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Abstract—We combine Deep Gaussian Processes with multitask
and transfer learning for the performance modeling and optimiza-
tion of HPC applications. Deep Gaussian processes merge the
uncertainty quantification advantage of Gaussian Processes with
the predictive power of deep learning. Multitask and transfer
learning allow for improved learning efficiency when several
similar tasks are to be learned simultaneously and when previous
learned models are sought to help in the learning of new tasks,
respectively. A comparison with state-of-the-art autotuners shows
the advantage of our approach on two application problems.

I. INTRODUCTION

Automated performance engineering, a.k.a autotuning, fo-
cuses on finding the best hyper-parameters of an algorithm
implementation (or kernel). Recently, autotuners have been
used for optimizing machine learning applications. However,
these efforts lack attempts at complete performance tuning for
scientific applications.

Our work is motivated by low-data regime that precludes the
use of Artificial Neural Networks (ANN) which need large data
volumes to successfully generalize. Gaussian Process (GP) [1]
is a solution that needs augmentation to handle our complex
scenario of multiple applications/platforms. To handle the non-
stationary nature of our data sets, that are guaranteed to feature
discontinuities, we build our proposed approach on top of Deep
Gaussian Processs (DGPs) [2].

In the field of machine learning: (i) multitask learning
consists of learning several tasks simultaneously while sharing
common knowledge in order to improve the prediction accuracy
of each task and/or speed up the training process; (ii) fransfer
learning consists in using the knowledge of one (or several)
task(s) to improve the learning accuracy and/or the speed of
another task. Following these two paradigms, we propose in
the present paper the Multitask Learning Algorithm (Multitask
Learning Autotuning (MLA)) and the Transfer Learning
Algorithms (Transfer Learning Autotuning (TLA)1 and TLA2).
The underlying assumption, which is at the core of these
algorithms, is that the objective function to optimize is expected
to be continuous or, at least similar, for similar tasks and for
similar parameter values.

a) Framework: Let us now define autotuning in the
multitask and transfer learning setting. The notations used
in this paper are summarized in Table 1.
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TABLE I
SYMBOLS USED IN THE TEXT.
Symbol  Interpretation
S(T) task space
S(P) parameter space

S(0) output space (e.g., runtime)
D(T) dimension of S(T)
D(P) dimension of S(PP)

D(0) dimension of S(0)
NeT number of tasks
Nep number of samples per task

Throughout the paper, we refer to input problem as an input
of the target application to be tuned. Moreover, we refer to
task as the problem of tuning the parameters of the target
application given a specific input problem.

We define S(T), the Task Space, as the space of all the
input problems that the application may encounter. We also
make the simple (non restrictive) assumption that S(T) may
be characterised as a finite dimensional space of dimension
D(T). Several application problems are amenable to such a
formalism, potentially after some approximations are made.

We then define S(PP), the Parameter Space, or space of the
parameters to be optimized, of dimension D(P), the number
of parameters. Every point in S(PP) can be referred to as a
parameter configuration.

We define S(0), the Output Space, as the space of the results
of the evaluation of objective function, for a given task and
for a given parameter configuration. It is a single dimensional
space (e.g., computation time, memory consumption, energy
...), the case of multi-dimensional spaces (corresponding to
multi-objective optimization) being left for future work.

We denote by y(t,z) € S(O) and f(t,x) € S(O) the values
of the objective function y and model prediction f, respectively,
for a task ¢ € S(T) and for a parameter configuration z €
S(PP). As is the case in Bayesian optimization, the model f is
optimized instead of the measured value y, while the optimum
found is hoped to be that of y.

In this setting, it is possible to describe the application perfor-
mance autotuning problem under the mathematical framework
of black-box optimization. Every evaluation of the objective
function is an expensive run of the application and no gradient
information is available.

b) Paper contributions: We combine DGP model (instead
of GP) with multitask and transfer learning: (¢) this allows us
to merge S(T) and S(PP) instead of considering S(P) only as
in traditional approaches; (i7) we perform run-free autotuning
and accelerated on-line tuning with pre-trained model available
off-line.

