
Regularizing parametrized black hole spacetimes with Kerr symmetries

Kent Yagi ,
1
Samantha Lomuscio ,

1,2
Tristen Lowrey ,

1
and Zack Carson

1

1
Department of Physics, University of Virginia, P.O. Box 400714,

Charlottesville, Virginia 22904-4714, USA
2
Applied Physics Laboratory, Johns Hopkins University,

Laurel, Maryland 20723-6099, USA

(Received 14 November 2023; accepted 19 January 2024; published 5 February 2024)

Parametrized Kerr spacetimes allow us to test the nature of black holes in model-independent ways.

Such spacetimes contain several arbitrary functions and, as a matter of practicality, one Taylor expands

them about infinity and keeps only to finite orders in the expansion. In this paper, we focus on the

parametrized spacetime preserving Killing symmetries of a Kerr spacetime and show that an unphysical

divergence may appear in the metric if such a truncation is performed in the series expansion. To remedy

this, we redefine the arbitrary functions so that the divergence disappears, at least for several known black

hole solutions that can be mapped to the parametrized Kerr spacetime. We propose two restricted classes

of the refined parametrized Kerr spacetime that only contain one or two arbitrary functions and yet can

reproduce exactly all the example black hole spacetimes considered in this paper. The Petrov class

of the parametrized Kerr spacetime is of type I while that for the restricted class with one arbitrary

function remains type D. We also compute the ringdown frequencies and the shapes of black hole

shadows for the parametrized spacetime and show how they deviate from Kerr. The refined black hole

metrics with Kerr symmetries presented here are practically more useful than those proposed in previous

literature.

DOI: 10.1103/PhysRevD.109.044017

I. INTRODUCTION

Today, general relativity (GR) has been extensively
tested and has passed every test with flying colors. GR
has been studied with e.g. solar system experiments [1,2]
and binary pulsar observations [3,4] that probe gravity in
the weak and/or nondynamical field regime. Recent obser-
vations of gravitational waves [5–11], and black hole (BH)
shadows [12–15] can test gravity in the strong and/or
dynamical field regime.
An important consequence of GR is the BH no-hair

theorem [16,17]. This theorem states that isolated, sta-
tionary, uncharged BHs that are regular outside the event
horizon are uniquely characterized by the Kerr metric.
Once we go beyond GR, however, BH solutions differ
from Kerr in general. Moreover, even within GR, there are
many BH mimickers known, such as boson stars and
gravastars (see e.g. [18] for a review), that are compact
exotic objects. Properties of BHs and the no-hair theorem
have been tested through BH shadows [12–15], orbits of
supermassive BH stellar companions [19–21], BH obser-
vations through x-rays [22–26], and gravitational waves
from binary BH mergers through inspiral [10,11,27] and
ringdown [28–33].
An efficient way to test the nature of BHs is to use

a parameterically-deformed spacetime that can capture

deviations from Kerr in a theory-agnostic way [34–51].

For example, the first non-Ricci-flat parametrized

Kerr spacetime was constructed by Vigeland, Yunes

and Stein [37] where they required the spacetime to

perturbatively possess the Killing symmetries of the

Kerr spacetime (that we refer to as Kerr symmetries

throughout this paper). This spacetime thus possesses a

Carter-like constant and makes the Hamilton-Jacobi

equation separable. This work was later extended by

Johannsen [40] who treated deviations from Kerr to be

exact (without a perturbative scheme) and was further

generalized by two of the authors of this paper [41] that

allowed an extra arbitrary function of the radial coordi-

nate. A similar analysis was carried out by Papadopoulos

and Kokkotas [42,43]. Konoplya et al. [47] studied

a parametrized Kerr spacetime that admits the separ-

ability on both Hamilton-Jacobi and Klein-Gordon

equations while Lima Junior et al. [49] constructed a para-

meterically-deformed rotating BH spacetime with a sepa-

rable Hamilton-Jacobi equation through a modified

Newman-Janis algorithm. Chen [44] constructed a

parametrized Kerr spacetime with Kerr symmetries by

relaxing the Z2 symmetry of spacetime while Delporte

et al. [50] derived the metric without the circularity of

spacetime.
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In this paper, we focus on the parametrized rotating BH
spacetime with Kerr symmetries constructed by Carson and
Yagi (CY) [41] that includes the one by Johannsen [40].
There are several arbitrary functions of the radial coor-
dinate r in this spacetime. Practically, these functions are
Taylor expanded about infinity with Taylor coefficients
becoming deviation parameters away from Kerr. Some of
these deviation parameters can be removed through the
redefinition of the BH mass and spin or constrained by
imposing observational bounds from e.g. solar system
experiments. When comparing with other observations,
we typically keep a few leading parameters to constrain
them. Here, we point out that, when one truncates the
Taylor series in the arbitrary functions, we sometimes find
an unphysical divergence in the metric which may make the
use of such metrics problematic to probe the nature of BHs
through observations.
Here, we show such pathological behaviors in the

original CY metric, taking a braneworld BH as an example,
and demonstrate that a simple redefinition of the arbitrary
functions can remove the divergence, at least for several
example BH metrics studied in this paper. The refined
metric (summarized in Sec. I A) has five arbitrary functions
of r in total (same number as the original CY metric in [41]
while Johannsen’s metric has four arbitrary functions in r
[40]). We propose two restricted classes (class I with one
arbitrary function and class II with two arbitrary functions)
that can reproduce several known rotating BH spacetimes
in theories beyond GR when the arbitrary functions are
specified appropriately. We then study some of the proper-
ties and outcomes of the refined parametrized Kerr space-
time. We first show that the Petrov type of the parametrized
Kerr spacetime, including the restricted class II, is of type I,
while that of restricted class I is of type D. We next study
BH observables, namely the ringdown frequencies and the
shapes of BH shadows as specific examples. We show how
such observables for the parametrized Kerr spacetime
deviate from the Kerr case.
The rest of the paper is organized as follows. In Sec. I

A, we provide a summary of the refined parametrized Kerr
spacetime. In Sec. II, we review the original parametrized
Kerr BH proposed in [41]. We then develop in Sec. III
refined parametrized Kerr BHs by removing pathological
behaviors. In Sec. IV, we study the Petrov type of the
refined parametrized metric. In Sec. V, we compute the
quasinormal mode (QNM) frequencies and the shape of
the BH shadow (or photon rings). We make our con-
clusions in Sec. VI. We use the geometric units of
G ¼ c ¼ 1.

A. Summary of refined parametrized Kerr metric

We summarize here the refined parametrized BH space-
time. The final form of the metric is given by

ds2 ¼ −
Σ̃A5ðA5 − a2A2

2
sin2θÞ

ρ4
dt2

þ 2aA5ðA5 − A0ÞΣ̃sin2θ
ρ4

dtdϕ

þ Σ̃sin2θA5ðA2

1
− a2A5sin

2θÞ
ρ4

dϕ2

þ Σ̃

�

dr2

A5

þ dθ2
�

; ð1:1Þ

with

ρ4≡a4A2

2
A5sin

4θþa2sin2θðA2

0
−2A0A5−A2

1
A2

2
ÞþA2

1
A5;

ð1:2Þ

Σ̃≡ Σþ fðrÞ þ gðθÞ; ð1:3Þ

Σ ¼ r2 þ a2cos2θ; ð1:4Þ

Δ ¼ r2 − 2Mrþ a2: ð1:5Þ

Here, AiðrÞ, fðrÞ and gðθÞ are arbitrary functions of r and θ
while M is the BH mass and a is the spin parameter. The
above metric reduces to Kerr in the limit

