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Parametrized Kerr spacetimes allow us to test the nature of black holes in model-independent ways.
Such spacetimes contain several arbitrary functions and, as a matter of practicality, one Taylor expands
them about infinity and keeps only to finite orders in the expansion. In this paper, we focus on the
parametrized spacetime preserving Killing symmetries of a Kerr spacetime and show that an unphysical
divergence may appear in the metric if such a truncation is performed in the series expansion. To remedy
this, we redefine the arbitrary functions so that the divergence disappears, at least for several known black
hole solutions that can be mapped to the parametrized Kerr spacetime. We propose two restricted classes
of the refined parametrized Kerr spacetime that only contain one or two arbitrary functions and yet can
reproduce exactly all the example black hole spacetimes considered in this paper. The Petrov class
of the parametrized Kerr spacetime is of type I while that for the restricted class with one arbitrary
function remains type D. We also compute the ringdown frequencies and the shapes of black hole
shadows for the parametrized spacetime and show how they deviate from Kerr. The refined black hole
metrics with Kerr symmetries presented here are practically more useful than those proposed in previous

literature.
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I. INTRODUCTION

Today, general relativity (GR) has been extensively
tested and has passed every test with flying colors. GR
has been studied with e.g. solar system experiments [1,2]
and binary pulsar observations [3,4] that probe gravity in
the weak and/or nondynamical field regime. Recent obser-
vations of gravitational waves [5—11], and black hole (BH)
shadows [12-15] can test gravity in the strong and/or
dynamical field regime.

An important consequence of GR is the BH no-hair
theorem [16,17]. This theorem states that isolated, sta-
tionary, uncharged BHs that are regular outside the event
horizon are uniquely characterized by the Kerr metric.
Once we go beyond GR, however, BH solutions differ
from Kerr in general. Moreover, even within GR, there are
many BH mimickers known, such as boson stars and
gravastars (see e.g. [18] for a review), that are compact
exotic objects. Properties of BHs and the no-hair theorem
have been tested through BH shadows [12—15], orbits of
supermassive BH stellar companions [19-21], BH obser-
vations through x-rays [22-26], and gravitational waves
from binary BH mergers through inspiral [10,11,27] and
ringdown [28-33].

An efficient way to test the nature of BHs is to use
a parameterically-deformed spacetime that can capture
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deviations from Kerr in a theory-agnostic way [34-51].
For example, the first non-Ricci-flat parametrized
Kerr spacetime was constructed by Vigeland, Yunes
and Stein [37] where they required the spacetime to
perturbatively possess the Killing symmetries of the
Kerr spacetime (that we refer to as Kerr symmetries
throughout this paper). This spacetime thus possesses a
Carter-like constant and makes the Hamilton-Jacobi
equation separable. This work was later extended by
Johannsen [40] who treated deviations from Kerr to be
exact (without a perturbative scheme) and was further
generalized by two of the authors of this paper [41] that
allowed an extra arbitrary function of the radial coordi-
nate. A similar analysis was carried out by Papadopoulos
and Kokkotas [42,43]. Konoplya et al. [47] studied
a parametrized Kerr spacetime that admits the separ-
ability on both Hamilton-Jacobi and Klein-Gordon
equations while Lima Junior et al. [49] constructed a para-
meterically-deformed rotating BH spacetime with a sepa-
rable Hamilton-Jacobi equation through a modified
Newman-Janis algorithm. Chen [44] constructed a
parametrized Kerr spacetime with Kerr symmetries by
relaxing the Z, symmetry of spacetime while Delporte
et al. [50] derived the metric without the circularity of
spacetime.
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In this paper, we focus on the parametrized rotating BH
spacetime with Kerr symmetries constructed by Carson and
Yagi (CY) [41] that includes the one by Johannsen [40].
There are several arbitrary functions of the radial coor-
dinate r in this spacetime. Practically, these functions are
Taylor expanded about infinity with Taylor coefficients
becoming deviation parameters away from Kerr. Some of
these deviation parameters can be removed through the
redefinition of the BH mass and spin or constrained by
imposing observational bounds from e.g. solar system
experiments. When comparing with other observations,
we typically keep a few leading parameters to constrain
them. Here, we point out that, when one truncates the
Taylor series in the arbitrary functions, we sometimes find
an unphysical divergence in the metric which may make the
use of such metrics problematic to probe the nature of BHs
through observations.

Here, we show such pathological behaviors in the
original CY metric, taking a braneworld BH as an example,
and demonstrate that a simple redefinition of the arbitrary
functions can remove the divergence, at least for several
example BH metrics studied in this paper. The refined
metric (summarized in Sec. I A) has five arbitrary functions
of r in total (same number as the original CY metric in [41]
while Johannsen’s metric has four arbitrary functions in r
[40]). We propose two restricted classes (class I with one
arbitrary function and class II with two arbitrary functions)
that can reproduce several known rotating BH spacetimes
in theories beyond GR when the arbitrary functions are
specified appropriately. We then study some of the proper-
ties and outcomes of the refined parametrized Kerr space-
time. We first show that the Petrov type of the parametrized
Kerr spacetime, including the restricted class II, is of type I,
while that of restricted class I is of type D. We next study
BH observables, namely the ringdown frequencies and the
shapes of BH shadows as specific examples. We show how
such observables for the parametrized Kerr spacetime
deviate from the Kerr case.

The rest of the paper is organized as follows. In Sec. I
A, we provide a summary of the refined parametrized Kerr
spacetime. In Sec. II, we review the original parametrized
Kerr BH proposed in [41]. We then develop in Sec. III
refined parametrized Kerr BHs by removing pathological
behaviors. In Sec. IV, we study the Petrov type of the
refined parametrized metric. In Sec. V, we compute the
quasinormal mode (QNM) frequencies and the shape of
the BH shadow (or photon rings). We make our con-
clusions in Sec. VI. We use the geometric units of
G=c=1.

A. Summary of refined parametrized Kerr metric

We summarize here the refined parametrized BH space-
time. The final form of the metric is given by

iAS (AS - azA%Sinze) d b
,04

2aAs(As — Ay)Zsin’6
+ i

ds? = —

dtde

Zsin?0A5(A2 — a*Assin’0)
+ e

dr
=+ d#?
+5(ra),

dg?

with

/)4 = a4A%ASSin49+ azsin20(A% - 2AOA5 —A%A%) +A%A5,

(1.2)
=3+ f(r) + g(0), (1.3)
L = r? 4 a’cos’0), (1.4)
A =71 —2Mr+d. (1.5)

Here, A;(r), f(r) and g(6) are arbitrary functions of r and 6
while M is the BH mass and a is the spin parameter. The
above metric reduces to Kerr in the limit
(Ao,A],Az,As,i)—)(l"2+a2,r2+a2,1,A,2). (16)
The arbitrary functions can further be expanded about
infinity as

wr=e [ S ()] 6o, 0
A S O P
=[S0, (Y]
sn=r (%) (1.10)

§0) = pPyfeos0).  (LI)

n=0

where P, is the Legendre polynomial. The above metric
reduces to that of Johannsen [40] (with the rescaled radial
functions) in the limit Ag — AA,.
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We provide below metrics within two restricted classes
whose metrics are simpler than the above with less arbitrary
functions and yet contain several examples of known BH
spacetimes (the mapping between the refined parametrized
Kerr metrics and the example BH spacetimes can be found
in Appendix A):