9
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on June 02,2024 at 04:56:27 UTC from IEEE Xplore. Restrictions apply.



o Multitask learning: the fact of tuning the application on
several tasks simultaneously helps the tuning of each
independent task

o Transfer learning: the model produced allows for predict-
ing good guesses of the parameters of the application for
completely new problems for which no data is available.

o Independence of the different optimizations (of the dif-
ferent tasks) allows for a high degree of parallelism,
that can easily be exploited. This comes in addition
to the parallelism available within the Efficient Global
Optimization (EGO) algorithm itself.

o Optimum of every task should be close to the optimum
of related (close) tasks. Thus, the exploration around the
optimum of one task will benefit the neighboring tasks as
new data is gathered in the vicinity of their own optimum.

e Increased confidence while predicting a given task when
taking into account other tasks’ contribution for the
prediction (decreases variance). This leads the MLA to
converge faster to the global optimum.

c) Overview: This paper is organized as follows. Sec-
tions II, III and IV describe our proposed algorithms
alongside the classic EGO algorithm which is central to our
work.Section V compares the performance of our proposed
algorithms against that of existing autotuning methods. Sec-
tion VI summarizes the presented work and describes the
potential future directions.

II. SAMPLING PHASE

The sampling phase in EGO consists in choosing an initial
sample of data with which an initial model can be built. While
the subsequent phases aim at selecting candidates that improve
upon the best solution found so far. The aim of the sampling
phase is not to find optima but rather to choose locations that
cover uniformly the search space, to ensure the homogeneous
accuracy of the model.

While a single sampling step (over S(IP)) is needed in
a classical single-task Bayesian optimization scheme, two
sampling steps are needed in MLA (over both S(T) and S(PP)).

a) First sampling step: The goal of this step is to select
aset T of NeT tasks T = [ti;te;...;tmr] € S(T)¥T.
This set should contain a representative sample of the variety
of problems that the application may encounter, rather than
focusing on a specific type of problems. Given the freedom in
the selection of the tasks together with the existence of a space
of tasks S(T), we choose a space filling sampling in S(T) to
select T'. Such samplings are widely used in the field of DoE.
Particularly, we choose a Latin Hypercube Sampling (LHS) [3]-
[5] in MLA. Such samplings try to cover the whole search
space uniformly. Several off-the-shelf software packages exist
that implement different types of sampling strategies (including
LHS). Alternatively, one might opt for a specific strategy to
select T' or might even provide 7' altogether.

b) Second sampling step: The of this step is to select
an initial sampling X of parameter configurations for every
task X = [X1; Xo;...; Xnr] € S(BYN TP For task t,, its
initial sampling X; consists of NeP parameter configurations
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X; = [zijljennwr) € S(P)MF. Two cases arise in the
multitask framework: (i) The isotropic case, when all the
tasks share the same sampling in PS; (ii) The heterotropic
case, when different tasks do not necessarily share the same
samples. In the former case, the advantage of a multi-output
regression is the sharing of information for the optimization of
the hyper-parameters of the model governing the tasks. In the
latter case, however, more knowledge can be shared. Indeed,
insights on the true cost of a task on an unknown configuration
can be learned from a similar task with a sample at that location.
Additionally, in real-life applications, given the existence of
constraints on the parameters, not all parameter configurations
are feasible for all tasks simultaneously; a configuration may
be valid for a subset of tasks, but violate the constraints on
another subset. Thus, we choose to generate the initial sampling
X in a heterotropic way by generating the X; as independent
LHS.

¢) Constraint handling: Given the application constraints,
a generic sampling technique might fail, both for the selection
of the task samples and for the selection of their corresponding
parameter samples. In such a case, either specific knowledge of
the application should be used to design a tailored space filling
sampling, or a Monte Carlo strategy should be implemented.

d) Samples evaluation: Once T and X are selected, every
sample x; ; is evaluated through a run of the application. The
set Y represent the results of all these evaluations, ¥ =

[Y1;Y2;...; Yr] € S(Q)FT*N¥F where every Y; represents
the results corresponding to task t;, Y; = [y jljcpimp] €
S(O)*F,

III. MODEL PHASE

Once T and X are selected and Y evaluated, the modeling
phase consists in training a model of the black-box objective
function relative to tasks 7. However, instead of building a
separate model for every task, as is usually the case in a regular
single-task Bayesian optimization scheme, the challenge in
MLA is to derive a single encompassing model that allows the
sharing of knowledge between tasks in order to better predict
them all.

