
Parallel Computing 109 (2022) 102856

Available online 23 October 2021
0167-8191/© 2021 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

OpenMP application experiences: Porting to accelerated nodes
Seonmyeong Bak c, Colleen Bertoni a, Swen Boehm f, Reuben Budiardja f, Barbara M. Chapman b,
Johannes Doerfert a, Markus Eisenbach f, Hal Finkel a, Oscar Hernandez f, Joseph Huber f,
Shintaro Iwasaki a, Vivek Kale b,∗, Paul R.C. Kent f, JaeHyuk Kwack a, Meifeng Lin b,
Piotr Luszczek h, Ye Luo a, Buu Pham d, Swaroop Pophale f, Kiran Ravikumar c, Vivek Sarkar c,
Thomas Scogland e, Shilei Tian g, P.K. Yeung c
a Argonne National Laboratory, Lemont, IL 60439, USA
b Brookhaven National Laboratory, Upton, NY 11973, USA
c Georgia Institute of Technology, Atlanta, GA 30332, USA
d Iowa State University, Ames, IA 50011, USA
e Lawrence Livermore National Laboratory, Livermore CA 94550, USA
f Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37830, USA
g Stony Brook University, Stony Brook, NY, 11794, USA
h University of Tennessee, Knoxville TN, 37996, USA

A R T I C L E I N F O

Keywords:
Application porting experiences
Accelerators
High performance computing
OpenMP implementations
GAMESS
GenASiS
GESTS
GridQCD
LSMS
QMCPACK
SLATE
RAJA

A B S T R A C T

As recent enhancements to the OpenMP specification become available in its implementations, there is a need
to share the results of experimentation in order to better understand the OpenMP implementation’s behavior
in practice, to identify pitfalls, and to learn how the implementations can be effectively deployed in scientific
codes. We report on experiences gained and practices adopted when using OpenMP to port a variety of ECP
applications, mini-apps and libraries based on different computational motifs to accelerator-based leadership-
class high-performance supercomputer systems at the United States Department of Energy. Additionally, we
identify important challenges and open problems related to the deployment of OpenMP. Through our report of
experiences, we find that OpenMP implementations are successful on current supercomputing platforms and
that OpenMP is a promising programming model to use for applications to be run on emerging and future
platforms with accelerated nodes.

1. Introduction

OpenMP, the de facto directive-based standard for on-node pro-
gramming, provides a convenient and flexible mechanism to exploit
the substantial compute power within the nodes of today’s high-
performance supercomputer systems. OpenMP is one of the program-
ming models that will be supported on exascale systems, and several
applications from the United States Department of Energy (U.S. DoE)
include OpenMP as part of their strategy to exploit the configured
accelerators. OpenMP introduced support for accelerators in OpenMP

∗ Corresponding author.
E-mail addresses: sbak5@gatech.edu (S. Bak), bertoni@anl.gov (C. Bertoni), boehms@ornl.gov (S. Boehm), budiardjard@ornl.gov (R. Budiardja),

barbara.chapman@stonybrook.edu (B.M. Chapman), jdoerfert@anl.gov (J. Doerfert), eisenbachm@ornl.gov (M. Eisenbach), hfinkel@anl.gov (H. Finkel),
oscar@ornl.gov (O. Hernandez), huberjn@ornl.gov (J. Huber), siwasaki@anl.gov (S. Iwasaki), vkale@bnl.gov (V. Kale), kentpr@ornl.gov (P.R.C. Kent),
jkwack@anl.gov (J. Kwack), mlin@bnl.gov (M. Lin), luszczek@icl.utk.edu (P. Luszczek), yeluo@anl.gov (Y. Luo), buupq@iastate.edu (B. Pham),
pophaless@ornl.gov (S. Pophale), kiran.r@gatech.edu (K. Ravikumar), vsarkar@gatech.edu (V. Sarkar), scogland1@llnl.gov (T. Scogland),
shilei.tian@stonybrook.edu (S. Tian), pk.yeung@ae.gatech.edu (P.K. Yeung).

version 4.0 via its device constructs, extended soon thereafter in

OpenMP 4.5, e.g., to allow their asynchronous execution. OpenMP 5.0

introduced a range of features that address requirements of exascale

application development, including the loop directive for performance

portability, memory management APIs, meta-directives and variants,

unified memory support and tools APIs. Many of these are partially

based on proposals for extensions from the U.S. DoE’s Exascale Comput-

ing Project (ECP), within which the SOLLVE team engages in a range

https://doi.org/10.1016/j.parco.2021.102856
Received 6 November 2020; Received in revised form 8 July 2021; Accepted 27 September 2021

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:sbak5@gatech.edu
mailto:bertoni@anl.gov
mailto:boehms@ornl.gov
mailto:budiardjard@ornl.gov
mailto:barbara.chapman@stonybrook.edu
mailto:jdoerfert@anl.gov
mailto:eisenbachm@ornl.gov
mailto:hfinkel@anl.gov
mailto:oscar@ornl.gov
mailto:huberjn@ornl.gov
mailto:siwasaki@anl.gov
mailto:vkale@bnl.gov
mailto:kentpr@ornl.gov
mailto:jkwack@anl.gov
mailto:mlin@bnl.gov
mailto:luszczek@icl.utk.edu
mailto:yeluo@anl.gov
mailto:buupq@iastate.edu
mailto:pophaless@ornl.gov
mailto:kiran.r@gatech.edu
mailto:vsarkar@gatech.edu
mailto:scogland1@llnl.gov
mailto:shilei.tian@stonybrook.edu
mailto:pk.yeung@ae.gatech.edu
https://doi.org/10.1016/j.parco.2021.102856


Parallel Computing 109 (2022) 102856

2

V. Kale et al.

of activities with the goal of evolving OpenMP to meet the needs of
exascale platforms and their users.

As new features are added to OpenMP [1,2], there is a strong need
for the community to share early experiences with them, in order
to understand their behavior in practice and learn how they may be
effectively deployed in scientific codes. We also need to identify any
pitfalls or deficiencies in either the features or their implementations,
so that we can contribute to improvements in the specification and
its compilers. Lastly, use cases are needed in order to train potential
adopters in current best practices.

In this paper, we describe a set of applications and mini-apps that
use OpenMP to program accelerated nodes, discuss how they do so, the
successes and challenges experienced by the application programmers,
and how they plan to use newly implemented (at the time of writing)
features of OpenMP 5.0 and beyond to further optimize their codes.

2. Background

The applications that we describe in this paper and shown in Table 1
are written in Fortran and C++, and they have different computational
motifs, application characteristics and requirements with respect to
OpenMP support. While OpenMP has documentation for programming
styles and methods to make use of OpenMP offload features [1],
OpenMP must address a variety of application requirements if it is to
be a broadly useful approach for node-wide application programming.

While most of the applications in Table 1 are deployed to further
science in a specific domain, two of them, PLASMA/SLATE and RAJA,
are libraries used to develop a wide range of science simulations; these
two applications enable performance portability and offer a simple
approach to offload application code, relying on OpenMP to provide
this functionality. Some applications exploit advanced features of their
base language (elements of Fortran2018, C++17) and require that
OpenMP and its implementations support them. Applications such as
GESTS require interoperability of OpenMP offload with libraries via
asynchronous tasks. GenaSis expects to use OpenMP runtime library
calls to manage data transfer between the accelerator and host. For
some codes, e.g., PLASMA/SLATE, efficient tasking for load balancing
and performance portability is a must.

2.1. OpenMP implementations

Many Fortran and C/C++ compilers support OpenMP, each with its
own specific strengths and weaknesses. Given the rapid evolution of the
OpenMP specification, support for recent features varies widely and is
still gaining maturity. As part of the work described in this paper, we
collaborated to identify and overcome shortcomings of LLVM’s OpenMP
support for accelerators. The SOLLVE team also created an OpenMP
runtime that uses special parallel entities [3] and an MPI extension [4]
to improve communication–computation overlap.

LLVM [5] has become a central part of the software development
ecosystem for optimizing compilers and OpenMP implementations. Its
frontend for C-like languages, clang, supports all OpenMP 4.5 features,
most OpenMP 5.0 features, and some features that are expected to be
part of OpenMP 5.1. An overview of the current status is available
online [6]. Clang-11 defaults to OpenMP 5.0. A command-line flag is
provided to base compilation on other versions of OpenMP. The LLVM
OpenMP CPU runtime, libomp, originating from Intel, maintains ABI
compatibility with the GCC OpenMP CPU runtime (libgomp). The user
specifies each potential target architecture at build time through the
-fopenmp-targets=A,B,C command-line flag. A list of supported
targets is available online [6]. OpenMP offloading in LLVM is currently
available for NVIDIA GPUs and CPU-based targets. Support for AMD
GPUs and Intel GPUs, already available in the respective LLVM-based
vendor compilers, will be available in the community version in the
near future. Documentation on the OpenMP implementation in LLVM,

including the runtimes, optimizations, frontend support, FAQ, and a
setup guide is available online [6].

