e) [prtel]
a= D 1 1 0
S 0
E 0 1 1
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isolation, ignoring that dose allocation now might help later decisions. That is, we
ignore the sequential nature of the problem. Again, for the upcoming exposition of
common underlying structure for the considered dose finding methods we will only
refer to this myopic decision problem.

Bayes’ rule: The optimal decision rule for dose d is the Bayes’ rule, defined as

R, £ argmin / £(a.p)pWa 1 Y)dpq; 3)

which minimizes the posterior expected loss. Here, p(p, | y) is the posterior distri-
bution of p,.

In general, under a 0—1 estimation loss for a discrete parameter the Bayes rule
is simply the posterior mode. The following result states this in the context of our
problem. The Bayes’ rule is equivalent to the result of finding the interval with the
maximal posterior probability.

Proposition 1 Denote Q= {I,,1,,1;} = {I, 15,1}, where I,=1,, I,=I,
I; = Ij,. Suppose dose d is the current dose. Let {m = k} be an equivalent event to
{p, e}, ke {1,2,3}. Let A={E,S,D}. Assume n(m=k)= %, ke {1,2,3}.
The Bayes’ rule under the 0-1 loss in Eq. (3) is given by

Rq=argmax Prp, €I, | y) = arg, max Prim=k|y) )

See Appendix D in Supplementary for a proof.

3 Design Examples

We show how various designs fit as special cases into this framework. That is, we
provide examples of the decision framework that give rise to well-known designs
including mTPI, BOIN, CCD, mTPI-2, and a new version of CRM, called the Int-
CRM design.

3.1 Interval-Based Designs

We first introduce the connection between the decision framework and the interval-
based designs, mTPI, mTPI-2, BOIN and CCD. These designs share some common
components under the framework, but also include some elements specific to each
design.

Common components: Likelihood, Prior z(m), Loss function, and the nature of
the defined dose allocation as Bayes’ rule.

Individual ~ components:  Prior  #(p; | m), the specific  partition
Q= {I,, k=1,..,K}, and the definition of the action set A.

All four interval-based designs use the binomial sampling model. And the
designs share the same discrete uniform prior z(m), the 0—1 loss function and the
use of Bayes’ rule to select a decision. They divide the [0, 1] parameter space of
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p, into different intervals and use different priors. See Table 3 as a summary. We
discuss details for each design next.

3.1.1 The mTPI Design

For the mTPI design, given the equivalence interval El= (p; —e€;,pr +€,),
the [0, 1] parameter space is naturally partitioned into three intervals
Q={l=1;=[0,pr — €., =1y = (pr — €;,pr + €),1; = I, = [pr + €,, 1]} that
correspond to the actions A = {E, S, D}, as shown in Table 3. The mTPI decision
is equivalent to the Bayes’ rule R, under the decision framework. See Corollary 1
below for a formal mathematical description.

Corollary 1 The mTPI decision in Ji et al. [7] is given by
R = UPM (1),
mTp] = Ag aeI{IAlEE,lS),(D} ()

where UPM stands for “unit probability mass” and UPM (1,) = Pr*(p, € 1,)/||L,1|;
here ||1,||is the length of I, and

Pri(p, €1,) = /B(yd +Lng =y, + 1) py(1=p)" ™ - 8(py € 1,)dp,

is calculated based on p,~ Be (y,+1,n;—y;+1). Let I, =1, =[0,p; — €],
L =1g=pr—¢€,pr+e) andly =1, =pr +e,1]. Then R, rp; = R, the Bayes
rule under

where beta(-;1,1) denotes the density function of Be (1,1) distribution and
G = ——L iy a normalizing constant.

f,k beta(p;1,1)dp

See Appendix D in Supplementary for a proof.