GPs are customarily used in EGO for the modeling in single-
task tuning [6]. Moreover, Linear Coregionalization Model
(LCM) [7], [8] has already been used as a shallow learning
model in multitask tuning [9]-[11]. We propose to rely on
DGP in MLA as the generalization of GPs to the deep learning
and multitask settings.

The following Sections III-A and III-B describe the GP
and DGP models, respectively.

A. Gaussian Processes

We provide here a brief presentation of Gaussian Processes.
We invite the reader to consult [1] for a detailed description. A
Gaussian process is the generalization of a multivariate normal
distribution to an infinite number of random variables. It is a
stochastic process where every finite subset of variables follows
a multivariate normal distribution. While other regression
methods set a prior on the function to be predicted, attempting
to learn the parameters of such a function, GPs set a prior
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on some characteristics of the functions (e.g. smoothness) to
learn the functions themselves. This shift in prior allows for
the expressiveness of a much richer variety of functions.

A GP is completely specified by its mean function p(z) and
by its covariance function k(z,x’). A function f(x) following
such a GP is written as:

f(x) ~ GP(u(x), k(z,2")) (1

where:
w(x) = E[f(z)] 2)
k(z,2') = E[(f(z) — p(2)(f@) —p(@)] @)

In most practical scenarios, y is taken to be the null function
and all the modeling is done through the kernel function k. A
variety of kernels exist in the literature. The adequate choice
depends on the data at hand. The runaway generic choice is
the following exponential quadratic kernel:

D(P) (21 — /)2
N 2 _ 7 7
k(z,2") = 0" exp ( g 7 )

i=1

“

where o2 (variance) and [; (lengthscales) are hyper-parameters
governing the behavior of the kernel. These are learned by
optimizing the following log-likelihood of the samples X with
values y on the GP:

1

log(p(y| X)) = = 5 (y = n(X))" (K + o)~} (y — p(X))

1
- §ZOQ|K + %] — glog(%r)
(5

where o217 is a regularization term, and K is the covariance
matrix whose elements are generated from the kernel k.
Given the high cost of computations as the size of the data
increases (O(IN?3)), several approximate training strategies have
been derived. One of the most popular is the inducing points
approximation. In this method, a set of pseudo data points (of
size M) is used in lieu of the original data (of size IN) with
M << N. The location of the pseudo points (inducing inputs)
is defined by Z = {z1,..., zar}, whereas the corresponding
values (inducing outputs) are defined by U = f(Z).
After defining f = f(X), the joint density of y, f and w is
given by:
N
py, fu) = p(flu; X, Z)p(u, 2) [ [ p(vs, 1)

i=1

(6)

Once the model is trained, i.e. its hyper-parameters optimized,
it can be queried for a prediction relative to input x* through

the formulation:
fz*) =K@, X)TK(X,X)"lY (7

A fundamental property of GP-based models is the ability
to estimate the confidence in the predictions alongside the
predictions themselves. The confidence can be expressed as:

var(z*) = K(o*, 2*) — K(z*, X)TK(X, X) 'K (z*, X)

®)
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B. Deep Gaussian Processes

a) Model description: A Deep Gaussian Process
(DGP) [2] is a hierarchical composition of GPs (in our case, a
deep stacking). In a DGP of depth L, the GP at layer [ models
a vector-valued stochastic function f; of dimension D! whose
input is the output of function f;_; at the previous layer and
whose output is the input of function f;,; at the next layer.
Then, X is the input of the first layer and Y is the output of
the last layer. The noise between layers is assumed to be i.i.d.
Gaussian, which means that the output produced by a layer
is corrupted by a Gaussian noise before being fed to the next
layer.

