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DETERMINISTIC AND RANDOMIZED LOW-RANK MATRIX
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Abstract. We introduce a Generalized LU Factorization (GLU) for low-rank matrix approx-
imation. We relate this to past approaches and extensively analyze its approximation properties.
The established deterministic guarantees are combined with sketching ensembles satisfying Johnson--
Lindenstrauss properties to present complete bounds. Particularly good performance is shown for
the subsampled randomized Hadamard transform (SRHT) ensemble. Moreover, the factorization is
shown to unify and generalize many past algorithms, sometimes providing strictly better approx-
imations. It also helps to explain the effect of sketching on the growth factor during Gaussian
elimination.

Key words. low-rank approximation, spectrum preserving, kernel approximation, randomized
algorithms, deterministic algorithms
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1. Introduction. Many different problem domains produce matrices that can
be approximated by a low-rank matrix. In some cases such as a divide-and-conquer
approach to eigenproblems [2], there may be many large and small singular values
separated by a gap. In other cases such as identifying a low-rank subspace from noisy
data, we might expect there to be relatively few large singular values. Perhaps most
generically in applied problems, there is no pronounced gap, but the spectrum still
decays fairly quickly, and one might prefer to work with a more compact representation
when computing quantities such as matrix-vector products.

We next define some related properties which can be of interest to these problems.
The following definitions have appeared in the rank-revealing literature, such as in
[24, 15, 11, 16] in similar forms. Here and later A \in \BbbR 

m\times n is the matrix to be
approximated, its singular values \sigma 1 \geq \cdot \cdot \cdot \geq \sigma min(m,n) are sorted in descending order,
and Ak \in \BbbR 

m\times n is an approximation of A.

Definition 1.1 (low-rank approximation). If Ak satisfies \| A - Ak\| 2 \leq \gamma \sigma k+1(A)
for some \gamma \geq 1, it is a (k, \gamma ) low-rank approximation of A.

Definition 1.2 (spectrum preserving). If Ak satisfies \sigma j(A) \geq \sigma j(Ak) \geq 
\gamma  - 1\sigma j(A) for 1\leq j \leq k and some \gamma \geq 1, it is (k, \gamma ) spectrum preserving.

Many results in the rank-revealing literature [16, 14] use a strengthening of Defini-
tion 1.1, in which all singular values \sigma j(A - Ak) are bounded with respect to \sigma k+j(A).
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560 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

Definition 1.3 (kernel approximation). If Ak satisfies \sigma k+j(A)\leq \sigma j(A - Ak)\leq 
\gamma \sigma k+j(A) for 1\leq j \leq min(m,n) - k and some \gamma \geq 1, it is a (k, \gamma ) kernel approximation
of A.

In all of these definitions, if we assume Ak is rank k, then \gamma = 1 is optimal from
the truncated SVD, so all methods can be compared with this standard. Different
algorithms may end up representing Ak in different ways, but generally Ak is rep-
resented as a product of matrices which have at least one dimension much smaller
than those of the original A. Note that in this work we do not require Ak to be
rank k. Nevertheless, the rank of Ak will be chosen as a function of k in order to
compete with the truncated SVD of rank k, and this motivates the choice of nota-
tion. For the choices made in this paper, our bounds always limit rank(Ak) to at
most rank(Ak) = O(k \cdot polylog(n)). We also note that the approximation Ak can be
truncated to be rank k and maintain Definition 1.1. This is a well-known strategy in
the literature; for example, see section 6 of [32].

As we made the above definitions quite strong, and in particular we did not make
any assumption on \gamma , we will not prove that all our results satisfy them exactly. Dif-
ferent algorithms can approach them to different degrees, and these definitions can be
used as a measure of their quality. The bounds on singular values in Definitions 1.2
and 1.3 were first discussed in the context of deterministic rank-revealing factoriza-
tions, where in, e.g., [16] \gamma is a low degree polynomial in k and n. The algorithms in [3]
can also be made to satisfy them. In Definition 1.2, inequality \sigma j(A)\geq \sigma j(Ak) holds
for any Ak = PAQ, where P and Q are such that \sigma max(P )\leq 1 and \sigma max(Q)\leq 1, e.g.,
if P and Q are orthogonal projections, by the multiplicative Weyl inequality (3.4).
Some of our approximations Ak satisfy this, and some do not; we will not consider
this inequality further. In Definition 1.3, inequality \sigma k+j(A) \leq \sigma j(A - Ak) holds for
any Ak of rank k, by the additive Weyl inequality (3.6). Some of our Ak satisfy this,
and some do not; we will not consider this inequality further.

This paper has two main goals, both motivated by the history of low-rank factor-
izations. First, we show that many important low-rank factorizations can be viewed
as a generalized LU factorization followed by setting the Schur complement equal to
zero. We call this prototype algorithm GLU. Second, older research into low-rank
factorizations bounded more quantities than recent results on randomized algorithms.
In particular, Definitions 1.2 and 1.3 do not receive much discussion in randomized
algorithms. However, approximating the singular values of A is useful for detecting
a gap in the singular values and choosing accordingly the rank of the approximation.
We will provide bounds on \gamma in each of Definition 1.1, Definition 1.2, and Definition
1.3 for GLU. In doing this, we first derive sharp deterministic bounds for truncated
LU and QR factorizations in sections 3 and 5, and then in section 6 we complete the
bounds by using properties of random matrix ensembles.

Our GLU approximation is essentially based on a truncated LU factorization
that allows the leading block to be rectangular instead of square. Allowing the lead-
ing block to be rectangular enables much better low-rank approximation properties.
Given the matrix A \in \BbbR 

m\times n, let A11 be the leading l\prime \times l block which is assumed to
have full column rank so that l\prime \geq l, and let U \in \BbbR 

m\times m and V \in \BbbR 
n\times n be invert-

ible matrices. First we have an exact factorization of matrix A that is the natural
generalization of an LU factorization,

A=

\biggl( 

A11 A12

A21 A22

\biggr) 

=

\biggl( 

I
A21A

+
11 I

\biggr) \biggl( 

A11 A12

S(A11)

\biggr) 

,
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 561

where A+
11 is the Moore--Penrose pseudo-inverse of A11 and S(A11) =A22 - A21A

+
11A12

denotes the generalized Schur complement (see, e.g., [5]). By applying the sketching
matrices U and V and deleting the Schur complement, we get a low-rank factorization
that can have remarkably good properties. Defining \=A = UAV =

\bigl( \=A11
\=A12

\=A21
\=A22

\bigr) 

, and

assuming \=A11 has full column rank,

(1.1) Ak :=U - 1

\biggl( 

I
\=A21

\=A+
11

\biggr) 

\bigl( 

\=A11
\=A12

\bigr) 

V  - 1

is a complete mathematical description of our proposed GLU approximation. The
inverses may look daunting at first because they are large matrices, but we will see
that they are only tools to facilitate the analysis; actually the leading l\prime rows of U
and leading l columns of V are the only parts required.

We have emphasized that GLU factorization unifies many factorizations through
appropriate choices of the settings of U , V . We believe other choices of U and V dis-
cussed in this paper are novel and practical, as we illustrate in main results Theorem
6.6 and Theorem 6.9. That said, this paper will not argue that these novel instanti-
ations of GLU should necessarily be adopted over similar methods like the low-rank
factorization described in [7]. A comparison of the pros and cons is outside the scope
of this work, and we mainly want to emphasize that our algorithm is practical and
has a very general, transparent analysis.

The remainder of the introduction is divided into three sections for clarity. The
first and second aim to highlight our contributions. The third gives notation we adopt.

1.1. Unifying approach. GLU generalizes past low-rank LU factorizations in
two ways. First, it allows pre- and post-multiplication by matrices other than permu-
tations. Second, it allows for rectangular A11 when computing Schur complements.
Even without generalizing to rectangular A11, GLU encompasses several well-known
procedures. We provide examples to illustrate this and detailed derivations in section
4. Table 1 summarizes several deterministic and randomized approximation algo-
rithms. It displays separately the case when k \leq l = l\prime and the more general case
when k \leq l \leq l\prime , and it cites existing as well as new bounds on the spectral and
kernel approximations provided by these algorithms. Here we focus on identifying
that existing deterministic and randomized algorithms depend on the same matrix
factorizations.

In the case when k\leq l= l\prime , the rank-k approximation Ak becomes

Ak =U - 1

\biggl( 

Il
\=A21

\=A - 1
11

\biggr) 

\bigl( 

\=A11
\=A12

\bigr) 

V  - 1

=AV1(U1AV1)
 - 1U1A,(1.2)

where V1 contains the leading l columns of V , U1 contains the leading l rows of U , and
\=A=UAV . See (3.1) for more details. While l\geq k is always the case, in applications l
varies from being exactly k, as for deterministic algorithms, to being a polylog-factor
larger than k for randomized algorithms. Now we define some notation we will use
later. Let Q1 be the orthogonal factor obtained from the thin QR decomposition of
AV1, so Q1 is of dimensions m\times l. Let UQ1 = (

\=Q11

\=Q21
), where \=Q11 =U1Q1 is l\times l. The

approximation from (1.2) can be written as

Ak =AV1(U1AV1)
 - 1U1A

=Q1(U1Q1)
 - 1U1A.(1.3)
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562 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

Table 1

Summary of several deterministic and randomized algorithms for computing Ak, the low rank

approximation of a matrix A of dimensions m\times n. U1 is l\prime \times m, V1 is n\times l, and Q1 is the m\times l
orthogonal factor obtained from the thin QR decomposition of AV1. In the table, V1 permutation

and U1 permutation refer to V1 containing the leading l columns of a permutation matrix V , U1

containing the leading l\prime rows of a permutation matrix U, respectively.

Existing algorithms: Instances of \bfitV \bfone ,\bfitU \bfone and the approximation \bfitA \bfitk for \bfitk \leq \bfitl = \bfitl \prime ,

Ak =AV1(U1AV1)
 - 1U1A

Deterministic algorithms and bounds Randomized algorithm and bounds

QR with column selection, \bfitk = \bfitl = \bfitl \prime Randomized SVD, \bfitk < \bfitl = \bfitl \prime 

(a.k.a. strong rank revealing QR [16]) (a.k.a. randomized QB, e.g., [17])

V1 permutation, U1 =QT
1 , Ak =Q1Q

T
1 A; see (4.10) V1 random, U1 =QT

1 , Ak =Q1Q
T
1 A; see (4.10)

new bounds on kernel approx. (Proposition 5.2) new bounds on kernel approx (Cor. 6.15)

LU with column/row selection, \bfitk = \bfitl = \bfitl \prime Randomized LU with row selection, \bfitk < \bfitl = \bfitl \prime 

(a.k.a. rank revealing LU, e.g., [14] or CUR) (e.g. Randomized SVD via row extraction [17],

RandomizedRowID [23])

V1, U1 permutations V1 random, U1 permutation; see (4.10)

new spectral, kernel bounds (Proposition 3.3) new spectral, kernel bounds (Proposition 3.3)

Instances of \bfitV \bfone ,\bfitU \bfone and the approximation \bfitA \bfito \bfitb 

\bfitk 
for \bfitk \leq \bfitl \leq \bfitl \prime ,

Aob
k =AV1(U1AV1)

+U1A

Deterministic algorithms and bounds Randomized algorithm and bounds

ObliqueProj with column/row selection, \bfitk \leq \bfitl <\bfitl \prime Randomized ObliqueProj, \bfitk \leq \bfitl \leq \bfitl \prime 

V1, U1 permutations V1,U1 random

Clarkson and Woodruff (CW), \bfitk \leq \bfitl \leq \bfitl \prime 

V1,U1 based on CountSketch

Nystr\"om for \bfitA SPSD, \bfitk = \bfitl = \bfitl \prime Randomized Nystr\"om for \bfitA SPSD, \bfitk \leq \bfitl = \bfitl \prime 

U1 permutation, U1 = V T
1 ,Ak =AV1(V

T
1 AV1)

+(AV1)
T U1 random, U1 = V T

1 , Ak =AV1(V
T
1 AV1)

+(AV1)
T

New algorithms: \bfitV \bfone ,\bfitU \bfone and the approximation \bfitA \bfitk for \bfitk \leq \bfitl \leq \bfitl \prime ,

Ak = [U+
1 (I  - (U1AV1)(U1AV1)

+) + (AV1)(U1AV1)
+][U1A]; see (3.18)

Deterministic algorithm and bounds Randomized algorithm and bounds

GLU with column/row selection, \bfitk \leq \bfitl \leq \bfitl \prime Randomized GLU, \bfitk \leq \bfitl \leq \bfitl \prime 

V1, U1 permutations V1,U1 random

new spectral, kernel bounds (Proposition 3.3) new spectral, kernel bounds (Theorems 6.6, 6.9)

Deterministic algorithms are typically based on truncated rank-revealing QR (RRQR)
and rank-revealing LU (RRLU) factorizations. Both factorizations select k columns
from the matrix A; that is, V is a column permutation matrix and AV1 consists
of the selected columns. In the case of a RRQR factorization, U1 = QT

1 , and the
approximation becomes Ao

k =Q1Q
T
1 A, relying on an orthogonal projection. That is,

letting \scrP o =AV1(AV1)
+ and k\leq l\leq l\prime , the approximation is computed as

Ao
k =AV1(AV1)

+A=Q1Q
T
1 A=\scrP oA,(1.4)

or equivalently \scrP oA(:, j) := arg min
x\in range(AV1)

\| x - A(:, j)\| 2,(1.5)

where A(:, j) denotes the jth column of A. Let QT
1 A = (R11 R12). The strong

rank-revealing QR factorization [16] chooses V1 such that | | R - 1
11 R12| | max is bounded

by a small constant and the approximation Ak is spectrum preserving and a kernel
approximation of A: \gamma in Definition 1.2 and Definition 1.3 is a low degree polynomial
in n and k. The rank-revealing LU factorization selects k columns and k rows from
the matrix A; that is, both U1 and V1 are formed by the leading rows, columns,
respectively, of permutation matrices. For example, in LU\.CRTP [14] the columns

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/0

1
/2

4
 t

o
 1

2
8
.3

2
.1

0
.2

3
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 563

are selected by using a pivoting strategy on A referred to as tournament pivoting and
based on strong RRQR, while the rows are selected by the same pivoting strategy
applied to QT

1 such that | | \=Q21
\=Q - 1
11 | | max is bounded. The obtained approximation

Ak = AV1(U1AV1)
 - 1U1A is again spectrum preserving and a kernel approximation

of A, with \gamma in Definition 1.2 and Definition 1.3 being a low degree polynomial in
n and k (we note here that Definition 1.2 holds for the singular values of U1AV1

instead of the singular values of Ak). This factorization is also referred to as CUR,
since AV1 and U1A correspond to columns and rows of the matrix A, respectively.
Interpolative decomposition (ID), another popular approach, can also be described in
this framework. We discuss it in more detail in section 4.