ðA0; A1; A2; A5; Σ̃Þ→ ðr2 þ a2; r2 þ a2; 1;Δ;ΣÞ: ð1:6Þ

The arbitrary functions can further be expanded about
infinity as

AiðrÞ≡ r2
�

1þ a2

r2
þ
X

∞

n¼1

αin

�

M

r

�

n
�

; ði ¼ 0; 1Þ; ð1:7Þ

A2ðrÞ≡ 1þ
X

∞

n¼1

α2n

�

M

r

�

n

; ð1:8Þ

A5ðrÞ≡ r2
�

1 −
2M

r
þ a2

r2
þ
X

∞

n¼1

α5n

�

M

r

�

n
�

; ð1:9Þ

fðrÞ≡ r2
X

∞

n¼1

ϵn

�

M

r

�

n

; ð1:10Þ

gðθÞ≡M2
X

∞

n¼0

γnPnðcos θÞ; ð1:11Þ

where Pn is the Legendre polynomial. The above metric
reduces to that of Johannsen [40] (with the rescaled radial
functions) in the limit A0 → A1A2.
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We provide below metrics within two restricted classes
whose metrics are simpler than the above with less arbitrary
functions and yet contain several examples of known BH
spacetimes (the mapping between the refined parametrized
Kerr metrics and the example BH spacetimes can be found
in Appendix A):
(1) restricted class (I): A0 ¼ A1 ¼ r2 þ a2, A2 ¼ 1,

f ¼ 0, g ¼ 0 arbitrary function: A5ðrÞ example:
braneworld [52], Hayward [53], Bardeen [54],
Ghosh [55], Kalb-Ramond [56]

ds2 ¼ −
A5 − a2sin2θ

Σ
dt2

−
2asin2θðr2 þ a2 − A5Þ

Σ
dtdϕ

þ ðr2 þ a2Þ2 − a2A5sin
2θ

Σ
sin2θdϕ2

þ Σ

�

dr2

A5

þ dθ2
�

: ð1:12Þ

(2) restricted class (II): A0 ¼ A1 ¼ r2 þ a2 þ f,
A2 ¼ 1, g ¼ 0 arbitrary functions: A5ðrÞ, fðrÞ
example: braneworld [52], Hayward [53], Bardeen
[54], Ghosh [55], Kalb-Ramond [56], Kerr-Sen [57]

ds2 ¼ −
A5 − a2sin2θ

Σ̃
dt2

−
2asin2θðr2 þ a2 þ f − A5Þ

Σ̃
dtdϕ

þ ðr2 þ a2 þ fÞ2 − a2A5sin
2θ

Σ̃
sin2θdϕ2

þ Σ̃

�

dr2

A5

þ dθ2
�

; ð1:13Þ

Σ̃ ¼ Σþ f: ð1:14Þ

II. ORIGINAL PARAMETRIZED KERR

SPACETIME

We begin by reviewing the original parametrized BH
spacetime with Kerr symmetries developed in [41] by two
of the authors. The metric that preserves Kerr symmetries
(which we call the CY metric hereafter) is given by

1

ds2 ¼ −
Σ̃ðΔ − a2A2sin

2θÞ
ρ̃4

dt2

−
2aΣ̃sin2θ½ða2 þ r2ÞA0 − Δ�

ρ̃4
dtdϕ

þ Σ̃sin2θ½ða2 þ r2Þ2A1 − a2Δsin2θ�
ρ̃4

dϕ2

þ Σ̃

�

dr2

A5Δ
þ dθ2

�

; ð2:1Þ

where a is the object’s spin, AiðrÞ is an arbitrary function
of r while

ρ̃4 ¼ a4A2sin
4θ þ ða2 þ r2Þ2A1

þ a2ða2 þ r2Þ
�

a2 þ r2

Δ
ðA2

0
−A1A2Þ − 2A0

�

sin2θ:

ð2:2Þ

The above metric reduces to the Kerr BH whenAi → 1 and
fðrÞ → 0, while it reduces to the Johannsen metric [40] in

the limit A2

0
→ A1A2.

The CY metric [41] exhibits a pathology in certain
situations. The metric itself consists of five functions of the
radial coordinate r that capture the deviations from Kerr.
When mapping this metric to existing beyond-GR theories,
these functions are expanded about r ¼ ∞. The expansion
coefficients represent the deviation parameters from Kerr.
Naturally, these are infinite expansions, so for practical
purposes, we truncate the expansion so as to have a finite
number of beyond-Kerr deviation parameters. This trunca-
tion can introduce pathological behavior, namely a non-
physical divergence, into the spacetime.
To put the above in context, let us now consider a BH in

the Randall-Sundrum braneworld model [58,59] as an
example. The braneworld scenario is an extra dimension
model motivated by e.g. string theory. A rotating BH
solution in this model is given by [52]

ds2 ¼ −

�

1 −
2Mr − β

Σ

�

dt2 − 2
að2Mr − βÞ

Σ
sin2θdtdϕ

þ sin2θ

�

a2ð2Mr − βÞ
Σ

sin2θ þ a2 þ r2
�

dϕ2

þ Σ

�

dr2

β þ Δ
þ dθ2

�

: ð2:3Þ

Here β is the tidal charge and the above solution reduces to
the Kerr metric in the limit β → 0. This metric can be
mapped to the CY metric in Eq. (2.1) as

ðA0;A1;A2;A5Þ¼
�

Δ

Δþβ
;

Δ

Δþβ
;

Δ

Δþβ
;
Δþβ

Δ

�

; ð2:4Þ

1
In the original CY metric, arbitrary radial functions were

referred to as AiðrÞ. Because A1 and A2 only enter quadratically,
we redefine the radial functions as ðA0;A1;A2;A5Þ ¼
ðA0; A

2

1
; A2

2
; A5Þ.
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and f ¼ g ¼ 0. We can further expand the above functions
about infinity to yield

A0¼1−
β

r2
−
2βM

r3
þβða2þβ−4M2Þ

r4
þO

�

M5

r5

�

; ð2:5Þ

A1 ¼ 1 −
β

2r2
−
βM

r3
þ βð4a2 þ 3β − 16M2Þ

8r4
þO

�

M5

r5

�

;

ð2:6Þ

A2 ¼ 1 −
β

2r2
−
βM

r3
þ βð4a2 þ 3β − 16M2Þ

8r4
þO

�

M5

r5

�

;

ð2:7Þ

A5 ¼ 1þ β

r2
þ 2βM

r3
þ 4βM2 − a2β

r4
þO

�

M5

r5

�

: ð2:8Þ

The left panel of Fig. 1 compares −gtt of the braneworld
BH with the corresponding CY metric for a certain choice
of parameters. Notice that the latter diverges at r ∼ 1.45M,
which is close to the event horizon location for Kerr in GR.
To check whether this divergence is not an artifact of bad
coordinates, we also show the profile for the Kretschmann

invariant K ¼ RαβμνR
αβμν in the right panel of Fig. 1 that is

a gauge invariant quantity. Observe that it also shows a
divergence at the same location as −gtt, which means that
the divergence cannot be eliminated by a coordinate
transformation. Though since this divergence is absent in
the true braneworld BH metric, this is a pathology in the
original CY metric. We also note that such a divergence
arises in other example BH spacetimes if we use the
truncated expansion of Ai, such as Kerr-Sen as shown
in Fig. 2. Here,Ai are expanded about r ¼ ∞ and truncated

at OðM4=r4Þ, similar to the braneworld example.
What is the origin of this divergence? To address this, we

take a look at gtt in Eq. (2.1) and use the full expression for
Ai for the braneworld BH in Eq. (2.4). One can show that

both the numerator and denominator are proportional to Δ2

which cancels out. However, when we use the approximate
expression for Ai in Eqs. (2.5)–(2.8), this cancellation is
lost and the denominator vanishes when Δ ≈ 0, namely the
location of the Kerr horizon.

III. REGULARIZING THE PARAMETRIZED

KERR SPACETIME

We now show that a simple redefinition of the arbitrary
radial functions remedies the pathological behavior in the
original parametrized Kerr spacetime mentioned in the
previous section. Another approach is to assume deviations
from Kerr to be small and treat them perturbatively as done
in [37]. We have successfully removed the divergence in
the original CY metric for braneworld and Kerr-Sen BHs.
In fact, we could reproduce the former exactly even within
the small deviation approximation, while there was some
noticeable difference between the true and the new refined
metric for the latter. We will detail this approach in
Appendix B and present the results in Fig. 7.

A. Metric

To remedy the pathologies discussed in the previous
section, we perform a simple rescaling of the radial functions.
The idea is to factorΔ out of theAiðrÞ functions themselves
to cancel out the Δ in the denominator of the metric
components explicitly. This will therefore eliminate the
divergence at the Kerr horizon. We found that the following
redefinitionof the radial functions fromAi toAiworks at least
for the example BH metrics considered in this paper:

ðA0;A1;A2;A5Þ¼
�

ΔA0

ðr2þa2ÞA5

;
ΔA2

1

ðr2þa2Þ2A5

;
ΔA2

2

A5

;
A5

Δ

�

:

ð3:1Þ

The ðr2 þ a2Þ dependence in the redefinition is to absorb the
same factor in the original CYmetric. Further rescaling byA5

true

original CY

re ned metric

1.4 1.6 1.8 2.0 2.2 2.4 2.6

– 0.4

– 0.2

0.0

0.2

r [M]

–
g
tt

1.4 1.6 1.8 2.0 2.2 2.4 2.6
0.1

1

10

100

1000

r [M]