Inference in DGPs is intractable. Indeed, the tractability
in GPs stems from the fact that the likelihood is assumed
to be Gaussian in such models, which greatly simplifies
the computations. Unfortunately, composition of Gaussian
probability distributions is in general not Gaussian, which
greatly complicates the integration of the probability densities.
Hence, the inducing point framework is used. The inducing
inputs at every layer are denoted by Z = {Z!,--- , ZL}, and
the corresponding inducing outputs are denoted by U = {U! =
Lz, .-, UL = fL(Z%)}. These inducing points are then
parameters of the model that can be optimized and used to
propagate the GPs predictions through the successive layers.

The joint probability density function of Y, F' and U can
be extended from that of a GP model (Equation 6) as:

p(Y{FU'Y) =
L N
[[pF U Fr 2@ 25D T [ (il f)) @)

=1 i=1

b) Model training: Two main families of methods exist
for training (i.e. hyper-parameter optimization) and inference
(i.e. prediction) in DGPs: Variational Inference (V1) [12] and
Markov Chain Monte Carlo (MCMC) [13]. The difficulty with
DGPs is the existence of complex correlations both within and
between layers.

The original paper on DGPs [2] relies on a mean-field
variational approach that uses a variational posterior which
maintains the exact model conditioned on the inducing out-
puts but forces independence between layers. A consequent
advantage is that this approach admits a tractable lower bound
on the log marginal likelihood (under some assumptions). A
drawback, however, is that the probability density over the
outputs is merely a single-layer GP with independent Gaussian
inputs and therefor cannot express the complexity of the full
model.

The Doubly Stochastic Variational Inference (DSVI) [14]
relies on a double source of stochasticity: (7) a sparse inducing
point variational inference scheme [15] is used to simplify
the correlations and achieve computational tractability within
each layer. However, the correlations between layers are
maintained (independence is not forced as is the case in
previous methods). This leads to a sacrifice of the analytic
tractability of the variational lower bound. However, this is
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overcome by the ability to draw efficiently unbiased samples
from the variational posterior which has the same structure
as the exact model conditioned on the inducing points. (i) a
minibatch subsampling of the data is used to scale to extremely
large datasets (up to a billion data points).

The Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) [16], [17] method can be used to generate samples
from the intractable posterior distribution of the inducing
outputs p(U, Y'). The underlying idea is to rely on the principles
of Hamiltonian dynamics by trying to minimize a total energy
of a dynamic system described as:

p(U, R|Y) x exp (U(u) — ;TTM1T> (10)
where the negative log posterior U(u) = —log(p(U|Y")) plays
the role of the potential energy, and the $rM~'r term
plays the role of the kinetic energy, where r is an artificially
introduced momentum variable.

Given that the computation of gradients in the Hamiltonian
Monte Carlo (HMC) [18] method is intractable in DGP in the
case of large training data, stochastic gradient estimates can
be computed following the work of [17], where:

Au=eM ™ r
Ar = —eVU(u) — eCM~'r + N(0, 2¢(C — B))

(1)
(12)

where C is the friction term (introduced to allow for batched
computations), M is the mass matrix, B is the Fisher infor-
mation matrix and e is the step-size.

Given this sampling framework, a Markov Chain can be
built. However, due to the high correlation between successive
samples, the optimization of the hyper-parameters of the model
while the sampler progresses is an operation likely to fail.
As a remedy, the authors in [16] propose a variant of the
Monte Carlo Expectation Maximization (MCEM) [19] that they
call Moving Window Markov Chain Expectation Maximization
(MWEM). While MCEM alternates between the sampling from
the posterior (E-step, Eq 13) and the maximization of the joint
probability of the samples and the data (M-step, Equation 14),

ut,...m ~ p(ulY, X, 0) 13)

1
0 = argmax — X7 log p(Y, u;| X, 6)
0 m

(14)

MWEM maintains a window of samples, where a newly
generated sample replaces the oldest one. Additionally, the
number of samples in the E-step is set to m = 1. At every
M-step, a random sample from the window is selected and the
hyper-parameters 6 of the model are optimized with respect to
this sample only. Experimentally, MWEM is able to converge
faster than alternate methods such as DSVI.