GCC currently supports OpenMP 5.0 with C/C++ and Fortran,
except for the target directives on GPUs, which is an ongoing effort.
Future versions will support the accelerator features. Intel compilers
support OpenMP 4.5 and will support OpenMP 5.0 offloading capabil-
ities targeting Intel’s GPU, Xeon Phi, and CPUs. The IBM XL compiler
version 16.1.6 supports OpenMP 4.5 for Power9 and NVIDIA GPUs,
and there is a plan to support some OpenMP 5.0 features. PGI supports
OpenMP 3.1 for the CPU and there are plans to support OpenMP 5.0 for
NVIDIA GPUs in the future. Cray and AMD (AOMP) compilers leverage
the LLVM infrastructure to provide OpenMP 4.5/5.0 support.

3. Application experiences

3.1. GAMESS

GAMESS (General Atomic and Molecular Electronic Structure Sys-
tem) [7,8] is a software package with a variety of electronic structure
quantum chemistry methods, such as Hartree–Fock (HF) [9] and
second-order Moller–Plesset perturbation theory with the resolution-of-
the-identity approximation (RI-MP2) [10]. It is predominantly written
in Fortran 77/90, with an optional C/C++ library which uses CUDA
to offload code onto NVIDIA GPUs. GAMESS has traditionally used
MPI together with OpenMP to run on multi-core CPUs. Several of the
methods in GAMESS have been updated to optionally use OpenMP to
offload computationally expensive regions to GPUs. We focus here on
the GPU port of the HF and RI-MP2 methods using OpenMP.

The HF method solves a set of non-linear eigenvalue equations
iteratively for the energy of a molecular system. It has two main bot-
tlenecks: i) computation of a large number (on the order of 𝑁4 where
𝑁 is a measure of the molecular system size) of 4-index 2-electron
repulsion integrals (4-2ERIs); and ii) forming an 𝑁2 Fock matrix by
contracting the 𝑁4 4-2ERI tensor with a density matrix. HF is a fun-
damental method which is a starting point for many higher-accuracy
methods, such as the RI-MP2 method. In the RI-MP2 method, 4-2ERIs
are approximated as the product of 3-2ERIs. This simplifies the integral
evaluation from 4-index to 3-index 2-electron repulsion integrals and
allows the use of efficient matrix multiplication operations.

3.1.1. Implementation and optimization with OpenMP

For the HF code, we focused on the 4-2ERI evaluation. Parallelized
previously with MPI+OpenMP threading on the CPU, the code con-
tained multiple levels of conditional statements. Additionally, since
computational work was not evenly assigned to threads, it suffered
from load imbalance. To address this, we substantially reorganized
the control flow and the order in which integrals are computed by
putting conditionals into separate code blocks (see Fig. 1) and sorting
the integrals ahead of time.

Just a few OpenMP directives were added to the reorganized code.
As shown in Fig. 1, OpenMP directives were inserted to offload code to
GPUs (and subroutines called from target regions were annotated with
‘declare target‘). Note that the routines to compute integrals, e.g., int1,
were not modified at all. This version of GAMESS is in a development
branch and supports one type of integral. For the RI-MP2 code, we
focused on the computation of the perturbative correction, which is
dominated by calls to a matrix multiplication routine (DGEMM). Here,
the strategy to port from CPU to GPU was to merge sections of ar-
rays so that inputs to the DGEMM call are larger, resulting in higher
arithmetic intensity per DGEMM call, and fewer kernel launches. The
resulting OpenMP code, discussed in detail in [11], was implemented
and evaluated in a mini-app and in a development branch of GAMESS.



Parallel Computing 109 (2022) 102856

3

V. Kale et al.

Table 1
Applications ported to accelerator architectures using OpenMP and their motifs and their functionality.

Applications Motif(s) OpenMP Features

QMCPACK Monte Carlo target nowait, use_device_ptr
GAMESS Dense Linear Algebra target teams distribute parallel do, target enter/exit data
GridMini Stencil, Monte Carlo C++17, teams distribute, thread_limit
PLASMA/SLATE Dense Linear Algebra task, task depend
RAJA Stencil, all teams distribute, reduction
LSMS Dense Linear Algebra declare variant, metadirective, complex numbers
GESTS Spectral Methods task detach, teams distribute, libraries, omp_target_memcpy_rect, asynch. and dep. objects
GENaSiS Iterative Solvers ptr_associate, dynamic metadirective

Fig. 1. Pseudo-code for the GPU version of part of the HF algorithm.

3.1.2. Evaluation
A preliminary version of the restructured HF code was evaluated on

a node of Summit with inputs of varying sizes (coronene and clusters of
up to 64 water molecules, corresponding to a molecular system size 𝑁

from 240 to 832). The overall speedup of the OpenMP GPU HF integral
code using a single V100 GPU, relative to the OpenMP CPU HF code
using two IBM Power9 CPUs, varied from 1

5
x to 5x with larger inputs

resulting in larger speedups. In the next step, the integral sorting will
be offloaded to GPUs and batching techniques will be applied to allow
computation of larger molecular systems. For the RI-MP2 code, the
restructuring described in [11] was evaluated on Summit. As discussed
in [11], for large enough inputs, the OpenMP GPU version running on
a single V100 GPU on a node of Summit was 6–7x faster than the CPU
version running on two IBM Power9 CPUs of a node of Summit. This is
near the best expected speedup for floating-point dominated code, since
the theoretical ratio of the peak floating-point performance of one V100
to two Power9 CPUs is approximately 7x.

3.1.3. Challenges
While porting the code to GPUs, the major challenge was to rear-

range it to i) increase the computation in the offloaded regions, and
thus to reduce data transfer, and (ii) remove conditionals and load
imbalance between GPU threads. The OpenMP implementation we used
(IBM Fortran, version 16.1.1) provided the functionality required to
port our code successfully.

Nevertheless, we encountered some performance challenges. For
example, in our initial GPU port, we offloaded a region inside a host
function which is called at each iteration of a solver. The offloaded
region mapped private variables to the GPU and contained a function
call which was marked as ‘‘declare target’’ to allow it to be called from
an offloaded region. When we tested it using IBM Fortran OpenMP, the
time per iteration of the solver increased. To work around this, we man-
ually inlined the routines called in the offloaded region, which resulted
in the time per call remaining constant, as expected. Unfortunately, the

IBM compiler’s performance did not allow us to use OpenMP’s ‘‘declare
target’’ and mapping of private variables effectively. This issue has been
reported to IBM, and it does not occur with Cray Fortran.

3.2. GenASiS

GenASiS (General Astrophysical Simulation System) is a code be-
ing developed for large-scale simulations of astrophysical phenomena
that targets supercomputers. Currently, it is primarily intended for
simulating and modeling core-collapse supernovae and the observable
phenomena associated with a supernova event. Simulations using GenA-
SiS have led to the discovery of magnetic field amplification by the
Stationary Accretion Shock Instability (SASI) in a supernova environ-
ment [12,13]. Using GenASiS we have also performed an ensemble
study of SASI- and convection-dominated regimes to study the nature
and differences between these two types of explosions [14]. GenASiS is
written in modern Fortran, leveraging the object-oriented features of
the language to be an extensible and modular code.
GenASiS is organized into three main subdivisions [15–18]. Ba-

sics provides utilities generally needed by any large-scale simulation
system. Mathematics provides classes for manifolds (i.e. meshes) and
solvers that are agnostic of the physical system. In Physics, these solvers
are endowed with the specific form of the stress–energy and theories
of spacetime relevant to the physical problem at hand. Rather than a
single application, GenASiS provides these classes to be instantiated by
an application driver for a specific problem.

3.2.1. Implementation with OpenMP
The core of the data storage facility in GenASiS Basics is the

StorageForm class, which consists of members and methods for han-
dling generic data and metadata. Data are stored as a two-dimensional
array where the first index typically enumerates the cells in the mesh
and the second index enumerates the variables. The metadata includes
units and variable names that can be used for I/O and visualiza-
tion. Most solvers and storage needs of GenASiS are written using
the StorageForm class, enabling a uniform, simplified code for
functionality such as I/O and nearest-neighbor ghost cell exchange.

The OpenMP implementation of GenASiS [17] extends the
StorageForm class with methods to mirror, associate, and
synchronize the host (CPU) memory data allocation with a
corresponding device (GPU) memory allocation. Listing 2 illustrates
the use of the StorageForm class with methods relevant to manage
the device memory allocation and association.

