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ABSTRACT 

 
One of the trades most susceptible to occupational hazards in the construction industry is 

roofing contractors, whose projects inherently involve exposure to falls from height. In response, 
this study used a random forest data mining technique to analyze the impacts of accidents’ 
contributing factors on roofers’ injuries. The analysis examined over 600 incidents obtained from 
the Occupational Safety and Health Administration’s (OSHA’s) database of fatal and nonfatal 
accident reports. Some of the contributing factors considered include source of injury, cause of 
injury, project cost, project end use, project type, injured body part, and day of injury. The results 
of validated random forest model revealed that the most important factor for predicting the 
nature of injury is injured body part followed by source of injury. The presented results can be 
used by managers, policymakers, and safety professionals to reduce the frequency and severity 
of incidents. 
 
INTRODUCTION  
 

On average, a roofing contractor is about three times more likely to be exposed to fatal 
injuries than other construction workers (Moore & Wanger, 2014). This risk level can be 
attributed to environmental exposures and the dynamic nature of work in the construction 
industry. Besides regularly performing work at heights, additional factors increase these 
workers’ risks on jobsites, including the type of work, the composition of workers, and defiance 
of work-safety regulations (Choi et. al., 2006). Since a roofing contractor’s job depends on 
balance control, a reasonable proportion of these risks manifest in the nature of the work, as it is 
challenging to maintain good balance control when working on inclined surfaces, and a loss of 
balance can easily lead to a fall injury. These challenges are especially compounded when 
workers handle heavy and bulky material—as seen in roofing projects. Exposure to adverse 
weather conditions only makes the situation worse and riskier. All of these add up to make 
roofing one of the most hazardous trades in the construction industry (Fredericks et al., 2005; 
Dong et al., 2013).  

In a report by Center for Construction Research and Training (CPWR, 2013), between 2008 
and 2010, specialty trade contractors experienced the highest number of fatal falls in the 
construction industry, amounting to 579 deaths. Unlike other specialty trade contractors that have 
recently experienced a declining record of injuries and fatalities, roofing contractors have 
experienced a gradual rise in their number of fall fatalities between 2011 and 2017 (Bureau of 
Labor Statistics, 2018). Furthermore, out of all fatalities recorded in residential building 
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construction, 48.7% (135 deaths) were the result of falls. Even among nonfatal accidents, injuries 
can be costly and debilitating. On the average, the rate of nonfatal occupational injuries among 
roofing contractors were 1.1 to 1.8 times more than that of other construction workers for the 
period of 1992 to 2001. For the same period, the rate of fatal occupational injuries among roofing 
contractors were 1.6 to 2.8 times more than that of other construction workers (Sa et al., 2009). 
In 2005, the Bureau of Labor Statistics (BLS, 2007) reported that the injury cases among roofers 
is about 2 times more than that of other construction workers. Moreover, according to BLS 
(2006), the risk of nonfatal occupational injuries is still higher among roofing contractors than 
other construction workers on the average. These records highlight the need to investigate the 
causal factors of occupational incidents among roofing contractors.  

In response, after building and validating a random forest (RF) classifier, this study analyzed 
both fatal and nonfatal accidents among roofing contractors to investigate the impacts of 
accidents’ contributing factors on roofers’ injuries. The RF algorithm was used in this study 
because of its renowned ability to identify dominant predictor variables for predicting the target 
variable (the nature of injury in this study). Using descriptive statistics, the roles of these 
predictor variables may be unseen or underexplored, particularly when the patterns are non-
linear. Additionally, given that most of the variables considered here are categorical, this 
supervised data mining technique was employed because it is popularly used to uncover hidden 
patterns in categorical data. The results provide practitioners with insights into the nature of 
injury among roofing contractors, opportunities for designing specific training schemes, high-
risk factors, and the relevance of incorporating safety during design to mitigate and manage risk 
for these workers. 
 