Table 3 Individual components of the proposed decision framework for some interval-based designs

mTPI mTPI-2 BOIN/CCD
Actions A={E,S,D} A={l,..,K} A={E,S,D}
Intervals I =[0,pr — €] Ip=1Ig, U Ulgg Iz = [0, ¢l

Iy = (pr —€1,pr + €) Iy = (pr —€,pr +€) Is = (¢g. ép)

Ip =pr+e,l] Ip=1Ip, U Ulpyg Ip = [ép, 1]
Priors (g | m=k)x w(py | m=k) x x(py |lm=k)=

Be(1,1)é(p,; € 1) Be(1,1)6(p, € 1) 6(py = )

*See Theorem 1 for details
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3.1.2 The mTPI-2 Design

Ockham’s razor is a principle in statistical inference calling for an explanation
of the facts to be no more complicated than necessary (Thorburn [15]; Jefferys
and Berger [16]). In the context of model selection, the Ockham’s razor prefers
parsimonious models that describe the data equally well as more complex mod-
els. In the proposed decision framework, {m =k}, k= 1,...,K, is equivalent to
K models {M, : m =k}, and choosing the value of m is equivalent to a model
selection problem. Bayesian model selection chooses the model with the larg-
est posterior probability (compare Proposition 1), i.e., Pr(m =k | y), and mod-
els are automatically penalized for their complexity. In other words, Bayes’ rule
R, = argmax;g; 3y Pr(m = k | y) implements Ockham’s razor if we define model
complexity as ||I;||. Therefore, when the three models are I} = I, = [0,p; — €],
L =1y=(pr—¢€,,pr +€), I =1, = [pr + €], the “simplest” model is I, = I,
since €, and €, are typically small probabilities (< 0.05).

Guo et al. [8] explain mTPI-2 as aiming to blunt Ockham’s razor by rede-
fining a (finer) partition Q* ={I Iy =ElI)}, where I ={lg;, ...I5x}

and I, ={lp,,...Ipg, }. Probability intervals {IE,,C}Q2 and {IDqk}fi2 have the
same length as I¢ = EI. Let K = K, + K, + 1. The selected model m under the
mTPI-2 design can then be shown to be Bayes’ rule R,, under an action set
A, ={1,...,K}. Corollary 2 next summarizes the results.

Corollary 2 Under mTPI-2, Q" ={I; ={lg,, - Igg }.Is = (pr — €,pr + &),
Iy ={Ipy, . Ipg,}} Ay, =A{1,...K}. Assume the prior on p, is conditionally
independent and given by

7(pg | m=k) = Cy - beta(p;;1,1)6(py € ).
Then Bayes’ rule is

R, = arg max Pr(m = k | y) = arg max UPM(I,,).
meA,, meA,,

See Appendix D in Supplementary for a proof. Corollary 2 establishes the
Bayes’ rule R, as an action in A4,, = {1, ..., K}. To see the connection to the dose-
finding decision in mTPI-2, we refer to the next result.

Corollary 3 Let
E, arg max; UPM (Z,) € (0, py =€),

R mrpr2 =4 S, argmax; UPM(1,) = (pr — €,pr + &),
D, argmax; UPM(/,) C (py + &, 1).

Then

@ Springer



78 Statistics in Biosciences (2024) 16:69-85

E’ IR(I - (OapT - €])7

Ruwtez =4S Iz, = r —€1,pr + €),
D, Iy, C (pr + €, 1).

In other words, if R; = m*, then I,. is the interval with the largest UPM, for
m* € A,,. And if I,. is below, equal to, or above the El= (p; — €, pr + €,), the deci-
sion is E, S, or D, respectively. This is the same as the up-and-down rule in the
mTPI-2 design in Guo et al. [8]. Proof of Corollary 3 is immediate and omitted.

3.1.3 The BOIN Design

The BOIN design (Liu and Yuan [11]) uses a decision rule

E, p, < 4y,
Rpoiv =4S A1 <Py < 4y,
D, py =z 4y,

where py = 34, 4y = E(¢uis), Ay = E(bpidhs), and

1-¢;

tos( =5
Io (¢/<1—¢,))' ®)

8\ 50—

E(id) =

In particular, ¢g = py, ¢p(< pr) and ¢, (> pr) are pre-specified values. Here, ¢ and
¢p play a similar rule as (pr — €;) and (py + €,) in the mTPI and mTPI-2 designs,
which defines the boundaries of an initial equivalence interval elicited from clini-
cians. We show that the decision rule Ry, is also a Bayes’ rule under the proposed
decision framework next.