K

FIG. 1. Left: comparison of −gtt for the exact braneworld BH (blue solid), the original CYmetric withAi given in Eqs. (2.5)–(2.8) (red

dashed), and the refined parametrized BH metric with Ai in Eq. (3.2) (green dashed). We chose the parameters as a ¼ 0.9M, β ¼ 0.1M2,
and θ ¼ π=2. The left edge of r ¼ 1.3M corresponds to the event horizon. Observe that the original CY metric has an unphysical
divergence which is remedied in the refined metric. Right: similar to the left panel but for the Kretschmann invariant, showing that the
unphysical divergence in the original CY metric is not a gauge artifact.
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ismotivated by the following observation.We found that with
the simple rescaling by Δ alone, the new metric components
haveA5 in the denominator, thus themetric after thisΔ scaling
diverges at A5 ¼ 0, corresponding to the location of the true
event horizon.
The refined metric with these new radial functions Ai is

given in Eq. (1.1) with the Kerr limit shown in Eq. (1.6).
Notice that the new metric is slightly simpler than the
original CY metric. Similar to the latter, one can expand Ai

about r ¼ ∞ as in Eqs. (1.7)–(1.11).
Let us now apply the refined metric to the braneworld

BH example. The mapping for the Ai functions is given by

ðA0; A1; A2; A5Þ ¼ ðr2 þ a2; r2 þ a2; 1;Δþ βÞ: ð3:2Þ

Observe that the only function that is different from Kerr is
A5, which is a simple quadratic function in r. This means
that the asymptotic series expansion in Eq. (1.9) truncates
at a finite order and we can recover the branworld BH
metric exactly. This is explicitly demonstrated in Fig. 1 for
braneworld and Fig. 2 for Kerr-Sen. Observe that the new
parametrized metric not only removes the artificial diver-
gence but also has a perfect agreement with the true metric.
The mapping of the new radial functions for each

example BH metric is shown in Appendix A. Similar to
the braneworld case, there is only one nonvanishing Taylor
coefficient in the series expansion for the arbitrary func-
tions in Eqs. (1.7)–(1.11) for Kalb-Ramond and Kerr-Sen
BHs. Thus, the series truncates at a relatively low order for
these BHs and one can recover the original metrics exactly.
For Hayward, Bardeen, and Ghosh BHs, the series does not
truncate at a finite order. However, the functions A0, A1, and
A2 are the same as the Kerr expressions for these example
BHs. When imposing these conditions, the refined metric
in Eq. (1.1) reduces to the one in Eq. (1.12). Then, the
metric has no unphysical divergence. Thus, we managed to
remove the divergence and have successfully “regularized”
the metric for all the example BHs listed in Appendix A.
Based on the mapping in Appendix A, we propose

restricted classes of the new parametrized metric that
should be easier to handle than the full metric with a

lower number of free functions. The first class is obtained
by taking the Kerr limit in all of the arbitrary functions
except for A5. This metric is given in Eq. (1.12) and
includes braneworld, Hayward, Bardeen, Ghosh, and Kalb-
Ramond BHs. The second class imposes the conditions
A0 ¼ A1, A2 ¼ 1, and g ¼ 0, and the metric is given in
Eq. (1.13). This restricted metric can describe e.g. Kerr-Sen
BH [57], together with all example BHs mentioned for the
first restricted class.
Finally, let us present the asymptotic behavior of the

metric for the refined parametrized BH spacetime with the
expansion in Eqs. (1.7)–(1.11). First, gtt and gtϕ behave as

gtt ¼ −1þ ð2þ 2α11 − α51 − ϵ1Þ
M

r
þO

�

M2

r2

�

; ð3:3Þ

gtϕ ¼ −ð2þ α01 − α51Þa
M

r
sin2θ þO

�

M2

r2

�

: ð3:4Þ

We can further redefine the mass M and the spin a to set
α01 ¼ α51 and α11 ¼ ðϵ1 þ α51Þ=2 without loss of general-
ity. Then, the asymptotic behavior of the metric compo-
nents becomes

gtt ¼ −1þ 2
M

r
þ 1

4

�

8α12 þ ϵ2
1
− 4ϵ2 − 2α51ðϵ1 þ 4Þ

þ α2
51
− 4α52 − 4g

�M2

r2
þO

�

M3

r3

�

; ð3:5Þ

grr ¼ 1þ ð2 − α51 þ ϵ1Þ
M

r
þO

�

M2

r2

�

; ð3:6Þ

gθθ ¼ r2
�

1þ ϵ1
M

r
þO

�

M2

r2

��

; ð3:7Þ

gϕϕ ¼ r2sin2θ

�

1þ ϵ1
M

r
þO

�

M2

r2

��

: ð3:8Þ

One could compare this with the asymptotic behavior
of the metric for a nonrotating object within the para-
metrized post-Newtonian (PPN) framework [60] and use
solar system bounds to constrain some of the parameters.
However, we do not impose such constraints in this paper
because Birkhoff’s theorem does not hold in general for
non-GR theories, so there is no guarantee the BH spacetime
can describe the exterior spacetime of stars.

B. Relation to Other Parameterized Kerr Spacetimes

We next discuss the relation between the refined metric
presented in this paper and some of the parametrized BH
spacetimes found in previous literature.
(1) Cardoso et al. [61]

Cardoso et al. [61] derived a parametrized
BH metric which is a generalization of the one

true

original CY

re ned metric

1.0 1.2 1.4 1.6 1.8 2.0

– 4

– 2

0

2

4

r [M]

–
g
tt

FIG. 2. Similar to the left panel of Fig. 1 but for a Kerr-Sen BH
with the parameters a ¼ 0.9M, b ¼ 0.1M and θ ¼ π=2.
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constructed by Johannsen and Psaltis [39]. The latter
took the seed nonrotating metric

ds2 ¼ −f̄ðrÞ½1þ h̄ðrÞ�dt2 þ ½1þ h̄ðrÞ� dr
2

f̄ðrÞ
þ r2ðdθ2 þ sin2θdϕ2Þ; ð3:9Þ

with f̄ ≡ 1–2M=r and applied a Newman-Janis
algorithm [62–64] to turn it into a rotating metric.
Cardoso et al. [61] generalized the seed nonrotating
metric to

ds2 ¼ −f̄ðrÞ½1þ h̄tðrÞ�dt2 þ ½1þ h̄rðrÞ�
dr2

f̄ðrÞ
þ r2ðdθ2 þ sin2θdϕ2Þ; ð3:10Þ

and found the following rotating metric via the
Newman-Janis transformation:

ds2 ¼ −Fð1þ htÞdt2 − 2a½H −Fð1þ htÞ�sin2θdtdϕ
þfΣþ ½2H −Fð1þ htÞ�a2sin2θgsin2θdϕ2

þΣ

�

1þ hr

Δþ hra
2sin2θ

dr2 þ dθ2
�

; ð3:11Þ

where

F≡1−
2Mr

Σ
; H≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þhtÞð1þhrÞ
p

; ð3:12Þ

and hi ¼ hiðr; θÞ.
We found that the refined parametrized metric for

the first restricted class in Eq. (1.12) is a special case
of the one found by Cardoso et al. [61] in Eq. (3.11).
If we take the nonrotating limit of the second
restricted metric in Eq. (1.12), we find

ds2 ¼ −
A5

r2
dt2 þ r2

A5

dr2 þ r2ðdθ2 þ sin2θdϕ2Þ:

ð3:13Þ

Therefore, if Eq. (1.12) can be constructed via the
Newman-Janis algorithm, the seed metric should

have the form 1þ h̄r ¼ ð1þ h̄tÞ−1. Indeed, we
found that the following relations turn Eq. (3.11)
into Eq. (1.12):

1þ hr ¼
1

1þ ht
; ht ¼ −

Δ − A5

Δ − a2sin2θ
: ð3:14Þ

(2) Papadopoulos and Kokkotas [42]
The new radial functions Ai and f in Eq. (1.1) are

similar to those in Papadopoulos and Kokkotas [42].

The relation between Ai here and APK
i in [42] is

ðAPK
1
; APK

2
; APK

3
; APK

4
; APK

5
Þ

¼
�

f þ r2; A5;−
a2A2

2

A5

;−
aA0

A5

;−
A2

1

A5

�

: ð3:15Þ

Because of the difference in the scaling of A5

appearing on the right-hand side of the above

mapping, APK
i for BH solutions beyond GR (for

example braneworld) in general contains a denom-
inator that is a function of r. This leads to an infinite
series when expanded about r ¼ ∞ so the metric in
Eq. (1.1) is more accurate (and can reduce to the
exact metric in some cases) than that in [42] for
the example metrics considered in this paper when

we use the expanded Ai or A
PK
i .