Several randomized algorithms rely on V1 being a random matrix, typically based
on Johnson--Lindenstrauss transforms or fast Johnson--Lindenstrauss transforms, such
as the subsampled randomized Hadamard transform (SRHT) of Definition 6.7 intro-
duced originally in [29]. The randomized QB, also referred to as randomized SVD
(see, e.g., [17]), is obtained by choosing U1 = QT

1 and corresponds to computing l
steps of the QR factorization of UAV . The randomized SVD via row extraction is
obtained by choosing U to be a row permutation such that | | \=Q21

\=Q - 1
11 | | max is bounded.

The obtained factorization corresponds to computing l steps of the LU factorization
of UAV , and we refer to this as randomized LU with row selection. The permutation
U can be obtained by computing the strong RRQR factorization of QT

1 , or directly of
(AV1)

T as in randomized ID; see, e.g., [23].
In the more general case when k \leq l \leq l\prime , which is the focus of this paper, the

clean formulation of Ak described in (1.2) becomes a bit more complicated:

(1.6) Ak = [U+
1 (I  - (U1AV1)(U1AV1)

+) + (AV1)(U1AV1)
+][U1A],

where U1 and (U1AV1) are of dimensions l\prime \times m and l\prime \times l, respectively. However, the
algorithmic implementation is still straightforward and inexpensive. See (3.18) and
Algorithm 3.1 for a detailed derivation. Subsection 1.2 summarizes properties of this
novel approximation that are discussed in detail later in the paper. As in the previous
case, U1, V1 can select deterministically or randomly columns, rows of A, respectively,
or can be random matrices.

Several algorithms rely on an oblique projection to compute a low-rank approxi-
mation. One example is the popular approach introduced by Clarkson and Woodruff
in [7], which we refer to as CW. Letting \scrP ob = AV1(U1AV1)

+U1 and k \leq l \leq l\prime , we
compute the approximation as

Aob
k =AV1(U1AV1)

+U1A=\scrP obA,(1.7)

or equivalently \scrP obA(:, j) := arg min
x\in range(AV1)

\| U1(x - A(:, j))\| 2,(1.8)

where A(:, j) denotes the jth column of A. We show in Proposition 4.2 that this ap-
proximation is never more accurate, and can be less accurate than GLU approxima-
tion from (1.6) when l < l\prime . The Nystr\"om method for symmetric positive semidefinite
(SPSD) matrices is obtained by taking U1 = V T

1 , with the approximation becoming
AV1(V

T
1 AV1)

+(AV1)
T . In randomized Nystr\"om, the matrix V1 either can be chosen

to randomly sample columns of A by using a uniform or a nonuniform importance
sampling distribution or can be a random matrix. For more details see, e.g., [13].

We also note that the approximation Aob
k from (1.7) is a special case of the ap-

proximation obtained by GLU when U1, V1 are such that
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564 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

(1.9) (U1AV1)(U1AV1)
+U1A=U1A,

in which case Ak from (1.6) becomes equal to Aob
k from (1.7). This condition is

satisfied if and only if range(U1A) = range(U1AV1), since (U1AV1)(U1AV1)
+ is the

projection onto range(U1AV1). That is, V1 spans the range of (U1A)
T .

Given C =U1A (or C =U1(AAT )A, or any other matrix of the same dimensions)
and B = AV1 (again with other possibilities), another approximation for A is Ak =
B(B+AC+)C, which is known to minimize \| A - BMC\| F over all possible choices of
M ; see homework 3.12 from [10]. When A and B are dense, it costs at least O(lmn) in
general just to compute B+A (ignoring Strassen-like algorithms), so asymptotically
more than our approximations in (1.6) or (1.7). We will not consider it further.

1.2. Detailed bounds. GLU satisfies bounds at least as sharp as in the litera-
ture, and many are new. Proposition 3.3 gives bounds for the spectral and the kernel
approximation provided by Ak from (1.6) for general U1 and V1, and in section 6 prop-
erties of U1 and V1 specific to the algorithm are used to complete the bound. Both
Proposition 3.3 and Proposition 5.2 provide new deterministic bounds not found in
the literature. For example, Proposition 5.2 generalizes Theorem 9.1 of [17] to include
singular values \sigma j(A) with j > 1. This generalization proves useful when analyzing
Definition 1.3 for randomized algorithms, which we observe to be an advantage of
GLU over CW, the approach introduced by Clarkson and Woodruff in [7].

Section 6 contains our new results after suitable random ensembles are chosen,
that is, when V1 and U1 are random matrices. Extra attention is given to the SRHT
ensemble of Definition 6.7, because the especially good bounds it can provide were not
fully exploited in past literature. Using this ensemble, from Algorithm 3.1 for comput-
ingGLU we can see the number of arithmetic operations is O(nm log(l\prime )+mll\prime ). Plug-
ging in l\prime and l from Theorem 6.9, we can produce a low-rank approximation in \~O(nm+
k2m\epsilon  - 3) time that relative to the squared error of the truncated SVD of rank k,

\bullet approximates A with only 1+O(\epsilon ) times the squared Frobenius norm error,

(1.10) \| A - Ak\| 2F = (1+O(\epsilon ))(\sigma 2
k+1 + \cdot \cdot \cdot + \sigma 2

min(m,n)),

\bullet approximates A with only O
\Bigl( 

1 + \epsilon log(min(m,n)/\delta )
k log(k/\delta )

\| \Sigma 2\| 2
F

\| \Sigma 2\| 2
2

\Bigr) 

times the squared

spectral norm error,
(1.11)

\| A - Ak\| 22 =O

\Biggl( 

1 +
\epsilon log(min(m,n)/\delta )

k log(k/\delta )

(\sigma 2
k+1 + \cdot \cdot \cdot + \sigma 2

min(m,n))

\sigma 2
k+1

\Biggr) 

\sigma 2
k+1 .

Here \Sigma 2 represents the trailing singular values, starting at k + 1. This holds with
probability 1  - 5\delta , and l, l\prime grow polylogarithmically with \delta , as in Remark 6.13. In
other words, the algorithm we propose attains \gamma = O(1) in Definition 1.1 for many
families of A matrices encountered in practice with modest spectral decay (which
makes the Frobenius norm not too much larger than the spectral norm). The same
Theorem 6.9 shows this \gamma = O(1) bound carries over to Definition 1.3. Further,

Theorem 6.6 shows that Definition 1.2 is satisfied with \gamma = O(
\sqrt{} 

k
n ). To the best of

our knowledge, no other work has found such a representation of a general matrix A
in time o(nmk) satisfying these properties.

Our bounds have interesting implications for the growth factor of pre- and post-
conditioned Gaussian elimination. Corollary 6.17 is a step towards a theoretical un-
derstanding of conditioning Gaussian elimination to avoid pivoting. Besides this, it
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 565

expands the classes of distributions for which pivoting is provably unnecessary to a
class including Gaussian-distributed matrices. We pose an open question at the end,
motivated by this analysis. For a more detailed discussion of the growth factor of
Gaussian elimination and the implications of pivoting, see, e.g., [31] for an experi-
mental study or [28] for its smoothed analysis.

1.3. Notation. As this paper is notation heavy, we first take a moment to collect
some conventions we will use.

\bullet A is m\times n.
\bullet Res(A,k) denotes A after setting its leading k - 1 singular values to 0, so we

restrict to the singular values starting at position k.
\bullet [Q,R] =QR(A) is the square QR decomposition of A, so Q is m\times m.
\bullet [Q,R] = thin-QR(A) is the thin QR decomposition of A, so Q is m\times n.
\bullet A+ is the n\times m Moore--Penrose pseudo-inverse. A+

11 will refer to (A11)
+.

\bullet [U,\Sigma , V ] = SVD(A) will be the full variant (m\times n \Sigma ) and with decreasing
singular values. So U is m\times m, and V is n\times n.

\bullet \Sigma 2 =\Sigma [k+ 1 :, k+ 1 :], the trailing singular values, starting at k+ 1.
\bullet S(A11) =A22  - A21A

+
11A12 is the Schur complement of A11; if the dimension

of A11 is l\prime \times l, then S(A11) is (m - l\prime )\times (n - l). Here A= (A11 A12

A21 A22
).

\bullet MATLAB-like notation to select submatrices; e.g., A[: k, : k] is the leading
k\times k submatrix of A.

2. Related work. Low-rank matrix approximations have been extensively stud-
ied; hence this work is related to a large body of literature. Because of our emphasis
on the LU factorization viewpoint, we should mention some work related to LU fac-
torizations. Such papers providing information regarding Definitions 1.1, 1.2, and 1.3
are few, notably including perhaps the first [24], as well as later more efficient versions
like [14]. These papers do not exploit randomness, however.

Exploiting randomness for low-rank factorizations has led to major speedups.
Some literature in recent years has exploited this for LU factorizations, including
perhaps most relevantly [30]. Their work has somewhat different goals, in that it
seeks to find left and right permutation matrices, which makes it in some ways more
like [14]. Also, their paper only discusses spectral norm bounds on the residual.
Interestingly, the fast version of their procedure (their Algorithm 4.4) uses an ensemble
equivalent to the SRHT ensemble. The bounds we have in Theorem 6.9 are better for
the spectral norm of the residual. Comparing our Theorem 6.9 with their Theorem
4.12, our approximation is always a factor on the order of

\surd 
n more accurate, and

a factor n more accurate when the spectrum decays sufficiently quickly. Our results
utilizing the SRHT ensemble build on [4], which proved the SRHT ensemble has
geometry preserving properties beyond those of the Johnson--Lindenstrauss transform
properties. They used this fact to provide sharper spectral norm bounds on the
residual for the randomized SVD approach to low-rank matrix approximation.

Outside of research into LU factorizations, many papers have focused on studying
Johnson--Lindenstrauss embeddings. This has culminated in algorithms considered to
run in nnz(A) time for many problems related to and including low-rank approxi-
mations. Notable such papers include [29, 7, 27]. For example, [27] uses the same
factorization as [7], whose technical report we believe to be the first paper to use
sketching from the left and right to speed up the algorithm. This body of literature
has focused more on the properties of the random ensemble and less on the properties
of the factorization itself. The error bound of these algorithms, given in terms of
Frobenius norm of the residual, is similar to ours, \| A  - Ak\| 2F \leq (1 + \epsilon )\| \Sigma 2\| 2F see,
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566 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

e.g., [29, 7, 27] or [33] for a more detailed discussion. From this Frobenius norm
error and Theorem 3.4 in [15], it is possible to derive a spectral norm error of the

form \| A - B\| 22 \leq (1 + \epsilon 
\| \Sigma 2\| 2

F

\| \Sigma 2\| 2
2

)\sigma 2
k+1, as discussed in section 6 of [26]. But this error

is weaker than the error in (1.11) attained by GLU. There are a few algorithms in
the literature, such as the ones in [9, 8], that do achieve this stronger spectral error

guarantee of the form \| A  - B\| 22 \leq (1 + \epsilon 
k
\| \Sigma 2\| 2

F

\| \Sigma 2\| 2
2

)\sigma 2
k+1. In particular the work in [8]

relies on sketching through a fast transform, while using the additional assumption
that the matrix has a stable rank, that is, \| A\| 2F /\| A\| 22 \leq k. However, the low-rank
approximation is obtained through an orthogonal projection as in (1.4). Hence, even
if AV1 can be computed at a lower cost, computing QT

1 A still requires 2mnk opera-
tions when A is dense (with non--Strassen-like algorithms), and thus these algorithms
do not achieve o(nmk) complexity. They become expensive when k is modestly large,
say a small power of n. An algorithm that has sublinear complexity and spectral
error norm guarantee similar to ours is described in [26]. But it requires the matrix
A to be positive semidefinite, and thus our algorithm is more general. We also note
that the randomized low-rank community has typically not considered properties like
spectrum preserving and kernel approximation (Definition 1.2 and Definition 1.3).

To date, procedures for the residual being within an \epsilon factor as accurate as the
truncated SVD with respect to the spectral norm do not gain any speed advantage
by using fast Johnson--Lindenstrauss ensembles. This is because a repeated squar-
ing must be used, and therefore structured sketching matrices have no advantage.
Important work in this area includes [15] and [25].

This list is far from complete, and many different takes on the problem have been
proposed which tangentially touch this paper; [17] and [33] are useful for finding more
pointers into the literature.

