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ABSTRACT

One of the trades most susceptible to occupational hazards in the construction industry is
roofing contractors, whose projects inherently involve exposure to falls from height. In response,
this study used a random forest data mining technique to analyze the impacts of accidents’
contributing factors on roofers’ injuries. The analysis examined over 600 incidents obtained from
the Occupational Safety and Health Administration’s (OSHA’s) database of fatal and nonfatal
accident reports. Some of the contributing factors considered include source of injury, cause of
injury, project cost, project end use, project type, injured body part, and day of injury. The results
of validated random forest model revealed that the most important factor for predicting the
nature of injury is injured body part followed by source of injury. The presented results can be
used by managers, policymakers, and safety professionals to reduce the frequency and severity
of incidents.

INTRODUCTION

On average, a roofing contractor is about three times more likely to be exposed to fatal
injuries than other construction workers (Moore & Wanger, 2014). This risk level can be
attributed to environmental exposures and the dynamic nature of work in the construction
industry. Besides regularly performing work at heights, additional factors increase these
workers’ risks on jobsites, including the type of work, the composition of workers, and defiance
of work-safety regulations (Choi et. al., 2006). Since a roofing contractor’s job depends on
balance control, a reasonable proportion of these risks manifest in the nature of the work, as it is
challenging to maintain good balance control when working on inclined surfaces, and a loss of
balance can easily lead to a fall injury. These challenges are especially compounded when
workers handle heavy and bulky material—as seen in roofing projects. Exposure to adverse
weather conditions only makes the situation worse and riskier. All of these add up to make
roofing one of the most hazardous trades in the construction industry (Fredericks et al., 2005;
Dong et al., 2013).

In a report by Center for Construction Research and Training (CPWR, 2013), between 2008
and 2010, specialty trade contractors experienced the highest number of fatal falls in the
construction industry, amounting to 579 deaths. Unlike other specialty trade contractors that have
recently experienced a declining record of injuries and fatalities, roofing contractors have
experienced a gradual rise in their number of fall fatalities between 2011 and 2017 (Bureau of
Labor Statistics, 2018). Furthermore, out of all fatalities recorded in residential building
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construction, 48.7% (135 deaths) were the result of falls. Even among nonfatal accidents, injuries
can be costly and debilitating. On the average, the rate of nonfatal occupational injuries among
roofing contractors were 1.1 to 1.8 times more than that of other construction workers for the
period of 1992 to 2001. For the same period, the rate of fatal occupational injuries among roofing
contractors were 1.6 to 2.8 times more than that of other construction workers (Sa et al., 2009).
In 2005, the Bureau of Labor Statistics (BLS, 2007) reported that the injury cases among roofers
is about 2 times more than that of other construction workers. Moreover, according to BLS
(2006), the risk of nonfatal occupational injuries is still higher among roofing contractors than
other construction workers on the average. These records highlight the need to investigate the
causal factors of occupational incidents among roofing contractors.

In response, after building and validating a random forest (RF) classifier, this study analyzed
both fatal and nonfatal accidents among roofing contractors to investigate the impacts of
accidents’ contributing factors on roofers’ injuries. The RF algorithm was used in this study
because of its renowned ability to identify dominant predictor variables for predicting the target
variable (the nature of injury in this study). Using descriptive statistics, the roles of these
predictor variables may be unseen or underexplored, particularly when the patterns are non-
linear. Additionally, given that most of the variables considered here are categorical, this
supervised data mining technique was employed because it is popularly used to uncover hidden
patterns in categorical data. The results provide practitioners with insights into the nature of
injury among roofing contractors, opportunities for designing specific training schemes, high-
risk factors, and the relevance of incorporating safety during design to mitigate and manage risk
for these workers.

BACKGROUND

Workers’ injuries and fatalities in the construction industry are mainly caused by fall
accidents (e.g., Stern et al. 2000; Dong et al. 2013). A study conducted by Stern et al. (2000) and
involving 11,144 members of the UURWAW (The United Union of Roofers, Waterproofers, and
Allied Workers) identified that fatalities significantly occur as a result of falls. Furthermore,
Occupational Safety and Health Administration (OSHA, 2017) confirmed falls were the main
cause of fatalities among the ‘Construction’s Fatal Four’—falls, struck-by object, electrocutions,
and caught-in/between.