While DSVI is often used for training DGPs, we choose
SGHMC instead. It makes no assumptions regarding the kernels
and the likelihood being used. Moreover, the accuracy of the
model can be controlled and traded off with computational
training time, which is not necessarily the case with other
training methods. These two characteristics are advantageous in
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a practical setting such as autotuning. The pros of DGPs make
them a great tool for tuning exascale applications, while their
usual computational drawbacks are leveraged in the exascale
setting where few samples only can be collected, making the
DGP model tractable (albeit with some approximations).

IV. SEARCH PHASE
A. Acquisition function optimization

Once the Bayesian model is either built (at the first iteration)
or updated (at subsequent iterations), the EGO algorithm relies
on a model-free black-box optimization algorithm to optimize a
quantity called acquisition function. This latter is based on both
the prediction and the confidence of the model in the outcome
of the black-box objective function at different locations in
the search space. In our multitask setting, not one but many
such optimizations need to be carried out. Given their relative
independence, they can occur in parallel. The TLA2 strategy
we propose is not an optimization of an acquisition function
but rather a direct optimization of the mean prediction of the
model. The underlying idea is that there are not enough runs
available to balance exploration and exploitation, as the goal
is only to exploit previous data. This strategy is meant for
the transfer learning setting, when the user is not interested in
tuning the application on a completely new input problem but
is rather interested in leveraging the data and model built on a
previous tuning of the application.

B. Fast online prediction of the optima

In a practical setting, after spending enough time offline in
tuning the application on a variety of relevant input problems,
one can rely on TLA2 to guess the best parameter values
of the application on a new problem. However, although the
optimization queries a DGP model that is much cheaper to
query than the real application, the search phase can take tens of
seconds to minutes. When such waiting times are unacceptable,
we propose a quick online prediction strategy, TLA1, that can
return a good guess within a fraction of a second.

TLA1 applies if an approximation to the optimum parameter
configuration of a new task is considered enough, or, if a
specific tuning for that task cannot be afforded. It consists of
building a model of the optima of any new unexplored tasks,
for which no data is available. Specifically, a Gaussian Process
model predicting the optima is built over S(T) and is trained
on the parameter configuration of the optimum found for every
task ¢; in 7.

Let us define the set of optima OPT corresponding to the
set of tasks T as:

OPT; = argmin f(t;,x),Vi € [1, NeT]
zeS(P)

(15)

An optimum parameter configuration is composed of as
many parameters as D(P). Consequently, the solution that
we propose is to create D(P) separate and independent
Gaussian Processes Gic[1,p(p)y to model every component of
the optimal solutions separately. Such a GP model is described
in Section III-A. The set OPT represents the input data of
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every one of these GPs. It is important to notice that the
input and output spaces of the GPs in EGO and in TLA1 are
different. In the former case, the input space is S(IP) and the
output space is S(0). In the latter case, the input space is S(T)
and the output space is one of the dimensions of S(IP). For
any unexplored task t*, a prediction of its optimal parameter
configuration is then given by:

OPT(t") = [G1(t"), Ga(t"). ..., Gp(p)(t")] € S(B) (16)

Additionally, the confidence in the prediction of the G; models
can serve as an indicator on whether an extra tuning step is
needed. An alternative solution could be to define a single

multi-output GP to model all the components simultaneously.

However, no a priori hypothesis can be made in the general
case on the correlation between the different components
characterising the optima.

V. RESULTS AND DISCUSSION

This section presents the experimental results assessing the
combined advantage of a DGP model in a multitask and transfer
learning setting.

A. Experimental setting

1) Hardware Setup: Two computers are used for the
experiments: ALPHA is a 64 nodes computer, each containing
12 cores of Intel® Xeon® X5660 at 2.80GHz. BETA is a
single-node computer, containing 40 cores of Intel® Xeon®
CPU E5-2650 v3 at 2.30GHz.

2) Optimization Problems: Two applications are considered:
the DGEQRF routine of the PLASMA library and the DGEMM
routine of the SLATE library.

The first problem aims at computing the QR factorization of
a rectangular matrix on shared-memory computers. The task
space is characterized by m and n, the number of rows and
columns of a matrix, together with n;j, the number of OpenMP
threads to be used in the computation. The parameter space is

characterized by n; and %, the block and internal panel sizes.