(3) Baines and Visser [51]
Another generalized Kerr spacetime metric was

devised by Baines and Visser [51] that preserves
Kerr symmetries and keeps the timelike Hamilton-
Jacobi and massive Klein-Gordon equations sepa-
rable. The line element is

ds2 ¼ −
Δ̃e−2Φ − a2sin2θ

Ξ
2 þ a2cos2θ

dt2 þ Ξ
2 þ a2cos2θ

Δ̃
dr2

þ ½Ξ2 þ a2cos2θ�dθ2

− 2a
Ξ
2 − Δ̃e−2Φ þ a2

Ξ
2 þ a2cos2θ

sin2θdtdϕ

þ ðΞ2 þ a2Þ2 − e−2ΦΔ̃a2sin2θ

Ξ
2 þ a2cos2θ

sin2θdϕ2;

ð3:16Þ

with arbitrary deviation functions Δ̃ðrÞ, ΦðrÞ, and
ΞðrÞ. We found the mapping between the refined
parametrized metric in Eq. (1.1) and that in
Eq. (3.16) as

ðA0;A1;A2;A5; fÞ
¼ ðe2Φða2 þΞ

2Þ; eΦða2 þΞ
2Þ; eΦ; Δ̃;−r2 þΞ

2Þ:
ð3:17Þ

Thus, the metric developed in [51] is a subclass of
the refined CY metric.

IV. PETROV TYPE

In this section, we study the Petrov type of the refined
parametrized BH spacetime. We first focus on the first
restricted class with the metric in Eq. (1.12). We will then
consider a more general parametrized metric.

A. Determining Petrov type

The Petrov type of spacetime can be determined by
constructing a null tetrad lμ, nμ, mμ, and m̄μ (a bar refers to
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complex conjugate) and computing the Newman-Penrose
Weyl scalars. These null vectors satisfy the normaliza-
tion lμnμ ¼ −1 and mμm̄μ ¼ 1 with all the other contrac-

tions to vanish. Below, we follow [65,66] to identify the
Petrov type.
When the following condition is satisfied, the spacetime

is said to be algebraically special (having at least one
degenerate principal null direction):

I3 ¼ 27J2: ð4:1Þ

Here

I ≡ 3Ψ2

2
− 4Ψ1Ψ3 þ Ψ4Ψ0; ð4:2Þ

J ≡ −Ψ3

2
þ 2Ψ1Ψ3Ψ2 þ Ψ0Ψ4Ψ2 −Ψ4Ψ

2

1
− Ψ0Ψ

2

3
; ð4:3Þ

where Ψi are the Newman-Penrose Weyl scalars:

Ψ0 ¼ Cαβγδl
αmβlγmδ; ð4:4Þ

Ψ1 ¼ Cαβγδl
αnβlγmδ; ð4:5Þ

Ψ2 ¼ Cαβγδl
αmβm̄γnδ; ð4:6Þ

Ψ3 ¼ Cαβγδl
αnβm̄γnδ; ð4:7Þ

Ψ4 ¼ Cαβγδn
αm̄βnγm̄δ; ð4:8Þ

for a Weyl tensorCαβγδ. In particular, for Petrov type D (and

II), I and J are nontrivial. On the other hand, the spacetime
is type I if Eq. (4.1) is not satisfied.
To determine the Petrov type further, we compute the

following scalar quantities:

K ≡Ψ1Ψ
2

4
− 3Ψ4Ψ3Ψ2 þ 2Ψ

3

3
; ð4:9Þ

L≡Ψ2Ψ4 −Ψ
2

3
; ð4:10Þ

N ≡Ψ
3

4
Ψ0 − 4Ψ2

4
Ψ1Ψ3 þ 6Ψ4Ψ2Ψ

2

3
− 3Ψ4

3
; ð4:11Þ

with Ψ4 ≠ 0. In particular, type D (and III) satisfies the
following condition with N ≠ 0:

K ¼ 0; N − 9L2 ¼ 0; ð4:12Þ

where K and N − 9L2 are invariant under a tetrad rotation.
To summarize, the spacetime is type D if Eqs. (4.1) and

(4.12) are satisfied for nonvanishing I and J. On the other
hand, the spacetime is type I if Eq. (4.1) is not satisfied.

B. Application to the refined parametrized metric

Let us now apply the above formalism to the refined
parametrized BH. Let us first consider restricted class I in
Eq. (1.12). We begin by finding the null tetrad for this
spacetime. For Kerr, a commonly-used null tetrad was
derived by Kinnersley [67]:

l
μ

ðKinÞ ¼
�

r2 þ a2

Δ
; 1; 0;

a

Δ

�

; ð4:13Þ

n
μ

ðKinÞ ¼
�

r2 þ a2

2Σ
;−

Δ

2Σ
; 0;

a

2Σ

�

; ð4:14Þ

m
μ

ðKinÞ ¼
1

ffiffiffi

2
p

ðrþ ia cos θÞ

�

ia sin θ; 0; 1;
i

sin θ

�

: ð4:15Þ

We will rotate these to construct a new tetrad such that
Ψ4 ≠ 0:

lμ ¼ l
μ

ðKinÞ; mμ ¼ m
μ

ðKinÞ þ l
μ

ðKinÞ;

nμ ¼ n
μ

ðKinÞ þ l
μ

ðKinÞ þm
μ

ðKinÞ þ m̄
μ

ðKinÞ: ð4:16Þ

The tetrad for the refined parametrized metric can be
obtained by simply performing the replacement

2Mr → r2 þ a2 − A5: ð4:17Þ

This is because the metric in Eq. (1.12) can be obtained by
performing the same transformation to the Kerr metric.
Having this tetrad at hand, one can compute the Weyl
scalars to yield

Ψ0 ¼ Ψ1 ¼ 0; ð4:18Þ

Ψ2 ¼ −
1

12Σ3
½12ðrþ iaμÞ2A5 − 6Σðrþ iaμÞA0

5
þ Σ

2A00
5
− 2μ2ðμ2 − 6Þa4

þ12irðμ2 − 2Þμa3 þ 4r2ð5μ2 − 3Þa2 − 12iμar3 − 2r4
�

; ð4:19Þ

Ψ3¼−
1

4Σ2ðrþ iaμÞ
�

12ðrþ iaμÞA5−6ΣA0
5
þΣðr− iaμÞA00

5
þ2iðμ2−6Þμa3þ2rð5μ2−6Þa2−10ir2μa−2r3

�

; ð4:20Þ

Ψ4 ¼ −
1

2Σðr − iaμÞ2
�

12A5 − 6ðr − iaμÞA0
5
þ ðr − iaμÞ2A00

5
þ 2ðμ2 − 6Þa2 − 8irμa − 2r2

�

; ð4:21Þ

where μ ¼ cos θ and a prime denotes the derivative with respect to r.
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Now we are ready to determine the Petrov type of the refined parametrized metric in the restricted class. First, we found

I ¼ 1

48Σ6

�

−12ðrþ iaμÞ2A5 þ 6Σðrþ iaμÞA0
5
− ΣA00

5
− 12ia3μ3rþ 2a4μ4 þ 24ia3μr

þ 12iaμr3 − 12a4μ2 − 20μ2a2r2aμrþ 12a2r2 þ 2r4
�

2; ð4:22Þ

J ¼ −
1

1728Σ9

�

−12ðrþ iaμÞ2A5 þ 6Σðrþ iaμÞA0
5
− ΣA00

5
− 12ia3μ3rþ 2a4μ4 þ 24ia3μr

þ 12iaμr3 − 12a4μ2 − 20μ2a2r2aμrþ 12a2r2 þ 2r4
�

3: ð4:23Þ

This leads to I3 − 27J2 ¼ 0. Next, we foundK ¼ 0while L
and N are nonvanishing and the latter two satisfying

N − 9L2 ¼ 0. This concludes the refined parametrized
metric in Eq. (1.12) is Petrov type D. Further, this means
the braneworld, Hayward, Bardeen, Ghosh, and Kalb-
Ramond rotating BHs are all type D. This is consistent
with the recent work in [68] that identified a general,
stationary, axisymmetric and asymptotically-flat spacetime
under Petrov type D which includes the refined metric here
under the first restricted class. This is also consistent with
the finding by Walker and Penrose [69] that any spacetimes
with Petrov type D allow integrability of the geodesic
equations.
We now discuss the Petrov type of a more general class

of the refined metric. For example, let us consider the
second restricted class in Eq. (1.13). Similar to the first
restricted class, one can construct the null tetrad based on
the Kennersley tetrad for Kerr by applying the following
replacement (apply the first replacement and then the
second one):

2Mr → r2 þ a2 − A5; r →

ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ f

q

: ð4:24Þ

We then compute the Weyl scalars Ψi. We found that, in
general, Eq. (4.1) is not satisfied. This means that the
second restricted class in Eq. (1.13) and the general refined
metric in Eq. (1.1) are type I. This further means that the
Kerr-Sen BH is type I.

V. BLACK HOLE OBSERVATIONS

We now explore how the refined parametrized Kerr
spacetime modifies observables from the Kerr case. In
particular, we study the QNM ringdown frequencies and
the shape of BH shadows.