Kaskutas et al. (2009) discovered that certain fall protection systems were not used by small
construction firms, and Olbina et al. (2011) confirmed that small construction firms also did not
provide a safe work environment for their workers. In an analysis of records from the Census of
Fatal Occupational Injuries (CFOI) involving 20,498 deaths in the construction industry for the
period of 1992 to 2009, Dong et al. (2013) discovered that one-third of the fatal falls were roof
fatalities, and 67% of them occurred within small construction establishments that have between
1 to 10 employees. The findings of their study can provide practitioners with relevant
information on fall protection strategies and potential risk factors. However, their study did not
focus on roofing as a specialty trade but instead focused on fatal falls from roofs of construction
projects. It also focused on fatal injuries only, without considering incidents with nonfatal
injuries, which are more common among roofers.

Many of these studies focused on fall accidents without considering other types of incidents
that roofing contractors face, such as struck-by, caught-in/between, and electrocution—many of
which may also contribute to falls. Additionally, the data used in these studies were from all
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trades in the construction industry, including large general contractors and big residential project
construction. They were not specific to roofing contractors and hence may produce results that
are not relevant to such small specialty trades as roofing contractors. Therefore, it is necessary to
analyze the nature of injury with data specific to roofing contractors.

A limited number of studies have analyzed the nature of accidents among roofing
contractors. A study by Fredericks et al. (2005)—based on the BLS’s safety and health statistics
database—explored the relevance of certain injury factors, including causes of injuries, types of
injury, and event types. The study focused on roofing contractors’ incident reports for the period
of 1999 to 2000. Though valuable, the study faced limitations in that (1) the results were not
based on the actual accident history but on survey responses; (2) the survey was limited to
participants in Michigan; and (3) the study did not apply inferential statistics but used only
descriptive statistics.

Hung et al. (2009) conducted a study to examine the training needs and preferences specific
to small roofing contractors by distributing surveys among 20 roofing subcontractors. In their
study, they applied a criterion sampling technique for choosing quality samples in the survey,
and they recommended essential training needs for roofers, particularly raising the importance of
sufficient worker’s training, fall hazard awareness, and the use of suitable safety training
techniques. The study was expanded by Hung et al. (2013) to involve 29 semi-structured
interviews with residential roofing subcontractors to provide insights into the development of fall
protection training. The study recognized the importance of supplementing informal jobsite
safety training with formalized safety training, and it provided suggestions on fall protection
adapted design.

Using survey information obtained from 252 roofers in the Midwest (Michigan, Indiana,
Ilinois, Wisconsin, and Iowa), Sa et al. (2009) compared fall-from-height accidents experienced
by commercial roofers with those experienced by residential roofers. Their result showed that
residential roofers were more likely to be involved in a fall accident than commercial roofers due
to the lack of use of fall protection devices and their enforcement.

The major limitation faced by these studies is that they only applied descriptive statistics in
their investigation without supplementing such analyses with inferential statistics. Since the
relationships between accident-causation factors can be nonlinear and can include higher-order
interactions, descriptive statistical techniques would fail to reveal hidden patterns in the data.
Therefore, highly sophisticated inferential statistical techniques are required to handle large
amounts of high-dimensional data to reveal hidden patterns that may inform safety practitioners’
decisions on how to mitigate the risk of injuries and fatalities.

Random Forest Data Mining for Statistical Analysis

One beneficial inferential statistical technique is random forest, which is a supervised,
simple, and classical (Izquierdo-Verdiguier & Zurita-Milla, 2020) ensemble learning algorithm
renowned for its wide use in various applications (Breiman, 2001). The popularity of the
algorithm can be mainly attributed to its ability to efficiently solve nonlinear classification
problems and data imbalances in different classes, particularly in large datasets (Liu, 2009).

The RF classifier requires only two parameters to develop a prediction model. These
parameters are: 1) the number of trees (Nuees) in the forest; and 2) the number of predictor
variables (mgy) used at each node to develop the tree. Hence, to predict a class of new data, the
data is classified by aggregating the prediction of Niuees number of trees with the use of a user-
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defined constant number, muy, of randomly selected predictor variables to determine the split
criteria in each node. The new data are assigned to the class having the highest number of votes
from each of the Niees trees in the forest. For classification, the default value of myy is the square
root of the number of predictor variables and it is recommended to try the default, half of the
default, and twice the default value of mqy and then pick the best result (Liaw & Wiener, 2002).
The number of trees, Niees, 1S normally set to a few hundred trees (e.g., 500 trees as in this
study), since more trees may not necessarily result in a better performance and may only slow
down the processing time (Izquierdo-Verdiguier & Zurita-Milla, 2020). RF does not lead to
overfitting as the number of trees increases because additional trees produce a limiting value of
the generalization error (Breiman, 2001). Hence, more trees may not improve the result beyond a
certain limit.