BACKGROUND  
 

Workers’ injuries and fatalities in the construction industry are mainly caused by fall 
accidents (e.g., Stern et al. 2000; Dong et al. 2013). A study conducted by Stern et al. (2000) and 
involving 11,144 members of the UURWAW (The United Union of Roofers, Waterproofers, and 
Allied Workers) identified that fatalities significantly occur as a result of falls. Furthermore, 
Occupational Safety and Health Administration (OSHA, 2017) confirmed falls were the main 
cause of fatalities among the ‘Construction’s Fatal Four’—falls, struck-by object, electrocutions, 
and caught-in/between.  

Kaskutas et al. (2009) discovered that certain fall protection systems were not used by small 
construction firms, and Olbina et al. (2011) confirmed that small construction firms also did not 
provide a safe work environment for their workers. In an analysis of records from the Census of 
Fatal Occupational Injuries (CFOI) involving 20,498 deaths in the construction industry for the 
period of 1992 to 2009, Dong et al. (2013) discovered that one-third of the fatal falls were roof 
fatalities, and 67% of them occurred within small construction establishments that have between 
1 to 10 employees. The findings of their study can provide practitioners with relevant 
information on fall protection strategies and potential risk factors. However, their study did not 
focus on roofing as a specialty trade but instead focused on fatal falls from roofs of construction 
projects. It also focused on fatal injuries only, without considering incidents with nonfatal 
injuries, which are more common among roofers. 

Many of these studies focused on fall accidents without considering other types of incidents 
that roofing contractors face, such as struck-by, caught-in/between, and electrocution—many of 
which may also contribute to falls. Additionally, the data used in these studies were from all 
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trades in the construction industry, including large general contractors and big residential project 
construction. They were not specific to roofing contractors and hence may produce results that 
are not relevant to such small specialty trades as roofing contractors. Therefore, it is necessary to 
analyze the nature of injury with data specific to roofing contractors. 

A limited number of studies have analyzed the nature of accidents among roofing 
contractors. A study by Fredericks et al. (2005)—based on the BLS’s safety and health statistics 
database—explored the relevance of certain injury factors, including causes of injuries, types of 
injury, and event types. The study focused on roofing contractors’ incident reports for the period 
of 1999 to 2000. Though valuable, the study faced limitations in that (1) the results were not 
based on the actual accident history but on survey responses; (2) the survey was limited to 
participants in Michigan; and (3) the study did not apply inferential statistics but used only 
descriptive statistics.  

Hung et al. (2009) conducted a study to examine the training needs and preferences specific 
to small roofing contractors by distributing surveys among 20 roofing subcontractors. In their 
study, they applied a criterion sampling technique for choosing quality samples in the survey, 
and they recommended essential training needs for roofers, particularly raising the importance of 
sufficient worker’s training, fall hazard awareness, and the use of suitable safety training 
techniques. The study was expanded by Hung et al. (2013) to involve 29 semi-structured 
interviews with residential roofing subcontractors to provide insights into the development of fall 
protection training. The study recognized the importance of supplementing informal jobsite 
safety training with formalized safety training, and it provided suggestions on fall protection 
adapted design. 

Using survey information obtained from 252 roofers in the Midwest (Michigan, Indiana, 
Illinois, Wisconsin, and Iowa), Sa et al. (2009) compared fall-from-height accidents experienced 
by commercial roofers with those experienced by residential roofers. Their result showed that 
residential roofers were more likely to be involved in a fall accident than commercial roofers due 
to the lack of use of fall protection devices and their enforcement.  

The major limitation faced by these studies is that they only applied descriptive statistics in 
their investigation without supplementing such analyses with inferential statistics. Since the 
relationships between accident-causation factors can be nonlinear and can include higher-order 
interactions, descriptive statistical techniques would fail to reveal hidden patterns in the data. 
Therefore, highly sophisticated inferential statistical techniques are required to handle large 
amounts of high-dimensional data to reveal hidden patterns that may inform safety practitioners’ 
decisions on how to mitigate the risk of injuries and fatalities.  
 