(1) restricted class (I): Ay =A; =12 +a%, A, =1,
f=0, g=0 arbitrary function: As(r) example:
braneworld [52], Hayward [53], Bardeen [54],
Ghosh [55], Kalb-Ramond [56]

As — a’sin’6

ds* = — dr?
Z
_ 2asin®0(r* +a* = As) drdd
2z
(r* + a®)* — a®Assin®0 Sin20dg?
z
d 2
+2(—r+d92>. (1.12)
As
(2) restricted class (I): Ay=A, =r*+a*>+f,

Ay =1, g=0 arbitrary functions: As(r), f(r)
example: braneworld [52], Hayward [53], Bardeen
[54], Ghosh [55], Kalb-Ramond [56], Kerr-Sen [57]

As — a’sin’6

ds? = -7 2" 2
s
_ 2asin®6(r? +~a2 +f—As) drdg
s
N (r* +a*+ f)~2 — a’Assin®6 im0
s
- (dr?
+Z<—r+d62 , (1.13)
As
S=3+7f (1.14)

II. ORIGINAL PARAMETRIZED KERR
SPACETIME

We begin by reviewing the original parametrized BH
spacetime with Kerr symmetries developed in [41] by two
of the authors. The metric that preserves Kerr symmetries
(which we call the CY metric hereafter) is given by’

'In the original CY metric, arbitrary radial functions were
referred to as A;(r). Because A; and A, only enter quadratically,
we redefine the radial functions as (Ay, A4, A, As) =
(Ao, A7, A3, As).

(A — a? A,sin®)

ds* = — - dr*
PR
B 2aisin29[(a2~4+ r?) Ay — A] drds
P

2'29 2+22A_2A'29

, Zsin [(a r24 | — a*Asin }dqbz
p

~( dr?

S ——+do? |, 2.1
(o) =0

where a is the object’s spin, .A;(r) is an arbitrary function
of r while

pt = a* Aysin®0 + (a* + r?)* A,
a? + r?
A

+ a*(a® + r?) < (AZ— AAy) - 2A0) sin’6.

(2.2)

The above metric reduces to the Kerr BH when A4; — 1 and
f(r) = 0, while it reduces to the Johannsen metric [40] in
the limit A5 — A, A,.

The CY metric [41] exhibits a pathology in certain
situations. The metric itself consists of five functions of the
radial coordinate r that capture the deviations from Kerr.
When mapping this metric to existing beyond-GR theories,
these functions are expanded about » = co. The expansion
coefficients represent the deviation parameters from Kerr.
Naturally, these are infinite expansions, so for practical
purposes, we truncate the expansion so as to have a finite
number of beyond-Kerr deviation parameters. This trunca-
tion can introduce pathological behavior, namely a non-
physical divergence, into the spacetime.

To put the above in context, let us now consider a BH in
the Randall-Sundrum braneworld model [58,59] as an
example. The braneworld scenario is an extra dimension
model motivated by e.g. string theory. A rotating BH
solution in this model is given by [52]

2Mr— My —
ds? — — (1 — J) d? — 2wsin29md¢

2(2Mr -
+ sin20 (7" ( - D) 20 + a2 + r2) d¢?

(2.3)

Here f is the tidal charge and the above solution reduces to
the Kerr metric in the limit f — 0. This metric can be
mapped to the CY metric in Eq. (2.1) as

A A & ’A+ﬁ>7 (2.4
AYBA+BA+S A

(AO’AI»A27A5)2<
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and f = g = 0. We can further expand the above functions
about infinity to yield

20 A A2 5
Ay—1-L_2PM Pla +f4 e )+O(M>, (2.5)

r2 }"3 r5

_ B pM | p(4a’ + 34— 16M7) m
Ar=1 212 P + 8rt +0 P’
(2.6)
B pM  p(4a® +3p—16M?) m
A271_2r2_r3+ 8rt +0 )’
(2.7)
p 2BM  4ABM?* — a*p M
A5:1+ﬁ+ 5t 3 + 0O =) (2.8)

The left panel of Fig. 1 compares —g,, of the braneworld
BH with the corresponding CY metric for a certain choice
of parameters. Notice that the latter diverges at r ~ 1.45M,
which is close to the event horizon location for Kerr in GR.
To check whether this divergence is not an artifact of bad
coordinates, we also show the profile for the Kretschmann
invariant K = RaﬁWR"/}”” in the right panel of Fig. 1 that is
a gauge invariant quantity. Observe that it also shows a
divergence at the same location as —g,,, which means that
the divergence cannot be eliminated by a coordinate
transformation. Though since this divergence is absent in
the true braneworld BH metric, this is a pathology in the
original CY metric. We also note that such a divergence
arises in other example BH spacetimes if we use the
truncated expansion of A;, such as Kerr-Sen as shown
in Fig. 2. Here, A; are expanded about r = oo and truncated
at O(M*/r*), similar to the braneworld example.

What is the origin of this divergence? To address this, we
take a look at g, in Eq. (2.1) and use the full expression for
A; for the braneworld BH in Eq. (2.4). One can show that

both the numerator and denominator are proportional to A2
which cancels out. However, when we use the approximate
expression for A; in Egs. (2.5)—(2.8), this cancellation is
lost and the denominator vanishes when A ~ 0, namely the
location of the Kerr horizon.

ITII. REGULARIZING THE PARAMETRIZED
KERR SPACETIME

We now show that a simple redefinition of the arbitrary
radial functions remedies the pathological behavior in the
original parametrized Kerr spacetime mentioned in the
previous section. Another approach is to assume deviations
from Kerr to be small and treat them perturbatively as done
in [37]. We have successfully removed the divergence in
the original CY metric for braneworld and Kerr-Sen BHs.
In fact, we could reproduce the former exactly even within
the small deviation approximation, while there was some
noticeable difference between the true and the new refined
metric for the latter. We will detail this approach in
Appendix B and present the results in Fig. 7.

A. Metric

To remedy the pathologies discussed in the previous
section, we perform a simple rescaling of the radial functions.
The idea is to factor A out of the A;(r) functions themselves
to cancel out the A in the denominator of the metric
components explicitly. This will therefore eliminate the
divergence at the Kerr horizon. We found that the following
redefinition of the radial functions from .4; to A; works at least
for the example BH metrics considered in this paper:

ey AA}  AAS As
(3.1)

The (r* + a*) dependence in the redefinition is to absorb the
same factor in the original CY metric. Further rescaling by As

) 1000
0.2} . :' \
: 100k 1Y
0ol !
P ., true Mo 10p.s \
-0.2}
S e original CY
,04,' ----- refined metric |
14 16 18 20 22 24 26
r[M]

FIG. 1.

Left: comparison of —g,, for the exact braneworld BH (blue solid), the original CY metric with 4; given in Egs. (2.5)—(2.8) (red

dashed), and the refined parametrized BH metric with A; in Eq. (3.2) (green dashed). We chose the parameters as @ = 0.9M, f = 0.1M?,
and 0 = /2. The left edge of r = 1.3M corresponds to the event horizon. Observe that the original CY metric has an unphysical
divergence which is remedied in the refined metric. Right: similar to the left panel but for the Kretschmann invariant, showing that the
unphysical divergence in the original CY metric is not a gauge artifact.
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true
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r [M]

FIG. 2. Similar to the left panel of Fig. 1 but for a Kerr-Sen BH
with the parameters a = 0.9M, b = 0.1M and 6 = /2.

is motivated by the following observation. We found that with
the simple rescaling by A alone, the new metric components
have A5 in the denominator, thus the metric after this A scaling
diverges at A5 = 0, corresponding to the location of the true
event horizon.