Theorem 1 Assume y,;|p,~ Bin(n,p,), =#nlp,|m=k) =6p,;=d¢,), for
k=1,2,3,and ¢, = ¢pg, $, = o5 = pr, and ¢ = ¢p. Under the 0-1 loss £(a, p,) in
Eq. (2), the Bayes’ rule is equivalent to Ry, i.€.,

E, p, < 4y,
Ra=Rpow =4S 4 <Py <4y,
D, py = ;.

where p,; = z—d/, A = E(Ppds). Ay = E(Ppidy), and & is defined as in Eq. (5)

See Appendix D in Supplementary for a proof. By Theorem 1 the BOIN design
takes the form of the Bayes’ rule under the same decision framework using the 0-1
loss. BOIN uses a point-mass prior for p, on three values, ¢, ¢g, ¢, while mTPI/
mTPI-2 using truncated beta priors instead. Next, we show that the BOIN design is
almost the same as the CCD design. This is easiest seen under the perspective of the
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proposed decision framework. The difference between the two designs are the locations
of the point-mass priors.

3.1.4 The CCD design

The CCD design compares p, with (p; — €;) and (py + €,), and uses the following up-
and-down rule,

Ep,<pr—e¢
Reep =18 pr—€1<ps<pr+e
D p,2pr+e

Corollary 4 shows that the decision of the CCD design is the same Bayes’ rule in the
same framework as BOIN but with a different prior distribution.

Corollary 4 The CCD decision R -cp = R, with

where @, = £ (pr — €)), ¢} = ENpr + ), P = ds = pr. and E(P) = E(@.py) in
Eq. (5.

See Appendix D in Supplementary for a proof.

Corollary 4 shows that BOIN and CCD are identical designs with the only differ-
ence being that BOIN uses a point-mass prior z(p,; | m = k) = 6(p; = ¢,), whereas
CCD uses #(p, | m = k) = 6(py = ¢)).

3.2 The Int-CRM Design

Using the same decision framework, we propose a variation of the CRM design, called
Int-CRM. We assume the same parametric dose-response model as in the CRM design
[3], with the probability of toxicity monotonically increasing with dose. Let d; denote
the dose for the ith patient, d; € {1,...,T}, and Y; the binary indicator of DLT. The
dose-response curve is assumed to be the power model as in the CRM,

F(d.9) = q;""
where (g, .., gy) (“skeleton”) are a priori pre-specified dose toxicity probabilities.
Other sensible dose-response models, such as a logit model, may be considered as

well. The toxicity rates are dependent across doses through the dose-response curve
and the inference is based on the parameter 6. The likelihood function is given by

f010) < [ Fd. 0y {1 - F(d,, 0)}'
i=1

where n is the number of patients in the trial.
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Following Cheung and Chappell [17], we define an interval [A,, A, ] for 6 that
is wide enough to allow for a wide range of dose-response curves. For exam-
ple, set A, and A, so that ¢ > 1-107% and quxp(AT“) < 1073, which cor-
respond to response curves constantly equal to 1.0 and 0.0, respectively, and
0 € [A,,Ar, ] allows choices in-between these extremes. Using A; and Ay, we
define sub-intervals for 6 as the set of values that imply d, having toxicity prob-
ability closest to pp,

I={0€[A.Ap, ] |Fk.0)—pyl < |Fd.0)—py|.¥d £k}, k=1,....T

As shown in Cheung and Chappell [17], [, is an interval, denoted as

L=y, =ALw), L=,y k=2,.,T=1), Ir=wyrwr =Ar,]
where y, is implicitly defined as the solution of

Flk—1,w) + Fk,w) =2pp, k=2,...T.

Given the “skeleton” (g, ..., gy), we can obtain the numerical result of the interval
boundaries ¢, ’s by solving the equation above. See Appendix B in Supplementary
for details. Each interval consists of a set of € values where dose k’s toxicity prob-
ability is the closest to p, among all the doses. We use these intervals [;’s in our
framework for Int-CRM. We propose hierarchical priors

ﬂ(mzk)le, k=1,..T

and

$(0)6(0 € I})

O|lm=k)=
HOIm=h ==

where ¢(0) is the density function of the normal distribution N(0, 6%).

The action space of the Int-CRM design is A = {1, ..., T}, corresponding to the
dose for treating the next patient. Following the proposed decision framework,
we use the 0-1 loss function and the Bayes’ rule that minimizes the posterior
expected loss for the Int-CRM decision.