A. Gravitational-wave ringdown

Following [70–72], we estimate the real and imaginary
part of QNM ringdown frequencies ωR and ωI for the
refined parametrized Kerr spacetime through the post-Kerr
formalism. Such a formalism makes use of the eikonal
approximation, in which ωR and ωI are associated with the

angular frequency Ω0 and the Lyapunov exponent γ0
(corresponding to the divergence rate of photon orbits
grazing the light ring) at the light ring r0 as

ωR ¼ 2Ω0 ¼ 2ðΩK þ δΩ0Þ; ð5:1Þ

ωI ¼ −
1

2
jγ0j ¼ −

1

2
jγK þ δγ0j: ð5:2Þ

Here

ΩK ¼ � M1=2

r
3=2
K � aM1=2

ð5:3Þ

is the angular frequency of the Kerr light ring at

rK ¼ 2M

	

1þ cos

�

2

3
cos−1

�

∓
a

M

��


; ð5:4Þ

where the upper (lower) sign corresponds to prograde
(retrograde) orbit, while

δΩ0 ¼ ∓

�

M

rK

�

1=2
�

hϕϕ �
�

rK

M

�

1=2

ðrK þ 3MÞhtϕ

þ ð3r2K þ a2Þhtt
�

=
�

ðrK −MÞð3r2K þ a2Þ
�

ð5:5Þ

is the correction to ΩK with hμν representing the metric

deviation away from Kerr on the equatorial plane at
θ ¼ π=2. Moreover,

γK ¼ 2
ffiffiffiffiffiffiffi

3M
p ΔKΩK

r
3=2
K ðrK −MÞ

ð5:6Þ

is the Lyapunov exponent for Kerr with ΔK ¼ r2K −

2MrK þ a2, while δγ0 is the non-Kerr correction given
in Eq. (18) of [71].
We next apply the refined CY metric with the specific

investigation in the refined classes outlined in Eqs. (1.12)
and (1.13). We can define small-deviation functions like
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Ai ¼ AKerr
i þ εδAi; f ¼ εδf; ð5:7Þ

where ε is a bookkeeping parameter to count the order of
deviation from Kerr. Notice in the case of the restricted
classes, only A5 and f are arbitrary deviation functions,
and we can truncate their respective series at infinity for
convenience. Assuming deviations from Kerr are small and
expanding the restricted metric on ϵ about 0, keeping to
OðϵÞ yields

gμν ¼ gKerrμν þ ϵhμν; ð5:8Þ

where

htt ¼ −
M

r

�

α51 − ϵ1 þ ðα52 þ 2ϵ1 − ϵ2Þ
M

r

þ ðα53 þ 2ϵ2 − ϵ3Þ
M2

r2
þO

�

M3

r3

��

; ð5:9Þ

htϕ ¼ aM

r

�

α51 − ϵ1 þ ðα52 þ 2ϵ1 − ϵ2Þ
M

r

þ ðα53 þ 2ϵ2 − ϵ3Þ
M2

r2
þO

�

M3

r3

��

; ð5:10Þ

hrr ¼ −
Mr3

Δ
2

�

α51 − ϵ1 þ ðα52 þ 2ϵ1 − ϵ2Þ
M

r

þ ðα53 − ϵ1χ
2 − 2ϵ2 − ϵ3Þ

M2

r2
þO

�

M3

r3

��

; ð5:11Þ

hθθ ¼ Mr

�

ϵ1 þ ϵ2
M

r
þ ϵ3

M2

r2
þO

�

M3

r3

��

; ð5:12Þ

hϕϕ¼Mr

�

ϵ1þϵ2
M

r
−ðα51χ2−ϵ1χ

2−ϵ3Þ
M2

r2
þO

�

M3

r3

��

;

ð5:13Þ

with χ ¼ a=M. Similarly, if we expand Eqs. (5.1) and (5.2)
on ε around 0 and keep to first order in ε, the QNM
corrections in the refined parametrized spacetime to first
order in each deviation parameter, and quadratic in spin are
given by

ωR ¼ ωKerr
R þ ϵ

M

�

27α51 þ 9α52 þ 3α53 − 18ϵ1 − 6ϵ2 − 4ϵ3

81
ffiffiffi

3
p þ 2ð54α51 þ 27α52 þ 12α53 − 27ϵ1 − 15ϵ2 − 17ϵ3Þ

729
χ

þ 297α51 þ 177α52 þ 95α53 − 126ϵ1 − 84ϵ2 − 142ϵ3

1458
ffiffiffi

3
p χ2

�

þOðϵ2; χ3Þ; ð5:14Þ

ωI ¼ ωKerr
I þ ϵ

M

�

33α51 − 11α52 − 14α53 − 64ϵ1 − 20ϵ2 þ 14ϵ3

972
ffiffiffi

3
p −

240α51 þ 122α52 þ 74α53 − 14ϵ1 þ 14ϵ2 − 83ϵ3

4374
χ

−
3162α51 þ 1712α52 þ 1031α53 − 350ϵ1 − 13ϵ2 − 1250ϵ3

26244
ffiffiffi

3
p χ2

�

þOðϵ2; χ3Þ: ð5:15Þ

Notice that one can easily reduce to restricted class I by
ϵi ¼ 0.
Figure 3 shows the fractional difference between

the corrections δωR made by restricted class I for three
example parameter combinations: ðα51;α52; α53Þ ¼ ð1; 0; 0Þ;
ð0; 1; 0Þ; ð0; 0; 1Þ.2 Unlike Eqs. (5.14) and (5.15) that are
obtained under the expansion about χ ¼ 0, for our calcu-
lations,we used the expressions for δωR and δωI that arevalid
to full order in χ (though we do not present such expressions
here as they are too lengthy). For the real frequency (left),

notice that the deviation becomes larger as we turn on
deviation parameters entering at lower orders. For the
imaginary frequency (right), we see some of the curves cross
zeroaswe increase χ.Wecompare these resultswith theupper
bound found from GW200129_065458 that puts the most
stringent bound out of all the gravitational-wave events found
so far [11]. The allowed parameter space from this event is
shown by the green shaded region.

3
Notice that curves for the

parameter combination of (1, 0, 0) and (0, 1, 0) go outside of
the allowed region in the real frequency plot and are thus ruled
out, while there are other combinations that are still viable.
For the imaginary part, the constraint is slightly weaker, but

2
As mentioned below Eq. (3.4), α51 can be absorbed into the

definition of the BH mass and spin, though here, we consider
the effect of this parameter as it is nonvanishing in some of the
example metrics in Appendix A.

3
The range of the spin is taken from Table XIII of [11].
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the analytic results from the post-Kerr formulationmay not be
accurate as we comment later.
Figure 4 is similar to Fig. 3 but for restricted class II.

Motivated by the Kerr-Sen BH in Appendix A 6, we vary

ðα51; ϵ1Þ. The fractional deviation for the parameter combi-

nation of ðα51; ϵ1Þ ¼ ð1; 1Þ is a linear combination of that

for (1, 0) and (0, 1). For the real frequency (left), the one for

(0, 1) is negative and thus the deviation for (1, 1) is the

smallest. A similar behavior is seen for the imaginary

frequency where e.g. the curve for (1, 1) goes to 0 when the

curves for (1, 0) and (0, 1) cross. Comparing these with

the bound from GW200129_065458, we see that the para-

meter choice of (1, 0) is ruled out from the real frequency

bound while there are other combinations that are still

allowed.
We now study the validity of the post-Kerr formalism

by taking the braneworld BH as an example, whose

QNM frequencies have been computed numerically in [73].

Figure 5 compares the normalized analytic QNM frequen-

cies within the post-Kerr formalism against the numerical

ones. For the former, we show the results using the exact

braneworld BH metric as well as using the series-expanded

metric in Eqs. (5.9)–(5.13) with all the deviation parameters

set to 0 except for α52 ¼ β=M2. For the real frequency, we

see that the analytic estimates are qualitatively in agreement

with the numerical ones, especially when the dimensionless
tidal charge jβj is small. This is expected as we work in the
small-deviation approximation for the post-Kerr formalism.
For the imaginary frequency, on the other hand, the
agreement between the analytic and numerical estimates
is rather poor.

4
In particular, the deviation from Kerr is

positive (mostly negative) for the analytic (numerical)
estimates (see Appendix C for further details). This
suggests that, while the real QNM frequencies for the
parametrized Kerr spacetime found via the post-Kerr
formalism may be reliable, the imaginary QNM frequency
results may not be accurate.

B. Black hole shadows

Let us now compute the photon rings, or the shape of BH
shadows, for the refined parametrized BH (the shape of BH
shadows for parametrized BHs and some of the example
spacetimes in Appendix A have been studied in e.g.
[13,41,56,75–87]). We begin by following [41,75], starting

FIG. 4. Similar to Fig. 3 but for restricted class II.