The refined metric with these new radial functions A; is
given in Eq. (1.1) with the Kerr limit shown in Eq. (1.6).
Notice that the new metric is slightly simpler than the
original CY metric. Similar to the latter, one can expand A;
about r = oo as in Egs. (1.7)—(1.11).

Let us now apply the refined metric to the braneworld
BH example. The mapping for the A; functions is given by

(AO’AI’A27A5> = (r2+a2,r2+a2,1,A+ﬂ). (32)
Observe that the only function that is different from Kerr is
As, which is a simple quadratic function in r. This means
that the asymptotic series expansion in Eq. (1.9) truncates
at a finite order and we can recover the branworld BH
metric exactly. This is explicitly demonstrated in Fig. 1 for
braneworld and Fig. 2 for Kerr-Sen. Observe that the new
parametrized metric not only removes the artificial diver-
gence but also has a perfect agreement with the true metric.

The mapping of the new radial functions for each
example BH metric is shown in Appendix A. Similar to
the braneworld case, there is only one nonvanishing Taylor
coefficient in the series expansion for the arbitrary func-
tions in Egs. (1.7)—(1.11) for Kalb-Ramond and Kerr-Sen
BHs. Thus, the series truncates at a relatively low order for
these BHs and one can recover the original metrics exactly.
For Hayward, Bardeen, and Ghosh BHs, the series does not
truncate at a finite order. However, the functions Ay, A, and
A, are the same as the Kerr expressions for these example
BHs. When imposing these conditions, the refined metric
in Eq. (1.1) reduces to the one in Eq. (1.12). Then, the
metric has no unphysical divergence. Thus, we managed to
remove the divergence and have successfully “regularized”
the metric for all the example BHs listed in Appendix A.

Based on the mapping in Appendix A, we propose
restricted classes of the new parametrized metric that
should be easier to handle than the full metric with a

lower number of free functions. The first class is obtained
by taking the Kerr limit in all of the arbitrary functions
except for As. This metric is given in Eq. (1.12) and
includes braneworld, Hayward, Bardeen, Ghosh, and Kalb-
Ramond BHs. The second class imposes the conditions
Ay =A;, A, =1, and g =0, and the metric is given in
Eq. (1.13). This restricted metric can describe e.g. Kerr-Sen
BH [57], together with all example BHs mentioned for the
first restricted class.

Finally, let us present the asymptotic behavior of the
metric for the refined parametrized BH spacetime with the
expansion in Egs. (1.7)—(1.11). First, g,, and g, behave as

M M?
gtt:_1+(2+2a11_a51_€1)7+0<7>7 (33)

M . M?
gt¢ = —(2—|—a01 —a51)a7sm2€+(9<7>. (34)

We can further redefine the mass M and the spin a to set
ay = as; and a; = (e; + as;)/2 without loss of general-
ity. Then, the asymptotic behavior of the metric compo-
nents becomes

Mo ,
g, =—-1+ 27+Z 81y + €1 — 4ey — 2as51 (€ +4)

M? M3
+ agl - 4“52 - 4g:| 7 + O <?> s (35)

M M?
9rr=1+(2—0‘51+€1)7+0(7>’ (3.6)

M M?
g99:}’2|:1+€1—+0<—2>:|, (37)
r r
2qin2 M M?
g(/,(/,:rsm91+€17—|—(’) 7 . (38)

One could compare this with the asymptotic behavior
of the metric for a nonrotating object within the para-
metrized post-Newtonian (PPN) framework [60] and use
solar system bounds to constrain some of the parameters.
However, we do not impose such constraints in this paper
because Birkhoff’s theorem does not hold in general for
non-GR theories, so there is no guarantee the BH spacetime
can describe the exterior spacetime of stars.

B. Relation to Other Parameterized Kerr Spacetimes

We next discuss the relation between the refined metric
presented in this paper and some of the parametrized BH
spacetimes found in previous literature.

(1) Cardoso et al. [61]

Cardoso et al. [61] derived a parametrized
BH metric which is a generalization of the one
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constructed by Johannsen and Psaltis [39]. The latter
took the seed nonrotating metric

2
ds®> = —f(r)[1 + h(r)]d® + 1 + i_z(r)]j%

+ r2(d6? + sin’0d¢?), (3.9)
with f=1-2M/r and applied a Newman-Janis
algorithm [62-64] to turn it into a rotating metric.

Cardoso et al. [61] generalized the seed nonrotating
metric to

ds* = —f(r)[1 + h,(r)]d* + [1 + h.(r)] %

+ r2(d6* + sin®0d¢?), (3.10)

~

and found the following rotating metric via the
Newman-Janis transformation:

ds? = —F(1 + h,)di® —2a[H — F(1 + h,)]sin0dd¢)
+{Z +[2H = F(1 + h,)]a’sin*0}sin*0d¢?

1+ h
S(— a4 de? ), 3.11
+ <A+h,a2sin29 o > (3.11)
where
oM
FE1_?’, H=\/(1+h)(1+h,). (3.12)
and l’ll‘ = h,»(r, 9)

We found that the refined parametrized metric for
the first restricted class in Eq. (1.12) is a special case
of the one found by Cardoso et al. [61] in Eq. (3.11).
If we take the nonrotating limit of the second
restricted metric in Eq. (1.12), we find

A 2
ds* = - ae + ;_dﬂ + r2(d6? + sin20dg?).
r 5
(3.13)

Therefore, if Eq. (1.12) can be constructed via the
Newman-Janis algorithm, the seed metric should
have the form 1+ h, = (1 +hk,)~". Indeed, we
found that the following relations turn Eq. (3.11)
into Eq. (1.12):

1 o A—As
1+h,’ T A—a%sin?0’

14 h, = (3.14)

Papadopoulos and Kokkotas [42]

The new radial functions A; and f in Eq. (1.1) are
similar to those in Papadopoulos and Kokkotas [42].
The relation between A; here and APX in [42] is

(ADK AEK AFK ATK APY)

242 ap, A
= 2 A, -2 200 1) 35
<f+r, STAL T A As (3.15)

Because of the difference in the scaling of As
appearing on the right-hand side of the above
mapping, APX for BH solutions beyond GR (for
example braneworld) in general contains a denom-
inator that is a function of r. This leads to an infinite
series when expanded about r = oo so the metric in
Eq. (1.1) is more accurate (and can reduce to the
exact metric in some cases) than that in [42] for
the example metrics considered in this paper when
we use the expanded A; or APK.
(3) Baines and Visser [51]

Another generalized Kerr spacetime metric was
devised by Baines and Visser [51] that preserves
Kerr symmetries and keeps the timelike Hamilton-
Jacobi and massive Klein-Gordon equations sepa-
rable. The line element is

42 Ae™2® — @%sin2%0 e+ 52 + a?cos?6 i
Y = - ~ I
22 + a%cos?6 A
+ [E2 + a?cos?0]d6?

22— Ae2® 4 g2

)
—2a = 1 22050 sin“@dtd¢
22 1 2)? — 02 A g2sin20
LE iz) ¢ ST in20dg?,
27 4 a“cos 0
(3.16)

with arbitrary deviation functions A(r), ®(r), and
E(r). We found the mapping between the refined
parametrized metric in Eq. (1.1) and that in
Eq. (3.16) as

(A07A17A2’A5’f>
= (®®(a® +E?),e®(a®> + B2),e®, A, -1 + E2).
(3.17)

Thus, the metric developed in [51] is a subclass of
the refined CY metric.