The output space is simply described by the resulting GFlops of
the application. The range of sizes of the matrices considered
(together with the parameters to be tuned) is [1,5000] and
the range of number of threads is [1,40]. 100 tasks are used
for training and 100 others are used for testing. The budget
of number of runs per task is 30, split equally between the
sampling phase and the remaining optimization phase.

The second problem aims at computing the multiplication
of two matrices on distributed-memory computers. The task
space is described by m, n and k, the sizes of the matrices to
be multiplied, together with the number of nodes to be used
for the computations. The parameter space is described by the
block size np, the number of threads ny;, in each MPI process,
the ratio p X g of number of processes per row versus column
in the 2D block cyclic process mapping, and the number la of
lookahead panels to be prefetched and precomputed. The range
of matrix sizes is [1,10000] and the range of compute nodes
is [1,64]. The range of number of threads is [1,12], the range
of the p x ¢ parameter is [0,1] and of la is [0,2]. In order
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to get a fair comparison between different runs, the number
of threads can only be 1,2, 3,4, 6,12, which guarantees that
all cores of all nodes are used in all runs. 100 tasks are used
for training and 100 others are used for testing. The budget
of number of runs per task is 50, split equally between the
sampling phase and the remaining optimization phase.

For both DGEQRF and DGEMM problems, the number of
runs per task follows a simple rule of thumb of five times
the number of parameters for the initial sampling phase and
as many runs for the subsequent optimization iterations. This
allows for enough runs for the tuners to find relevant results
while keeping the budget of runs sufficiently low for the whole
tuning process to be attractive in a real life setting. It is likely
that, given a large enough number of runs, all tuners would
likely converge to an optimum. However, the goal of autotuning
is to reach such a goal at reduced cost. Moreover, the choice
of number of tasks (100 for DGEQRF and 100 in DGEMM)
follows a similar argument of having enough tasks to enrich
the DGP model with enough data to make it able to predict
the behaviour of the application on new unknown tasks. At the
same time, we must keep the number of tasks small enough
so that the total wallclock time of the tuning process remains
attractive. The average autotuning time in our experiments for
most tuners (given the chosen numbers of samples and tasks)
is about 24 hours for the DGEQRF problem and 48 hours for
the DGEMM problem.

3) Autotuner Types: Our proposed algorithms are compared
against several autotuning techniques: OpenTuner [20] and
HpBandSter [21], two general purpose model-free autotuners ,
and EGO with a GP model at its core (EGO-GP).

B. Experimental results

1) Multitask learning setting (MLA): The initial experiments
consist in tuning a set of training tasks in a multitask learning
setting while building a DGP model to be used subsequently
for transfer learning. While MLA attempts to tune all training
tasks simultaneously, OpenTuner, HpBandster and EGO-GP
operate on singe-tasks independently. Figures 1 and 2 show the
results for the DGEQRF and DGEMM problems, respectively.
The result of a given tuner on a given task is the smallest
runtime of the application obtained within the multiple runs
attempted. In each figure, the black horizontal line (on y-axis
at 1) is the reference result obtained by MLA for every test task
represented on the X-axis. The tasks are sorted in each sub-
figure in increasing ratio of performance of the compared tuner
with MLA. Each sub-figure compares the best performance
found with a given tuner (colored bars) with that found by
MLA (black horizontal line). Graphically, the metric of success
of MLA compared to the others is the number of times a
colored bar is below the black horizontal line, the more often
the better.

On both the DGEQRF and DGEMM cases, MLA is able
to bring better application performance in average than the
competing methods.

2) Transfer learning setting (TLAI and TLA2): After train-
ing the DGP model on the training tasks, new test tasks are

9
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on June 02,2024 at 04:56:27 UTC from IEEE Xplore. Restrictions apply.