FIG. 3. Left; the fractional difference δωR=ωR for three different parameter combinations of restricted class I. Right: similar to the left
panel but for the absolute value of the imaginary components. We used the expressions that fully account for the BH spin and did not
work in the small spin approximation. We also present the bound from GW200129_065458 [11] (green shade).

4
We have checked that our post-Kerr calculation can correctly

reproduce Fig. 4 of [71] for the imaginary QNM frequency for the
Johannsen metric [40] and can produce results that are qualita-
tively in agreement with the imaginary QNM frequency for the
axial perturbation in Einstein-dilaton Gauss-Bonnet gravity [74].
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with the Hamilton-Jacobi function and Hamilton-Jacobi
equations respectively

S≡ −
1

2
μτ − Etþ Lzϕþ SrðrÞ þ SθðθÞ; ð5:16Þ

−
∂S

∂τ
¼ 1

2
gαβ

∂S

∂xα
∂S

∂xβ
; ð5:17Þ

for particle mass μ, proper time τ, orbital energy E, angular
momentum Lz, and generalized radial and polar functions
SrðrÞ and SθðθÞ, to yield

−μ2ða2cos2θþfþgþr2Þ

¼ 1

Δ

�

2a3A0ELz−
Δ

A5

ða2A2

2
L2
zþA2

1
E2Þ

þ a2A2

4
ΔE2sin2θ−2aA0ΔELzþ2aA0ELzr

2

þ A2

3
ΔL2

zcsc
2θþA5Δ

�

∂Sr

∂r

�

2

þΔ

�

∂Sθ

∂θ

�

2
�

: ð5:18Þ

It is now helpful to separate the Hamilton-Jacobi equations
using the separation constant

C ¼ −μ2ðf þ r2Þ − 1

A5

�

−a2L2
zA

2

2
þ 2aELzA0

−E2A2

1
þ A2

5

�

∂Sr
∂r

�

2
�

; ð5:19Þ

C ¼ a2E2sin2θ þ μ2ðgþ a2cos2θÞ − 2aELz

þ L2
zcsc

2θ þ
�

∂Sθ

∂θ

�

2

: ð5:20Þ

If one defines the Carter-like constant of motion

Q≡ C − ðLz − aEÞ2, a solution for SrðrÞ takes the form

SrðrÞ ¼ �
Z

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðrÞ
ΔA5ðrÞ

s

; ð5:21Þ

RðrÞ≡ Δ

A5

�

a2L2
zA

2

2
− 2aELzA0 þ E2A2

1

�

− a2E2 þ 2aELz − fμ2 − L2
z −Q − μ2r2; ð5:22Þ

where a difference in sign represents particles with pro-
grade and retrograde motion.
At this point, we can compute the generalized momenta

pα utilizing the expression

pα ¼
∂S

∂xα
; ð5:23Þ

where we are particularly interested in the radial momenta
given in both covariant and contravariant form:

pr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðrÞ
ΔA5ðrÞ

s

; pr ¼ � 1

Σ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A5ðrÞRðrÞ
Δ

r

: ð5:24Þ

Following [75], we now turn our attention to the impact
parameters x and y [88]

x ¼ −
ξ

sin ι
; y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηþ a2cos2ι − ξ2cot2ι

q

; ð5:25Þ

which describe the image plane from an observer’s point of
view at infinity and where ι is the inclination angle,

ξ≡ Lz=E, and η≡Q=E2. Notice the new invariant param-
eters ξ and η have been constructed entirely out of constants
of motion.
The photon rings of interest are described by the

solutions to these new parameters ξ and η. As these
constants of motion are conserved along null geodesics,
they can be solved in the special case of circular orbits for
simplicity. Here, the radial photon momentum pr found in
Eq. (5.24), as well as its radial derivative, must vanish.

Because Σ̃ and A5ðrÞ are both non-negative (at least when
deviations from Kerr are small), this results in the system of
equations

RðrÞ ¼ 0;
dRðrÞ
dr

¼ 0; ð5:26Þ

with the full reparametrized expression for RðrÞ of an
orbiting photon (μ ¼ 0) given by

FIG. 5. Real (red) and imaginary (blue) frequencies (normal-
ized by the Kerr values) for braneworld BHs as a function of the
dimensionless tidal charge with the dimensionless spin value of
χ ¼ 0.67. We compare our analytic estimate via the post-Kerr
formulation with numerical results in [73]. For the former, we use
the full braneworld BH metric (solid lines) and the series
expanded one in Eqs. (5.9)–(5.13) (dashed lines). Observe that
the analytic estimate is in good agreement with the numerical one
for the real frequency when jβj is small while the former is not an

accurate approximation to the latter for the imaginary frequency.
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RðrÞ ¼ 1

A5

�

A2

1
ðrÞΔ − 2aA0ðrÞΔξþ a2A2

2
ðrÞΔξ2

�

− a2Δþ 2aΔξ − Δη − Δξ2: ð5:27Þ

Figure 6 shows the shape of BH shadows for the refined
parametrized Kerr spacetime with several parameter combi-
nations for two spin choices: χ ¼ 0.5 and 0.998. For restricted

class I (top panels), we have kept the series in A5=r
2 in

Eq. (1.9) up to OðM3=r3Þ and chosen combinations:
ðα51;α52;α53Þ ¼ ð−1;0;0Þ; ð0;−1;0Þ; ð0;0;−1Þ; ð0;1;−1Þ,
together with the Kerr case. Notice we have chosen para-
meters to mostly 0 or −1. This is because the spacetime
becomes a naked singularity for certain combinations of α5i.
For example, if we keep only α51 and α52, the event horizon

exists only when jχj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α51 þ ðα2
51
=4Þ − α52

q

, so for

example, jχj ≤ 0.5 when ðα51; α52; α53Þ ¼ ð1; 0; 0Þ or (0, 1,
0). Of those plotted, we observe a pattern where singularly
attributing −1 to each sequential parameter increases the
radius of the shadow, with α51 ≠ 0 (α53 ≠ 0) giving the
largest (smallest). This is simply due to lower order terms in
the expansion of A5 at infinity giving larger contributions as
expected. Additionally, the combination that contains the
positive parameter, ðα51; α52; α53Þ ¼ ð0; 1;−1Þ, produces a
curve smaller than Kerr, implying a reductive nature to a

positive parameter choice, with α52 making a larger contri-
bution than α53. Notice also that, unlike the case of a Kerr BH
where the shape of the shadows distort as the spin gets closer
to the Kerr maximal value of 1, the shadow shapes of the
parametrized Kerr spacetime remainmostly spherical. This is
because χ ¼ 1 does not correspond to the extremal limit
anymore when α5i ≠ 0.
For restricted class II (bottom panels), we focus on

varying α51 and ϵ1 only and have chosen combinations
ðα51; ϵ1Þ ¼ ð−1; 0Þ; ð0; 1Þ; ð−1;−1Þ; ð0;−1Þ. We notice the
parameter ϵ1 increases the size of the image with positive
choices (and shrinks the image with negative choices),
which is the opposite of what happens when varying α51.
Moreover, allowing α51 and ϵ1 to exist simultaneously
reveals contributions from α51 are larger than those from ϵ1.
Furthermore, ϵ1 retains the shape of Kerr and only deviates
in size, as opposed to α51 (and α52, and α53 for class I)
which contributes to a deviation in both size and shape.
Namely, for ðα51; ϵ1Þ ¼ ð0;�1Þ, the shape of the shadows
distort like Kerr for a nearly extremal spin because the
event horizon location is not modified and jχj ¼ 1 remains
to be the extremal spin. For both classes, as concluded
previously in [41], deviations from Kerr are easily distin-
guishable from the exact Kerr result when the deviation
parameters are sufficiently large.