Random Forest Data Mining for Statistical Analysis 
 

One beneficial inferential statistical technique is random forest, which is a supervised, 
simple, and classical (Izquierdo-Verdiguier & Zurita-Milla, 2020) ensemble learning algorithm 
renowned for its wide use in various applications (Breiman, 2001). The popularity of the 
algorithm can be mainly attributed to its ability to efficiently solve nonlinear classification 
problems and data imbalances in different classes, particularly in large datasets (Liu, 2009).  

The RF classifier requires only two parameters to develop a prediction model. These 
parameters are: 1) the number of trees (Ntrees) in the forest; and 2) the number of predictor 
variables (mtry) used at each node to develop the tree. Hence, to predict a class of new data, the 
data is classified by aggregating the prediction of Ntrees number of trees with the use of a user-
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defined constant number, mtry, of randomly selected predictor variables to determine the split 
criteria in each node. The new data are assigned to the class having the highest number of votes 
from each of the Ntrees trees in the forest. For classification, the default value of mtry is the square 
root of the number of predictor variables and it is recommended to try the default, half of the 
default, and twice the default value of mtry and then pick the best result (Liaw & Wiener, 2002). 
The number of trees, Ntrees, is normally set to a few hundred trees (e.g., 500 trees as in this 
study), since more trees may not necessarily result in a better performance and may only slow 
down the processing time (Izquierdo-Verdiguier & Zurita-Milla, 2020). RF does not lead to 
overfitting as the number of trees increases because additional trees produce a limiting value of 
the generalization error (Breiman, 2001). Hence, more trees may not improve the result beyond a 
certain limit. 

The RF algorithm (for both classification and regression) carries out three steps (Liaw & 
Wiener, 2002). First, it generates the Ntrees bootstrap sample of the original training dataset. 
Second, it grows the Ntrees number of unpruned trees with each of the bootstrap samples. 
Additionally, instead of choosing the best node-splitting variable from all the predictor variables 
in each bootstrap sample, the algorithm randomly selects mtry number of variables from all the 
predictor variables and determines the best splitter from this mtry shortlist of predictor variables. 
The variable chosen as the best node splitter and the split threshold are easily and quickly 
determined with the use of the Gini Index (GI), which minimizes the probability of 
misclassification by: 

 

 𝐺𝐼 = 1 − ෍ ൫𝑃௝൯
௞

௝ୀଵ

2                                                         (1) 

 
where k is the number of classes and Pj is the probability of class j (Izquierdo-Verdiguier & 
Zurita-Milla, 2020). Third, the RF algorithm predicts the class of new data by a majority vote of 
the aggregated prediction results of the Ntree individual trees in the forest. These provide insights 
users can apply to assess their data. 
 
POINT OF DEPARTURE  
 

Roofing is one of the riskiest trades in the construction industry, with the most frequent 
accident among roofing contractors being falling from a roof. In fact, roofers are more likely to 
be involved in a fall accident than other workers in the construction industry (Huang & Hinze 
2003). It is therefore very important to analyze the contributing factors that influence the nature 
of roofing contractor’s injury, especially via inferential statistical techniques that may reveal 
hidden patterns in the data.  

With respect to the literature review, two major limitations were observed among previous 
studies relating to the occupational safety and health of roofing contractors: (1) some studies 
focused on fatal injuries only, without considering incidents involving nonfatal injuries; (2) 
many of the studies focused their analyses on fall accidents without considering other types of 
incidents roofing contractors experience industry-wide, as can be found in a large database. To 
address these limitations, this study departs from the current body of knowledge by focusing on 
all types of roofer’s incidents and by applying data mining techniques to the dataset to identify 
and predict factors affecting accident outcomes. 
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RESEARCH METHODOLOGY 

Incident Database 

To analyze accidents among roofing contractors, this study used data about fatal and nonfatal 
injuries collected during the period of January 1, 2007 to December 31, 2013 in the Occupational 
Safety and Health Administration’s (OSHA’s) Integrated Management Information System 
(IMIS) accidents database. The factors or variables considered in this study included source of 
injury; cause of injury; project cost; project end use; project type; day of injury; and injured body 
part. As the target/dependent variable, the nature of injury included the following categories: 
bruises/contusions, burns, concussions, cuts/lacerations/puncture, electrocutions/electric-shocks, 
fractures, non-specified injuries/disorders, and others. 