3. Generalized LU factorization. Classically, as in [24] and [14], the rank-
revealing LU factorization finds permutations U,V (usually stepwise over the proce-
dure), forming \=A= UAV , and LU factors \=A but deletes the Schur complement after
k steps. Thus,

\=A=

\biggl( 

I 0
\=A21

\=A - 1
11 I

\biggr) \biggl( 

\=A11
\=A12

0 S( \=A11)

\biggr) 

\approx 
\biggl( 

I
\=A21

\=A - 1
11

\biggr) 

\bigl( 

\=A11
\=A12

\bigr) 

=: \=Ak.

This naturally suggests the approximation A \approx Ak := UT \=AkV
T . Letting V1 be

the first k columns of V and U1 be the first k rows of U , some algebra (see Remark 3.4
for the more general case) shows the approximation to be A\approx AV1(U1AV1)

 - 1U1A.
This paper generalizes the rank-revealing LU factorization in two directions. First,

we include other matrices on the left and right besides permutations. This allows for
speedups through matrix sketching. Second, we generalize one step further by using
rectangular Schur complements. This can greatly improve the quality of the low-rank
approximation, as we will see in Proposition 3.3 and Theorem 6.6.

We describe this second modification in greater detail now. For the sake of analysis
it will be convenient to let U,V be square matrices in the following discussion and
subsequent Proposition 3.3. The relevant matrices are the m\times n matrix A which we
wish to approximate, the invertible m\times m matrix U , and the invertible n\times n matrix
V . Now define

\=A :=UAV =

\biggl( 

I
l
\prime 0

\=A21
\=A+
11 I

m - l
\prime 

\biggr) \biggl( 

\=A11
\=A12

0 S( \=A11)

\biggr) 

,
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 567

where this is valid when the l\prime \times l block \=A11 has full column rank so that \=A+
11

\=A11 = I.
In particular we are assuming l\prime \geq l. To help visualize the construction, the following
depicts the block sizes:

\=A=

\biggl( 

l\prime , l l\prime , n - l
m - l\prime , l m - l\prime , n - l

\biggr) 

=

\biggl( 

l\prime , l\prime l\prime ,m - l\prime 

m - l\prime , l\prime m - l\prime ,m - l\prime 

\biggr) \biggl( 

l\prime , l l\prime , n - l
m - l\prime , l m - l\prime , n - l

\biggr) 

.

Deleting the (m - l\prime )\times (n - l) Schur complement and undoing the U,V factors
gives the approximation we use as a definition,

(3.1) A\approx Ak :=U - 1

\biggl( 

I
l
\prime 

\=A21
\=A+
11

\biggr) 

\bigl( 

\=A11
\=A12

\bigr) 

V  - 1.

In (3.1), U and V are square, but for low-rank approximations this would be
expensive. Only the leading l\prime rows of U and the leading l columns of V are actually
required, but we find the square form helpful for the analysis. Accordingly for U , we
assume that we may express

(3.2) U =

\biggl( 

U1

U2

\biggr) 

, U - 1 =
\bigl( 

U+
1 UT

2

\bigr) 

,

where U2 has orthogonal rows spanning the orthogonal complement of U1. We also
assume U1 is full-rank so that U is invertible; any reasonable sketching matrix U1

satisfies this property with probability 1. Similarly, we assume V may be expressed as

(3.3) V =
\bigl( 

V1 V2

\bigr) 

, V  - 1 =

\biggl( 

V +
1

V T
2

\biggr) 

,

where V1 is full-rank and V2 has orthogonal columns spanning the complement of the
columns of V1. The assumptions on U2 and V2 are used later on in our theoretical
results.

Singular values of a matrix product obey a well-known bound called the multi-
plicative Weyl inequality. We make use of this and its less known reverse version, so
we give a proof here. Therefore, we state the inequality with a reference and prove
its reverse version.

Lemma 3.1. Say A is m\times n, and B is n\times p. For 1\leq k\leq j,

(3.4) \sigma j(AB)\leq \sigma j - k+1(A)\sigma k(B).

Now assume for simplicity that n \geq m \geq p, both A,B are full rank, and im(B) \subset 
ker(A)\bot . In other words, A is short-wide and B is tall-skinny, and the image of B is
orthogonal to the kernel of A. Then for 1\leq k\leq m - j and j \leq p, an inequality in the
other direction is

(3.5) \sigma m - k+1(A)\sigma j+k - 1(B)\leq \sigma j(AB).

Besides these multiplicative inequalities, the additive Weyl inequality holds for any
matrices A,B and 1\leq k, j \leq n, where n is the smaller of the row and column numbers,
and says

(3.6) \sigma j(A+B)\leq \sigma j - k+1(A) + \sigma k(B).
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568 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

Proof. Inequalities (3.4) and (3.6) are well known. For example, see section 7.3,
exercise 16 from [18].

We next prove (3.5). Let \Sigma A,\Sigma B be the square singular value matrices of A,B,
respectively. Then AB is spectrally equivalent to \Sigma AU\Sigma B for some m\times p orthogonal
matrix U = V T

1 U2, with U2 being the left singular matrix of B and V1 being the right
singular matrix of A. This U has orthonormal columns because it is norm preserving;
im(U2)\subset im(V1) = ker(V T

1 )\bot , so if we let V extend V1 to a square orthogonal matrix,
then \| V T

1 U2x\| 2 = \| V TU2x\| 2 = \| x\| 2. \Sigma A is invertible based on the full rank assump-
tion, and U\Sigma B is m\times p with full column rank. Note that (U\Sigma B)

+\Sigma  - 1
A is a left inverse

for \Sigma AU\Sigma B . Therefore, (\Sigma AU\Sigma B)
+ = (U\Sigma B)

+\Sigma  - 1
A P, where P orthogonally projects

onto im(\Sigma AU\Sigma B). Apply (3.4) to conclude \sigma j((\Sigma AU\Sigma B)
+)\leq \sigma j((U\Sigma B)

+\Sigma  - 1
A ). Com-

bine this with another application of (3.4),

\sigma  - 1
p - j+1(AB) = \sigma j((AB)+)\leq \sigma j((U\Sigma B)

+\Sigma  - 1
A )

\leq \sigma j - k+1((U\Sigma B)
+)\sigma k(\Sigma 

 - 1
A ) = \sigma  - 1

p - (j - k+1)+1(V
T
1 U2\Sigma B)\sigma 

 - 1
m - k+1(A)

= \sigma  - 1
p - (j - k+1)+1(\Sigma B)\sigma 

 - 1
m - k+1(A) = \sigma  - 1

p - (j - k+1)+1(B)\sigma  - 1
m - k+1(A).(3.7)

We used that V T
1 U2 is an orthogonal matrix to advance to line (3.7). Finally, reassign

j = p - j + 1 to get the claimed (3.5).

Schur complements of rectangular blocks do not appear to be commonly used.
The following derives an identity we require.

Lemma 3.2. We continue to assume l\prime \geq l and that \=A11 has full column rank so
that \=A+

11
\=A11 = I. Further introduce matrices U and V structured as explained in (3.2)

and (3.3). Set [Q,R] =\bfitQ \bfitR (AV ) so that R is m\times n. Block R so that R11 is l\times l, and
UQ so that (UQ)11 is l\prime \times l. Then

S( \=A11) = S((UQ)11)R22.

Proof. There is a factorization through a generalized LU factorization of \=A, in
which the lower-triangular factor is the identity on the diagonal and the lower left
factor is \=A21

\=A+
11,

(3.8) \=A=

\biggl( 

I
l
\prime 

\=A21
\=A+
11 I

m - l
\prime 

\biggr) \biggl( 

\=A11
\=A12

S( \=A11)

\biggr) 

.

However, we could alternatively first use a QR factorization of AV followed by a
generalized LU factorization of (UQ) (so that (UQ)11 is l\prime \times l),

\=A=UAV = (UQ)R

=

\biggl( 

I
l
\prime 

(UQ)21(UQ)+11 I
m - l

\prime 

\biggr) \biggl( 

(UQ)11 (UQ)12
S((UQ)11)

\biggr) \biggl( 

R11 R12

R22

\biggr) 

=

\biggl( 

I
l
\prime 

(UQ)21(UQ)+11 I
m - l

\prime 

\biggr) \biggl( 

(UQ)11R11 . . .
S((UQ)11)R22

\biggr) 

.(3.9)

The proof amounts to equating the blocks now between (3.8) and (3.9), but we provide
a justification which essentially argues that the lower left block of the generalized LU
factorization makes it unique.

The next proposition is critical for understanding the rank-revealing properties
for GLU. It will combine with Proposition 5.2 to culminate in Theorem 6.6 and
Theorem 6.9.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/0

1
/2

4
 t

o
 1

2
8
.3

2
.1

0
.2

3
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y
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Proposition 3.3. Let A be an m\times n matrix, U and V be as in (3.2) and (3.3),
[Q,R] = \bfitQ \bfitR (AV ), and finally \=A = UAV . Block Q,R,A, \=A as in Lemma 3.2; in
particular, Q11 is l\prime \times l and R11 is l\times l. Then the low-rank approximation suggested
in (3.1), namely

Ak :=U - 1

\biggl( 

I
\=A21

\=A+
11

\biggr) 

\bigl( 

\=A11
\=A12

\bigr) 

V  - 1,

satisfies

\| A - Ak\| 2F \leq \| R22\| 2F + \| (UQ)+11(UQ)12R22\| 2F ,(3.10)

\| Res(A - Ak, j)\| 2F \leq \| Res(R22, j)\| 2F + \| (UQ)+11(UQ)12Res(R22, j)\| 2F ,(3.11)

\| A - Ak\| 22 \leq \| R22\| 22 + \| (UQ)+11(UQ)12R22\| 22,(3.12)

\sigma 2
j (A - Ak)\leq \| Res(R22, j)\| 22 + \| (UQ)+11(UQ)12Res(R22, j)\| 22,(3.13)

\sigma i(Ak)\geq \sigma i(Ak[:, : l
\prime ]) = \sigma i(AV1V

+
1 ).(3.14)

In the above, the relations for \sigma j hold for 1\leq j \leq min(m,n) - k. The relation for
\sigma i holds for 1\leq i\leq k.

Proof. The approximation loss in Ak is exactly the Schur complement S( \=A11). To
establish this, we first do some matrix algebra. To start, we have

Ak =U - 1

\biggl( 

I
\=A21

\=A+
11

\biggr) 

\bigl( 

\=A11
\=A12

\bigr) 

V  - 1

=U - 1

\biggl( 

\=A11
\=A12

\=A21
\=A21

\=A+
11

\=A12

\biggr) 

V  - 1.(3.15)

Next apply (3.2) from Lemma 3.2 to get S( \=A11) = S((UQ)11)R22. From this and the
fact that U - 1 \=AV  - 1 =A,

A - Ak =U - 1

\biggl( 

0
S( \=A11)

\biggr) 

V  - 1 =U - 1

\biggl( 

0
S((UQ)11)R22

\biggr) 

V  - 1

=

\biggl( 

0
UT
2 S((UQ)11)R22V

T
2

\biggr) 

.(3.16)

Now to get (3.10), recalling U2 has orthonormal rows,

\| A - Ak\| 2F = \| S((UQ)11)R22\| 2F = \| 
\bigl[ 

(UQ)22  - (UQ)21(UQ)+11(UQ)12
\bigr] 

R22\| 2F

=

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigl( 

(UQ)21 (UQ)22
\bigr) 

\biggl( 

 - (UQ)+11(UQ)12R22

R22

\biggr) \bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

F

\leq \| R22\| 2F + \| (UQ)+11(UQ)12R22\| 2F .

And for (3.12), similar steps produce

\| A - Ak\| 22 \leq 
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\biggl( 

(UQ)+11(UQ)12R22

R22

\biggr) \bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

2

\leq \| (UQ)+11(UQ)12R22\| 22 + \| R22\| 22.

Even more generally, \sigma j(A  - Ak) \leq \sigma j((
 - (UQ)+11(UQ)12R22

R22
)) from the multiplicative

Weyl inequality. Using this, and the additive Weyl inequality [18] in the second
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570 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

inequality,

\sigma j+s - 1(A - Ak)\leq \sigma j+s - 1

\biggl( \biggl( 

 - (UQ)+11(UQ)12(R22  - R22opt,j - 1 +R22opt,j - 1)
R22  - R22opt,j - 1 +R22opt,j - 1

\biggr) \biggr) 

\leq \sigma s

\biggl( \biggl( 

 - (UQ)+11(UQ)12(R22  - R22opt,j - 1)
R22  - R22opt,j - 1

\biggr) \biggr) 

+ \sigma j

\biggl( \biggl( 

 - (UQ)+11(UQ)12R22opt,j - 1

R22opt,j - 1

\biggr) \biggr) 

= \sigma s

\biggl( \biggl( 

(UQ)+11(UQ)12Res(R22, j)
Res(R22, j)

\biggr) \biggr) 

,

where we are letting R22opt,j - 1 be the truncated SVD of rank j  - 1. In particular,
this establishes

\sigma 2
j (A - Ak)\leq \sigma 2

1

\biggl( \biggl( 

(UQ)+11(UQ)12Res(R22, j)
Res(R22, j)

\biggr) \biggr) 

\leq \| (UQ)+11(UQ)12Res(R22, j)\| 22 + \| Res(R22, j)\| 22,

and also by noting that the trailing min(m,n) - j singular values of A - Ak are bound
in this manner,

\| Res(A - Ak, j)\| 2F \leq 
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\biggl( 

(UQ)+11(UQ)12Res(R22, j)
Res(R22, j)

\biggr) \bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

F

= \| (UQ)+11(UQ)12Res(R22, j)\| 2F + \| Res(R22, j)\| 2F .