In Fig. 2, line 4 allocates the two-dimensional array class member
Value on the host memory. Line 5 mirrors that allocation on the
device and associates the memory location on the host with that on
the device. This is accomplished by using the OpenMP library runtime
routine omp_target_associate_ptr() under the hood. With this
association, the next time the OpenMP runtime encounters that host
variable within a target region, implicit mapping and data transfer
are avoided since such mapping already exists. Line 7 initializes the
member Value with problem-specific conditions. Line 8 updates the
device copy of the variable with initial values, which can then be used
inside the AddKernel() routine on the device. Suppose the result of
this operation is needed back on the host. Line 14 accomplishes that by



Parallel Computing 109 (2022) 102856

4

V. Kale et al.

Fig. 2. An example of using StorageForm methods.

Fig. 3. A computational kernel with both offload and host multi-threading.

copying the data back to the host memory. Listing 3 shows the listing
of the computational kernel AddKernel () previously mentioned.

The OpenMP directive for offloading to the device differs minimally
from OpenMP worksharing directives for the host with the addition of
the target teams distribute directive and a different scheduling
clause. We have found that a static schedule with a chunk size 1, using
schedule(static , 1), gives the best performance on the device with the
IBM XL and GNU compiler, while the runtime schedule performs the
best for multi-threading on the host.

When the program enters the target region on line 10 in List-
ing 3, it uses the device location for the variable A, B, and C,
which are previously mapped persistently inside the StorageForm %
AllocateDevice () method called on line 5 in Listing 2. Therefore,
not only is there no need to have a mapping clause with the target
directive, but the default mapping clause that often implies implicit
data movement is also avoided since the reference count of these
variables is one (already present on the device).

By hiding the implementation details of data mapping inside a
method of StorageForm class, we simplify the directive needed to
write a computational kernel. Persistent mapping and explicit control
of data movement are also crucial to achieve the expected performance
of offloaded computational kernels.

3.2.2. Evaluation
Fig. 4 shows the kernel timings of RiemannProblem implemented

in GenASiS BasicsṪhe RiemannProblem is a multi-dimensional exten-
sion of the 1D Sod ShockTube problem. Although this problem can

Fig. 4. Timings for computational kernels and data transfers in GenASiS Basics Rie-
mannProblem 3D with 2563 cells for 50 cycles. CPU multithreading timings factored by
25X to fit plot. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

be more naturally done with facilities provided by the Mathematics
subdivision of GenASiS, here we implement simplified versions of the
mesh infrastructure and solvers needed to solve this problem in GenASiS
Basics which serves as a proxy application for the overall GenASiS fluid
dynamics solvers. We have also ported six of the computational kernels
to CUDA to allow us to investigate any performance differences to
OpenMP offload.

We run this problem in 3D with 2563 cells for 50 cycles. Timings
for multithreading with 7 CPU threads (blue and red bars using IBM
XL and GCC compilers, respectively), OpenMP offload with the XL
compiler (yellow bars), and CUDA kernels with the nvcc compiler
(green bars) are plotted. For all but one of the kernels, the OpenMP
offload version obtains the same performance as the CUDA version.
The CUDA version of the Fluxes kernel performs about 20% better
than the corresponding OpenMP offload version. Although for this
problem this particular kernel makes up about 16% of the total runtime,
bringing the actual impact to performance closer to only ∼ 3%, this
kernel provides a reproducer for better optimization of the OpenMP
implementation that has been shared with compiler vendors.

3.2.3. Challenges using OpenMP 4.5
One challenge is that executing the computational loop in the code

listing in Fig. 3 on the host when the device is not available requires
redundant code. We would like to avoid writing the same code twice
just because they need different directives for offload and CPU multi-
threading. This is not an artifact of GenASiS alone, as device offloading
requires many other considerations with respect to data movement and
updates.

A second challenge is using multiple streams with OpenMP. One
of the desired features for GenASiS is the ability to call a kernel from
within an OpenMP parallel loop so that all iterations execute in parallel
and can ideally map to different streams within the GPU. Mapping
to different streams provides another level of concurrency and,
when adequate work is available per GPU, a higher occupancy can be
achieved while reducing kernel launch time. This is an optimization an
implementation can choose to do when the nowait clause is enabled
in the target region. The implementation will create a target region that
can be mapped to a stream if called by multiple CPU threads or if the
target gets called many times in a loop.

3.2.4. Plans for OpenMP 5.0
The first challenge listed in Section 3.2.3 can be partly addressed

using the metadirective directive introduced in OpenMP 5.0. It
can specify multiple directive variants, one of which may be condition-
ally selected to replace the metadirective based on the enclosing
OpenMP context. It would compress the code in Listing 3 to the code
in Fig. 5.



Parallel Computing 109 (2022) 102856

5

V. Kale et al.

Fig. 5. Metadirective directive for target offload and CPU multi-threading.

Fig. 6. Left: Decomposition of an 𝑁3 solution domain among 𝑃 MPI processes into
slabs of data of size 𝑁×𝑁×𝑁∕𝑃 . Right: Further decomposition of a slab into 𝑛𝑝 smaller
sub-volumes, each of size 𝑁 ×𝑁∕𝑛𝑝 ×𝑁∕𝑃 .

The only drawback is that any conditional in the context selected
with metadirective needs to be resolved at compile time, while the
way GenASiS is currently structured requires runtime branch selection.
OpenMP 5.1 now supports a metadirective that can select which version
of the directive to use at runtime. This new feature will be beneficial
here.

Another feature that we plan to employ is the OpenMP allocate
directive which will be used in GenASiS to replace CUDA/HIP memory
allocation routines, thus making it more portable. Once the compiler
implementations for task parallelism and offloading are mature enough,
we hope that using the loop construct inside the target region will
greatly simplify multi-level device parallelism and provide a way to
target multiple GPU streams, giving better performance.

3.3. GESTS

Three-dimensional (3D) fluid turbulence with disorderly fluctua-
tions in space and time are a grand challenge in science and computing.
A powerful tool for advancing understanding is direct numerical sim-
ulation [19] based on exact conservation laws in a simplified domain
amenable to Fourier pseudo-spectral methods of high accuracy. High
resolution is crucial, especially for studies of localized regions of high
intensity [20]. Despite heavy communication requirements, a recent
algorithm [21] using CUDA Fortran on Summit has allowed problem
sizes as large as 6 trillion grid points. The objective of the GESTS (GPUs
for Extreme Scale Turbulence Simulations) code is to advance towards
exascale, preferably in a portable manner. The main task in the GESTS
code is to take 3D Fast Fourier transforms (FFTs). Assuming a fat-node
architecture with large CPU memory, to reduce communication costs
we use a one-dimensional (slabs) domain decomposition as shown in
Fig. 6. Within each plane in a slab, 1D FFTs in two directions (here
𝑥 and 𝑦) are performed readily using highly optimized GPU libraries
(cuFFT or rocFFT), while the FFT in the third (𝑧) direction requires
an all-to-all global transpose that re-partitions the data into, say, 𝑥 − 𝑧

planes. However, if 𝑁 is very large (up to 18,432 in [21]), a complete
slab may not fit into the smaller GPU memory. We address this by
dividing each slab into 𝑛𝑝 smaller sub-volumes, as in Fig. 6b. In effect,
batches of data formed from the sub-volumes are copied to the GPU,
computed on, and copied back, while operations on different portions
may overlap with one another.

3.3.1. Challenges porting to OpenMP
In the ‘‘batched’’ scheme above, each sub-volume of data to be

copied consists of 𝑁∕𝑃 strips of size 𝑁 ×𝑁∕𝑛𝑝, which are strided from
one another. Efficient strided data transfer is thus critical. A simple
packing on the host prior to transfer to device, or performing multiple
copies one strip at a time, would have required an extra data-reordering
operation on the CPU and the overhead of numerous smaller copies
respectively [21]. In CUDA Fortran, the API call, cudaMemcpy2D, can
be used to perform efficient strided copies directly.

OpenMP 5.0 allows strided UPDATEs but not non-contiguous array
TARGET DATA MAP for array accesses like a(n/2:n,1:n). This suggests
strided UPDATEs can serve our needs only if the entire slab is mapped
to the GPU, for which sufficient memory may not be available. One
possibility is to map only a sub-volume (a smaller buffer) to the GPU
and update it after copying the necessary data from the larger buffer
to the smaller buffer on the host. Unfortunately, the extra operations
entailed on the host reduces performance, even if OpenMP threads are
used to share the workload. It may be better to use the OpenMP 4.5
device memory routine omp_target_memcpy_rect, which allows
copying of a specified sub-volume inside a larger array on the host to a
smaller buffer on the device. This OpenMP routine is conceptually sim-
ilar to cudaMemcpy2d, although currently it is Fortran-callable only
through a C-FORTRAN interface that requires careful consideration of
input parameters accounting for differences between C and Fortran in
array structures. However, tests on Summit show slow performance
compared to CUDA Fortran; thus, further studies are required.