In the preprocessing stage, the categories adopted in this study followed the Occupational 
Injury and Illness Classification Manual (OIICM), developed by the U.S. Department of Labor 
Bureau of Labor Statistics (BLS, 2012). After processing the data, 699 accident reports were 
obtained and used for analysis. Consistent with similar studies involving similar data mining 
techniques, these 699 accident reports were split into training (80%, 560 observations) and 
testing/validation (20%, 139 observations) datasets (Mistikoglu et al., 2015; Gholizadeh et al., 
2021).  

The RF model in this study was built from the 560 accidents reports that formed the training 
dataset and from seven project features/information/variables/attributes, namely: source of 
injury, cause of injury, project cost, project end use, project type, day of injury, and injured body 
part. The nature of injury dependent variable broke into two categories: fracture and non-
fracture. The nature of injury involving a fracture was labelled “fracture,” and the rest were 
regarded as non-fractures. Injuries within the body system and head/neck injuries were 
considered fragile body parts, while the rest were regarded as non-fragile body parts.  

The randomForest package (Liaw & Wiener, 2002) in R (R Core Team, 2013) was used to 
build a RF model for: (1) predicting the nature of injuries resulting from an accident during a 
roofing project; and (2) identifying the factors that are most important for predicting the nature 
of injuries of roofers. 

Random Forest Feature Selection Method 

Decision trees have a famous ability to select important variables, and this ability is inherent 
in RF, which is an ensemble of trees. Thus, the randomForest package (Liaw & Wiener, 2002) 
offers the variable importance option (Breiman, 2001) used to identify the most relevant 
predictor variables for a given problem. The algorithm estimates variable importance tree-by-tree 
as the RF is developed. It calculates how much the prediction error increases by permuting the 
data for that variable while other variables are left the same (Liaw & Wiener, 2002). According 
to Izquierdo-Verdiguier and Zurita-Milla (2020), the importance of predictor variable x i can be 
defined as: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒௜ =
1

𝑁௧௥௘௘௦
෍ 𝐺(𝑥௜ , 𝑣)

௩∈ୗ

 (2) 

 
where S represents the set of nodes in which the predictor variable, xi is used for splitting the 
samples. G(xi, ν) is the RF gain of xi, and it is computed by means of impurity measures when 
splitting the samples at each node. The function G(xi, ν) can be computed using: 
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G(xi, ν) = GI(xi, ν) – ωRGI(xi, νR) – ωLGI(xi, νL)                                    (3) 
 

where GI represents the Gini index, and ωR and ωL are the sample proportions in each node. 
Generally, impurity measures the extent to which the samples are correctly classified in each 
node (Gholizadeh et al., 2021). Its lowest value indicates that the node only includes one class of 
independent data. This study capitalized on these values to build a predictive model that helps to 
identify important features for predicting the target variable which is the nature of injury. 
 
RESULTS 

Random Forest Model Accuracy 

To confirm the RF-identified variables of interest were predictively accurate, the developed 
RF model was evaluated by using the model to predict the outcomes of the 139 accident reports 
reserved for model validation. The results of this evaluation can be seen in the confusion matrix 
in Table 1. The confusion matrix compares the actual classifications of the nature of injuries and 
the model’s predicted nature of injuries based on the accident reports. The major diagonal values 
of the confusion matrix in Table 1 indicate that 101 accident reports were classified correctly. 
This means that out of the 139 roofing accident reports in the validation/testing dataset, 101 
accident reports (amounting to 72.7%) were classified correctly. 