OpenTuner .vs. MLA

HpBandster .vs. MLA

EGO-GP .vs. MLA

-

0

)

14
®
®

o o
o
> o

3
N

8 1.
0.
g 0.
.4 0.
.2 0.
0 0.0
0 60 80 100

0 20 A

13

Fig. 1. Relative performance of DGEQRF on train tasks given the parameters optimized by OpenTuner, HpBandSter and EDO-GPcompared to the ones found

by MLA (black horizontal lines)
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Fig. 2. Relative performance of DGEMM on train tasks given the parameters
optimized by EGO-GP (turquoise)compared to the ones found by MLA (black
horizontal lines)

presented to the DGP-based autotuner. For each test task in each
of the two problems, the standard EGO-GP is used similarly to
the case of the training tasks. The best result (GFlops) obtained
for each test task is then considered as the reference value.
Then, the TLA1 and TLA2 methods are applied to predict
the optimal parameter for each test task, but without ever
running the applications on them. Figures 3 and 4 show the
comparative results for the DGEQRF and DGEMM problems,
respectively. In each figure, the black horizontal line (on y-axis
at 1) is the reference result obtained by EGO-GP for every
test task represented on the X-axis. Moreover, the grey and
red bars represent the results for the TLA1 and TLA2 methods,
respectively. The tasks are sorted by increasing performance
ratio of TLA2 compared to EGO-GP.

TLA1 and TLA2 .vs. Best of OpenTuner, HpBandSter and EGO-GP
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Fig. 3. Relative performance of DGEQRF on test tasks given the parameters
predicted by TLA1 (grey) and TLA2 (red) using the DGP model compared to
the ones optimized by EGO-GP (black horizontal lines)

The surprising result is that, on the DGEQRF problem, not
only TLAL1 is able to outperform TLA2, but it is also competitive
with the classical EGO-GP. On the other hand, as expeted, TLA2
presents better results than TLA1 on the DGEMM problem.

It is important to notice that there is a clear imbalance in the
results. Indeed, TLA1 and TLA2, compared to EGO-GP, yield a
dreadful performance on some tasks and better performance on
other tasks. However, the average performance offered by TLA2
compared to the reference EGO-GP is about 80% (on both
DGEQRF and DGEMM problems). This result showcases the
viability of transfer learning through the DGP model. Moreover,
the DGP model together with the results of 7LA1 and TLA2

U.S. Government work not protected by U.S. cop
Authorized licensed use limited to: UNIVERSITY Ol

TLAL and TLA2 .vs. EGO-GP

1.4
1.2
1.0

0.8
0.6
0.4
0.2
0.0
60 80 100

0 20 40

Fig. 4. Relative performance of DGEMM on test tasks given the parameters
predicted by TLA1 (grey) and TLA2 (red) using the DGP model compared to
the ones optimized by EGO-GP (black horizontal lines)

can be used as a starting point for an additional tuning step on
the test tasks, if the user of an application can afford to spare
some additional runs to improve the parameters tuning.

As a final note, we must highlight the potential drawback of
our work. The fundamental assumption we made by relying on
multitask and transfer learning when autotuning an application
is that the behaviour of the application is somehow similar on
loosely similar problems. This similarity can be evaluated by
the distance between two points in the input problem space,
each representing a different problem. If an application fails
to exhibit the assumed behavior, the use of multitask and
transfer learning should not bring any benefit compared to
tuning different tasks separately.

VI. CONCLUSION

This paper introduced multitask learning and transfer learning
as effective frameworks for autotuning HPC applications.
At the heart of this work is the use of the powerful deep
Gaussian process Bayesian model, which is able to identify
the relationships between tantamount autotuning tasks. The
proposed autotuning approach is based on the classical EGO
algorithm. This approach adapts autotuning in two ways: (i)
multitask learning: an application is tuned not on one but
multiple input problems. The sampling phase incorporates an
additional sampling step to choose which problems to tune,
then applies the usual sampling phase for each chosen problem.
The modeling phase is the same but relies on the DGP model
instead of the usual GP. The search phase is applied in parallel
on each chosen input problems; (i¢) transfer learning: after
the tuning phase has been carried on a set of training tasks,
the DGP model can be used to predict a good guess of the
parameters for a new unknown test task. This is done simply
by applying the search phase on the new test task (7LA2). In
the case where a quick prediction is needed, an approximation
is proposed (TLA1) that uses a simple GP regression of the
best parameters found for all training tasks.
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