As noted earlier, batched operation enables asynchronism among
operations on different sub-volumes in the same slab. In OpenMP, this
asynchronism can be achieved using the TASK clause for work on the
host, NOWAIT for device kernels and data copies, and DEPEND to en-
force the necessary synchronization between different tasks. However, a
complication arises when a TASK with a DEPEND(OUT:a) calls a non-
blocking library, such as cufft or rocfft. The OpenMP runtime appears
to consider the task as ‘‘completed’’ once the binding thread calls the
function, without the kernel having finished, or even started, running
on the device. Further tasks with a DEPEND(IN:a) may proceed
prematurely, leading to incorrect results. This issue can likely be fixed
by using the DETACH clause introduced in OpenMP 5.0.

3.3.2. Implementation strategy with OpenMP
Fig. 7 compares pseudo-code segments in CUDA Fortran with

OpenMP. Buffers labeled as NEXT, CURR and PREV for different sub-
volumes in a slab are allocated on the GPU, and different operations
are performed on them asynchronously. In a single loop iteration, a
strided host-to-device copy of the (𝑖𝑝 + 1)th sub-volume to the NEXT
buffer, computations on the CURR buffer (which holds the 𝑖𝑝th sub-
volume on the device), a strided device-to-host copy of the PREV buffer
to (𝑖𝑝 − 1)th sub-volume, and all-to-all from the host on the (𝑖𝑝 − 2)th
sub-volume are performed asynchronously. In CUDA Fortran, events
are used to record and synchronize operations on different streams to
ensure correct results. Computations on the CURR buffer (line 8) do
not start before copy of the CURR buffer completes, as enforced by
a cudaStreamWaitEvent call on line 7. In OpenMP, the DEPEND
clause with dependency type IN ensures the task does not start before
prior tasks using the same dependency variable with type OUT are
completed.

The OpenMP version differs from the CUDA Fortran version in two
key aspects. First, omp_target_memcpy_rect is called in place of
cudaMemcpy2D. Second, a DETACH clause with an event handle is
attached to the TASK construct launching the FFTs. This task also calls
hipStreamAddCallback, on line 9, to insert a callback function into
the stream in which the FFTs will execute. The callback function is exe-
cuted once the FFTs complete on the GPU, which calls omp_fulfill_event
to indicate the completion of the event passed to the DETACH clause.
This satisfies the OUT dependency and allows further tasks to execute.



Parallel Computing 109 (2022) 102856

6

V. Kale et al.

Fig. 7. Pseudo-codes from GESTS showing batched asynchronous transforms in one direction using CUDA Fortran (on the left) and OpenMP (on the right). The colors red, blue
and green highlight events or dependencies corresponding to the NEXT, CURR and PREV buffers or sub-volumes as shown in Fig. 6b. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

3.3.3. Plans for OpenMP 5.0
As of September 2020, basic non-batched synchronous versions of

our 3D FFT kernels on Summit have been tested, with comparable
performance between CUDA Fortran and OpenMP, up to 12,2283 reso-
lution, as shown in Fig. 8. The performance observed at large problem
sizes shows less than ideal weak scaling of the code as MPI communi-
cation costs dominate performance. A speedup of 2.57X is observed for
3D FFT at the 12,2283 problem size. Larger speedups are expected in the
full DNS code, which has more computations that can benefit from GPU
acceleration. However, the full promise of OpenMP offloading still rests
upon solutions to the challenges noted above, associated with strided
copies (even using omp_target_memcpy_rect) and asynchronism
(with the DETACH clause not yet fully supported). Progress in the
near term will involve working closely with vendor experts, ideally
with improved Fortran support for OpenMP 5.0 and higher. We remain
hopeful for ultimate success in a portable OpenMP implementation
(say, with the Cray compiler and AMD GPUs) of the successful batched
asynchronism CUDA Fortran code in [21].

3.4. GridMini

GridMini is a mini-application for Lattice Quantum Chromodynam-
ics (QCD). Lattice QCD simulates the strong interactions of quarks and
gluons on a four-dimensional discrete space–time grid, and provides
crucial input to theoretical nuclear and particle physics. GridMini is
a substantially reduced version of Grid [22], a new C++ lattice QCD
library developed for highly parallel computer architectures. We use
GridMini to assess whether OpenMP’s target offloading can serve as a
common portable solution across different GPU accelerators.

The main computational motif of lattice QCD is Markov Chain
Monte Carlo simulations, with sparse matrix inversions. In both the
Monte Carlo simulations and matrix inversions, the key computational
kernel is the high-dimensional matrix–vector multiplication. LQCD
calculations are memory bandwidth bound. For this reason, it is in-
structive for us to measure the sustained memory bandwidth with our
code.

3.4.1. Implementation and optimization strategy
The following OpenMP implementation and performance evaluation

are for the SU(3) matrix–matrix multiplication benchmark in GridMini,
Benchmark_su3, to measure sustained memory bandwidth on the
target device. It computes z=x*y many times, where x, y and z are
all arrays of SU(3) matrices, and the bandwidth is calculated as the
memory footprint divided by time spent in the calculation.

Fig. 8. Weak scaling performance of non-batched synchronous 3D FFT kernels on
Summit. Performance of CUDA Fortran (green) and OpenMP (blue) versions are
comparable. Speedup of OpenMP offload with respect to the CPU version is given
as labels in the plot. Dashed lines indicate perfect weak scaling. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 9. C++ macros that define the loop-level computation in GridMini.

The loop-level computation over the arrays is done through an

accelerator_for macro as defined in Fig. 9. In order to ensure

that the functions are offloaded properly, all the potential inline func-

tions are decorated with the accelerator_inline macro, which

adds the always_inline attribute to the function definitions. These

macros are consolidated in a header file, and will expand to different

implementations/definitions for different compilers/architectures with

#ifdef switches.

To simplify memory management for the deeply nested data struc-

tures in GridMini, we rely on unified virtual memory through explicit

calls to cudaMallocManaged().



Parallel Computing 109 (2022) 102856

7

V. Kale et al.

Fig. 10. Performance comparison of Benchmark_su3 in GridMini among different
LLVM versions and CUDA. Results labeled Original and -fopenmp-cuda-mode
used the LLVM GitHub version dated 07/31/2020, LLVM 09/25/2020 refers to the
LLVM trunk version dated 09/25/2020, and CUDA uses cuda/10.1.243.

3.4.2. Performance evaluation
With the above implementation, we were able to run

Benchmark_su3 on NVIDIA GPUs after compiling it with
LLVM/Clang. We ran into several issues with the above OpenMP
offloading which have since been fixed in the LLVM/Clang compiler.
Initially, the results were incorrect with z always returning 0. Upon
further investigation, we found that the issue was related to the use of
struct with short vectors (which is necessary for the vector layout
in Grid). When a device function in the target region returned a
value of this type, it was not copied back correctly. Next, we only
obtained 125 GB/s on NVIDIA V100 GPUs on Cori, while the CUDA
version achieved more than 600 GB/s sustained memory bandwidth.
OpenMP performance dramatically improved when we compiled the
code with an additional -fopenmp-cuda-mode option. The version
of LLVM/Clang we used dated 07/31/2020 directly from the GitHub
repository still gave much worse results than CUDA with small memory
footprints due to frequent allocation and deallocation of short-lived
data objects, which are expensive on GPUs. This was fixed by a patch
(now in the main trunk of LLVM) that optimizes GPU allocations. The
progress in performance of Benchmark_su3 is shown in Fig. 10,
where LLVM OpenMP is now comparable to CUDA for moderate to
large memory footprints, but lags behind for small memory footprints,
indicating possible overheads in the OpenMP runtime.

3.4.3. Plans for OpenMP 5.0
Since we are currently using cudaMallocManaged to explicitly

manage memory, the code is not portable to other devices such as AMD
or Intel GPUs. The most important OpenMP 5.0 feature to us is native
support for unified shared memory. Once this feature is fully supported,
we plan to test the performance and portability of our code on other
architectures.

3.5. LSMS

LSMS (Locally Selfconsistent Multiple-Scattering) [23,24] is a first-
principles density functional theory code for condensed matter and
material sciences. It calculates the behavior of materials by solving the
electron states in the materials in the framework of density functional
theory [25,26] and solves the resulting Kohn–Sham equations using
multiple scattering theory, also known as the Korringa–Kohn–Rostocker
(KKR) method [27,28]. It solves the multiple scattering problem in
real space and uses an approximation based on a finite distance cutoff
for the scattering path of an electron before returning to its origin
(Local Interaction Zone, LIZ). The solutions for atom-centered LIZs
are combined to form the solution for the whole system, thus the

computational effort scales linearly with the total number of atoms, as
opposed to the usual cubic scaling of traditional methods to solve the
Kohn–Sham equations.