FIG. 6. Shapes of BH shadows (photon rings) about a medium spin χ ¼ 0.5 (left) and a high spin χ ¼ 0.998 (right), plotted for
example parameter combinations corresponding to restricted class I (top) and restricted class II (bottom) of the refined parametrized
spacetime. The inclination is fixed at the extreme case of i ¼ 90° in every scenario for demonstration purposes.
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VI. CONCLUSIONS

In this paper, we first pointed out that the parametrized
rotating BH spacetime with Kerr symmetries constructed
by Johansenn [40] and Carson and Yagi [41] may suffer
from unphysical divergence if the asymptotic series in the
asymptotic behavior of arbitrary functions are kept only to
finite orders. We then showed that a simple redefinition of
the arbitrary functions in the metric can cure the pathology,
at least for all the example metrics studied in this paper. We
further proposed two restricted classes of the refined para-
metrized Kerr metric that only contain one or two arbitrary
functions and can capture several known BH solutions in
theories beyond GR. We studied the Petrov type of the
refined parametrizedKerr spacetime and found that it is type
I, including the second restricted class, while it is type D for
the first restricted class. We also computed some observ-
ables, namely the ringdown frequencies and the shape of BH
shadows, and showed how they deviate from the Kerr case.
There are a few different avenues for future work. It

would be interesting to constrain the parametrized Kerr
spacetime through BH shadow observations, similar to
e.g. [15] that carried out a systematic survey of constraining
nonspinning parametrized BH spacetimes. Regarding con-
straints from ringdown, we compared the ringdown
frequencies for the parametrized Kerr spacetime for several
example parameter combinations against the bound from
GW200129_065458 [11]. It would be important to carry
out a more detailed survey to identify the regions in the
deviation parameter space that can be ruled out from
current gravitational-wave observations. One could also
use the inspiral information of gravitational waves to
constrain parametrized Kerr spacetimes [89–91]. For exam-
ple, the leading post-Netwonian correction to the gravita-
tional waveform arises from the modification to the
gravitational potential, which can be read off from the
ðt; tÞ component of the metric. One can follow calculations
in [90] to derive such corrections for the parametrized Kerr
spacetime presented here. One can further account for
corrections to the ringdown frequencies and carry out a
parameter estimation study as in [90] to derive constraints
from existing and future gravitational-wave observations.
On the other hand, it sounds challenging to find corrections
during the merger phase as it requires one to carry out
numerical simulations but there are no field equations that
parametrized Kerr metrics follow. It would also be inter-
esting to derive gravitational waveforms for extreme mass
ratio inspirals where a small compact object orbits the
parametrized Kerr spacetime [92] and study prospects of
probing such spacetime with future gravitational-wave
observations.
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APPENDIX A: MAPPING FUNCTIONS

In this appendix, we present the mapping functions
for the radial functions in the parametrized Kerr metric
for several example BH solutions.

5
gðθÞ ¼ 0 for all the

examples studied here. For each example spacetime, we
provide (i) the mapping with the original CY metric in
Eq. (2.1), (ii) the mapping with the refined, rescaled metric
in Eq. (1.1), (iii) nonvanishing Taylor coefficients in
Eqs. (1.7)–(1.11), and (iv) the mapping with the refined
metric under the small deviation approximation in Eq. (B1)
for n ¼ 0 (one can easily find the mapping for other n by
simply multiplying each function by Δ

n).

1. Braneworld

Metrics for BHs in braneworld follow the same form as
the Kerr-Newman solution with the electric charge Q with

the replacement Q2 ¼ β (a tidal charge that can take either
sign) [52].
(1) original CY mapping

ðA0;A1;A2;A5; fÞ

¼
�

Δ

Δþ β
;

Δ

Δþ β
;

Δ

Δþ β
;
Δþ β

Δ
; 0

�

; ðA1Þ

(2) refined mapping (rescaling)

ðA0; A1; A2; A5; fÞ ¼ ðr2 þ a2; r2 þ a2; 1;Δþ β; 0Þ;
ðA2Þ

(3) Taylor coefficients

α52 ¼
β

M2
; ðA3Þ

(4) refined mapping (small deviation, n ¼ 0)

ðδA0; δA1; δA2; δA5; δfÞ ¼
�

β

Δ
;
β

Δ
;
β

Δ
;−

β

Δ
; 0

�

:

ðA4Þ

5
There are other rotating BH solutions that can be mapped to

the refined parametrized metric presented in this paper. Extended
Kerr BH in [93] is one example. However, we do not include it in
this appendix since one of the radial functions cannot be
expanded in polynomials as in Eq. (1.9) because of the ex-
ponential dependence.
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2. Hayward

The metric for the Hayward BH is parametrized by g that controls the regularity of the BH [53].
(1) original CY mapping

ðA0;A1;A2;A5; fÞ ¼
�

Δ

�

r2 þ a2 −
2Mr4

r3 þ g3

�

−1

;Δ

�

r2 þ a2 −
2Mr4

r3 þ g3

�

−1

;

Δ

�

r2 þ a2 −
2Mr4

r3 þ g3

�

−1

;
1

Δ

�

r2 þ a2 −
2Mr4

r3 þ g3

�

; 0

�

; ðA5Þ

(2) refined mapping (rescaling)

ðA0; A1; A2; A5; fÞ

¼
�

r2 þ a2; r2 þ a2; 1; r2 þ a2 −
2Mr4

r3 þ g3
; 0

�

;

ðA6Þ

(3) Taylor coefficients (n is a positive integer)

α53nþ1 ¼ ð−1Þ3nþ12
g3n

M3n
; ðA7Þ

(4) refined mapping (small deviation, n ¼ 0)

ðδA0;δA1;δA2;δA5;δfÞ

¼
�

−
2g3M

r2Δ
;−

2g3M

r2Δ
;−

2g3M

r2Δ
;
2g3M

r2Δ
;0

�

: ðA8Þ

3. Bardeen

Similar to the Hayward BH, the metric for the Bardeen
BH is also parametrized by g that controls the regularity of
the BH [54].
(1) original CY mapping

ðA0;A1;A2;A5; fÞ ¼
�

Δ

�

r2 þ a2 −
2Mr4

ðr2 þ g2Þ3=2
�

−1

;Δ

�

r2 þ a2 −
2Mr4

ðr2 þ g2Þ3=2
�

−1

;

Δ

�

r2 þ a2 −
2Mr4

ðr2 þ g2Þ3=2
�

−1

;
1

Δ

�

r2 þ a2 −
2Mr4

ðr2 þ g2Þ3=2
�

; 0

�

; ðA9Þ

(2) refined mapping (rescaling)

ðA0;A1;A2;A5;fÞ

¼
�

r2þa2;r2þa2;1;r2þa2−
2Mr4

ðr2þg2Þ3=2 ;0
�

;

ðA10Þ

(3) Taylor coefficients

ðα53; α55; α57;…Þ ¼
�

−3
g2

M2
;
15g4

4M4
;−

35g6

8M6
;…

�

;

ðA11Þ

(4) refined mapping (small deviation, n ¼ 0)

ðδA0; δA1; δA2; δA5; δfÞ

¼
�

−
3g2M

rΔ
;−

3g2M

rΔ
;−

3g2M

rΔ
;
3g2M

rΔ
; 0

�

:

ðA12Þ

4. Ghosh

The metric for the nonsingular BH found by Ghosh is
parametrized by k that characterizes the mass profile [55].
(1) original CY mapping

ðA0;A1;A2;A5;fÞ¼
�

Δ

r2þa2−2Mre−k=r
;

Δ

r2þa2−2Mre−k=r
;

Δ

r2þa2−2Mre−k=r
;
r2þa2−2Mre−k=r

Δ
;0

�

; ðA13Þ
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(2) refined mapping (rescaling)

ðA0; A1; A2; A5; fÞ
¼ ðr2 þ a2; r2 þ a2; 1; r2 þ a2 − 2Mre−k=r; 0Þ;

ðA14Þ

(3) Taylor coefficients

ðα52;α53;α54;…Þ¼
�

2
k

M
;−

k2

M2
;
k3

3M3
;…

�

; ðA15Þ

(4) refined mapping (small deviation, n ¼ 0)

ðδA0; δA1; δA2; δA5; δfÞ

¼
�

−
2Mk

Δ
;−

2Mk

Δ
;−

2Mk

Δ
;
2Mk

Δ
; 0

�

: ðA16Þ

5. Kalb-Ramond

The metric for the Kalb-Ramond BH is parametrized by
the Kalb-Ramond parameter s and the Lorentz-violating
parameter Γ [56].
(1) original CY mapping

ðA0;A1;A2;A5; fÞ ¼
�

Δr
2

s

r2þ
2

s þ a2r
2

s − 2Mr
2þs
s þ r2Γ

;
Δr

2

s

r2þ
2

s þ a2r
2

s − 2Mr
2þs
s þ r2Γ

;

Δr
2

s

r2þ
2

s þ a2r
2

s − 2Mr
2þs
s þ r2Γ

;
r2þ

2

s þ a2r
2

s − 2Mr
2þs
s þ r2Γ

Δr
2

s

; 0

�

; ðA17Þ

(2) refined mapping (rescaling)

ðA0; A1; A2; A5; fÞ
¼ ðr2 þ a2; r2 þ a2; 1;Δþ r

2

s
ðs−1Þ

Γ; 0Þ; ðA18Þ

(3) Taylor coefficients (e.g. s ¼ 2)

α51 ¼
Γ

M
; ðA19Þ

(4) refined mapping (small deviation, n ¼ 0)

ðδA0;δA1;δA2;δA5;δfÞ

¼
�

−
r2−

2

sΓ

Δ
;−

r2−
2

sΓ

Δ
;−

r2−
2

sΓ

Δ
;
r2−

2

sΓ

Δ
;0

�

: ðA20Þ

6. Kerr-Sen

The metric for the Kerr-Sen BH is parametrized by b that
is related to the charge [57].
(1) original CY mapping