This completes (3.10)--(3.13). We proceed to the lower bound on \sigma i(Ak) claimed in
(3.14). Let \=Ak for the moment denote the middle matrix in (3.15), and ( \=Ak)1 be the
leading l columns of the matrix. Then because the rows of V +

2 are orthogonal to the
rows of V +

1 , the rows of ( \=Ak)1V
+
1 are orthogonal to those of ( \=Ak)1V

+
2 . Using this in

the inequality step,

\sigma i(Ak) = \sigma i(U
 - 1 \=AkV

 - 1)\geq \sigma i(
\bigl( 

U+
1 UT

2

\bigr) 

\cdot ( \=Ak)1V
+
1 ) = \sigma i(AV1V

+
1 ).

Remark 3.4. Recall the sizes V1 = V [:, : l], U1 = U [: l\prime , :]. When l\prime = l, the
factorization in (3.1) can readily be rewritten in the more elegant form

(3.17) Ak =AV1(U1AV1)
 - 1U1A.

One important feature of this is that only U1, V1 are actually needed to compute Ak.
We will later see that the residual bounds in Proposition 3.3 can be computed with
only U1, V1, so it makes sense that we can find an analogue of (3.17) for l\prime > l. However,
we actually need to set the rows U2 = U [l\prime + 1 :, :] to be a basis for the orthogonal
complement of the rows of U1 in order to achieve this. Then U - 1 = [U+

1 ,U+
2 ], and we

get a different form of (3.1) that is often faster to compute than (3.1),

Ak =U - 1

\biggl( 

I
\=A21

\=A+
11

\biggr) 

\bigl( 

\=A11
\=A12

\bigr) 

V  - 1 =
\bigl( 

U+
1 U+

2

\bigr) 

\biggl( 

I
\=A21

\=A+
11

\biggr) 

U1A

= (U+
1 +U+

2 U2AV1(U1AV1)
+)U1A

=
\bigl[ 

U+
1 + (I  - U+

1 U1)AV1(U1AV1)
+
\bigr] 

[U1A]

= [U+
1 (I  - (U1AV1)(U1AV1)

+) + (AV1)(U1AV1)
+][U1A].(3.18)
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 571

This final form should be viewed as a generalized LU factorization. The left factor
is m \times l\prime , and the right factor (U1A) is l\prime \times n. Also recall that U1 is l\prime \times m, so the
pseudo-inverse can be cheaply computed.

We summarize the factorization discussed above in (only partially specified be-
cause of U,V and the oversampling parameters l, l\prime ) Algorithm GLU (see Algorithm
3.1) and Algorithm RLU (see Algorithm 3.2). Recall that using square U,V was only
to help with the theoretical guarantees. We also emphasize that Algorithm RLU is
the special case of Algorithm GLU when the latter sets l= l\prime .

Algorithm 3.1 [T,S] = GLU(A,k). Generalized LU approximation computes a
low-rank approximation A \approx Ak = TS, where T is a tall-skinny matrix and S is a
short-wide matrix.

1: Input: target rank k, matrix A\in \BbbR 
m\times n

2: Output: T \in \BbbR 
m\times l

\prime 
, S \in \BbbR 

l
\prime \times n

3: Ensure: T =U+
1 (I  - (U1AV1)(U1AV1)

+) + (AV1)(U1AV1)
+, S =U1A

4: Select oversampling parameters l\prime \geq l\geq k
5: Generate full-rank n\times l matrix V1 and full-rank l\prime \times m matrix U1

6: \^A=U1AV1

7: T1 =U+
1 (I  - \^A \^A+)

8: T2 =AV1

9: T2 = T2
\^A+

10: T = T1 + T2

11: S =U1A

Algorithm 3.2 [T, \^A,S] = RLU(A). Rank-revealing LU computes a low-rank ap-
proximation A \approx Ak = T \^A - 1S, where T is a tall-skinny matrix, S is a short-wide
matrix, and \^A is a small dense matrix.

1: Input: target rank k, matrix A\in \BbbR 
m\times n

2: Output: T \in \BbbR 
m\times l, S \in \BbbR 

l\times n, \^A\in \BbbR 
l\times l

3: Ensure: T =AV1, S =U1A, \^A=U1AV1

4: Select oversampling parameter l\geq k
5: Generate a full-rank n\times l matrix V1 and a full-rank l\times m matrix U1

6: T =AV1

7: S =U1A

8: \^A=U1T

The bounds in Proposition 3.3 are not fully developed, as V affects R and U
affects UQ. In section 5 the R22 factor will be studied; it will be bound in terms
of STV, where S is the right singular matrix of A. See Proposition 5.1 and the
resulting Theorem 6.6. Section 6 describes how choosing suitable random ensembles
for U1, V1 allows for the Frobenius norm of the residual to be arbitrarily close to that
of the truncated SVD, as well as many other bounds. We therefore present what we
consider to be our main results in section 6.

4. Relationship to other approaches. In this section we illustrate how GLU

provides a general framework by proving the equivalence with Algorithm Random-

izedLU RowSelection and Algorithm RandomizedQB below and discussing re-
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572 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

lations with interpolative decompositions. We also see a close connection with Al-
gorithm CW, the approach from Clarkson and Woodruff [7]. We show that CW is
never more accurate and can be less accurate than our approach when l\prime > l, and the
same when l\prime = l.

We consider first the case when k \leq l = l\prime . For ease of understanding, we recall
a few relations in this case. Let \=A = UAV , where A, \=A \in \BbbR 

m\times n, U \in \BbbR 
m\times m, and

V \in \BbbR 
n\times n. Let [Q,R] =QR(AV ), where Q\in \BbbR 

m\times m and R \in \BbbR 
m\times n. Set V1 = V [:, : l],

U1 = U [: l, :], Q1 =Q[:, : l], and \=Q= UQ, and partition \=Q=
\bigl( \=Q11

\=Q12

\=Q21
\=Q22

\bigr) 

, R=
\bigl( 

R11 R12

R22

\bigr) 

such that \=Q11 andR11 are l\times l. It can be seen thatQ1R11 is the thin QR decomposition
of AV1.

A decomposition of UAV can be obtained either directly from the LU factorization
of UAV , or from the QR factorization of AV and then the LU factorization of UQ, as
discussed previously in Lemma 3.2 in the general case k\leq l\leq l\prime . In the case discussed
here, k\leq l= l\prime and \=A11 invertible, we obtain

\=A=UAV =

\biggl( 

\=A11
\=A12

\=A21
\=A22

\biggr) 

=

\biggl( 

I
\=A21

\=A - 1
11 I

\biggr) \biggl( 

\=A11
\=A12

S( \=A11)

\biggr) 

(4.1)

= (UQ)R=

\biggl( 

I
\=Q21

\=Q - 1
11 I

\biggr) \biggl( 

\=Q11
\=Q12

S( \=Q11)

\biggr) \biggl( 

R11 R12

R22

\biggr) 

=

\biggl( 

I
\=Q21

\=Q - 1
11 I

\biggr) \biggl( 

\=A11
\=A12

S( \=Q11)R22

\biggr) 

,(4.2)

where, as shown in, e.g., [14], \=Q21
\=Q - 1
11 = \=A21

\=A - 1
11 , S(

\=A11) = S( \=Q11)R22. We also have
the following relations. Since Q1R11 =AV1, it follows that

(4.3) AV1(U1AV1)
 - 1U1A=Q1R11(U1Q1R11)

 - 1U1A=Q1(U1Q1)
 - 1U1A.

Additionally,

(4.4) AV1(U1AV1)
 - 1U1A=U - 1

\biggl( 

\=A11
\=A21

\biggr) 

\=A - 1
11 U1A=U - 1

\biggl( 

Il
\=A21

\=A - 1
11

\biggr) 

U1A.

By dropping the Schur complement S( \=A11) from (4.1) and S( \=Q11)R22 from (4.2), and
given (4.3) and (4.4), we obtain the approximations

Ak =U - 1

\biggl( 

Il
\=A21

\=A - 1
11

\biggr) 

\bigl( 

\=A11
\=A12

\bigr) 

V  - 1 =AV1(U1AV1)
 - 1U1A(4.5)

=U - 1

\biggl( 

Il
\=Q21

\=Q - 1
11

\biggr) 

\bigl( 

\=A11
\=A12

\bigr) 

V  - 1 =Q1(U1Q1)
 - 1U1A.(4.6)

While we consider here infinite precision, we note that in finite precision, even for
same U1, V1, the approximations from (4.5) and (4.6) can be different.

Equations (4.5) and (4.6) reveal that, given V1, the permutation U and its subma-
trix U1 can be obtained either from AV1 or from the thin orthogonal factor Q1 of AV1.
In the first case, one approach consists in computing a strong RRQR factorization of
(AV1)

T ,

(AV1)
TUT =

\biggl( 

\=A11
\=A21

\biggr) T

= \~Q
\bigl( 

\~R11
\~R12

\bigr) 

,(4.7)
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 573

Algorithm 4.1 [T,S] = RandomizedQB(A,k). Randomized QB approximation
computes a low-rank approximation A \approx Ak = TS where T is a tall-skinny matrix
with orthonormal columns, and S is a short-wide matrix.

1: Input: target rank k, matrix A\in \BbbR 
m\times n

2: Output: orthogonal matrix T \in \BbbR 
m\times l, matrix S \in l\times n

3: Ensure: T has orthonormal columns, S = TTA
4: Select the oversampling parameter l\geq k
5: Generate a full rank n\times l matrix V1

6: \^A=AV1

7: [T, ] = thin-QR( \^A)
8: S = TTA

such that \| \~R - 1
11

\~R12\| max is bounded. It can be seen that \=A21
\=A - 1
11 = \~RT

12(
\~R - 1
11 )

T , and
hence \| \=A21

\=A - 1
11 \| max is also bounded. A detailed derivation can be found in [20], where

this pivoting strategy is used to compute a block LU factorization with a growth factor
smaller than the one of LU with partial pivoting. In the second case, U1 is selected by
computing a strong RRQR factorization of QT

1 such that \| \=Q21
\=Q - 1
11 \| max is bounded

and the singular values of \=Q11 =U1Q1 are upper bounded by 1 and lower bounded by
1/q(m,k), where q(m,k) is a low degree polynomial in m and k. For a derivation see
[14], where this strategy is used in a deterministic algorithm referred to as LU\.CRTP,
which computes a spectrum preserving and a kernel approximation of A.

We discuss now several instances of V1, U1 that correspond to existing randomized
algorithms in the literature. We choose to have a similar output for all the algorithms
as Ak = TS, where T \in \BbbR 

m\times l and S \in \BbbR 
l\times n.

Randomized QB presented in Algorithm 4.1 is also referred to in the literature as
randomized SVD. The output is different in randomized SVD, though. It is obtained
by computing the SVD of S and is provided as the product of an orthogonal matrix,
a diagonal matrix, and a second orthogonal matrix. In our framework, this algorithm
can be obtained by taking U1 =QT

1 , in which case it can be seen from (4.6) that the
approximation becomes Q1Q

T
1 A.

Randomized LU with row selection is presented in Algorithm 4.2, in which V1

is random and the row selection is obtained from Q1, the thin orthogonal factor of
AV1, as in (4.6). The output is T = UT

\bigl( Il
\=Q21

\=Q - 1
11

\bigr) 

=Q1(U1Q1)
 - 1 and S = U1A, such

that \| T\| max is bounded and S is formed by the selected rows of A. The algorithm
could also return T = Q1 and an orthogonal matrix, S = (U1Q1)

 - 1U1A. We expect
the computation of S to be numerically stable, since (U1Q1) is expected to be well
conditioned. Obviously, the output can also be the product of a permutation matrix,
a lower triangular matrix, and an upper triangular matrix, which would require com-
puting the LU factorization of U1AV1. Algorithm 4.2 corresponds to a randomized
SVD with row selection algorithm described in section 5.2 of [17]. See discussion in
[17] around (5.3).

Interpolative decompositions have three different versions, column ID, row ID, and
double-sided ID. We refer the reader for a detailed discussion to [23]. For example,
the column ID approximates A as CZ, where C \in \BbbR 

m\times l is formed by l columns of
A, Z \in \BbbR 

l\times n contains an identity matrix, and \| Z\| max \leq 1. As discussed in [23],
such a decomposition can be obtained by computing l steps of a column pivoted
QR factorization of A, AV = QR, where V is a permutation matrix. By letting

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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574 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

Algorithm 4.2 [T,S] = RandomizedLU RowSelection(A,k). Randomized LU
with row selection approximation computes Ak = TS, performing sketching on the
columns and selecting rows based on Q1, the thin orthogonal factor of AV1.

1: Input: target rank k, matrix A\in \BbbR 
m\times n

2: Output: T \in \BbbR 
m\times l and S \in \BbbR 

l\times n

3: Ensure: T =AV1(U1AV1)
 - 1 =UT

\bigl( Il
\=Q21

\=Q - 1
11

\bigr) 

=Q1(U1Q1)
 - 1,

S =U1A\in \BbbR 
l\times n, where U is a permutation matrix, U1 =U [: l, :], and

Q1 \in \BbbR 
m\times l has orthonormal columns, \| T\| max is bounded, and S is formed

by rows of A
4: Select oversampling parameter l\geq k
5: Generate a full-rank n\times l random matrix V1

6: [Q1, ] = thin-QR(AV1)

7: Permutation U is selected so that UQ1 = \=Q1 =
\bigl( \=Q11

\=Q21

\bigr) 

results in

| | \=Q21
\=Q - 1
11 | | max being bounded by a small constant (see [22]). Here

U1 =U [: l, :] and \=Q11 =U1Q1

8: T =UT
\bigl( Il

\=Q21
\=Q - 1
11

\bigr) 

; also note that T =AV1(U1AV1)
 - 1

9: S =U1A

Q1 =Q[:, : l], V1 = V [:, : l], R11 = R[: l, : l], R12 = R[: l, l+ 1 :], column ID is obtained
as

Q1Q
T
1 A=Q1

\bigl( 

R11 R12

\bigr) 

V T =Q1R11

\bigl( 

I R - 1
11 R12

\bigr) 

V T(4.8)

=AV1

\bigl( 

I R - 1
11 R12

\bigr) 

V T =CZ,(4.9)

where C = AV1 and Z =
\bigl( 

I R - 1
11 R12

\bigr) 

V T . The elements of Z can be bounded
by using strong RRQR to compute the column pivoted QR factorization of A, in
which case \| R - 1

11 R12\| max is bounded by a small constant that can be chosen to be
1. A row ID approximates A as XR, where X \in \BbbR 

m\times l contains an identity matrix,
\| X\| max \leq 1, and R \in \BbbR 

l\times n is formed by l rows of A. It can be obtained by computing
the column ID of AT . However, we note that when U is a permutation matrix, the
approximations from (4.5) and (4.6) also provide row IDs, since U1A is formed by rows
of A, and \| \=A21

\=A - 1
11 \| max and \| \=Q21

\=Q - 1
11 \| max can be bounded by 1. The randomized

version is slightly different, and we discuss here RandomizedRowID in Algorithm
4.3, referred to as RandomizedID in Algorithm 15 from [23]. With our terminology,
it corresponds to randomized LU with row selection, in which, as in (4.5), the rows
are selected from AV1 instead of its thin Q1 factor.