LSMS calculations are dominated by complex dense linear algebra.
The work is distributed at three parallelization levels that reflects the
mapping of the physical subdivision of the LSMS methods onto the
underlying computation. LSMS utilizes MPI at the highest level and
uses OpenMP within each MPI rank for CPU multi-threaded parallelism.
Each MPI rank can also utilize one accelerator. The calculation of
electron densities within LSMS are naturally divided into the accumu-
lation of contributions from each atom. Thus, the system is spatially
subdivided into groups of atoms of approximately equal size. The LIZs
(O(100) atoms/LIZ) define the template for the point-to-point com-
munication to exchange the scattering matrices (approx. 500kB/atom)
between the MPI ranks.

The on-node calculations for each atom local to the MPI rank are
further parallelized using OpenMP on the CPU and are divided into
a number of steps separated by MPI communication. The first step is
the calculation of the scattering matrices which result from the numer-
ical integration of systems of coupled ordinary differential equations
on a discrete linear grid for a small set of initial values. After the
communication of remote single scatterer matrices, these are combined
based on the geometry of the physical system to form the KKR matrix,
described in further detail below. This routine is the second most time-
consuming operation. The scattering path matrix calculation is the most
computationally costly part of LSMS, being responsible for over 9∕10
of the floating point operations in a typical run. This calculation is
accomplished by the inversion of the dense, complex, non-Hermitian
KKR matrix. As further calculations only require a small (typically
32 × 32) diagonal block of the inverse matrix that has a dimension that
is more than 100× that block’s size, the inversion is usually performed
using an algorithm based on the Schur complement [24].

3.5.1. Parallelization with OpenMP
Performance portability is a central goal of LSMS parallelization.

It will run on several different architectures and compilers as part of
the SPEC HPC 2020 benchmark suite. This limits the ability to rely
on optimized libraries for each architecture to perform many of the
needed operations. OpenMP allows us to target several architectures
while pushing compiler optimizations to the limit. This can be used
to evaluate the performance gap between OpenMP and a library-based
approach.

The KKR matrix needs to be built and solved with a standard matrix
solver. This is done using the getrf and getrs routines from LAPACK.
Since we must avoid relying on external packages, we had to find an
alternative to the standard LAPACK and BLAS libraries. FLENS is a
header-only library implementation of LAPACK routines with a high-
level interface in C++. FLENS also offers a pure C++ implementation
of the BLAS routines compiled along with FLENS called ulmBLAS.

Converting FLENS to run on the device required modifying the
necessary BLAS routines in ulmBLAS to use OpenMP target offload.
Some changes were made to improve GPU performance also. For
many routines, this was as simple as applying a loop-level parallelism
directive to the function. More complex level-3 routines such as the
ubiquitous gemm operation required extensive changes. Others such as
iamax could be efficiently offloaded with minor modifications, shown
in Fig. 11. After the BLAS routines were parallelized, only a few
adjustments had to be made to the FLENS LAPACK library. References
to data on the device were updated from the device using the OpenMP
update clause. Using the library now only required the data pointers to
be mapped on the device via the same high level interface as shown in
Fig. 12.

We ran a small benchmark on a single NVIDIA Volta GPU to
compare the individual BLAS routines with a library implementation.
Results were averaged over several tests. The performance of FLENS
under OpenMP offload and using the zgemm and izamax BLAS routines



Parallel Computing 109 (2022) 102856

8

V. Kale et al.

Fig. 11. Offloading the level 1 BLAS routine iamax which finds the index of the
maximum value.

Fig. 12. Offloading matrix solvers once the BLAS routines were converted to use
OpenMP offloading. Solves an 𝑀 ×𝑁 matrix 𝐴.

Fig. 13. Performance of selected BLAS routines implemented in FLENS using OpenMP
offloading on a single Volta GPU versus cuBLAS performance.

is shown in Fig. 13. There is a noticeable performance gap. More
compiler work is needed to optimize OpenMP offloading in order to
complete with manually tuned libraries. In LSMS, cuBLAS was 2x faster
than the FLENS OpenMP offload version.

3.5.2. Challenges
One of the initial challenges faced when moving LSMS to a device

with OpenMP was the fact that not all compilers support complex
numbers in target offload regions. Clang recently added such support
for complex numbers and will soon support complex math functions.

3.5.3. Plans for OpenMP 5.0
OpenMP 5.0 introduced the allocator clause that allows the user to

allocate specialized memory on the target device. The use of shared
memory on the GPU is critical for optimized matrix–matrix multiplies
using OpenMP 5.0. This can be done with per-team memory allocation.

Fig. 14. QMCPACK multi-level parallelism.

3.6. QMCPACK

QMCPACK is a high-performance open-source Quantum Monte
Carlo (QMC) simulation code [29,30]. It performs electronic structure
calculations using a number of related highly accurate QMC algo-
rithms. QMCPACK is written in C++ with extensive use of generic
programming. For parallelization, it utilizes a hybrid MPI + (OpenMP,
CUDA) approach to optimize memory usage and fully uses the growing
number of cores or GPUs per node. High computational efficiencies are
achievable, e.g. Ref. [31].

In QMC methods, wavefunctions are sampled by multiple Markov
chains or ‘‘walkers’’. The walkers are updated using Metropolis-like
algorithms and are loosely coupled to each other. A large population of
walkers enables massive parallelism. Within a walker, compute kernels
typically contain loops over electrons which are well-suited for fine
level parallelism. QMCPACK distributes walkers first among MPI ranks
and then among CPU threads. On GPU accelerators all the walkers held
by a thread are advanced in lock-step for efficiency. Due to the random
nature of the algorithms and slight workload imbalances that result,
QMCPACK relies on multiple CPU threads independently offloading
computation to GPUs asynchronously to maintain high occupancy.

3.6.1. Implementation and optimization strategy

QMCPACK targets maximal efficiency at 1 MPI rank per CPU socket
or GPU. The coarse and fine level parallelism of QMCPACK can be
abstracted as the pseudo code in Fig. 14. The parallelism leverages
OpenMP threading and GPU offloading capabilities simultaneously.

3.6.2. Evaluation

Our study is based on the LLVM Clang compiler 11.0.0, although the
features needed may be fully or partially supported by other compilers.
e.g. OpenMP offload to NVIDIA GPUs is currently supported by IBM
XL, Cray Clang, LLVM Clang and GNU GCC compilers. For simplicity,
this study uses a mini-app, miniQMC, instead of the full QMCPACK
application.

A typical OpenMP target region contains a compute kernel and
host-to-device and device-to-host data transfers before and after the
computation. The LLVM compiler front-end and OpenMP runtime trans-
form the target construct with map clauses into cuMemcpyHtoD,
cuLaunchKernel, cuMemcpyDtoH and cuStreamSynchronize
on a single CUDA stream, see Fig. 15. Host arrays are pre-registered by
cudaHostRegister for best transfer performance.

With an efficient single offload region implementation, multiple
host threads are employed for independent offload. When compute
kernels are small, NVIDIA GPUs may execute kernels from different
streams concurrently and overlap them with data transfer operations.
Fig. 16 shows 8 host threads offloading computation to the GPU via 8
streams. Support for these key features enables QMCPACK to efficiently
leverage OpenMP.



Parallel Computing 109 (2022) 102856

9

V. Kale et al.

Fig. 15. Single OpenMP target offload region on a CUDA stream with minimal
synchronization.

Fig. 16. Host OpenMP threads offload their own computation via independent CUDA
streams in miniQMC. Time tracing by the NVIDIA Visual Profiler.

3.6.3. Challenges and developments
QMCPACK developers teamed up with the SOLLVE team to im-

prove the quality of the Clang compiler and its runtime library to
address features that are critical for production use of OpenMP in
real applications. The following capabilities were added during the
development of Clang 11: (1) math functions and complex algebra
inside OpenMP offload regions (2) interoperability between offload
regions and CUDA by exchanging memory pointers (needed for calling
vendor linear algebra libraries) (3) optimized memory mapping lookup
in the OpenMP offload runtime library (needed for applications that
are sensitive to OpenMP runtime overhead). The remaining challenges
using LLVM are (1) not being able to link static archives with device
code (applications are forced to directly link all their object files); and
(2) using target nowait without blocking the thread that launches
the compute kernel is still in development.

3.6.4. Plans for OpenMP 5.0
As more OpenMP 5.0 features are enabled by compilers, QMCPACK

will take advantage of (a) detached tasks for interoperability with other
asynchronous runtime libraries; (b) the metadirective to reduce source
code duplication and macros; (c) variant functions for clean specializa-
tion with high performance; and (d) tools extension for debugging and
profiling.

3.7. PLASMA and SLATE libraries

PLASMA and SLATE are numerical linear algebra libraries that
heavily rely on OpenMP to express runtime dependence between linear
algebra kernels. They represent basic on-core or on-device units of
work that were extracted from BLAS and LAPACK code to form a
task-based representation of common linear algebra functions. These
include one-sided factorizations (Cholesky, LU, QR, and LDLT), two-
sided decompositions (eigenvalue, Schur form, and SVD), and the
corresponding solvers and linear minimizers such as least-squares solve.