Theorem 2 Under the 0-1 loss, i.e.,

f(a,9)={é’ zg“, a€A={l1,..T}

the Int-CRM decision is the Bayes’ rule

Rip—cry = arg max Prm=k|y) =arg Iilean/p(y | )76 | m = k)do

P50 € 1,)
[ $(0)8(0 € 1,)do

— R Vi _ R 1-y;
arg max / gF(d,,e) {1-Fd,0)' ™}
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The proof is immediate by the definition of Bayes’ rule. Below is the proposed
Int-CRM dose-finding algorithm.

The Int-CRM Algorithm:

Dose Finding Rules: After each cohort of patients completes the DLT follow-up period, the
dose to be assigned is the Ry R\, the Bayes’ rule, unless the following safety rules apply.
Safety Rules: Four additional rules are applied for safety.

Rule 1: Dose Exclusion: If the current dose is considered excessively toxic, i.e., Prob{pq >

pr | data} > & (see below about evaluating this probability), where the threshold & is
close to 1, say 0.95, the current and all higher doses will be excluded in the remainder of

the trial to avoid assigning any patients to those doses.

Rule 2: Early Stopping: If the current dose is the lowest dose (first dose) and is considered

excessively toxic, i.e., p{p1 > pr | data} > &, where the threshold ¢ is close to 1, say 0.95,
stop the trial early and declare no MTD.

To evaluate p{pg > pr | data} in Rules 1 and 2 we use a Be(ag + ya, Bo + g — Ya)
distribution with ag = Gy = 1.

Rule 3: No-Skipping Escalation: If the dose-finding rule recommends escalation, such es-

calation shall not increase the dose by more than one level. Dose-escalation cannot in-
crease by more than one level. That is, suppose the current dose is d. If the next
recommended dose Ryt R I8 such that (R crnv — @) > 1, escalate to dose (d+1)

instead.

Rule 4: Coherence: No escalation is permitted if the empirical rate of DLT for the most

recent cohort is higher than pr, according to the coherence principle [18].

Trial Termination: The trial proceeds unless any of the following stopping criteria is met:
¢ If the pre-specified maximum total sample size n is reached.

¢ Rule 2 above.

MTD Selection: Once all the enrolled patients complete the DLT observation and the trial

is not stopped early, the last dose level Ry, Ry is selected as the MTD.

4 Simulation Studies
4.1 Simulation Settings

We set up simulation studies to evaluate the operating characteristics of the different
designs that we have shown to be special cases of the proposed general framework,
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including the mTPI, mTPI-2, BOIN, CCD and the Int-CRM designs. We aim to
show the similarity of designs’ performance since they are based on the same deci-
sion framework. We also compare to the 1343 design and the original CRM design
as benchmarks.

4.1.1 Fixed Scenarios

We use a total of 15 scenarios, with a set of T = 4,5 or 6 doses. Assume the target
toxicity probability p; = ¢¢ = 0.3 (¢4 is the notation in BOIN), and maximum sam-
ple size is 30. For all designs we apply the same safety rules as in the mTPI, mTPI-
2, and Int-CRM designs. See Appendix A in Supplementary for details. For inter-
val-based designs we use EI = (p; — €,,pr + €,), €, = €, = 0.05. For the Int-CRM
and CRM design, the skeleton g, is generated using the approach proposed in Lee
and Cheung [19], which selects the skeleton based on indifference intervals for the
MTD. Also, we set the half width of the indifference intervals, § = 0.05. The coher-
ence principle [18] is applied, avoiding immediate escalation after toxic outcomes.

For the BOIN design, we set A; = p; — €, 4, = py + €,. This is equivalent to set-
ting ¢ = £ (pr — €,), and ¢, = E~1(py + €,). By Theorem 1, these values for 4,
and 4, make the BOIN decision identical to the CCD design, leading to same operat-
ing characteristics of the two designs.

4.1.2 Random Scenarios

We generate additional 1000 random scenarios to further evaluate the designs. Sce-
narios are generated based on the pseudo-uniform algorithm in Clertant et al. [20].
Figure 2 plots the first 20 scenarios. Other settings of the designs are the same as
the fixed scenarios, such as p; and EI, 4,, 4, for the BOIN design, and ¢ for the Int-
CRM and CRM designs.