The RF algorithm (for both classification and regression) carries out three steps (Liaw &
Wiener, 2002). First, it generates the Nyees bootstrap sample of the original training dataset.
Second, it grows the Ngees number of unpruned trees with each of the bootstrap samples.
Additionally, instead of choosing the best node-splitting variable from all the predictor variables
in each bootstrap sample, the algorithm randomly selects myy number of variables from all the
predictor variables and determines the best splitter from this myy shortlist of predictor variables.
The variable chosen as the best node splitter and the split threshold are easily and quickly
determined with the use of the Gini Index (GI), which minimizes the probability of
misclassification by:

k
Gl=1- Zj=1(Pj)2 (1)

where k is the number of classes and P; is the probability of class j (Izquierdo-Verdiguier &
Zurita-Milla, 2020). Third, the RF algorithm predicts the class of new data by a majority vote of
the aggregated prediction results of the Niee individual trees in the forest. These provide insights
users can apply to assess their data.

POINT OF DEPARTURE

Roofing is one of the riskiest trades in the construction industry, with the most frequent
accident among roofing contractors being falling from a roof. In fact, roofers are more likely to
be involved in a fall accident than other workers in the construction industry (Huang & Hinze
2003). It is therefore very important to analyze the contributing factors that influence the nature
of roofing contractor’s injury, especially via inferential statistical techniques that may reveal
hidden patterns in the data.

With respect to the literature review, two major limitations were observed among previous
studies relating to the occupational safety and health of roofing contractors: (1) some studies
focused on fatal injuries only, without considering incidents involving nonfatal injuries; (2)
many of the studies focused their analyses on fall accidents without considering other types of
incidents roofing contractors experience industry-wide, as can be found in a large database. To
address these limitations, this study departs from the current body of knowledge by focusing on
all types of roofer’s incidents and by applying data mining techniques to the dataset to identify
and predict factors affecting accident outcomes.
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RESEARCH METHODOLOGY
Incident Database

To analyze accidents among roofing contractors, this study used data about fatal and nonfatal
injuries collected during the period of January 1, 2007 to December 31, 2013 in the Occupational
Safety and Health Administration’s (OSHA’s) Integrated Management Information System
(IMIS) accidents database. The factors or variables considered in this study included source of
injury; cause of injury; project cost; project end use; project type; day of injury; and injured body
part. As the target/dependent variable, the nature of injury included the following categories:
bruises/contusions, burns, concussions, cuts/lacerations/puncture, electrocutions/electric-shocks,
fractures, non-specified injuries/disorders, and others.

In the preprocessing stage, the categories adopted in this study followed the Occupational
Injury and Illness Classification Manual (OIICM), developed by the U.S. Department of Labor
Bureau of Labor Statistics (BLS, 2012). After processing the data, 699 accident reports were
obtained and used for analysis. Consistent with similar studies involving similar data mining
techniques, these 699 accident reports were split into training (80%, 560 observations) and
testing/validation (20%, 139 observations) datasets (Mistikoglu et al., 2015; Gholizadeh et al.,
2021).

The RF model in this study was built from the 560 accidents reports that formed the training
dataset and from seven project features/information/variables/attributes, namely: source of
injury, cause of injury, project cost, project end use, project type, day of injury, and injured body
part. The nature of injury dependent variable broke into two categories: fracture and non-
fracture. The nature of injury involving a fracture was labelled “fracture,” and the rest were
regarded as non-fractures. Injuries within the body system and head/neck injuries were
considered fragile body parts, while the rest were regarded as non-fragile body parts.

The randomForest package (Liaw & Wiener, 2002) in R (R Core Team, 2013) was used to
build a RF model for: (1) predicting the nature of injuries resulting from an accident during a
roofing project; and (2) identifying the factors that are most important for predicting the nature
of injuries of roofers.