The prevailing motifs, in broad terms, are three kinds of kernels
for dense linear algebra in the PLASMA and SLATE libraries: compute-
bound, memory-bound, and communication-bound. The first kind are
often encoded as a collection of loop nests of up to 3 levels that

Fig. 17. Hierarchy of functions in PLASMA that represents various entry points into
the libraries functionality.

benefit from the volume-to-surface effect: computational complexity is
higher order than storage complexity. While the majority of the loop
nests are affine, some are not. The second kind of kernel performs
data layout translations that drastically reduce adverse cache effects
in computational kernels. Finally, the third kind of kernels encompass
functions that perform any kind of data communication between host
or device memories, either on-node or between nodes.

The initial definition of tasking in OpenMP 3.0 was not sufficient
to accommodate all these needs as the sibling tasks may be regarded
as similar to the bulk-synchronous parallelization that is often applied
in vendor libraries and in ATLAS. Instead, PLASMA and SLATE utilize
the parallel region’s task set and all of its sibling tasks spawned at
runtime to match the computational need of the user problem. The
number of tasks is increased for larger user problems and the tasks rely
on the depend clause for runtime dataflow scheduling of the OpenMP
implementation.

3.7.1. Implementation and optimization strategy
The task decomposition of the computational graph takes full

advantage of cache or device residency of the user data that is de-
composed in tiles, sets of tiles, and submatrices. The vast majority of
the factorization routines are based on panel-update iteration while
the decompositions often rely on panel-left–right-update scheme. The
tile-based algorithms add the two-stage approach to the computational
patterns that localizes data access and exposed much higher levels
of parallelism to take advantage of increasing computing capability
of modern multicore and accelerator devices. The use of MPI may
introduce much higher overhead than is usually experienced on single-
node codes. The generic approach of dealing with this is to employ a
lookahead technique to overlap slow operations behind the fast ones.

3.7.2. Example of OpenMP code
The easiest representation is to look at the hierarchy of routines.

Fig. 17 shows the three major layers of routines: (1) the main PLASMA
entry points, (2) the CPU-core layer, and (3) the low-level legacy BLAS
and LAPACK layer. There are three types of routines in the top-most
layer: plasma_dgemm() is an entry point from a sequential application
outside of any OpenMP region, plasma_omp_dgemm() is a sequential
entry point from inside an active OpenMP region, either statically or
dynamically scoped, and plasma_pdgemm() is a parallel entry point
from within an active OpenMP region. In the middle layer, there are
two types of routines: plasma_core_omp_dgemm() is a parallel entry
point used from outside of the current tasks set in order to create a
new task and specify its dependence set and plasma_core_dgemm()

implements the task functionality and does not use any OpenMP
pragmas. Finally, at the bottom-most layer, PLASMA makes calls to
low-level implementations of BLAS and LAPACK subroutines such as
Fortran’s API dgemm_(), CBLAS API cblas_dgemm(), or LAPACKE API
lapacke_dgetrf() – they can come from the reference Netlib implemen-
tation, open-source implementations in ATLAS or OpenBLAS, or vendor
libraries such as Intel MKL currently available as oneMKL.



Parallel Computing 109 (2022) 102856

10

V. Kale et al.

Fig. 18. Comparison of SLATE’s performance on 4 nodes of the NERSC’s supercomputer
Cori against Intel’s MKL ScaLAPACK implementation for LU factorization PDGETRF
(left) and QR factorization PDGEQRF (right) in IEEE 64-bit floating-point precision.

3.7.3. Evaluation
Fig. 18 shows comparison of performance on 4 nodes of the Cori

supercomputer located at NERSC between SLATE’s and Intel’s MKL
ScaLAPACK implementation of LU factorization with partial pivoting
(PDGETRF) and QR factorization (PDGEQRF), both in IEEE 64-bit
floating-point precision and using CPU-only or the mixed CPU/GPU
modes (the latter only available in SLATE). Note that each Cori node
features two sockets each with Intel Xeon Skylake 6148 processor (20
cores and 40 hardware threads) and 8 NVIDIA Volta V100 GPUs. The
interconnect cards are 4-way dual-port InfiniBand EDR by Mellanox.
The MKL version was 2020.0.166, CUDA: 10.2.89, MPI: Open MPI
4.0.3. The SLATE code was from June 22, 2020 and was compiled with
GCC compiler version 8.3.

3.7.4. Challenges and their resolution
Unlike PLASMA, SLATE routines require inter-node communication

that is performed with MPI. However, the complexity of the modern
hardware stack requires SLATE to employ a more complex interaction
of software components than the often quoted MPI+OpenMP moniker.
In fact, SLATE routines use MPI processes that spawn data-dependent
OpenMP tasks that in turn invoke MPI functions to communicate across
node boundaries which results in MPI+OpenMP+MPI with the majority
of the MPI calls relying on a multi-threaded MPI implementation. One
promising direction is to use an MPI implementation that is aware of
OpenMP task implementations by, for example, combining a ULT-aware
MPI implementation [32] with the BOLT OpenMP runtime [3], which
employs ULT-based OpenMP tasks.

Unlike PLASMA which is 100% OpenMP-based, the SLATE imple-
mentation is based on the CUDA and HIP interface: the CPU part
handles latency-bound compute and message-passing while the GPU
part performs data transfers and a handful of calls to numerical kernels.
Porting to Intel Xe Ponte Vechccio accelerators with OpenMP target
offload became the natural choice to bring SLATE to the platform to
make it 100% OpenMP.

3.7.5. Plans for OpenMP 5.0
OpenMP 5.0 offers new functionality, especially in the form of new

clauses, that were originally implemented inside the QUARK runtime
scheduling library. In particular, these include: specification of affinity
of task and data for more efficient cache mapping; data-dependence
iterators for multiple dependences between tasks that are not known
until runtime and may differ between problem sizes. Finally, the ex-
tension to the offload support will offer less reliance on vendor-specific
APIs.

3.8. RAJA

RAJA [33] is a cross-platform heterogeneous programming ab-
straction library in C++ developed by LLNL to help make scientific
applications more portable and future-proof. It provides a model for
loop-centric parallel programming that abstracts over OpenMP, TBB,

Fig. 19. Examples of RAJA usage and internals.

CUDA and HIP; more backends are in progress. It has some unique
requirements that have driven some decisions in OpenMP’s design for
C++, especially helping support the construction of C++ abstractions
over OpenMP.

A simple daxpy operation with an additional sum of the updated
elements of a using a RAJA forall is presented in Listing 19(a). RAJA
loops are written as function calls, taking a range of indices, or data
elements, and a lambda to execute as the body of the loop. To run this
on the host in an OpenMP parallel for loop, the user can define
my_policy as omp_parallel_for_exec, or for an offload loop as
omp_target_parallel_for_exec. Otherwise, the code for host
or device execution is identical, and can easily be switched between
the two or even multi-versioned by the user. This model provides
advantages in portability and flexibility for user code, but it imposes
significant constraints on the implementation of RAJA itself, and that
is what we focus on in this section.

3.8.1. Implementation
The implementation of a RAJA backend for OpenMP has two ma-

jor parts: (1) an OpenMP host backend that serves as the standard
parallel host backend for RAJA, which has been tested and optimized
extensively, (2) the OpenMP offload backend, which is almost entirely
separate and has proven substantially more complicated to make both
portable and integrate into an abstraction with the other models avail-
able. A minimal implementation of RAJA’s offloading forall is given
in Listing 19(c).

The offloaded loop shown is comparatively simple. Because of the
abstraction, the loop is always over a range of integral values and is
offloaded with all parallelism active. The challenges come from how
to handle data in a consistent way through both RAJA and OpenMP.
Note that in Line 14, we map the callable object passed in by the user
onto the device. Different implementations of OpenMP handle pointers
captured into lambdas differently, and users want to use differently
managed pointers. The RAJA library does not handle data management,



Parallel Computing 109 (2022) 102856

11

V. Kale et al.

Fig. 20. Comparing reduction approaches on host and device with OpenMP.

but the RAJA Suite includes the Umpire and CHAI libraries [34,35] to
help with this though it does not require their use. A user may decide to
allocate their memory with omp_target_alloc(), or map memory
that they allocated on the host, or even use unified memory if it is
available.

When a lambda is mapped in OpenMP, all captured pointers are
mapped and either translated or preserved. In principle, this means we
should always be able to map the lambda and get correct behavior if the
user’s code is correct. In practice, we find that several implementations
either fail to map the captures, allowing device addresses to work but
causing mapped buffers to fail, or map them but on failing to find the
corresponding storage on the device NULL the pointer, as would happen
in a normal implicit map on a target region. This inconsistency means
that for some compilers, RAJA uses the map clause for the lambda,
others the firstprivate clause.