 
Table 1. Confusion Matrix of the Testing Dataset. 

 
 Actual/Reference 
Prediction Fracture Non-fracture 

Fracture 48 18 
Non-fracture 20 53 

 
Hence, as seen in Table 2, the proposed RF model can predict the nature of injury (as fracture 

or non-fracture) of the roofers’ accident reports in the validation/testing dataset with a prediction 
accuracy of 72.7%. Furthermore, the 95% confidence interval in Table 2 indicates that there is a 
95% confidence that the true accuracy of this proposed RF model lies between 64.5% and 
79.9%. On the other hand, 38 accident reports out of a total of 139 (amounting to 27.3%) were 
misclassified. This outcome results in a misclassification rate of 27.3%. 

 
Table 2. Evaluation of the Confusion Matrix and Random Forest Accuracy. 

 
Evaluation Statistics Results 

Accuracy 0.727 
95% Confidence Interval (0.645, 0.799) 

Precision 0.708 
Specificity 0.704 

Sensitivity/Recall 0.750 
Kappa 0.454 

 
The confusion matrix in Table 1 specifies there were 48 true positives (i.e., accident reports 

that involved actual fracture related injuries and that were predicted as fracture related injuries), 
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53 true negatives (i.e., accident reports that involved actual non-fracture related injuries and that 
were predicted as non-fracture related injuries), 18 false positives (i.e., accident reports that 
involved actual non-fracture related injuries but that were predicted as fracture related injuries), 
and 20 false negatives (i.e., accident reports that involved actual fracture related injuries but that 
were predicted as non-fracture related injuries). Using these outcomes, one can compute the 
precision, specificity, and sensitivity/recall resulting from using the proposed RF model to 
predict the accident reports in the testing dataset, as shown in Table 2. The evaluation results 
(e.g., accuracy of 72.7%) in Table 2 indicate that the RF model in this study is reasonable and 
consistent with similar studies that used a similar data mining technique such as Classification 
and Regression Trees (CART) analysis (Gholizadeh et al., 2021), C5.0 algorithm, and Chi-
squared Automatic Interaction Detection (CHAID) algorithm (Mistikoglu et al., 2015). 

Another evaluation statistic of the model reported in Table 2 is the kappa statistic, which 
indicates how well the proposed RF model prediction matches the actual classifications. The 
kappa value of the proposed RF model is 0.454, which represents a moderate score (McHugh, 
2012). 

Evaluation of Variable Importance 

Table 3 lists the order of importance of the project variables/information/features/factors 
used in this analysis, which the authors computed by estimating how much the prediction 
accuracy decreased when permuting the data for a particular variable/information/feature/factor 
while holding other variables unchanged (Liaw & Wiener, 2002)—in other words, by estimating 
the impact on the prediction accuracy of excluding only the data for a particular variable. Table 3 
demonstrates that the first-level attribute—or most important attribute—is the injured body part 
while the second-level attribute is the source of injury. The least important attribute for 
predicting the nature of injury in roofing projects is the day of injury. 
 
DISCUSSIONS 
 

The RF model in this study was developed to predict the nature of injury among roofing 
contractors and to determine the most important factors/features for the prediction. These 
contributing factors provide safety managers with the information needed to strategically assign 
scarce safety resources, especially in small firms. The RF algorithm was used to: group the 
accident reports of roofing contractors into the two classes of the dependent variable (nature of 
injury), namely fracture and non-fracture; and determine the level of importance of the 
contributing features for determining nature of injury. 

 
Table 3. Variable Importance of the Proposed Random Forest Model. 