IV. PETROV TYPE

In this section, we study the Petrov type of the refined
parametrized BH spacetime. We first focus on the first
restricted class with the metric in Eq. (1.12). We will then
consider a more general parametrized metric.

A. Determining Petrov type

The Petrov type of spacetime can be determined by
constructing a null tetrad /#, n*, m*, and m* (a bar refers to
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complex conjugate) and computing the Newman-Penrose
Weyl scalars. These null vectors satisfy the normaliza-
tion /#n, = —1 and m*m, = 1 with all the other contrac-
tions to vanish. Below, we follow [65,66] to identify the
Petrov type.

When the following condition is satisfied, the spacetime
is said to be algebraically special (having at least one

degenerate principal null direction):

P =27J% (4.1)
Here
[ =395 — 4¥,¥; + P, 9, (4.2)
= -V + 29\, + P W, — PP - P P2, (4.3)
where ¥; are the Newman-Penrose Weyl scalars:
Wy = Copsl®m’lI'm®, (4.4)
W) = Copysln’lIrm?, (4.5)
Wy = Cuppsl®m’im'n?, (4.6)
W3 = Cuppsln’min’, (4.7)
Wy = Copsnm’n’m®, (4.8)

for a Weyl tensor C,,s. In particular, for Petrov type D (and
1), I and J are nontrivial. On the other hand, the spacetime
is type I if Eq. (4.1) is not satisfied.

To determine the Petrov type further, we compute the
following scalar quantities:

K =0, N —-9L% =0, (4.12)
where K and N — 9L? are invariant under a tetrad rotation.

To summarize, the spacetime is type D if Eqgs. (4.1) and
(4.12) are satisfied for nonvanishing 7 and J. On the other

hand, the spacetime is type I if Eq. (4.1) is not satisfied.

B. Application to the refined parametrized metric

Let us now apply the above formalism to the refined
parametrized BH. Let us first consider restricted class I in
Eq. (1.12). We begin by finding the null tetrad for this
spacetime. For Kerr, a commonly-used null tetrad was
derived by Kinnersley [67]:

r* 4+ a? a
ll(lKin) - <A, ],0,A> ) (413)
r* + a? A a
i = -—.,0,— 4.14
" (kin) ( 2w o Tax? 22)’ (4.14)
m = - (ia sin 6, 0, 1L> (4.15)
Kin) ™ \/2(r + ia cos 6) sin 6

We will rotate these to construct a new tetrad such that
lP4 ;é 0:

m=1r mt =

(Kin)’ n)’

n)*

m

My T 1
nt = n(Km) + l(Km) + m(Km) +

(Ki
"(‘ (4.16)
The tetrad for the refined parametrized metric can be
obtained by simply performing the replacement

2Mr — r* + a* — As. (4.17)

_ 2 _ 3
K =Y,%; - 3¥,¥,;¥, +2¥;, (4.9) This is because the metric in Eq. (1.12) can be obtained by
_ ) performing the same transformation to the Kerr metric.
L=%Y, -5 (4.10) Having this tetrad at hand, one can compute the Weyl
5 ) ) . scalars to yield
N =V¥, — 4979, Y; + 69, 9,95 - 3¥5,  (4.11)
. . . Yo=Y, =0, (4.18)
with W, # 0. In particular, type D (and III) satisfies the
following condition with N # 0:
|
Y, = ~ 13 (12(r + iau)*As — 6Z(r + iap)AL + AL — 24> (y* — 6)a*
+12ir(u* = 2)ua’® + 4r*(5u* = 3)a® — 12ipar® — 2r*], (4.19)
1
Vy=———— [12(r+iap)As— 6SAL + Z(r—iap) A%+ 2i(u* — 6)ua® + 2r(5u* —6)a® = 10ir’pa—2r*],  (4.20)
4% (r+iau)
1 . . .
vy, = T i [12A5 — 6(r — iau)A% + (r — iap)?AY + 2(u* — 6)a® — 8irpa — 217, (4.21)

where y = cos @ and a prime denotes the derivative with respect to r.
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Now we are ready to determine the Petrov type of the refined parametrized metric in the restricted class. First, we found

I= 1356 [—12(1’ + iap)?As + 6Z(r + iap)Ay — TAY — 12ia’ ) r + 2a*u* + 24ia’ur
+ 12iapr’ — 12a*p? = 20u*a*rPapr + 12a%r% + 2r*]?, (4.22)
1
I =T [—12(r + iau)*As + 65(r + iau) Ay — ZAY — 12ia> i r + 2a*u* + 24iaur
+ 12iapr’ — 12a*p? - 20p*a*rPapr + 12a%r% 4 2r*]3. (4.23)

This leads to I° — 27J% = 0. Next, we found K = 0 while L
and N are nonvanishing and the latter two satisfying
N —9L? = 0. This concludes the refined parametrized
metric in Eq. (1.12) is Petrov type D. Further, this means
the braneworld, Hayward, Bardeen, Ghosh, and Kalb-
Ramond rotating BHs are all type D. This is consistent
with the recent work in [68] that identified a general,
stationary, axisymmetric and asymptotically-flat spacetime
under Petrov type D which includes the refined metric here
under the first restricted class. This is also consistent with
the finding by Walker and Penrose [69] that any spacetimes
with Petrov type D allow integrability of the geodesic
equations.

We now discuss the Petrov type of a more general class
of the refined metric. For example, let us consider the
second restricted class in Eq. (1.13). Similar to the first
restricted class, one can construct the null tetrad based on
the Kennersley tetrad for Kerr by applying the following
replacement (apply the first replacement and then the
second one):

2Mr — r* + a® — As, r—\/rr+f. (4.24)
We then compute the Weyl scalars ¥;. We found that, in
general, Eq. (4.1) is not satisfied. This means that the
second restricted class in Eq. (1.13) and the general refined
metric in Eq. (1.1) are type 1. This further means that the

Kerr-Sen BH is type L

V. BLACK HOLE OBSERVATIONS

We now explore how the refined parametrized Kerr
spacetime modifies observables from the Kerr case. In
particular, we study the QNM ringdown frequencies and
the shape of BH shadows.

A. Gravitational-wave ringdown

Following [70-72], we estimate the real and imaginary
part of QNM ringdown frequencies wp and @; for the
refined parametrized Kerr spacetime through the post-Kerr
formalism. Such a formalism makes use of the eikonal
approximation, in which @y and w; are associated with the

[

angular frequency €, and the Lyapunov exponent y,
(corresponding to the divergence rate of photon orbits
grazing the light ring) at the light ring r( as

wr = 2Q) = 2(Qg + 69), (5.1)
1 1
w1:—§|70| :—5\7’k+570|- (5.2)
Here
Ml/2
Qp =+ (5.3)

rz,'(/2 + aM/?

is the angular frequency of the Kerr light ring at

rg = ZM{I + cos Ecos‘l <:F;I>] } (5.4)

where the upper (lower) sign corresponds to prograde
(retrograde) orbit, while

M\ 1/2 o\ 1/2
6 = F <—> [h(/n/) + <—K> (rg +3M)hy,
rg M

LGR azm} [lre-MGA+ad]  (55)

is the correction to Qg with &, representing the metric
deviation away from Kerr on the equatorial plane at
6 = x/2. Moreover,

AgQg

r§</2(rK_M)

vk = 2V3M (5.6)

is the Lyapunov exponent for Kerr with Ag = r% —
2Mry + a*, while &y, is the non-Kerr correction given
in Eq. (18) of [71].