3.8.2. Optimization and evaluation
The other challenge has been supporting RAJA reductions. As shown

in Listing 19(a), a reduction in RAJA is a separately declared variable
captured by the lambda, and used in the body of the loop as though it
were sequential. RAJA uses C++ copy construction and destruction to
generate a reduction tree implicitly. This design helps keep user code
as similar to the original as possible, making reductions blend in with
loops almost like in serial code. However, it restricts RAJA from taking
advantage of the OpenMP compiler’s reduction facilities to implement
RAJA’s reductions. As part of the SOLLVE effort, we explored a new
interface that would express the example in Listing 19(a) as in Listing
19(b). While they use similar types, passing the reduction through the
forall arguments and passing a bare double reference to the body
makes it possible to use OpenMP reductions underneath and have only
a single reduction tree rather than one per variable being reduced. We
produced a micro-benchmark to test the performance of reducing a
large number of values into three variables in one loop with each of a
raw OpenMP loop, RAJA OpenMP on the host, RAJA OpenMP offload
with the new interface, RAJA’s classic OpenMP offload reductions, and
finally a RAJA CUDA reduction running on the same device as the
OpenMP offload versions.

The results are presented in Fig. 20. Using our original reduction
interface, the RAJA classic OMP item, the reduction kernel takes an
extremely long time, more than 10× longer than on the host and more
than 25× longer than the same interface implemented in CUDA. This
proved extremely difficult to optimize, as it causes all implementations
we tested to use their heavyweight runtime and generally deoptimized
the kernel to the point that the cost was universally high. With the
experimental interface however, the RAJA OMP dev column, the re-
duction kernel was 7× faster than even the highly optimized CUDA
implementation. Adoption of the experimental interface into the RAJA
API is a work in progress and likely will become the new standard way
to perform reductions with RAJA given the substantial benefits found
as part of this process.

3.8.3. Next generation OpenMP plans
Both OpenMP 5.0 and 5.1 have features designed to better sup-

port C++ in OpenMP offload. A major update that should help us
implement our abstraction, especially, e.g., the old-style reductions and
smart-pointers for memory management, is declare variant and
begin/end declare variant allowing code specialization on a
per-device or per-context basis. There are also a number of clarifica-
tions to the way is_device_ptr and similar clauses work to help
deal with the data management issues mentioned above.

4. Conclusions and future work

The experiences that are described here to port applications to GPUs
using OpenMP provided many insights and some directions for future
work. All these applications and mini-apps written in C++ and Fortran
were successful in their use of OpenMP offload features on different
parts of the codes.

Applications needed significant restructuring to take advantage of
the offload model for exploiting GPUs. For example, they had to make
sure there is enough work to offload to the GPUs and that most of
the computation is data parallel, e.g., they had to avoid conditionals
or load imbalances across threads. Another big challenge in porting
the applications with OpenMP is to map their data structures to the
GPUs efficiently. Applications that mapped their data structures suc-
cessfully in this study created high-level data structure abstractions to
do so and used device runtime library routines or ’target enter/exit
data’ constructs to create storage or container classes in both Fortran,
e.g., in GenASiS, and C++, e.g., in QMCPACK and GridMini. Once the
restructuring is complete, additional code transformations were often
necessary in order to improve the performance of the OpenMP version,
such as tuning the number of threads per block, or inlining code.

OpenMP implementations have been improving at a fast rate,
and the advancements resulted in higher application performance.
The impact of compiler optimizations for the GPU, e.g., addressing
memory management and kernel code optimizations, were important
for application performance. In some cases, the offload support in
OpenMP implementations achieved better performance than CUDA.
OpenMP asynchronous target and tasking provides interoperability
with asynchronous libraries, e.g., CUDA, HIP. The GESTS application
used tasking to coordinate work between target regions and asyn-
chronous CUDA/HIP libraries using the OpenMP 5.0 task detach feature
to notify a task via a callback that dependences can be fulfilled when
an asynchronous library completes its execution. Some applications,
e.g., PLASMA and SLATE numerical libraries, continue using OpenMP
to maintain performance-portable and load-balanced code using tasking
with dependence tracking. Combining these established features with
asynchronous operation and accelerator offload will extend these li-
braries’ numerical facilities to the fully GPU-resident execution with
near-native efficiency. Furthermore, the BOLT runtime has helped to
enhance tasking performance and interoperability between MPI and
OpenMP. QMCPACK took advantage of having OpenMP threads of-
fload their own computation through independent CUDA streams; this
control of CUDA streams through OpenMP was critical to attain high
performance of their application on GPUs.

Nevertheless, there are some challenges that need to be addressed.
One such challenge is that the status of OpenMP implementations [36]
coupled with OpenMP application experiences shows the OpenMP
implementations need to be tested on a larger variety of platforms.
Another challenge is making more of the critical new OpenMP 5.0/5.1
features available to application teams in vendor OpenMP implemen-
tations, e.g., making the task detach and interop feature to query
GPU streams available for QMCPACK; generally, features for memory
management, tasking, and better language, e.g., C++, interfaces are
needed for OpenMP applications and implementations to be successful.

At the time of writing, OpenMP 5.1 is about to be released, and
work has begun on OpenMP 6.0. Guided by these and other applica-
tion experiences, the SOLLVE team will continue to contribute to the



Parallel Computing 109 (2022) 102856

12

V. Kale et al.

OpenMP specification and its implementation in LLVM. The SOLLVE
fork of LLVM OpenMP as well as the main trunk of LLVM OpenMP
is under active development by SOLLVE team members, and a lot of
progress was made in the last 12 months. We plan to continue to work
closely with applications, in particular ECP applications, to uncover
and address areas for improvement. Finally, we will work with vendors
to help them adopt SOLLVE’s LLVM work into their own OpenMP
implementations and to help test their products on multiple platforms.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was funded in part by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration, in
particular its subproject on Scaling OpenMP with LLVM for Exascale
performance and portability (SOLLVE). This manuscript has been au-
thored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725
with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, ac-
knowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accor-
dance with the DOE Public Access Plan (http://energy.gov/downloads/
doe-public-access-plan). The development of some of the numerical
software libraries tested in this work was supported by the National
Science Foundation under OAC grant No. 2004541. This work was
supported in part by the Argonne Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357.

References

[1] Openmp 5.0 reference guide, 2021, https://www.openmp.org/wp-content/
uploads/OpenMPRef-5.0-1119-01-TSK-web.pdf.

[2] L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-memory
programming, IEEE Comput. Sci. Eng. 5 (1) (1998).

[3] S. Iwasaki, A. Amer, K. Taura, S. Seo, P. Balaji, BOLT: Optimizing OpenMP
parallel regions with user-level threads, in: 2019 28th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’19, 2019, pp.
29–42.

[4] J. Schuchart, C. Niethammer, J. Garcia, Fibers are not (P)threads: The case
for loose coupling of asynchronous programming models and MPI through
continuations, in: 27th European MPI Users’ Group Meeting, EuroMPI/USA ’20,
2020, pp. 39–50.

[5] The LLVM compiler infrastructure, 2020, http://llvm.org/.
[6] LLVM Developers, LLVM/Clang openmp support, 2020, https://clang.llvm.org/

docs/OpenMPSupport.html.
[7] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen,

S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A.
Montgomery, General atomic and molecular electronic structure system, J.
Comput. Chem. 14 (11) (1993) 1347–1363.

[8] M.S. Gordon, M.W. Schmidt, Advances in electronic structure theory: GAMESS a
decade later, in: C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria (Eds.), Theory
and Applications of Computational Chemistry, Elsevier, Amsterdam, 2005, pp.
1167–1189, (Chapter 41).

[9] V. Mironov, A. Moskovsky, M. D’Mello, Y. Alexeev, An efficient MPI/OpenMP
parallelization of the Hartree-Fock-Roothaan method for the first generation of
Intel(R) Xeon Phi(TM) processor architecture, Int. J. High Perform. Comput.
Appl. 33 (1) (2019) 212–224.

[10] B.Q. Pham, M.S. Gordon, Hybrid distributed/shared memory model for the RI-
MP2 method in the fragment molecular orbital framework, J. Chem. Theory
Comput. 15 (10) (2019) 5252–5258, PMID: 31509402.

[11] J. Kwack, C. Bertoni, B. Pham, J. Larkin, Performance of the RI-MP2 fortran
kernel of GAMESS on GPUs via directive-based offloading with math libraries,
in: S. Wienke, S. Bhalachandra (Eds.), Accelerator Programming using Directives,
WACCPD 2019, in: LNCS 12017, Springer International Publishing, Cham., ISBN:
978-3-030-49943-3, 2020, pp. 91–113, http://dx.doi.org/10.1007/978-3-030-
49943-3_5.