The fact that these algorithms fit into the LU framework is simple, but it appears
to have been overlooked in the literature. Therefore, it has its own proposition.

Proposition 4.1. \bfitR \bfita \bfitn \bfitd \bfito \bfitm \bfiti \bfitz \bfite \bfitd \bfitL \bfitU \bfitR \bfito \bfitw \bfitS \bfite \bfitl \bfite \bfitc \bfitt \bfiti \bfito \bfitn is equivalent to RLU

when the latter chooses the same V1 and U1. \bfitR \bfita \bfitn \bfitd \bfito \bfitm \bfiti \bfitz \bfite \bfitd \bfitR \bfito \bfitw \bfitI \bfitD is equivalent to
RLU when the latter chooses the same V1 and U1. \bfitR \bfita \bfitn \bfitd \bfito \bfitm \bfiti \bfitz \bfite \bfitd \bfitQ \bfitB is equivalent
to RLU when the latter chooses the same V1 and U1 := TT .

Proof. The proof is mainly to recall the various definitions. First, AlgorithmRan-

domizedLU RowSelection produces Ak = Q1(U1Q1)
 - 1U1A. As claimed within

the algorithm and (4.3), because Q1R11 = AV1 it follows that AV1(U1AV1)
 - 1U1A =

Q1(U1Q1)
 - 1U1A. As AV1(U1AV1)

 - 1U1A is the output factorization of Algorithm
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 575

Algorithm 4.3 [T,S] =RandomizedRowID(A,k). Randomized interpolative de-
composition with row selection computes a randomized LU factorization Ak = TS,
performing sketching on the columns and selecting rows based on AV1, where V1 is a
random matrix.

1: Input: target rank k, matrix A\in \BbbR 
m\times n

2: Output: T \in \BbbR 
m\times l and S \in \BbbR 

l\times n

3: Ensure: T =AV1(U1AV1)
 - 1 =UT

\bigl( Il
\=A21

\=A - 1
11

\bigr) 

, S =U1A\in \BbbR 
l\times n, where U is a

permutation matrix, U1 =U [: l, :], UAV1 =
\bigl( \=A11

\=A21

\bigr) 

, \| T\| max is bounded, and S is
formed by rows of A

4: Select oversampling parameter l\geq k
5: Generate a full-rank n\times l random matrix V1

6: Permutation U is selected so that UAV1 =
\bigl( \=A11

\=A21

\bigr) 

=
\bigl( I

\=A21
\=A - 1
11

\bigr) 

\=A11 results in

| | \=A21
\=A - 1
11 | | max being bounded by a small constant, e.g., by computing strong

RRQR factorization of (AV1)
T . Here U1 =U [: l, :] and \=A11 =U1AV1.

7: T =UT
\bigl( Il

\=A21
\=A - 1
11

\bigr) 

; also note that T =AV1(U1AV1)
 - 1.

8: S =U1A

RLU, the factorizations agree. Second, consider Algorithm RandomizedRowID.
As in (4.4), AV1(U1AV1)

 - 1U1A=UT
\bigl( Il

\=A21
\=A - 1
11

\bigr) 

U1A, which corresponds to the output
of Algorithm RandomizedRowID.

We move on to the last equivalence. Recall that [T,R] = thin-QR(AV1). Select-
ing the same V1 and U1 = TT , the random LU approximation given by Algorithm
RLU would be

(4.10) AV1(T
TAV1)

 - 1TTA= TR(TTTR) - 1TTA= TTTA,

which agrees with Algorithm RandomizedQB.

We consider now the more general case k \leq l \leq l\prime . The most popular approach
involving sketching from the left and right is perhaps the method based on an oblique
projection, in which the approximation is

(4.11) Aob
k =AV1(U1AV1)

+U1A.

This approximation is used in [7] and also described in the overview [33]. We refer to
it as Algorithm CW after Clarkson and Woodruff. We now show that this approxi-
mation is never more accurate and can be less accurate than GLU when l\prime > l, and
the same when l\prime = l.

Proposition 4.2. Let \=A=UAV, Ak be the output of Algorithm \bfitG \bfitL \bfitU , and Aob
k

be the output (4.11) of Algorithm \bfitC \bfitW . Then

\| A - Aob
k \| 2F = \| A - Ak\| 2F + \| Ak  - Aob

k \| 2F .

Proof. Similar to Remark 3.4,

Aob
k =AV1(U1AV1)

+U1A=U - 1

\biggl( 

\=A11
\=A21

\biggr) 

\=A+
11

\bigl( 

\=A11
\=A12

\bigr) 

V  - 1

=U - 1

\biggl( 

\=A11
\=A11

\=A+
11

\=A12
\=A21

\=A22  - S( \=A11)

\biggr) 

V  - 1.
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576 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

From this calculation and the calculation leading to (3.16), it follows that

\| A - Aob
k \| 2F = \| U - 1

\biggl[ 

\=A - 
\biggl( 

\=A11
\=A11

\=A+
11

\=A12
\=A21

\=A22  - S( \=A11)

\biggr) \biggr] 

V  - 1\| 2F

= \| 
\biggl( 

0 U+
1 (I  - \=A11

\=A+
11)

\=A12

0 S( \=A11)

\biggr) 

\| 2F .

This gives the Frobenius norm claim.

The work in [7] only considered the properties of the factorization (4.11) in the
context of Johnson--Lindenstrauss transforms, specifically when l\prime is a poly-log factor
larger than l, and not focusing on deterministic bounds. We note that the factorization
in CW may be slightly cheaper to perform, although in typical settings (k is relatively
small) the same term dominates the cost of both algorithms.

5. QR deterministic bounds. The following lemma is important in random-
ized low-rank approximation results. Our proof is novel, and (5.3), (5.4) significantly
generalize past versions.

Proposition 5.1. Let A be an m\times n matrix with the SVD of A being A= P\Sigma ST .
As with Proposition 3.3, it is again convenient to suppose V is n\times n with V as described
in (3.3). Also let [Q,R] = \bfitQ \bfitR (AV ). Then block Q,R,STV,\Sigma using Q1 := Q[:, : l],
R11 =R[: l, : l], (STV )11 = (STV )[: k, : l], and \Sigma 1 = \Sigma [: k, : k], \Sigma 2 = \Sigma [k + 1 :, k + 1 :].
Then the nonzero singular values of Q1Q

T
1 A - A are identical to those of R22, i.e.,

for any 1\leq j \leq min(m,n) - l

\sigma j(Q1Q
T
1 A - A) = \sigma j(R22).

Moreover, assuming (STV )11 has full row-rank (and therefore k\leq l), we have that

\| Q1Q
T
1 A - A\| 2F \leq \| \Sigma 2\| 2F + \| \Sigma 2(S

TV )21(S
TV )+11\| 2F ,(5.1)

\| Q1Q
T
1 A - A\| 22 \leq \| \Sigma 2\| 22 + \| \Sigma 2(S

TV )21(S
TV )+11\| 22.(5.2)

We may generalize this last equation with the goal of covering Definition 1.3. For any
1 \leq j \leq min(m,n) - l, there exists an n\times n orthogonal matrix \~S independent of V ,
satisfying

\sigma 2
j (Q1Q

T
1 A - A)\leq \| Res(\Sigma 2, j)\| 22 + \| Res(\Sigma 2, j)( \~S

TV )21( \~S
TV )+11\| 22,(5.3)

\| Res(Q1Q
T
1 A - A, j)\| 2F \leq \| Res(\Sigma 2, j)\| 2F + \| Res(\Sigma 2, j)( \~S

TV )21( \~S
TV )+11\| 2F(5.4)

with ( \~STV )11 being k\times l as before.

Proof. We first observe by direct computation

\sigma j(Q1Q
T
1 A - A) = \sigma j(Q2Q

T
2 A) = \sigma j(Q2

\bigl( 

0 R22

\bigr) 

V  - 1) = \sigma j(R22)

to establish the first claim. Next we invoke the fact that for the spectral and Frobenius
norms, Q1Q

T
1 A is the best approximation to A whose columns are in im(Q1). For

example, one can check that Q1Q
T
1 satisfies the orthogonal projection properties with

respect to these norms. Set \=A= PTAV . Then we explicitly propose an approximation
\~Ak whose columns are contained in im(Q1) = im(AV1), namely

\~Ak := P

\biggl( 

\=A11
\=A12

\biggr) 

\bigl( 

I \=A+
11

\=A12

\bigr) 

V  - 1 =AV1

\bigl( 

I \=A+
11

\=A12

\bigr) 

V  - 1.
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 577

Note that this is just using the GLU approximation, except in contrast to before,
\=A11 is k\times l, making it short and wide. Thus we may repeat the algebra around (3.16)
in the first step,

\| A - \~Ak\| 2F = \| S((PTAV )11)\| 2F = \| S(\Sigma 1(S
TV )11)\| 2F

= \| \Sigma 2(S
TV )22  - \Sigma 2(S

TV )21(\Sigma 1(S
TV )11)

+\Sigma 1(S
TV )12\| 2F

= \| \Sigma 2(S
TV )22  - \Sigma 2(S

TV )21(S
TV )+11(S

TV )12\| 2F(5.5)

\leq \| 
\bigl( 

\Sigma 2  - \Sigma 2(S
TV )21(S

TV )+11
\bigr) 

\| 2F
= \| \Sigma 2\| 2F + \| \Sigma 2(S

TV )21(S
TV )+11\| 2F .

To be clear, STV was blocked so that (STV )11 is k \times l. Note that we were able to
distribute the pseudo-inverse in (\Sigma 1(S

TV )11)
+. In the generic case this follows from

(STV )11 having full row rank (this will be with probability 1 for suitably random V )
and \Sigma 1 being invertible. If \Sigma 1 has trailing 0 values, the assumption of full row rank
of (STV )11 ensures im(AV1) = im(A) and therefore we can instead use \~Ak :=A to get
the bound of 0.

For the spectral norm bound, the steps are the same, except the final equality
becomes an inequality.

We actually are interested in the lower singular values as well, though, so we
extend the proof. In the following, PY and PAV1

project onto the complements of
the images of Y and AV1, respectively; Y is rank j  - 1, and AV1 is rank l. The
same projection notation applies to the other projections. Using the additive Weyl
inequality in the inequality step, similar to the use within Proposition 3.3, for s \leq 
min(m,n) - j,

\sigma j+s - 1(Q1Q
T
1 A - A) = \sigma j+s - 1(PAV1

A)

= \sigma j+s - 1(PAV1
A - PY PAV1

A+ PY PAV1
A)

\leq \sigma s(PY PAV1
A) = \sigma s(PY+AV1

A) = \sigma s(P \~Y PY
\prime A).

Additionally, in the third equality, Y + AV1 is used to refer to direct sum of the
images of Y and AV1, and the equality holds under the assumption these spaces are
orthogonal. The fourth (last) equality holds when im(Y \prime )\oplus im( \~Y ) = im(Y )\oplus im(AV1),
and im(Y \prime ) is orthogonal to im( \~Y ).

Now we make our choice of Y +AV1. First let P1 = P [:, : j  - 1], the leading j  - 1
left singular vectors of A. Noting that im(P1)\oplus im((P1P

T
1 A - A)V1) is rank l+ j - 1

and contains im(Q1) = im(AV1), and that P1 is orthogonal to (A - P1P
T
1 A)V1, these

are valid choices of Y \prime and \~Y , respectively. In summary,

im(Y )\oplus im(AV1) = im(P1)\oplus im((P1P
T
1 A - A)V1) = im(P1)\oplus im(AV1),(5.6)

Y = P1 orthogonalized against AV1,

Y \prime = P1,

\~Y = PP1
AV1.

We emphasize in (5.6) that the first two are orthogonal direct sums. This puts us
essentially back into the situation surrounding (5.5). Indeed,

\sigma j+s - 1(Q1Q
T
1 A - A)\leq \sigma s(P \~Y PY

\prime A) = \sigma s(PBV1
B) = \sigma s(B  - \~Q1

\~QT
1 B),
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578 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

where B = Res(A, j), and \~Q1 is an orthogonal matrix such that im( \~Q1) = im(BV1).
In particular, with s= 1,

\sigma j(Q1Q
T
1 A - A)\leq \sigma 1( \~Q1

\~QT
1 B  - B),

as well as, by comparing the singular values individually by varying s,

\| Res(Q1Q
T
1 A - A, j)\| 2F \leq \| \~Q1

\~QT
1 B  - B\| 2F .