We next apply the refined CY metric with the specific
investigation in the refined classes outlined in Egs. (1.12)
and (1.13). We can define small-deviation functions like
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Ai = A%{CH‘ + 8514,', f = 85f,

(5.7)
where ¢ is a bookkeeping parameter to count the order of
deviation from Kerr. Notice in the case of the restricted
classes, only A5 and f are arbitrary deviation functions,
and we can truncate their respective series at infinity for
convenience. Assuming deviations from Kerr are small and
expanding the restricted metric on ¢ about 0, keeping to
O(e) yields

G = GRS+ €hy,, (5.8)
where
M M
hy = - {%1 —e€ + (as, +2¢; — 62)

+(0553+2€2—€3) 2 +O< >:| (5.9)

aM M

hy =— {0651—614'(0‘52‘#261—62)7
+(a53 +2€2—€3) 2 +O<r3>:| (510)
|
27&51 + 9a52 + 3&53 - 1861 - 662 - 463

M3

her = =7

M
[0551 —e + (asy +2¢; = 62)7

— o], s

+ (as3 — €% — 26,
M M? M?
]’lg@ MI"|:€1 +€2—+€3—+O< ):|, (512)

M M? M3
hyy = M”[€1+€2——((151)( —ei*—63)— +O< )]

(5.13)

with y = a/M. Similarly, if we expand Eqgs. (5.1) and (5.2)
on ¢ around O and keep to first order in ¢, the QNM
corrections in the refined parametrized spacetime to first
order in each deviation parameter, and quadratic in spin are
given by

€
O)R:wgen+ﬁ< 8]\/_
2976(51 + 177052 + 95(15'; - 12661

1458/3

336(51 - 116(52 - 146(53 - 6461

84€2 - 1426'3 2)

2062 + 1463

2(54&51 + 27&52 + 12@53 - 2761 - 1562 - 17(:'3)
X

729

+O(e2. ), (5.14)

) Kerr + — (
' M 9723
3162&51 + 1712&52 + 1031&53

2406{51 + 122&52 + 746‘(53 - 1461 + 1462 - 8363
4374 x

262443

Notice that one can easily reduce to restricted class I by
€, = 0.

Figure 3 shows the fractional difference between
the corrections dwp made by restricted class I for three
example parameter combinations: (as;, sy, as3) = (1,0,0),
(0,1,0), (0,0, 1).2 Unlike Egs. (5.14) and (5.15) that are
obtained under the expansion about y = 0, for our calcu-
lations, we used the expressions for dwy and dw; that are valid
to full order in y (though we do not present such expressions
here as they are too lengthy). For the real frequency (left),

As mentioned below Eq. (3.4), as; can be absorbed into the
definition of the BH mass and spin, though here, we consider
the effect of this parameter as it is nonvanishing in some of the
example metrics in Appendix A.

—350¢, — 13¢, — 1250¢; 2)
X

+ O, ). (5.15)

notice that the deviation becomes larger as we turn on
deviation parameters entering at lower orders. For the
imaginary frequency (right), we see some of the curves cross
zero as we increase y. We compare these results with the upper
bound found from GW200129_065458 that puts the most
stringent bound out of all the gravitational-wave events found
so far [11]. The allowed parameter space from this event is
shown by the green shaded region.3 Notice that curves for the
parameter combination of (1, 0, 0) and (0, 1, 0) go outside of
the allowed region in the real frequency plot and are thus ruled
out, while there are other combinations that are still viable.
For the imaginary part, the constraint is slightly weaker, but

3The range of the spin is taken from Table XIII of [11].
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FIG. 4. Similar to Fig. 3 but for restricted class II.

the analytic results from the post-Kerr formulation may not be
accurate as we comment later.

Figure 4 is similar to Fig. 3 but for restricted class II.
Motivated by the Kerr-Sen BH in Appendix A 6, we vary
(asy, €1). The fractional deviation for the parameter combi-
nation of (as;,€;) = (1, 1) is a linear combination of that
for (1, 0) and (0, 1). For the real frequency (left), the one for
(0, 1) is negative and thus the deviation for (1, 1) is the
smallest. A similar behavior is seen for the imaginary
frequency where e.g. the curve for (1, 1) goes to 0 when the
curves for (1, 0) and (0, 1) cross. Comparing these with
the bound from GW200129_065458, we see that the para-
meter choice of (1, 0) is ruled out from the real frequency
bound while there are other combinations that are still
allowed.

We now study the validity of the post-Kerr formalism
by taking the braneworld BH as an example, whose
QNM frequencies have been computed numerically in [73].
Figure 5 compares the normalized analytic QNM frequen-
cies within the post-Kerr formalism against the numerical
ones. For the former, we show the results using the exact
braneworld BH metric as well as using the series-expanded
metric in Egs. (5.9)—(5.13) with all the deviation parameters
set to 0 except for as, = #/M?. For the real frequency, we
see that the analytic estimates are qualitatively in agreement

with the numerical ones, especially when the dimensionless
tidal charge || is small. This is expected as we work in the
small-deviation approximation for the post-Kerr formalism.
For the imaginary frequency, on the other hand, the
agreement between the analytic and numerical estimates
is rather poor.4 In particular, the deviation from Kerr is
positive (mostly negative) for the analytic (numerical)
estimates (see Appendix C for further details). This
suggests that, while the real QNM frequencies for the
parametrized Kerr spacetime found via the post-Kerr
formalism may be reliable, the imaginary QNM frequency
results may not be accurate.

B. Black hole shadows

Let us now compute the photon rings, or the shape of BH
shadows, for the refined parametrized BH (the shape of BH
shadows for parametrized BHs and some of the example
spacetimes in Appendix A have been studied in e.g.
[13,41,56,75-87]). We begin by following [41,75], starting

*We have checked that our post-Kerr calculation can correctly
reproduce Fig. 4 of [71] for the imaginary QNM frequency for the
Johannsen metric [40] and can produce results that are qualita-
tively in agreement with the imaginary QNM frequency for the
axial perturbation in Einstein-dilaton Gauss-Bonnet gravity [74].
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FIG. 5. Real (red) and imaginary (blue) frequencies (normal-
ized by the Kerr values) for braneworld BHs as a function of the
dimensionless tidal charge with the dimensionless spin value of
x = 0.67. We compare our analytic estimate via the post-Kerr
formulation with numerical results in [73]. For the former, we use
the full braneworld BH metric (solid lines) and the series
expanded one in Egs. (5.9)—(5.13) (dashed lines). Observe that
the analytic estimate is in good agreement with the numerical one
for the real frequency when || is small while the former is not an
accurate approximation to the latter for the imaginary frequency.

with the Hamilton-Jacobi function and Hamilton-Jacobi
equations respectively

1
=—Sut—Et+Lp+5,(r) +5(0),  (516)
as 1 aS oS
L5 L ap 95 95 5.17
or 29( 0x% oxP ( )

for particle mass p, proper time z, orbital energy E, angular
momentum L, and generalized radial and polar functions
S,(r) and Sy(0), to yield
—p?(a*cos’0+ f+g+1r?)
1 A
N 2a3A(EL, —A—S(a2A§L§ +AIE?)
+ a?AZAE%sin?0 —2aAoAEL . +2aAoEL.1?