Random Forest Feature Selection Method

Decision trees have a famous ability to select important variables, and this ability is inherent
in RF, which is an ensemble of trees. Thus, the randomForest package (Liaw & Wiener, 2002)
offers the variable importance option (Breiman, 2001) used to identify the most relevant
predictor variables for a given problem. The algorithm estimates variable importance tree-by-tree
as the RF is developed. It calculates how much the prediction error increases by permuting the
data for that variable while other variables are left the same (Liaw & Wiener, 2002). According
to Izquierdo-Verdiguier and Zurita-Milla (2020), the importance of predictor variable x; can be
defined as:

1
Importance; = z G(x;,v) (2)
€s

NtT'E@S
v

where S represents the set of nodes in which the predictor variable, x; is used for splitting the
samples. G(xi, v) is the RF gain of x;, and it is computed by means of impurity measures when
splitting the samples at each node. The function G(x;, v) can be computed using:
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G(xi, v) = GI(xi, v) — orGI(Xi, Vr) — oL GI(Xi, V1) 3)

where GI represents the Gini index, and wr and or are the sample proportions in each node.
Generally, impurity measures the extent to which the samples are correctly classified in each
node (Gholizadeh et al., 2021). Its lowest value indicates that the node only includes one class of
independent data. This study capitalized on these values to build a predictive model that helps to
identify important features for predicting the target variable which is the nature of injury.

RESULTS
Random Forest Model Accuracy

To confirm the RF-identified variables of interest were predictively accurate, the developed
RF model was evaluated by using the model to predict the outcomes of the 139 accident reports
reserved for model validation. The results of this evaluation can be seen in the confusion matrix
in Table 1. The confusion matrix compares the actual classifications of the nature of injuries and
the model’s predicted nature of injuries based on the accident reports. The major diagonal values
of the confusion matrix in Table 1 indicate that 101 accident reports were classified correctly.
This means that out of the 139 roofing accident reports in the validation/testing dataset, 101
accident reports (amounting to 72.7%) were classified correctly.

Table 1. Confusion Matrix of the Testing Dataset.

Actual/Reference
Prediction Fracture Non-fracture
Fracture 48 18
Non-fracture 20 53

Hence, as seen in Table 2, the proposed RF model can predict the nature of injury (as fracture
or non-fracture) of the roofers’ accident reports in the validation/testing dataset with a prediction
accuracy of 72.7%. Furthermore, the 95% confidence interval in Table 2 indicates that there is a
95% confidence that the true accuracy of this proposed RF model lies between 64.5% and
79.9%. On the other hand, 38 accident reports out of a total of 139 (amounting to 27.3%) were
misclassified. This outcome results in a misclassification rate of 27.3%.

Table 2. Evaluation of the Confusion Matrix and Random Forest Accuracy.

Evaluation Statistics Results
Accuracy 0.727
95% Confidence Interval (0.645, 0.799)
Precision 0.708
Specificity 0.704
Sensitivity/Recall 0.750
Kappa 0.454

The confusion matrix in Table 1 specifies there were 48 true positives (i.e., accident reports
that involved actual fracture related injuries and that were predicted as fracture related injuries),
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53 true negatives (i.e., accident reports that involved actual non-fracture related injuries and that
were predicted as non-fracture related injuries), 18 false positives (i.e., accident reports that
involved actual non-fracture related injuries but that were predicted as fracture related injuries),
and 20 false negatives (i.e., accident reports that involved actual fracture related injuries but that
were predicted as non-fracture related injuries). Using these outcomes, one can compute the
precision, specificity, and sensitivity/recall resulting from using the proposed RF model to
predict the accident reports in the testing dataset, as shown in Table 2. The evaluation results
(e.g., accuracy of 72.7%) in Table 2 indicate that the RF model in this study is reasonable and
consistent with similar studies that used a similar data mining technique such as Classification
and Regression Trees (CART) analysis (Gholizadeh et al., 2021), C5.0 algorithm, and Chi-
squared Automatic Interaction Detection (CHAID) algorithm (Mistikoglu et al., 2015).

Another evaluation statistic of the model reported in Table 2 is the kappa statistic, which
indicates how well the proposed RF model prediction matches the actual classifications. The
kappa value of the proposed RF model is 0.454, which represents a moderate score (McHugh,
2012).

Evaluation of Variable Importance

Table 3 lists the order of importance of the project variables/information/features/factors
used in this analysis, which the authors computed by estimating how much the prediction
accuracy decreased when permuting the data for a particular variable/information/feature/factor
while holding other variables unchanged (Liaw & Wiener, 2002)—in other words, by estimating
the impact on the prediction accuracy of excluding only the data for a particular variable. Table 3
demonstrates that the first-level attribute—or most important attribute—is the injured body part
while the second-level attribute is the source of injury. The least important attribute for
predicting the nature of injury in roofing projects is the day of injury.