As a result, the right-hand sides we need to bound are the same as those bound when
we established (5.1), and we may carry out the same steps as those around (5.5). The
only change is A is replaced with B =Res(A, j), and accordingly Q1 changes to have
the same image as BV1. The effect of this is that the order of right singular vector
matrix S changes; the leading j - 1 singular values and singular vectors are removed.
To capture this change, we may notationally let \~S be the permutation of the columns
of S, moving the leading j  - 1 columns to the end. Then, in the spectral case with
s= 1,

\sigma 2
j (Q1Q

T
1 A - A)\leq \| Res(\Sigma 2, j)\| 22 + \| Res(\Sigma 2, j)( \~S

TV )21( \~S
TV )+11\| 22.

The Frobenius norm version follows similarly.

In (5.2) and (5.3), one could factor out the \sigma part to make the equations immedi-
ately take the form of Definition 1.1 and Definition 1.3. However, as in Theorem 6.9,
the unfactored form can have advantages.

We conclude this section with a single proposition encompassing the QR factor-
ization bounds we use.

Proposition 5.2. Let A be an m\times n matrix with the SVD of A being A= P\Sigma ST .
Set [Q,R] = \bfitQ \bfitR (AV ), where V is an n \times n matrix as in (3.3). Then the singular
values of Q1Q

T
1 A - A are identical to those of (m - l)\times (n - l) matrix R22. Moreover,

for j \leq k,

(5.7) \sigma j(A)\geq \sigma j(Q1Q
T
1 A)\geq \sigma j(AV1)\sigma min(V

+
1 )

as well as for any given j \leq min(m,n)  - l, there is an orthogonal n \times n matrix \~S
independent of V such that

\sigma 2
j (R22)\leq \| Res(\Sigma 2, j)\| 22 + \| Res(\Sigma 2, j)( \~S

TV )21( \~S
TV )+11\| 22,(5.8)

\| Res(R22, j)\| 2F \leq \| Res(\Sigma 2, j)\| 2F + \| Res(\Sigma 2, j)( \~S
TV )21( \~S

TV )+11\| 2F ,(5.9)

with ( \~STV )11 being k\times l as before.

Proof. Excluding (5.7), the bounds are restatements of facts in Proposition 5.1.
The upper bound is a consequence of the Weyl inequality,

\sigma j(Q1Q
T
1 A)\leq \sigma 1(Q1Q

T
1 )\sigma j(A) = \sigma j(A).

The lower bound follows from

\sigma j(Q1Q
T
1 A) = \sigma j

\biggl( \biggl( 

R11 R12

0 0

\biggr) 

V  - 1

\biggr) 

\geq \sigma j(R11V
+
1 ) = \sigma j(AV1V

+
1 ),

and then from Weyl's inequality, Lemma 3.1. This bound is identical to that of
Proposition 3.3.
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 579

6. Application of randomness. In this section, we combine our determinis-
tic bounds with the past literature on sketching matrices. There are three applica-
tions. We first note that ensembles U and V used in Algorithm GLU's guarantees
in Proposition 3.3 can be viewed through the oblivious subspace embedding prop-
erty commonly used in literature. Second, we specialize the random ensemble to the
subsampled randomized Hadamard transform (SRHT) introduced in [29] but whose
analysis was strengthened in [4]. Our approach fits nicely with their work to give
particularly strong operator norm bounds, but in asymptotically less time. Third,
we specialize to the Gaussian ensemble to see an application to analyzing the growth
factor in Gaussian elimination.

We begin by recalling a property associated with Johnson--Lindenstrauss embed-
dings. Different authors establish it in different ways, as in [29, 4, 7], but they all
have found it necessary in providing sharp Frobenius bounds.

Definition 6.1. We say U from \BbbR 
n to \BbbR 

s is (\epsilon , \delta ,n) multiplication approximating
if for any A,B having n rows,

\| ATUTUB  - ATB\| 2F \leq \epsilon \| A\| 2F \| B\| 2F ,

with probability 1 - \delta .

We also include a definition used consistently in the literature.

Definition 6.2. An (k, \epsilon , \delta ) oblivious subspace embedding (OSE) from \BbbR 
n to \BbbR 

s

is a distribution U \sim \BbbD over s\times n matrices. It must with probability 1 - \delta succeed in
making

1 - \epsilon \leq \sigma 2
min(UQ)\leq \sigma 2

max(UQ)\leq 1 + \epsilon 

hold for any given orthogonal n\times k matrix Q. We will assume l\geq k and \epsilon < 1/6.

For Definition 6.2, there is a consequence we require. The first part is essentially
Lemma 4.1 of [4], but we need to state it more generally.

Lemma 6.3. Let U be an s\times n matrix that is a (k, \epsilon , \delta ) OSE from \BbbR 
n to \BbbR 

s, and
let Q be an (n\times k) orthogonal matrix. Provided \epsilon < 1/6, then with probability 1 - \delta 
both of the following hold:

\| (UQ)+  - (UQ)T \| 2 \leq 3\epsilon ,

\| U\| 22 =O
\Bigl( n

k

\Bigr) 

,

where in the second of these we require the additional assumption \delta > 2e - k/5.

Proof. Let A = UQ. Then from Definition 6.2 and power series expansion, the
singular values of A lie within [

\surd 
1 - \epsilon ,

\surd 
1 + \epsilon ], and hence for simplicity we may say

they lie within [1 - \epsilon ,1+ \epsilon ] with probability 1 - \delta . Let l\times k diagonal matrix \Sigma contain
these singular values. Therefore,

\| A+  - AT \| 2 = \| \Sigma T  - \Sigma +\| 2 =max
i\leq k

| \lambda i  - \lambda  - 1
i | 

\leq | 1 - \epsilon  - 1

1 - \epsilon 
| \leq 3\epsilon ,

where we have chosen to write the small extreme of \sigma i; the large extreme is identical.
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580 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

For the second fact, let V \leq \BbbR 
n be a uniformly distributed k-dimensional subspace

with dim(V ) = k independent of U ; i.e., V is spanned by the first k columns of a Haar
distributed matrix on \BbbR 

n independent of U . A consequence of Definition 6.2 is that
\| Uv\| 2 \leq 2 with probability 1  - \delta holding uniformly for unit vectors v contained in
V . Otherwise some fixed subspace V0 would also fail to have this property with
probability \delta , violating Definition 6.2.

Now let x be the maximal right singular vector of U . The subsequent Lemma

6.4 gives supv\in V,\| v\| 2=1 | \langle x, v\rangle | = \Omega (
\sqrt{} 

k
n ) with probability 1  - \delta . Next choose v \in 

argmaxv\in V,\| v\| 2=1| \langle x, v\rangle | to be a unit-vector with smallest angle with respect to x,

and observe \| Uv\| 2 = \Omega (
\sqrt{} 

k
n )\| Ux\| 2. We conclude \| U\| 22 = O

\bigl( 

n
k

\bigr) 

with probability

1 - \delta . Otherwise this would contradict \| Uv\| 2 \leq 2 holding with probability 1 - \delta .

Lemma 6.4. Let V be a k-dimensional uniformly distributed subspace of \BbbR 
n

and x \in \BbbR 
n be a unit vector drawn from a distribution independent of V . Then

supv\in V,\| v\| 2=1 | \langle x, v\rangle | =\Omega (
\sqrt{} 

k
n ) with probability 1 - 2e - k/5.

Proof. We may assume V = span(e1, . . . , ek) and represent x as (X1,...,Xn)
T\surd 

X2
1+\cdot \cdot \cdot +X2

n

where

Xi are i.i.d. variance 1
n Gaussians. Indeed, V can be taken to be the first k columns

of Haar distributed orthogonal matrix \~V , and the WLOG assumption is equivalent
to changing to the coordinates of \~V . As a result, we are interested in

sup
v\in V,\| v\| 2=1

| \langle x, v\rangle | = (X1, . . . ,Xn)
\sqrt{} 

X2
1 + \cdot \cdot \cdot +X2

n

\cdot (X1, . . .Xk,0, . . . )
T

\sqrt{} 

X2
1 + \cdot \cdot \cdot +X2

k

=

\sqrt{} 

X2
1 + \cdot \cdot \cdot +X2

k
\sqrt{} 

X2
1 + \cdot \cdot \cdot +X2

n

.

Standard large-deviation bounds for chi-squared distribution, which is a subexponen-
tial random variable, can be used to lower bound this. We take bounds from [21,
(4.3), (4.4)]. The right tail bound is

(6.1) \BbbP [X2
1 + \cdot \cdot \cdot +X2

n > 1 + 2

\surd 
\delta \surd 
n
+ 2

\delta 

n
]\leq e - \delta ,

and the left tail bound is

(6.2) \BbbP [X2
1 + \cdot \cdot \cdot +X2

k <
k

n
 - 2

\surd 
k\delta 

n
]\leq e - \delta .

From these and setting \delta = k/5 in (6.2) and \delta = n/5 in (6.1), we conclude that

sup
v\in V,\| v\| 2=1

| \langle x, v\rangle | \geq 

\left( 

 

k
n  - 2 k\surd 

5n

1 + 2
\surd 
k\surd 
5n

+ 2 k
5n

\right) 

 

.5

\geq 1

5

\sqrt{} 

k

n

holds with probability 1 - 2e - k/5.

The following lemma largely follows the steps of [4], but we have tried to abstract
out the key probabilistic properties responsible in order to be more general. Another
difference is that we also treat the spectral norm. It is a natural consequence of the
prior lemmas and will bridge the gap between deterministic Proposition 3.3 and ran-
domized Theorem 6.6. We do not attempt to tightly bound the constant coefficients.

Lemma 6.5. Assume l \times m matrix U is drawn from a distribution that is a
(k,

\surd 
\epsilon , \delta ) OSE from \BbbR 

m to \BbbR 
l. Let B be a fixed (m - k)\times n matrix and Q= [Q1,Q2]
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 581

be a fixed orthogonal m \times m matrix blocked so that Q1 is m \times k. Then provided
\delta > 2e - k/5 and \epsilon < 1/6, with probability 1 - \delta 

\| (UQ1)
+(UQ2)B\| 22 =O

\Bigl( m

k

\Bigr) 

\| B\| 22 .

Further assume that U is (k,
\surd 
\epsilon , \delta k

n ) OSE and ( \epsilon 
k , \delta ,m) multiplication approximat-

ing; then with probability at least 1 - 2\delta ,

\| (UQ1)
+(UQ2)B\| 2F =O (\epsilon )\| B\| 2F .

Proof. For the Frobenius bound, apply Lemma 6.3 in (6.3) and Definition 6.1 in
(6.5) by noting that QT

2 Q1 = 0,

\| (UQ1)
+(UQ2)B\| 2F \leq 2\| (UQ1)

T (UQ2)B\| 2F + 2\| ((UQ1)
+  - (UQ1)

T )(UQ2)B\| 2F
\leq 2\| QT

1 U
TUQ2B\| 2F + 18\epsilon \| UQ2B\| 2F(6.3)

\leq 2\| QT
1 U

TUQ2B\| 2F + 36\epsilon \| B\| 2F(6.4)

\leq 2
\epsilon 

k
\| Q2B\| 2F \| QT

1 \| 2F + 36\epsilon \| B\| 2F(6.5)

\leq 2\epsilon \| B\| 2F + 36\epsilon \| B\| 2F = 38\epsilon \| B\| 2F .

In the above, the step to (6.4) for \| UQ2B\| 2F was obtained as follows. Let C =Q2B,
C \in \BbbR 

m\times n, and partition C into blocks of k columns. We refer to each such block
as Ci, with 1 \leq i \leq n/k. Without loss of generality we assume for simplicity that
n divides k. Using Definition 6.2 and the thin QR decomposition Ci = \~Qi

\~Ri, where
\~Qi \in \BbbR 

m\times k, we obtain

\| UCi\| 2F = \| U \~Qi
\~Ri\| 2F \leq \| U \~Qi\| 22\| \~Ri\| 2F \leq (1 +

\surd 
\epsilon )\| Ci\| 2F \leq 2\| Ci\| 2F

with probability 1 - \delta k
n . We further obtain

\| UQ2B\| 2F = \| UC\| 2F =

n/k
\sum 

i=1

\| UCi\| F \leq 2\| B\| 2F

with probability 1 - \delta .
For the spectral bound, we may argue

\| (UQ1)
+(UQ2)B\| 22 \leq \| (UQ1)

+(UQ2)\| 22 \cdot \| B\| 22
\leq 2\| (UQ1)

T (UQ2)\| 22 \cdot \| B\| 22
+ 2\| ((UQ1)

+  - (UQ1)
T )(UQ2)\| 22 \cdot \| B\| 22

\leq 2(1 +
\surd 
\epsilon )\| UQ2\| 22 \cdot \| B\| 22 + 18\epsilon \| (UQ2)\| 22 \cdot \| B\| 22(6.6)

\leq 2(1 +
\surd 
\epsilon + 9\epsilon )\| U\| 22 \cdot \| Q2\| 22 \cdot \| B\| 22(6.7)

=O
\Bigl( m

k

\Bigr) 

\| B\| 22 .

In the former steps, we note in particular that (6.6) follows from Definition 6.2, and
(6.7) follows from Lemma 6.3.

In the following, one of our main results, we continue with the notation of Proposi-
tions 3.3 and 5.2. We provide a bound on Definitions 1.1 and 1.3. While these bounds
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582 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

do appear quite weak (often weaker than a naive Frobenius norm adaptation), we note
that they match the guarantees of past literature for algorithms running in o(nmk)
time, e.g., [14, 17, 30]. On the other hand, in Theorem 6.9 we notably achieve very
sharp bounds on Definitions 1.1 and 1.3 by exploiting a special property of the SRHT
ensemble.