SN2 [aS,\2
+A§AL§05026+A5A<ar> +A<¥> ] (5.18)

It is now helpful to separate the Hamilton-Jacobi equations
using the separation constant

1
C=—u*(f+1r) - " [—angAg +2aEL_A,
5

0S,\ 2
—E?A? 4 A2 . , 5.19
a3 (2r)] (5.19)
C = a*E?sin®0 + u*(g + a*cos®0) — 2aEL.
05y 2
+ L2csc?0 + <a—;> : (5.20)

If one defines the Carter-like constant of motion
Q=C— (L, —akE)? a solution for S,(r) takes the form

R(r)
=+ [d 21
S,(r) / ry /AAS(r), (5.21)
A
R(r) =~ [a*L?A3 — 2aEL A, + E*A3]
5
—a*E* +2aEL, — fu* — L} — Q —p*r?, (5.22)

where a difference in sign represents particles with pro-
grade and retrograde motion.

At this point, we can compute the generalized momenta
P, utilizing the expression

Pa = (5.23)

ox*’

where we are particularly interested in the radial momenta
given in both covariant and contravariant form:

R(r) 1
AAs(r)

p, =+ (5.24)

Following [75], we now turn our attention to the impact
parameters x and y [88]

xX=—-—

=, y= i\/n + a*cos’t — Ecot’1,  (5.25)
sinz

which describe the image plane from an observer’s point of
view at infinity and where ¢ is the inclination angle,
é=1L./E,and n = Q/E?. Notice the new invariant param-
eters £ and 1 have been constructed entirely out of constants
of motion.

The photon rings of interest are described by the
solutions to these new parameters ¢ and 7. As these
constants of motion are conserved along null geodesics,
they can be solved in the special case of circular orbits for
simplicity. Here, the radial photon momentum p” found in
Eq. (5.24), as well as its radial derivative, must vanish.
Because = and As(r) are both non-negative (at least when
deviations from Kerr are small), this results in the system of
equations

(5.26)

with the full reparametrized expression for R(r) of an
orbiting photon (u = 0) given by
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R(r) = Ais [A2(r)A — 2aAy(r)AE + a*Ad(r) AL

—a’A +2aA8 — A — A& (5.27)

Figure 6 shows the shape of BH shadows for the refined
parametrized Kerr spacetime with several parameter combi-
nations for two spin choices: y = 0.5 and 0.998. For restricted
class I (top panels), we have kept the series in As/r” in
Eq. (1.9) up to O(M?/r*) and chosen combinations:
(@51, as52, as53) = (=1,0,0), (0, ~1,0),(0,0,-1). (0, 1, 1),
together with the Kerr case. Notice we have chosen para-
meters to mostly O or —1. This is because the spacetime
becomes a naked singularity for certain combinations of as;.
For example, if we keep only a5; and as,, the event horizon

exists only when |y| < \/1 —as; + (a2,/4) — asy, so for

example, |y| < 0.5 when (as;, asy, as3) = (1,0,0) or (0, 1,
0). Of those plotted, we observe a pattern where singularly
attributing —1 to each sequential parameter increases the
radius of the shadow, with as; # 0 (as3 #0) giving the
largest (smallest). This is simply due to lower order terms in
the expansion of As at infinity giving larger contributions as
expected. Additionally, the combination that contains the
positive parameter, (as;, sy, as3) = (0,1, —1), produces a
curve smaller than Kerr, implying a reductive nature to a

_____ S0y )= (1, 0, 0)

51
— (0‘51-"‘5:'0‘5:):(0"1~ 0)
-10 (@, g, , g = (0, 0,-1)
..... (0, Oy, 0g) = (0, 1,-1)

y M]

..... (0, &) =(-1. 0)

—-—- (ag,,€)=(0,1)

(0, &) =(-1.-1) =
..... (0, &) =(0.-1)
Kerr
T

-10 -5 0 5 10

positive parameter choice, with @5, making a larger contri-
bution than as;. Notice also that, unlike the case of a Kerr BH
where the shape of the shadows distort as the spin gets closer
to the Kerr maximal value of 1, the shadow shapes of the
parametrized Kerr spacetime remain mostly spherical. This is
because y = 1 does not correspond to the extremal limit
anymore when as; # 0.

For restricted class II (bottom panels), we focus on
varying as; and €; only and have chosen combinations
(asi,€;) = (—1,0),(0,1),(=1,-1), (0, —1). We notice the
parameter ¢; increases the size of the image with positive
choices (and shrinks the image with negative choices),
which is the opposite of what happens when varying as;.
Moreover, allowing as; and €; to exist simultaneously
reveals contributions from a5, are larger than those from €.
Furthermore, ¢, retains the shape of Kerr and only deviates
in size, as opposed to as; (and asp, and as; for class I)
which contributes to a deviation in both size and shape.
Namely, for (as;,€;) = (0, £1), the shape of the shadows
distort like Kerr for a nearly extremal spin because the
event horizon location is not modified and |y| = 1 remains
to be the extremal spin. For both classes, as concluded
previously in [41], deviations from Kerr are easily distin-
guishable from the exact Kerr result when the deviation
parameters are sufficiently large.

10 T
x=0998,i=90°
5
= Of i
E :
>
S5+ h
""" (a5, 0y, €)= (-1, 0, 0)
e (O 5005 5 W) = (-1 0)
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..... (o, s o, 0) = (0, 1,-1)
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T 1 -
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10 T T
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I !
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= i
>
5+ 7
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——- (a5, €)=(0,1)
-10+ (0, . €)= (-1,-1) T
..... (0, . €)= (0,-1)
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x [M]

FIG. 6. Shapes of BH shadows (photon rings) about a medium spin y = 0.5 (left) and a high spin y = 0.998 (right), plotted for
example parameter combinations corresponding to restricted class I (top) and restricted class II (bottom) of the refined parametrized
spacetime. The inclination is fixed at the extreme case of i = 90° in every scenario for demonstration purposes.
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VI. CONCLUSIONS

In this paper, we first pointed out that the parametrized
rotating BH spacetime with Kerr symmetries constructed
by Johansenn [40] and Carson and Yagi [41] may suffer
from unphysical divergence if the asymptotic series in the
asymptotic behavior of arbitrary functions are kept only to
finite orders. We then showed that a simple redefinition of
the arbitrary functions in the metric can cure the pathology,
at least for all the example metrics studied in this paper. We
further proposed two restricted classes of the refined para-
metrized Kerr metric that only contain one or two arbitrary
functions and can capture several known BH solutions in
theories beyond GR. We studied the Petrov type of the
refined parametrized Kerr spacetime and found that it is type
I, including the second restricted class, while it is type D for
the first restricted class. We also computed some observ-
ables, namely the ringdown frequencies and the shape of BH
shadows, and showed how they deviate from the Kerr case.