 
Rank Variables/Attributes Mean Decrease in Accuracy 

1 Injured body part 46.0 
2 Source of injury 12.4 
3 Project type  9.2 
4 Cause of injury 8.5 
5 Project cost 5.9 
6 Project end use 2.9 
7 Day of injury 0.5 
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As seen in Table 3, the injured body part is the most essential factor for predicting the nature 
of injury of roofing contractors. It can also be seen that if the data for injured body part are 
permuted while other features remain the same, the mean decrease in the percentage of the 
accuracy would be about 46 percent. In other words, with the exclusion of only the factor 
labelled injured body part, the percentage of the accuracy of the proposed RF model will be 
decreased by 46 percent on the average. Therefore, the feature/factor/variable labelled injured 
body part has a very high level of importance in terms of contributing to the accuracy of the 
proposed RF model. Thus, almost half of the predictive strength of the RF model is contributed 
by the project information/factor/feature labelled as injured body part, while the remaining half 
is contributed by all other project information/factors/features considered in this study. Such 
information is helpful for practitioners as this study’s outcomes suggest that during workers’ site 
meetings and roofing contractors’ safety trainings, it is essential to emphasize the use of personal 
protective equipment that would sufficiently and effectively protect the body from injuries on 
roofing jobsites. Highlighting the importance of protective coverings and how to use them to 
safeguard roofers on jobsites cannot be overemphasized.  

Furthermore, the contribution of the second most important feature/factor—source of 
injury—to prediction accuracy is also relatively significant. This contribution is because when 
the data for source of injury is permuted while other features remain the same, the mean decrease 
in accuracy would be 12.4 percent, as seen in Table 3. Hence, the source of injury (including 
machinery, parts/materials, structures/surfaces, tools/instruments/equipment, and vehicles) 
appears to be the second most important factor for roofers’ accidents and therefore necessitates 
constant emphasis during site meetings and safety trainings for roofers.  

The variables that are towards the bottom of Table 3 are not so important as they have 
minimal impact on the accuracy of the RF model and therefore have minimal contributions to the 
predictive strength of the model. Therefore, the variables at the bottom of Table 3 are less 
important compared to the variables at the top since their exclusion has minimal impact on the 
accuracy of the model. Table 3 indicates that the day of injury has the least impact on the 
predictive accuracy of the proposed RF model with respect to its contribution to the predictive 
strength of the model. In other words, with the exclusion of only the factor labelled day of injury, 
the percentage of the accuracy of the RF model will be decreased by 0.5 percent on the average. 
The information derived from the feature importance list in Table 3 could help safety managers 
understand where to better allocate limited resources to optimally mitigate the risk of injuries in 
roofing jobsites. 

CONCLUSIONS 

The work environment of roofing contractors in the construction industry is highly hazardous 
in nature and hence very prone to a lot of serious injuries and fatalities. This study proposed a RF 
model for predicting the nature of injuries resulting from an accident during a roofing project and 
identifying the factors that are most important in predicting the nature of injuries of roofing 
projects. It explored the possibility of using an RF algorithm to predict the nature of injury (as 
fracture or non-fracture) of roofing contractors based on such project information as source of 
injury, cause of injury, project cost, project end use, project type, day of injury, and injured body 
part. The research results identify injured body part as the most important factor for predicting 
the nature of roofers’ injuries. Future studies could examine other factors—such as time of the 
accident, and age and sex of the employee—to explore additional patterns visible in accident 
outcomes.  
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Future extensions of this research question may consider other machine learning tools, such 
as decision trees, as well as other, more recent incident reports to search for other contributing 
factors affecting roofers or to assess recent developments within the industry. One limitation of 
the study is that an RF model does not give detailed information regarding the various categories 
or constituents that make up the variables (e.g., the categorical variables, such as injured body 
part, as in this study). For example, by applying CART to classify the variables, one can obtain a 
single comprehensive tree-like pictorial display that provides a streamlined result that is easy to 
interpret. Such continuing similar studies would help practitioners better understand the factors 
leading to injuries among roofing contractors to minimize the severity, frequency, and risk of 
incidents. 
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