Theorem 6.6. Assume U1 is drawn from a distribution that is an (l,
\surd 
\epsilon , \delta ) OSE

from \BbbR 
m into \BbbR 

l
\prime 
. Similarly assume V T

1 is drawn from a distribution that is a (k,
\surd 
\epsilon , \delta )

OSE from \BbbR 
n into \BbbR 

l. Then provided \delta > 2e - l/5 and \epsilon < 1/6, with probability 1 - 2\delta 
for j \leq k,

\sigma j(Ak) = \Omega 

\Biggl( 
\sqrt{} 

k

n

\Biggr) 

\sigma j(A) .

Fixing a given 1\leq j \leq min(m,n) - l, with probability 1 - 4\delta we also have

\sigma j(A - Ak) =O

\biggl( 
\sqrt{} 

mn

kl

\biggr) 

\sigma k+j(A).

If we additionally assume U1 is drawn from a (l,
\surd 
\epsilon , \delta l

n ) OSE and a ( \epsilon l , \delta ,m) multi-
plication approximating and similarly V T

1 is drawn from a (k,
\surd 
\epsilon , \delta k

m ) and a ( \epsilon 
k , \delta , n)

multiplication approximating, then for a given 1\leq j \leq min(m,n) - l,

\| Res(A - Ak, j)\| 2F = (1+O(\epsilon ))\| Res(\Sigma 2, j)\| 2F
holds with probability 1 - 4\delta .

Proof. We start with the Frobenius norm bound. The starting point is Proposi-
tion 5.2, which includes

\| Res(R22, j)\| 2F \leq \| Res(\Sigma 2, j)\| 2F + \| Res(\Sigma 2, j)( \~S
TV )21( \~S

TV )+11\| 2F ,

where V is an n\times n matrix as in (3.3), V1 = V [:, : l], and \~S is an orthogonal n\times n
matrix independent of V . Let \~S = [ \~S1, \~S2] such that \~S1 contains the first k columns of
\~S. Hence ( \~STV )11 = \~ST

1 V1 and ( \~STV )21 = \~ST
2 V1. Then as V T

1 satisfies the Johnson--
Lindenstrauss properties, apply Lemma 6.5 with B =Res(\Sigma 2, j)

T , Q1 = \~S1, Q2 = \~S2,
and U = V T

1 to conclude that for a given 1 \leq j \leq min(m,n)  - l, \| Res(R22, j)\| 2F =
(1 +O(\epsilon ))\| Res(\Sigma 2, j)\| 2F with probability 1 - 2\delta . To complete the Frobenius bound,
recall from Proposition 3.3 that

\| Res(A - Ak, j)\| 2F \leq \| Res(R22, j)\| 2F + \| (UQ)+11(UQ)12Res(R22, j)\| 2F ,

and again apply Lemma 6.5, this time with B = Res(R22, j), to get \| Res(A  - 
Ak, j)\| 2F = (1+O(\epsilon ))\| Res(\Sigma 2, j)\| 2F with probability 1 - 4\delta .

The spectral bound proceeds similarly, but using the spectral bounds of Proposi-
tion 5.2, Proposition 3.3, and Lemma 6.5 instead. Thus

\| Res(R22, j)\| 22 \leq \| Res(\Sigma 2, j)\| 22 + \| Res(\Sigma 2, j)( \~S
TV )21( \~S

TV )+11\| 22 =O
\Bigl( n

k

\Bigr) 

\sigma 2
j+k(A).

And then using (3.13) of Proposition 3.3,

\sigma 2
j (A - Ak)\leq \| Res(R22, j)\| 22 + \| (UQ)+11(UQ)12Res(R22, j)\| 22 =O

\Bigl( mn

kl

\Bigr) 

\sigma 2
j+k(A),

which proves the spectral claim.
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 583

For the multiplicative lower bound on the singular values of Ak, from (3.14) and
(5.7) in Proposition 3.3 and Proposition 5.2, respectively, it follows that for j \leq k,

\sigma j(Ak)\geq \sigma j(AV1) \cdot \sigma min(V
+
1 ) = \Omega 

\Biggl( 
\sqrt{} 

k

n

\Biggr) 

\sigma j(AV1) = \Omega 

\Biggl( 
\sqrt{} 

k

n

\Biggr) 

\sigma j(A).

This last step requires additional explanation. With [P,\Sigma , ST ] = SVD(A), let \Sigma 1 be
formed by the first k singular values of A, and let S1 be formed by the first k columns
of S. We obtain

\sigma j(AV1) = \sigma j(\Sigma S
TV1)\geq \sigma j(\Sigma 1S

T
1 V1)\geq 

\sqrt{} 

1 - 
\sqrt{} 

1

6
\sigma j(\Sigma 1)

by using Definition 6.2.

Next, we specialize to the SRHT ensemble in order to see a case where the bounds
of Definitions 1.1 and 1.3 are stronger than in Theorem 6.6.

Definition 6.7. The SRHT ensemble embedding \BbbR 
n into \BbbR 

s is defined by gen-
erating

\sqrt{} 

n
sPHD, where P is s\times n selecting s rows, H is the normalized Hadamard

transform, and D is an n\times n diagonal matrix of uniformly random signs.

The key special additional property of the SRHT ensemble is from Lemma 4.8 of
[4].

Lemma 6.8. Let V T be drawn from an SRHT of dimension l\times n. Then for m\times n
matrix A with rank \rho , with probability 1 - 2\delta ,

\| AV \| 22 \leq 5\| A\| 22 +
ln(\rho /\delta )

l
(\| A\| F +

\sqrt{} 

8 ln(n/\delta )\| A\| 2)2.

Let U \in \BbbR 
l\times m be drawn from SRHT ensembles, where l is chosen such that

U satisfies (k,
\surd 
\epsilon , \delta k

n ) OSE and ( \epsilon 
k , \delta ,m) multiplication approximating properties,

as in Lemma 6.5. From Lemma 4.1 of [4] we know that the SRHT with l \geq 
6\epsilon  - 1(

\surd 
k + 4

\sqrt{} 

ln(max(m,n)
\delta k ))2 ln(n/\delta ) rows is a (k,

\surd 
\epsilon , \delta k

n ) OSE (by substituting \delta 

with \delta k
n ). For the multiplication approximating property, by setting in Lemma 4.11

of [4] R = 2
\sqrt{} 

ln(3/\delta ) and \delta = \delta /3, we obtain that the number of rows should be
l \geq 4\epsilon  - 1k(1 + 2

\sqrt{} 

ln(3/\delta ))2(1 +
\sqrt{} 

8 ln(3m/\delta ))2. Hence both properties are satisfied

by choosing l = 6\epsilon  - 1(
\sqrt{} 

6k ln 3
\delta + 4

\sqrt{} 

ln max(m,n)
\delta k )2(1 +

\sqrt{} 

8 ln max(3m,n)
\delta )2. We may

substitute these parameters into Theorem 6.6, but numerous other ensembles could
also be used. We have singled out the SRHT because it enjoys a remarkably good
bound for the spectral norm approximation quality due to the prior lemma, but past
work has not exploited this property fully. In particular, when the spectral norm and
Frobenius norm are comparable (i.e., quickly decaying singular values), the quality
is constant in the dimension rather than polynomial. Loosely speaking, as long as
\| A - Ak\| F

\| A - Ak\| 2
= O(

\surd 
k), then \| A - Ak\| 2 is around a constant factor from that of the k-

truncated SVD. The theorem further strengthens this by proving the generalization
to the lower singular values of A - Ak.

Theorem 6.9. Let U1, V
T
1 be drawn from SRHT ensembles with dimensions l\prime \times 

m, n \times l. We set l \geq 6\epsilon  - 1(
\sqrt{} 

6k ln 3
\delta + 4

\sqrt{} 

ln max(m,n)
\delta k )2(1 +

\sqrt{} 

8 ln max(3m,n)
\delta )2 and

l\prime \geq 6\epsilon  - 1(
\sqrt{} 

6l ln 3
\delta + 4

\sqrt{} 

ln max(m,n)
\delta l )2(1 +

\sqrt{} 

8 ln max(3m,n)
\delta )2, where \epsilon < 1/6. Letting \rho 

be the rank of A, for simplicity assume l\prime \geq ln(m/\delta ) ln(\rho /\delta ) and l \geq ln(n/\delta ) ln(\rho /\delta ).
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584 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

Then for any fixed 1\leq j \leq min(m,n) - l, with probability 1 - 8\delta the approximation of
A using GLU, Ak satisfies

\sigma 2
j (A - Ak) =O(1)\sigma 2

k+j(A) +O

\biggl( 

ln(\rho /\delta )

l

\biggr) 

\| Res(A,k+ j)\| 2F

=O

\Biggl( 

1 +
\epsilon ln(min(m,n)/\delta )

k ln(k/\delta )

\| Res(A,k+ j)\| 2F
\sigma 2
k+j(A)

)

\Biggr) 

\sigma 2
k+j(A) .

Proof. It suffices to prove the first claim. Begin by using Proposition 5.2 and
Lemma 6.3:

\sigma 2
j (R22)\leq \| Res(\Sigma 2, j)\| 22 + \| Res(\Sigma 2, j)( \~S

TV )21( \~S
TV )+11\| 22

\leq \| Res(\Sigma 2, j)\| 22 + 2\| Res(\Sigma 2, j)( \~S
TV )21\| 22,

with probability 1 - \delta . Next apply Lemma 6.8 to the second term to get

\sigma 2
j (R22)\leq O

\biggl( 

1 +
ln(\rho /\delta ) ln(n/\delta )

l

\biggr) 

\| Res(\Sigma 2, j)\| 22 +O

\biggl( 

ln(\rho /\delta )

l

\biggr) 

\| Res(\Sigma 2, j)\| 2F

(6.8)

=O(1)\| Res(\Sigma 2, j)\| 22 +O

\biggl( 

ln(\rho /\delta )

l

\biggr) 

\| Res(\Sigma 2, j)\| 2F ,(6.9)

where \rho is the rank of A, with probability 1  - 2\delta . Continuing from the result of
Proposition 3.3, with probability 1 - \delta we obtain

\sigma 2
j (A - Ak)\leq \| Res(R22, j)\| 22 + \| (U1Q1)

+(U1Q2)Res(R22, j)\| 22
\leq \| Res(R22, j)\| 22 + 6\| (U1Q2)Res(R22, j)\| 22.

From Theorem 6.6 we know \| Res(R22, j)\| 2F \leq (1+O(\epsilon ))\| Res(\Sigma 2, j)\| 2F with probability
1 - 2\delta , because the SRHT with the parameter settings specified for l and l\prime satisfies
the multiplication approximation and OSE properties. Thus repeating the same steps
using Lemma 6.8 to complete the proof for the first bound, with probability 1 - 2\delta ,
we obtain

\sigma 2
j (A - Ak)\leq \| Res(R22, j)\| 22 + 6\| (U1Q2)Res(R22, j)\| 22

\leq O

\biggl( 

1 +
ln(\rho /\delta ) ln(m/\delta )

l\prime 

\biggr) 

\| Res(R22, j)\| 22

+O

\biggl( 

ln(\rho /\delta )

l\prime 

\biggr) 

\| Res(R22, j)\| 2F

=O(1)\| Res(R22, j)\| 22 +O

\biggl( 

ln(\rho /\delta )

l\prime 

\biggr) 

\| Res(R22, j)\| 2F .

By using the bounds on \sigma j(R22) from (6.8) and the fact that \| Res(R22, j)\| 2 = \sigma j(R22),
we further obtain

\sigma 2
j (A - Ak)\leq O(1)\sigma 2

k+j(A) +O

\biggl( 

ln(\rho /\delta )

l

\biggr) 

\| Res(\Sigma 2, j)\| 2F .

A few remarks are in order.

Remark 6.10. First, the SRHT ensemble is only defined for powers of 2. This is not
a theoretical issue because matrices can be padded. However, as discussed in [4] there
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 585

are orthogonal ensembles related to the SRHT, namely the discrete cosine transform
and Hartley transform, for which the key probabilistic requirement in Lemma 6.8
carries over, so this corollary also carries over.

Remark 6.11. Second, we consider much of the work in this section as adapting
[4] to algorithm GLU which sketches A's columns and rows and proves a spectral
norm bound comparable to the above. Their work does not specify how to proceed
after finding A \approx Q1Q

T
1 A and therefore follows RandomizedQB. Therefore, if one

follows their approach, creating a compressed representation of A would still require
O(nmk) time because QT

1 A must be computed. We state the relevant part of their
theorem here to provide context.

Theorem 6.12 ([4, Thm. 2.1]). Let A \in \BbbR 
m\times n have rank \rho and n a power of

2. Fix an integer k satisfying 2 \leq k < \rho . Let 0 < \epsilon < 1/3 and 0 < \delta < 1. Let
Y = AV T , where V \in \BbbR 

r\times n is drawn from the SRHT ensemble with r = 6\epsilon  - 1(
\surd 
k +

\sqrt{} 

8 ln(n/\delta ))2) ln(k/\delta )). Then with probability 1 - 5\delta 

\| A - Y Y +A\| 2 \leq 
\Biggl( 

4 +

\sqrt{} 

3 ln(n/\delta ) ln(\rho /\delta )

r

\Biggr) 

\| \Sigma 2\| 2 +
\sqrt{} 

3 ln(\rho /\delta )

r
\| \Sigma 2\| F

From this we see that our Theorem 6.9 has qualitatively the same accuracy guar-
antee on the residual error. For many types of matrices A, in particular for those
with fast spectral decay, Theorem 6.9 will be within a constant factor of the rank k
truncated SVD's spectral approximation error.