There are a few different avenues for future work. It
would be interesting to constrain the parametrized Kerr
spacetime through BH shadow observations, similar to
e.g. [15] that carried out a systematic survey of constraining
nonspinning parametrized BH spacetimes. Regarding con-
straints from ringdown, we compared the ringdown
frequencies for the parametrized Kerr spacetime for several
example parameter combinations against the bound from
GW200129_065458 [11]. It would be important to carry
out a more detailed survey to identify the regions in the
deviation parameter space that can be ruled out from
current gravitational-wave observations. One could also
use the inspiral information of gravitational waves to
constrain parametrized Kerr spacetimes [89-91]. For exam-
ple, the leading post-Netwonian correction to the gravita-
tional waveform arises from the modification to the
gravitational potential, which can be read off from the
(2, t) component of the metric. One can follow calculations
in [90] to derive such corrections for the parametrized Kerr
spacetime presented here. One can further account for
corrections to the ringdown frequencies and carry out a
parameter estimation study as in [90] to derive constraints
from existing and future gravitational-wave observations.
On the other hand, it sounds challenging to find corrections
during the merger phase as it requires one to carry out
numerical simulations but there are no field equations that
parametrized Kerr metrics follow. It would also be inter-
esting to derive gravitational waveforms for extreme mass
ratio inspirals where a small compact object orbits the
parametrized Kerr spacetime [92] and study prospects of
probing such spacetime with future gravitational-wave
observations.
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APPENDIX A: MAPPING FUNCTIONS

In this appendix, we present the mapping functions
for the radial functions in the parametrized Kerr metric
for several example BH solutions.” g(6) = 0 for all the
examples studied here. For each example spacetime, we
provide (i) the mapping with the original CY metric in
Eq. (2.1), (ii) the mapping with the refined, rescaled metric
in Eq. (1.1), (iii) nonvanishing Taylor coefficients in
Egs. (1.7)—(1.11), and (iv) the mapping with the refined
metric under the small deviation approximation in Eq. (B1)
for n = 0 (one can easily find the mapping for other n by
simply multiplying each function by A").

1. Braneworld

Metrics for BHs in braneworld follow the same form as
the Kerr-Newman solution with the electric charge O with
the replacement Q% = f3 (a tidal charge that can take either
sign) [52].

(1) original CY mapping

(A()’AI’AZ’A&JC)
_< A A A A+p
T \AHBA+BAR A

,O), (A1)
(2) refined mapping (rescaling)

(AO’AlvAQ’AS’f> = (r2 + az, r2 + 612, 1, A +/7), O),

(A2)
(3) Taylor coefficients
Asp = Ve (A3)
(4) refined mapping (small deviation, n = 0)
(B BB P
(5A075A1’5A2’5A575f>_(AvAyAv A’O .
(A4)

>There are other rotating BH solutions that can be mapped to
the refined parametrized metric presented in this paper. Extended
Kerr BH in [93] is one example. However, we do not include it in
this appendix since one of the radial functions cannot be
expanded in polynomials as in Eq. (1.9) because of the ex-
ponential dependence.
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2. Hayward

The metric for the Hayward BH is parametrized by g that controls the regularity of the BH [53].

(1) original CY mapping

(A, Ay Ay, As. f)

<A (rz

2Mr*

-1
+ 4% - o 3) ,A<r2+a2—
rTg

2Mr* \ !
I

2MrA N\ 1 2Mr*
2 2 2 2
A<r +a _r3+g3) ,A<r +a _r3+g3>’0>’ (A5)
I
(2) refined mapping (rescaling) (4) refined mapping (small deviation, n = 0)
(Ag, Ay, Ay, As, f) (6Ag,6A1,6A,,6A5,6f)
M 2¢°M  268°M  26°M 26’M
_ (2 2 .2 2 2 2 = - - _
_(r +a”,r"+a", 1,r"+a _r3—|—g3’0>’ < AT 2N rzA’rzA’O . (A8)
(A6)
3. Bardeen
(3) Taylor coefficients (n is a positive integer) Similar to the Hayward BH, the metric for the Bardeen
; BH is also parametrized by g that controls the regularity of
—(—] 3n+129_, A7 the BH [54].
syt = (=1) M3 (A7) (1) original CY mapping

(A(]yAl,Az, A5,f) = (A(}"Z +a2

2Mr* -1 Mt -1
> aan) oA rta-— N2 ) o
(r+¢°) (r+9°)

Al 2 5 2Mr* -1 ’ » 2Mr* 0 A9
P2 +a "1 a) B P +a i) 0) (A9)
[
(4) refined mapping (small deviation, n = 0)
(2) refined mapping (rescaling)
0Ag, 6A1, 6A,, 0A5,6
(Ao A1, Ay As.f) (640, 64, oA {> o
2,2 2 21 .2, 2 2mrt = _3gM,_3gM,_BgM’3gM’0 .
=\|r+a,r —I—a,l,r +a —W,O s rA rA rA rA
(A10) (A12)
(3) Taylor coefficients
gz 15g4 3596 4. Ghosh
(as3, ass, asy, ...) = _3W’W’_Wv S The metric for the nonsingulz.ir BH found by Ghosh is
parametrized by k that characterizes the mass profile [55].
(A11) (1) original CY mapping
|
A A A P2+a?=2Mre k"

(‘AOvAl?AbASvf) = <

P4a?=2Mre %" 22 a2 —2Mre %7 2+ a2 =2Mre kT

A ,0), (A13)
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(2) refined mapping (rescaling) (4) refined mapping (small deviation, n = 0)

(5A07 5A] s 5A21 5A5’ 5f)

XMk 2Mk  2Mk 2Mk
_<— T AT A A ,0). (A16)

(Ag. A1, Ay, As. f)
=(rr+a’,rr+a’1,r*+a*—2Mre7",0),
(Al4)

5. Kalb-Ramond

The metric for the Kalb-Ramond BH is parametrized by
the Kalb-Ramond parameter s and the Lorentz-violating

(3) Taylor coefficients

2 g3
(5o, 53,54, ...) = < i_k_zk_%) (A15) parameter I" [56].
M M- 3M- (1) original CY mapping
|
Ar% Ar%
-A 7A ’A "'4 ’f = ( s 4 2+s >
Moo i o Aso 1) = \ i o= 4 or 22 +a*r = 2Mr S 4 T
AR P27+ @28 = 2MP + T O) (A17)
P54+t = 2MPY + AT Ars v

[

(4) refined mapping (small deviation, n = 0)
(2) refined mapping (rescaling)
(6Ag,6A1,6A,,6A5,6f)

(Ag. Ay, Ay, As, f) _< G A N e Nl 0) (A20)
= (P +d P +d 1,A+r6701,0), (A18) AT AT AT AT

(3) Taylor coefficients (e.g. s = 2) 6. Kerr-Sen

The metric for the Kerr-Sen BH is parametrized by b that
is related to the charge [57].
(A19) g
(1) original CY mapping

r
0’51=M7

2 242br)A 2 24 2br)2A A A+2b
(Ao,Al,Az,As,f)=<(r + a* + 2br) (r* +a* + 2br) + r,2br>,

; , , A21
(r* +a®)(A +2br)" (P 4+ a*)*(A +2br) A +2br’ A (a21)

[
(4) refined mapping (small deviation, n = 0)
(2) refined mapping (rescaling)
(6A0,0A1,0A,,0A5,5f)
4bMr>  2br(A=2Mr) 2br 2br
=|- , ,———,——,2br |.
(@+rH)A" (a*+r*)A A A
(A24)