4.2 Simulation Results

We evaluate the performance of the phase I designs through a few metrics, based
on their ability to identify the MTD and the safety in dose selection and patient
allocation. Table 4 summarizes the means and standard deviations of key perfor-
mance metrics for the simulation with 1,000 scenarios. All designs show remark-
able similarity with the largest mean difference across designs only about 0.02. This
highlights the underlying connection of these designs and echoes our findings based
on the unified decision framework that can generate most designs as special cases.
Table 4 and Tables 5 and 6 in Appendix C present the simulation results of the 15
fixed scenarios.

In general, the five designs tested in the simulation studies exhibit remarkably
similar performances. Specifically, they show comparable probabilities (across
repeated simulation) of allocating patients to the true MTD, and similar risk of
allocating patients to overly toxic doses. The BOIN/CCD and Int-CRM designs
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Random Scenarios in the Simulation

0.6 0.8

Toxicity

0.2

0.0

Dose

Fig. 2 Illustration of the first 20 random scenarios of true toxicity probabilities in the simulation

Table 4 Simulation results of 1000 random scenarios. Entries are the mean, (across the 1000 scenarios)
proportion of simulated trials for each design and metric. For example, the first entry 0.60 means 60% of
the trials correctly select the true MTD under the mTPI design. The last two metrics Tox. and None Sel.
are the percentage of patients experienced DLT in all simulated trials and the proportion of simulated tri-
als in which no dose is selected as the MTD, respectively

Metrics mTPI mTPI-2 BOIN/CCD iCRM CRM 1343

Correct Sel. of MTD 0.60( ;5 0.629 14 0.62 14 0.62 14 0.62 14 0.62 14
Sel. over MTD 0.10¢ 11 0114y 0.12 13 0.12 13 0.11¢ 0.11¢
Pat. at MTD 0.509 59, 0.50¢ 51, 0.50( 29, 0.51 99 0.5191y 0.50¢ 51
Pat. over MTD 0.11 19 0.11 19, 0121y 0.12¢ 1 0.12 19, 0.119 10
Tox 0.269,05) 0.26) 05, 0.269,05) 0.26).05) 0.269.05) 0.26).05)
None Sel 0.04 07 0.04 7 0.04 ¢ 7 0.04 4 07 004907, 00407,

yield slightly higher PCS (probability of correct selection of MTD) in some
cases, such as scenarios 1 and 4 in Table 5. However, they also report a higher
risk in selecting doses beyond the true MTD. For example, in scenarios 2, 3, and
5 in Table 5, the probabilities of over-dosing selection under BOIN, CCD and Int-
CRM are higher compared to the other designs. However, these differences are
small compared to the reported standard deviations and therefore could be due
to random noise and the arbitrarily generated scenarios. In summary, all designs
exhibit remarkable operating characteristics in our simulations.
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5 Discussion

We have developed a general decision framework for phase I dose-finding
designs. We have shown that interval-based designs, like mTPI, mTPI-2, BOIN,
CCD, and the model-based design Int-CRM fit into this unified framework.

All designs use the same 0-1 loss function, and all interval designs assume a
binomial likelihood function. The prior construction for some designs involves
the notion of candidate models. Candidate models are specified assuming differ-
ent toxic profiles for the doses. Given the model, the mTPI, mTPI-2 and Int-CRM
assume continuous prior distributions, using beta or normal distributions trun-
cated to the limited parameter space implied by the given model. The BOIN and
CCD designs use a different approach with a discrete prior on p,, supported at
three distinct values. Choosing those atoms is challenging and may be difficult
to interpret. However, through numerous simulations conducted and published in
the literature, the BOIN and CCD designs perform very well in Phase I trials with
relatively small sample size.

Additionally, different loss functions can be considered in the proposed frame-
work penalize undesirable actions and outcomes. For examples, the loss for mis-
takenly making an escalation decision may be larger than for a wrong de-esca-
lation. However, such loses usually lead to more complex and less interpretable
decision rules.

It is demonstrated that the designs in this paper perform similarly with com-
parable reliability and safety. The i3 4+ 3 rule-based design is not a part of this
framework, but also generates similar operating characteristics, comparable with
the other designs. The i3+ 3 design shares a practically important feature with
interval based designs. One can pre-tabulate decision tables, which is a critical
feature for the implementation in actual trials. Clinicians can choose a desirable
design for phase I clinical trial based on their preference, including the model-
based design CRM, the interval designs, mTPI, mTPI-2, BOIN and CCD, and the
rule-based design i3+3.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s12561-023-09379-5.
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