Remark 6.13. Let us consider the computational cost of computing the GLU

approximation of A through Theorem 6.9, storing the result in the form of (1.6),
following Algorithm 3.1.

Simply by following the algorithmic description, we see the largest cost terms are
O(nm log(l\prime ) +mll\prime ). We present a short table tabulating this.

\^A=U1(AV1) O(nm log(l))
T1 =U+

1 (I  - \^A \^A+) O(ml\prime log(m) + ll\prime 2) because

U+
1 =

\sqrt{} 

l
\prime 
m (PHD)T =

\sqrt{} 

l
\prime 
mDHPT

T2 =AV1 Stored from first step
T2 = T2

\^A+ O(mll\prime )
T = T1 + T2 O(ml\prime )
S =U1A O(mn log(l\prime ))

Specializing as in the theorem, we additionally required

l\geq 6\epsilon  - 1(
\sqrt{} 

6k ln 3
\delta + 4

\sqrt{} 

ln max(m,n)
\delta k )2(1 +

\sqrt{} 

8 ln max(3m,n)
\delta )2 and

l\prime \geq 6\epsilon  - 1(
\sqrt{} 

6l ln 3
\delta + 4

\sqrt{} 

ln max(m,n)
\delta l )2(1 +

\sqrt{} 

8 ln max(3m,n)
\delta )2. Using these bounds on l

and l\prime , we say the runtime is \~O(nm+ k2m\epsilon  - 3). Various poly-log factors are hidden
here, involving n,m,k, \delta . In more detail, plugging l and l\prime into the prior complexity
bound and assuming m < n so that l\prime = O(\epsilon  - 1(l ln(3/\delta ) + ln(n/(\delta k))) ln(n/\delta )) and
l=O(\epsilon  - 1(k ln(3/\delta ) + ln(n/(\delta k))) ln(n/\delta )), we get the Big-Oh of

nm log
\bigl( 

\epsilon  - 1(l ln(3/\delta ) + ln(n/(\delta k))) ln(n/\delta )
\bigr) 

+m\epsilon  - 3(k ln(3/\delta ) + ln(n/(\delta k)))2 ln3(n/\delta ) ln(3/\delta ).

Note that in the runtime bound, because there is asymmetry between m and n, it
turns out to be faster if m<n and thus A is short-wide. If this is not the case for A,
then one could simply run the algorithm on AT .
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586 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

Remark 6.14. As stated, Theorem 6.9 provides bounds for the GLU with sketch-
ing from the left and right. We noted in the prior remark how this retains the
performance of [4] while increasing the speed. We could stop the analysis at (6.8),
and also borrow the bounds already found in Theorem 6.6 and Proposition 5.2. Then
we obtain new bounds for the randomized QB factorization,

Corollary 6.15. Let n\times l matrix V T
1 be drawn from an SRHT ensemble, l \geq 

6\epsilon  - 1(
\sqrt{} 

6k ln 3
\delta + 4

\sqrt{} 

ln max(m,n)
\delta k )2(1 +

\sqrt{} 

8 ln max(3m,n)
\delta )2, and for simplicity assume

l\geq ln(n/\delta ) ln(\rho /\delta ). Then we have

\| Res(R22, j)\| 2F \leq (1 +O(\epsilon ))\| Res(A,k+ j)\| 2F ,

with probability 1 - 2\delta , as well as

\sigma 2
j (R22)\leq O(1)\sigma 2

k+j(A) +O

\biggl( 

ln(\rho /\delta )

l

\biggr) 

\| Res(A,k+ j)\| 2F

for 1\leq j \leq min(m,n) - l with probability 1 - 3\delta for a particular j. We also have upper
and lower bounds on the largest singular values, as for 1\leq j \leq k,

\sigma j(A)\geq \sigma j(Q1Q
T
1 A) = \Omega 

\Biggl( 
\sqrt{} 

k

n

\Biggr) 

\sigma j(A)

holds with probability 1 - 2\delta . Actually, using the deterministic bound of [15] found in
(4.7),

\sigma j(A)\geq \sigma j(Q1Q
T
1 A)\geq 

\sigma j(A)

1 +O(
\sqrt{} 

n
k )

\sigma k+1(A)
\sigma j(A)

holds with probability 1 - \delta .

We move on to the third application, controlling the growth factor during Gauss-
ian elimination by right and left multiplication by square random matrices. The
theoretical result we establish is that the growth factor is well behaved if we multiply
by square Gaussian random matrices. Note that the bounds in Propositions 3.3 and
5.1 will in this case be the same for Gaussian random matrices as for Haar random
matrices, because they differ by lower and upper triangular factors and U1, V1 are
now square. We make use of bounds proven for the Haar ensemble. The work [11],
which viewed the problem in terms of the Haar ensemble, required a randomized QB
factorization as a subroutine to compute the generalized Schur decomposition of the
matrix by a divide-and-conquer approach. This required a bound on the smallest
singular value of the k \times k minors. Eventually a tight bound on these was given in
[12] by means of the exact probability distribution, which we will use.

As pointed out in [3], Theorem 3.2 and Lemma 3.5 of [12] give an exact density
of the smallest singular value of a Haar minor. Analyzing this formula gives the
following bound, which is sharp up to a constant in the primary range of interest,
\sigma min =O( 1\surd 

k(n - k)
).

Lemma 6.16. Let \delta > 0, k, (n - k)> 30; then \BbbP [\sigma min \leq \delta \surd 
k(n - k)

]\leq 2.02\delta .

We will define the \ell 2 growth factors of \=A as \rho U ( \=A) := maxp \| Sp( \=A)\| 2/\| \=A\| 2 and
\rho L( \=A) :=maxp \| \=A21

\=A - 1
11 \| 2, where Sp is the Schur complement of the top p\times p block.

From Proposition 3.3, (3.2), and Proposition 5.1 it is not difficult to see that both are
bounded as
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A UNIFIED PERSPECTIVE ON LOW-RANK APPROXIMATION 587

\rho U ( \=A), \rho L( \=A)\leq max
j

\bigl[ 

\| X[: j, : j] - 1\| 2\| R[j + 1 :, j + 1 :]\| 2/\| \=A\| 2
\bigr] 

\leq max
j

\bigl[ 

\| (UQ)[: j, : j] - 1\| 2\| (STV )[j + 1 :, j + 1 :] - 1\| 2
\bigr] 

=max
j

\bigl[ 

\sigma  - 1
min((UQ)[: j, : j])\sigma  - 1

min((S
TV )[: j, : j])

\bigr] 

.

Note that \rho U and \rho L control what is typically called the growth factor of \=A. The
growth factor is the largest magnitude entry appearing in the matrices L,U returned
by Gaussian elimination. This is because of norm equivalence, with the operator and
max-element norm differing by at most a factor of

\surd 
n. Therefore, our \ell 2 growth

factors are equivalent for the purpose of proving stability.

Corollary 6.17. Suppose we want to solve Ax = b by Gaussian elimination,
and we pre-condition, post-condition A by Haar distributed matrices U,V . That is, we
solve UAV x\prime =Ub and output V Tx\prime . Then the U and L \ell 2 growth factors introduced
above satisfy

\BbbE [log(max(\rho U ( \=A), \rho L( \=A)))] =O(log(n)).

Proof. Because U and V are Haar, the matrices UQ and STV in Propositions 3.3
and 5.1 are Haar distributed. Apply Lemma 6.16 to the minors (call them generically
M) of UQ and STV with size in the range [30, n - 30],

\BbbP [\sigma  - 1
min(M)>n2+a]< 2.02n - 1 - a.

To control all minors in this range, simply perform a union bound over all < 2n minors
being considered. Let B1 be the inverse of the smallest singular value of the minors in
range [30, n - 30] of UQ and STV . Then \BbbP [B1 \geq n2+a]\leq 4.04n - a. Setting a= x - 2,
this is \BbbP [logn(B1)\geq x]\leq 4.04n2 - x.

To deal with the minors in range [0,30], we cite a result in random matrix theory
which says that these minors scaled by

\surd 
n approach a matrix of i.i.d. N(0,1) random

variables. The convergence is with respect to total variation distance; see [19]. Let
B2 be the inverse of the smallest singular value of these 60 minors. For the claimed
result, what matters is \BbbE [logn(B2)] = C1

\prime for some constant C1
\prime . This is apparent

from work similar to [12] but for Gaussian matrices; see, for example, the bound on
the condition number in [6].

Combining the bounds for B1 and B2, and denoting the minors (UQ)[: j, : j] and
(STV )[: j, : j] as (UQ)j and (STV )j respectively, we obtain

\BbbE [logn(max(\rho U ( \=A), \rho L( \=A)))]\leq \BbbE [logn(max
j

\bigl[ 

\sigma  - 1
min((UQ)[: j, : j])\sigma  - 1

min((S
TV )[: j, : j]))

\bigr] 

\leq \BbbE [logn(B1)] +\BbbE [logn(B2)]

\leq C1
\prime +

\int 2

0

1dx+ 4.04

\int \infty 

2

n2 - xdx

\leq C,

where we have used the fact that \BbbE [logn(B2)]\leq 
\int \infty 
0

\BbbP [logn(B2)>x]dx. Since we have
shown \BbbE [logn(max(\rho U ( \=A), \rho L( \=A)))]\leq C, the statement of the corollary follows.

Of course, it is impractical to use a Gaussian or Haar matrix to condition a matrix
in this context. We might as well then solve the system by means of QR factorization.
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588 J. DEMMEL, L. GRIGORI, AND A. RUSCIANO

Fig. 1. The QR follows Algorithm 4.1 with the sketching ensemble being SRHT with the value

of l\prime displayed on the x axis. The GLU follows Algorithm 3.1, again using SRHT. The matrix A is

held fixed as being the diagonal matrix of dimension 3000, with entries aii = (1 - i/n)20\cdot \mathrm{l}\mathrm{n}(n) to give

some spectral decay. To reduce the impact of variance, we repeat the procedures 10 times for every

value of l\prime and record the median on the plot. The varying of l\prime affects the GLU and its truncated

version but does not affect the QR algorithms.

However, this sheds light on the strategy of using conditioners to avoid pivoting during
Gaussian elimination. This has been popularized in work such as [1]. The theoretical
support of such work has been lacking. Corollary 6.17 is the first theoretical result
we are aware of that shows that a random conditioner can be used to provably avoid
the need to pivot.

It also could be considered a generalization of the well-known fact that Gaussian
random matrices have low pivot growth during Gaussian elimination. Indeed, we have
shown that this is the case for any distribution of singular values---not just that of
the Gaussian random matrix. The most interesting question still remains if faster
conditioners can be used to make the approach both theoretically and practically
sound for all matrices A. More concretely, we pose the following question.

Remark 6.18. Is there a random matrix ensemble S such that SA can be computed
quickly, but also \sigma min((SA)[: k, : k]) =O( 1

poly(n) ) when A is an orthogonal matrix?

7. Experiments. In this section, we present two numerical experiments. In
general, probabilistic upper bounds are considered to be pessimistic, acting more to
help guide practical settings. Therefore, we do not directly compare experiments with
the bounds established in this paper. However, qualitative insights can still be gained
from our bounds.

First, the QR approach in Algorithm 4.1 is the most efficient in its use of random-
ness, as it does not sketch from the left and right, but rather just from the right. The
works [4, 17, 15] all adopt or include discussions of this approach. For small values
of k it is likely to be the fastest and most accurate approach. Indeed, that is the
case for the relatively small values of n and k we use in the experiments we present.
However, as k becomes larger, sketching from both left and right becomes computa-
tionally faster, as is done in Algorithm 3.1. In order to illustrate the accuracy loss
caused by sketching from both sides, we present Figure 1. Note that the variants that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 2. The ensemble used for GLU is again the SRHT. We have A similar to the last ex-

periment, this time diagonal with n = 3000 and aii = (1  - i/n)20\cdot \mathrm{l}\mathrm{n}(n). On the y-axis is plotted

\sigma j(Ak)/\sigma j(A), with j being given on the x-axis, where Ak is the untruncated approximation.

only sketch from the left are more accurate than their counterparts. Also, naturally,
truncating the approximation to rank k (following the procedure of [32]) reduces the
accuracy. The target approximation rank is k= 20, and the y-axis is spectral residual
error normalized by \sigma 21. The value of l is held fixed at l= 100, and the x-axis varies
l\prime from 500 to 2500, in increments of 100.

In reading the plot, we note that the approximation error of GLU at l\prime = 500,
although not competitive with QR, is within a factor of 2. In comparison, the null
approximation with a trivial matrix of zeros would have yielded about 1/.3247 \approx 3
on the y-axis. Naturally, as l\prime increases, GLU eventually becomes indistinguishable
from QR in terms of approximation quality.

As an additional experiment to study the approximation of the leading singular
values that we provided bounds for in Theorem 6.6, we present Figure 2. This time,
the untruncated GLU algorithm is run once with l= 100, l\prime = 500. Thus we show the
ratio of the singular values of the output Ak of Algorithm 3.1 to that of A for a single
sample run. The first interesting thing to note is that the under-approximation loss
is very close to monotonically increasing. The second interesting thing we notice is
the relatively large drop around the 45th singular value. As the target approximation
rank is 20 as in Figure 1, it makes sense that the approximation gets gradually worse.
However, the leading 20 singular values are well approximated, with the ratio being
close to 1.

8. Conclusion. We have provided a thorough analysis of a new low-rank ap-
proximation procedure GLU. Along the way, we have seen that it is closely related
to many different past approaches. In the dense case, our procedure is as fast as
past approaches to within a log factor, and comes with spectral and Frobenius norm
bounds on the residual, as well as multiplicative bounds for the other singular values.

For future work, Remark 6.18 seems useful and interesting. Finding applications
which particularly benefit from the speed and accuracy guarantees of our procedure
is also of interest.
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