(AO,A] 9A25A57f)
= (PP +a®+2br,r2+a>+2br,1,A+2br,2br),
(A22)

(3) Taylor coefficients APPENDIX B: SMALL-DEVIATION
APPROXIMATION

Another way to regularize the divergence in the original
>’ (A23) CY metric is to treat deviations from Kerr to be small and
find a perturbative metric. Instead of parametrizing A,

S

Sk
kS

<&

(a01’a11,a51,€1):<
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directly, we split them into Kerr plus correction, expand
about a small deviation from Kerr, and keep to linear order
in the deviation. Namely, we consider the following:

Ai(r) =14 eA"8A;(r), f(r)=eA"5f(r), (B1)
where n takes integer values while € is a book-keeping
parameter to count the order of corrections from Kerr.
Notice that if we use the full expression for 6.4;, the results
are the same for any n. The difference in n becomes
important when we use 6.4; expanded about r = co. We
will expand the metric about € = 0 and only keep to linear
order. To keep the location of the event horizon to be the
non-Kerr one, for g,,, we found it more advantageous not to
perturb in small €. If we had perturbed also g,,., the metric
falls into that considered by Vigeland ef al. [94] (see Sec.
VI A of [40] for the relation between the metrics in
Vegeland et al. [94] and Johannsen [40], with the latter
same as taking the original CY metric in Eq. (2.1) and
taking the limit A3 — A;A,). We do not explicitly show
the expression for the refined metric under the small
deviation approximation as the expression itself is quite
lengthy and not illuminating. We consider below two
example values of n (n =—-1 and n =1) for two BH
spacetimes: braneworld and Kerr-Sen. The mapping func-
tions 8.4; and &f for these two BHs in the case of n = 0 can
be found in Egs. (A4) and (A24).

l.n=-1
We first consider the case with n = —1. Let us first focus
on studying the braneworld BH. The mapping functions are
given by
(8A0,8A,.8A5,6A5,8f) = (—=p,—p.—B.B.0). (B2)
We can then try to construct the braneworld BH by
substituting the above mapping of 6.4; to the CY metric

that is expanded and valid to O(e). We found that the
outcome metric is exactly the same as the original

true

original CY

refined metric (n=-1) |

refined metric (n=1)

braneworld BH metric even though we have kept only
to O(e) (see the left panel of Fig. 7). This is because the
correction to Kerr enters linearly in the braneworld BH
[except for g,. which we do not expand in small ¢, see
Eq. (2.3)] and 6.4; and §f are constants (so the expressions
become exact even if one expands about » = o). Thus, this
new parametrization works at least for describing the
braneworld BH.

This approach with n = —1 may not work for other
metrics. For a Kerr-Sen BH with

(6A9.6A,,6A,,6A5,6f)

[ 4bMP 2br(A-2Mr)
O\ @2+ a4

,—2br,2br,2brA>, (B3)

we find

1

91t — Gk X F )

(B4)
where g,  is the (7, t) component of the Kerr metric. Thus,
g,, diverges at the Kerr horizon where A = 0. The result for
—¢,, 1s shown in the right panel of Fig. 7 where we expand
5A, and 5.A; about r = oo and keep up to O(1/r?). Notice
there is indeed a divergence close to the Kerr horizon
(r =1.44M). For the braneworld BH case, a specific
combination of 5A; eliminates A? in the denominator
and prevents the metric from diverging at A =0.
Indeed, when 6.4, = A, = §A, = —6As, as in the case
of the braneworld BH, we find

AsZ

9 — 9Guk = _75 + 0(62)’ (BS)

and thus no divergence. Similar behavior can be seen for
the Hayward, Bardeen Ghosh, and Kalb-Ramond BHs.

20 22 24

r [M]

18 26

14 16 18

r [M]

20

FIG. 7. Left: comparison of —g,, for the braneworld BH with the true one (blue solid), the original CY metric with truncated A; (red
dashed), and the refined metric under small-deviation approximation for n = —1 (green dashed) and n = 1 (black dashed). We chose the
parameters as a = 0.9M, # = 0.1M? and § = z/2. Right: similar to the left panel but for the Kerr-Sen BH. We chose the parameters as

a=09M,b=0.1M and 0 = z/2.
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2.n=1

Next, let us study the case with n = 1. In this case, we
find

91t — G,k X F (B6)

As before, let us first focus on the braneworld example.
6A; for the second approach is given by

p B B P

_P’_P’_P’P>‘ (B7)

(6Ag,8A1,6A,,8A5) = (
Substituting this to the CY metric expanded to O(e), we
find that it matches with the original braneworld BH metric
exactly, similar to the n = —1 case. The above S5A;
mapping can be expanded about r = co as

5./40 - 5A1 - 6"42 - —5./45
p_4pM | 2 —6M7) O(E) (BS)

7!

r4 ’,5 r6

The left panel of Fig. 7 contains —g,, with n = 1. Notice
that although the divergence has been removed, the result is
not very accurate near the horizon where the large-r
expansion breaks down.

Let us next look at Kerr-Sen. The mapping for the radial
functions is given by

(8A0.6A,.645.5As.5f)
- 4bMr*  2br(A —2Mr)
(@AY (@)

2br 2br 2br
9’ A2 b Az b A .
(B9)

We expand this about r = oo and keep up to 3rd order from
the leading. The right panel of Fig. 7 also includes —g,, with
n = 1. Notice that, unlike the n = —1 case, the divergence
is now absent, though the result has some deviation from
the true one for smaller r. Given these results, we conclude
that although the small-deviation approximation works to
remove the divergence when 7 is chosen appropriately, the
rescaling approach in Sec. III seems to work better in terms
of reproducing true metrics.

APPENDIX C: IMAGINARY QNM FREQUENCY
FOR BRANEWORLD BLACK HOLE

Let us study the imaginary QNM frequencies for brane-
world BHs in more detail. Figure 8 shows the comparison
between the analytic estimate given in Sec. VA and the
numerical values in [73]. The former is given by

(C1)

with the dimensionless spin value of y = 0.67. On the other
hand, we can fit the numerical values in a quartic poly-
nomial in the tidal charge and find

P11 4£0.0413x — 0.202x2 + 0.171x3 — 0.0558x*
wr g

(C2)

with x = (—f3/M?). Interestingly, the numerical imaginary
QNMs increase near f ~ 0, which is qualitatively consistent
with the analytic finding in Eq. (CIl). Though quantita-
tively, the analytic and numerical behaviors do not match as
can be seen by the difference in the coefficients of the linear
terms in Eqs. (C1) and (C2). We note that a similar behavior
is seen for scalar Gauss-Bonnet gravity where the imagi-
nary part of the QNM frequency for BHs is not well
captured by the analytic eikonal approximation [74]. This
may indicate a limitation in these analytic approaches on
the imaginary QNM frequencies.

1.02 :
1.01/
1.00f~=""" "=~ -

y . 099}
°13 o8

— analytic, full metric BN N

0.97F ® numerical RN

----- fit
096}

0.95 - - - -
0.0 0.2 04 0.6 0.8 1.0

FIG. 8. Similar to Fig. 5 but focusing on the imaginary QNMs
with the analytic estimate given in Eq. (C1). We also present a fit
for the numerical QNMs given in Eq. (C2).
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