ðA0;A1;A2;A5; fÞ ¼
� ðr2 þ a2 þ 2brÞΔ
ðr2 þ a2ÞðΔþ 2brÞ ;

ðr2 þ a2 þ 2brÞ2Δ
ðr2 þ a2Þ2ðΔþ 2brÞ ;

Δ

Δþ 2br
;
Δþ 2br

Δ
; 2br

�

; ðA21Þ

(2) refined mapping (rescaling)

ðA0;A1;A2;A5;fÞ
¼ðr2þa2þ2br;r2þa2þ2br;1;Δþ2br;2brÞ;

ðA22Þ

(3) Taylor coefficients

ðα01; α11; α51; ϵ1Þ ¼
�

2b

M
;
2b

M
;
2b

M
;
2b

M

�

; ðA23Þ

(4) refined mapping (small deviation, n ¼ 0)

ðδA0;δA1;δA2;δA5;δfÞ

¼
�

−
4bMr2

ða2þr2ÞΔ;
2brðΔ−2MrÞ
ða2þr2ÞΔ ;−

2br

Δ
;
2br

Δ
;2br

�

:

ðA24Þ

APPENDIX B: SMALL-DEVIATION

APPROXIMATION

Another way to regularize the divergence in the original
CY metric is to treat deviations from Kerr to be small and
find a perturbative metric. Instead of parametrizing Ai
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directly, we split them into Kerr plus correction, expand
about a small deviation from Kerr, and keep to linear order
in the deviation. Namely, we consider the following:

AiðrÞ ¼ 1þ ϵΔnδAiðrÞ; fðrÞ ¼ ϵΔnδfðrÞ; ðB1Þ

where n takes integer values while ϵ is a book-keeping
parameter to count the order of corrections from Kerr.
Notice that if we use the full expression for δAi, the results
are the same for any n. The difference in n becomes
important when we use δAi expanded about r ¼ ∞. We
will expand the metric about ϵ ¼ 0 and only keep to linear
order. To keep the location of the event horizon to be the
non-Kerr one, for grr, we found it more advantageous not to
perturb in small ϵ. If we had perturbed also grr, the metric
falls into that considered by Vigeland et al. [94] (see Sec.
VI A of [40] for the relation between the metrics in
Vegeland et al. [94] and Johannsen [40], with the latter
same as taking the original CY metric in Eq. (2.1) and

taking the limit A2

0
→ A1A2). We do not explicitly show

the expression for the refined metric under the small
deviation approximation as the expression itself is quite
lengthy and not illuminating. We consider below two
example values of n (n ¼ −1 and n ¼ 1) for two BH
spacetimes: braneworld and Kerr-Sen. The mapping func-
tions δAi and δf for these two BHs in the case of n ¼ 0 can
be found in Eqs. (A4) and (A24).

1. n= − 1

We first consider the case with n ¼ −1. Let us first focus
on studying the braneworld BH. The mapping functions are
given by

ðδA0; δA1; δA2; δA5; δfÞ ¼ ð−β;−β;−β; β; 0Þ: ðB2Þ

We can then try to construct the braneworld BH by
substituting the above mapping of δAi to the CY metric
that is expanded and valid to OðϵÞ. We found that the
outcome metric is exactly the same as the original

braneworld BH metric even though we have kept only
to OðϵÞ (see the left panel of Fig. 7). This is because the
correction to Kerr enters linearly in the braneworld BH
[except for grr which we do not expand in small ϵ, see
Eq. (2.3)] and δAi and δf are constants (so the expressions
become exact even if one expands about r ¼ ∞). Thus, this
new parametrization works at least for describing the
braneworld BH.
This approach with n ¼ −1 may not work for other

metrics. For a Kerr-Sen BH with

ðδA0;δA1;δA2;δA5;δfÞ

¼
�

−
4bMr2

a2þr2
;
2brðΔ−2MrÞ

a2þr2
;−2br;2br;2brΔ

�

; ðB3Þ

we find

gtt − gtt;K ∝
1

Δ
2
; ðB4Þ

where gtt;K is the ðt; tÞ component of the Kerr metric. Thus,

gtt diverges at the Kerr horizon where Δ ¼ 0. The result for
−gtt is shown in the right panel of Fig. 7 where we expand

δA0 and δA1 about r ¼ ∞ and keep up to Oð1=r2Þ. Notice
there is indeed a divergence close to the Kerr horizon
(r ¼ 1.44M). For the braneworld BH case, a specific

combination of δAi eliminates Δ
2 in the denominator

and prevents the metric from diverging at Δ ¼ 0.
Indeed, when δA0 ¼ δA1 ¼ δA2 ¼ −δA5, as in the case
of the braneworld BH, we find

gtt − gtt;K ¼ −
A5Σ

r4
ϵþOðϵ2Þ; ðB5Þ

and thus no divergence. Similar behavior can be seen for
the Hayward, Bardeen Ghosh, and Kalb-Ramond BHs.

FIG. 7. Left: comparison of −gtt for the braneworld BH with the true one (blue solid), the original CY metric with truncated Ai (red
dashed), and the refined metric under small-deviation approximation for n ¼ −1 (green dashed) and n ¼ 1 (black dashed). We chose the

parameters as a ¼ 0.9M, β ¼ 0.1M2 and θ ¼ π=2. Right: similar to the left panel but for the Kerr-Sen BH. We chose the parameters as
a ¼ 0.9M, b ¼ 0.1M and θ ¼ π=2.
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2. n= 1

Next, let us study the case with n ¼ 1. In this case, we
find

gtt − gtt;K ∝
β

Δ
0
: ðB6Þ

As before, let us first focus on the braneworld example.
δAi for the second approach is given by

ðδA0; δA1; δA2; δA5Þ ¼
�

−
β

Δ
2
;−

β

Δ
2
;−

β

Δ
2
;
β

Δ
2

�

: ðB7Þ

Substituting this to the CY metric expanded to OðϵÞ, we
find that it matches with the original braneworld BH metric
exactly, similar to the n ¼ −1 case. The above δAi

mapping can be expanded about r ¼ ∞ as

δA0 ¼ δA1 ¼ δA2 ¼ −δA5

¼ −
β

r4
−
4βM

r5
þ 2βða2 − 6M2Þ

r6
þO

�

M7

r7

�

: ðB8Þ

The left panel of Fig. 7 contains −gtt with n ¼ 1. Notice
that although the divergence has been removed, the result is
not very accurate near the horizon where the large-r
expansion breaks down.
Let us next look at Kerr-Sen. The mapping for the radial

functions is given by

ðδA0; δA1; δA2; δA5; δfÞ

¼
�

−
4bMr2

ða2 þ r2ÞΔ2
;
2brðΔ − 2MrÞ
ða2 þ r2ÞΔ2

;−
2br

Δ
2
;
2br

Δ
2
;
2br

Δ

�

:

ðB9Þ

We expand this about r ¼ ∞ and keep up to 3rd order from
the leading. The right panel of Fig. 7 also includes−gtt with
n ¼ 1. Notice that, unlike the n ¼ −1 case, the divergence
is now absent, though the result has some deviation from
the true one for smaller r. Given these results, we conclude
that although the small-deviation approximation works to
remove the divergence when n is chosen appropriately, the
rescaling approach in Sec. III seems to work better in terms
of reproducing true metrics.

APPENDIX C: IMAGINARY QNM FREQUENCY

FOR BRANEWORLD BLACK HOLE

Let us study the imaginary QNM frequencies for brane-
world BHs in more detail. Figure 8 shows the comparison
between the analytic estimate given in Sec. VA and the
numerical values in [73]. The former is given by

ωI

ωI;K

¼ 1þ 0.134

�

−
β

M2

�

; ðC1Þ

with the dimensionless spin value of χ ¼ 0.67. On the other
hand, we can fit the numerical values in a quartic poly-
nomial in the tidal charge and find

ωI

ωI;K

¼ 1þ 0.0413x − 0.202x2 þ 0.171x3 − 0.0558x4;

ðC2Þ

with x ¼ ð−β=M2Þ. Interestingly, the numerical imaginary
QNMs increase near β ∼ 0, which is qualitatively consistent
with the analytic finding in Eq. (C1). Though quantita-
tively, the analytic and numerical behaviors do not match as
can be seen by the difference in the coefficients of the linear
terms in Eqs. (C1) and (C2). We note that a similar behavior
is seen for scalar Gauss-Bonnet gravity where the imagi-
nary part of the QNM frequency for BHs is not well
captured by the analytic eikonal approximation [74]. This
may indicate a limitation in these analytic approaches on
the imaginary QNM frequencies.

FIG. 8. Similar to Fig. 5 but focusing on the imaginary QNMs
with the analytic estimate given in Eq. (C1). We also present a fit
for the numerical QNMs given in Eq. (C2).
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