DISCUSSIONS

The RF model in this study was developed to predict the nature of injury among roofing
contractors and to determine the most important factors/features for the prediction. These
contributing factors provide safety managers with the information needed to strategically assign
scarce safety resources, especially in small firms. The RF algorithm was used to: group the
accident reports of roofing contractors into the two classes of the dependent variable (nature of
injury), namely fracture and non-fracture; and determine the level of importance of the
contributing features for determining nature of injury.

Table 3. Variable Importance of the Proposed Random Forest Model.

Rank Variables/Attributes Mean Decrease in Accuracy
1 Injured body part 46.0
2 Source of injury 12.4
3 Project type 9.2
4 Cause of injury 8.5
5 Project cost 59
6 Project end use 2.9
7 Day of injury 0.5
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As seen in Table 3, the injured body part is the most essential factor for predicting the nature
of injury of roofing contractors. It can also be seen that if the data for injured body part are
permuted while other features remain the same, the mean decrease in the percentage of the
accuracy would be about 46 percent. In other words, with the exclusion of only the factor
labelled injured body part, the percentage of the accuracy of the proposed RF model will be
decreased by 46 percent on the average. Therefore, the feature/factor/variable labelled injured
body part has a very high level of importance in terms of contributing to the accuracy of the
proposed RF model. Thus, almost half of the predictive strength of the RF model is contributed
by the project information/factor/feature labelled as injured body part, while the remaining half
is contributed by all other project information/factors/features considered in this study. Such
information is helpful for practitioners as this study’s outcomes suggest that during workers’ site
meetings and roofing contractors’ safety trainings, it is essential to emphasize the use of personal
protective equipment that would sufficiently and effectively protect the body from injuries on
roofing jobsites. Highlighting the importance of protective coverings and how to use them to
safeguard roofers on jobsites cannot be overemphasized.

Furthermore, the contribution of the second most important feature/factor—source of
injury—to prediction accuracy is also relatively significant. This contribution is because when
the data for source of injury is permuted while other features remain the same, the mean decrease
in accuracy would be 12.4 percent, as seen in Table 3. Hence, the source of injury (including
machinery, parts/materials, structures/surfaces, tools/instruments/equipment, and vehicles)
appears to be the second most important factor for roofers’ accidents and therefore necessitates
constant emphasis during site meetings and safety trainings for roofers.

The variables that are towards the bottom of Table 3 are not so important as they have
minimal impact on the accuracy of the RF model and therefore have minimal contributions to the
predictive strength of the model. Therefore, the variables at the bottom of Table 3 are less
important compared to the variables at the top since their exclusion has minimal impact on the
accuracy of the model. Table 3 indicates that the day of injury has the least impact on the
predictive accuracy of the proposed RF model with respect to its contribution to the predictive
strength of the model. In other words, with the exclusion of only the factor labelled day of injury,
the percentage of the accuracy of the RF model will be decreased by 0.5 percent on the average.
The information derived from the feature importance list in Table 3 could help safety managers
understand where to better allocate limited resources to optimally mitigate the risk of injuries in
roofing jobsites.

CONCLUSIONS

The work environment of roofing contractors in the construction industry is highly hazardous
in nature and hence very prone to a lot of serious injuries and fatalities. This study proposed a RF
model for predicting the nature of injuries resulting from an accident during a roofing project and
identifying the factors that are most important in predicting the nature of injuries of roofing
projects. It explored the possibility of using an RF algorithm to predict the nature of injury (as
fracture or non-fracture) of roofing contractors based on such project information as source of
injury, cause of injury, project cost, project end use, project type, day of injury, and injured body
part. The research results identify injured body part as the most important factor for predicting
the nature of roofers’ injuries. Future studies could examine other factors—such as time of the
accident, and age and sex of the employee—to explore additional patterns visible in accident
outcomes.
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Future extensions of this research question may consider other machine learning tools, such
as decision trees, as well as other, more recent incident reports to search for other contributing
factors affecting roofers or to assess recent developments within the industry. One limitation of
the study is that an RF model does not give detailed information regarding the various categories
or constituents that make up the variables (e.g., the categorical variables, such as injured body
part, as in this study). For example, by applying CART to classify the variables, one can obtain a
single comprehensive tree-like pictorial display that provides a streamlined result that is easy to
interpret. Such continuing similar studies would help practitioners better understand the factors
leading to injuries among roofing contractors to minimize the severity, frequency, and risk of
incidents.
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