[12] E. Endeve, C. Cardall, R. Budiardja, A. Mezzacappa, Generation of magnetic fields
by the stationary accretion shock instability, Agron. J. 713 (2010) 1219–1243.

[13] E. Endeve, C.Y. Cardall, R.D. Budiardja, S.W. Beck, A. Bejnood, R.J. Toedte, A.
Mezzacappa, J.M. Blondin, Turbulent magnetic field amplification from spiral
SASI modes: Implications for core-collapse supernovae and proto-neutron star
magnetization, Agron. J. 751 (1) (2012) 26.

[14] C.Y. Cardall, R.D. Budiardja, Stochasticity and efficiency in simplified models of
core-collapse supernova explosions, Astrophys. J. Lett. 813 (2015) L6.

[15] C.Y. Cardall, R.D. Budiardja, GenASiS basics: Object-oriented utilitarian function-
ality for large-scale physics simulations, Comput. Phys. Comm. (ISSN: 0010-4655)
196 (2015) 506–534.

[16] C.Y. Cardall, R.D. Budiardja, GenASiS Basics: Object-oriented utilitarian func-
tionality for large-scale physics simulations (Version 2), Comput. Phys. Comm.
(ISSN: 0010-4655) 214 (2017) 247–248.

[17] R.D. Budiardja, C.Y. Cardall, GenASiS Basics: Object-oriented utilitarian func-
tionality for large-scale physics simulations (Version 3), Comput. Phys. Comm.
(ISSN: 0010-4655) 244 (2019) 483–486.

[18] C.Y. Cardall, R.D. Budiardja, GenASiS Mathematics : Object-oriented manifolds,
operations, and solvers for large-scale physics simulations, Comput. Phys. Comm.
(ISSN: 0010-4655) 222 (2018) 384–412.

[19] T. Ishihara, T. Gotoh, Y. Kaneda, Study of high Reynolds number isotropic
turbulence by direct numerical simulations, Annu. Rev. Fluid Mech. 41 (2009)
165–180.

[20] P. Yeung, X. Zhai, K. Sreenivasan, Extreme events in computational turbulence,
Proc. Natl. Acad. Sci. 112 (2015) 12633–12638.

[21] K. Ravikumar, D. Appelhans, P. Yeung, GPU acceleration of extreme scale
pseudo-spectral simulations of turbulence using asynchronism, in: Proceedings
of the International Conference for High Performance Computing, Networking
and Storage Analysis, SC’19, Denver, CO, USA, ACM, New York, NY, USA, 2019,
http://dx.doi.org/10.1145/3295500.3356209.

[22] P.A. Boyle, G. Cossu, A. Yamaguchi, A. Portelli, Grid: A next generation data
parallel C++ QCD library, PoS LATTICE2015 (2016) 023, http://dx.doi.org/10.
22323/1.251.0023.

[23] Y. Wang, G.M. Stocks, W. Shelton, D. Nicholson, W. Temmerman, Z. Szotek,
Order-N multiple scattering approach to electronic structure calculations, Phys.
Rev. Lett. 75 (1995) 2867.

[24] M. Eisenbach, J. Larkin, J. Lutjens, S. Rennich, J.H. Rogers, GPU acceleration of
the locally selfconsistent multiple scattering code for first principles calculation
of the ground state and statistical physics of materials, Comput. Phys. Comm.
211 (2017) 2–7.

[25] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964)
B864–B871.

[26] W. Kohn, L. Sham, Self-consistent equations including exchange and correlation
effects, Phys. Rev. 140 (1965) A1133–A1138.

[27] J. Korringa, On the calculation of the energy of a Bloch wave in a metal, Physica
13 (1947) 392–400.

[28] W. Kohn, N. Rostoker, Solution of the Schrödinger equation in periodic lattices
with an application to metallic lithium, Phys. Rev. 94 (1954) 1111–1120.

[29] J. Kim, et al., QMCPACK: an open source ab initio quantum Monte Carlo package
for the electronic structure of atoms, molecules and solids, J. Phys.: Condens.
Matter 30 (19) (2018) 195901.

[30] P.R. Kent, et al., QMCPACK: Advances in the development, efficiency, and
application of auxiliary field and real-space variational and diffusion quantum
Monte Carlo, J. Chem. Phys. 152 (17) (2020) 174105.

[31] A. Mathuriya, Y. Luo, R.C. Clay III, A. Benali, L. Shulenburger, J. Kim, Embracing
a new era of highly efficient and productive quantum Monte Carlo simulations,
in: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, ACM, New York, NY, USA, ISBN:
978-1-4503-5114-0, 2017, pp. 38:1–38:12, http://dx.doi.org/10.1145/3126908.
3126952.

[32] H. Lu, S. Seo, P. Balaji, MPI+ULT: overlapping communication and computation
with user-level threads, in: 2015 IEEE 17th Int. Conf. on High Performance
Computing and Communications, 2015 IEEE 7th International Symposium on
Cyberspace Safety and Security, and 2015 IEEE 12th Int. Conf. on Embedded
Software and Systems, 2015, pp. 444–454, http://dx.doi.org/10.1109/HPCC-
CSS-ICESS.2015.82.

[33] D.A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A.J. Kunen, O.
Pearce, P. Robinson, B.S. Ryujin, T.R. Scogland, RAJA: portable performance for
large-scale scientific applications, in: 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC, P3HPC, IEEE, Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), 2019, pp. 71–81.

[34] CHAI, CHAI, 2020, https://github.com/LLNL/CHAI.
[35] Umpire, Umpire, 2020, https://github.com/LLNL/Umpire.
[36] OpenMP, OpenMP website, 2020, https://www.openmp.org/.

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-1119-01-TSK-web.pdf
https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-1119-01-TSK-web.pdf
https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-1119-01-TSK-web.pdf
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb2
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb2
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb2
http://llvm.org/
https://clang.llvm.org/docs/OpenMPSupport.html
https://clang.llvm.org/docs/OpenMPSupport.html
https://clang.llvm.org/docs/OpenMPSupport.html
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb8
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb8
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb8
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb8
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb8
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb8
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb8
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb9
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb9
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb9
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb9
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb9
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb9
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb9
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb10
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb10
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb10
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb10
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb10
http://dx.doi.org/10.1007/978-3-030-49943-3_5
http://dx.doi.org/10.1007/978-3-030-49943-3_5
http://dx.doi.org/10.1007/978-3-030-49943-3_5
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb12
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb12
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb12
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb13
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb13
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb13
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb13
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb13
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb13
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb13
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb14
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb14
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb14
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb15
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb15
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb15
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb15
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb15
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb16
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb16
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb16
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb16
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb16
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb17
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb17
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb17
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb17
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb17
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb18
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb18
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb18
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb18
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb18
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb19
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb19
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb19
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb19
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb19
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb20
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb20
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb20
http://dx.doi.org/10.1145/3295500.3356209
http://dx.doi.org/10.22323/1.251.0023
http://dx.doi.org/10.22323/1.251.0023
http://dx.doi.org/10.22323/1.251.0023
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb23
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb23
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb23
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb23
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb23
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb24
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb24
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb24
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb24
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb24
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb24
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb24
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb25
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb25
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb25
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb26
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb26
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb26
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb27
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb27
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb27
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb28
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb28
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb28
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb29
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb29
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb29
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb29
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb29
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb30
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb30
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb30
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb30
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb30
http://dx.doi.org/10.1145/3126908.3126952
http://dx.doi.org/10.1145/3126908.3126952
http://dx.doi.org/10.1145/3126908.3126952
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.82
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.82
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.82
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb33
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb33
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb33
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb33
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb33
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb33
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb33
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb33
http://refhub.elsevier.com/S0167-8191(21)00100-9/sb33
https://github.com/LLNL/CHAI
https://github.com/LLNL/Umpire
https://www.openmp.org/

	OpenMP application experiences: Porting to accelerated nodes
	Introduction
	Background
	OpenMP implementations

	Application experiences
	GAMESS
	Implementation and optimization with OpenMP
	Evaluation
	Challenges

	GenASiS
	Implementation with OpenMP
	Evaluation
	Challenges using OpenMP 4.5
	Plans for OpenMP 5.0

	GESTS
	Challenges porting to OpenMP
	Implementation strategy with OpenMP
	Plans for OpenMP 5.0

	GridMini
	Implementation and optimization strategy
	Performance evaluation
	Plans for OpenMP 5.0

	LSMS
	Parallelization with OpenMP
	Challenges
	Plans for OpenMP 5.0

	QMCPACK
	Implementation and optimization strategy
	Evaluation
	Challenges and developments
	Plans for OpenMP 5.0

	PLASMA and SLATE libraries
	Implementation and optimization strategy
	Example of OpenMP code
	Evaluation
	Challenges and their resolution
	Plans for OpenMP 5.0

	RAJA
	Implementation
	Optimization and evaluation
	Next generation OpenMP plans


	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References


