
Deep Gaussian process with multitask and transfer

learning for performance optimization

Wissam M. Sid-Lakhdar∗, Mohsen Aznaveh†, Piotr Luszczek∗, Jack Dongarra∗‡

∗University of Tennessee at Knoxville
†Texas A&M University

‡Oak Ridge National Laboratory, University of Manchester

AbstractÐWe combine Deep Gaussian Processes with multitask
and transfer learning for the performance modeling and optimiza-
tion of HPC applications. Deep Gaussian processes merge the
uncertainty quantification advantage of Gaussian Processes with
the predictive power of deep learning. Multitask and transfer
learning allow for improved learning efficiency when several
similar tasks are to be learned simultaneously and when previous
learned models are sought to help in the learning of new tasks,
respectively. A comparison with state-of-the-art autotuners shows
the advantage of our approach on two application problems.

I. INTRODUCTION

Automated performance engineering, a.k.a autotuning, fo-

cuses on finding the best hyper-parameters of an algorithm

implementation (or kernel). Recently, autotuners have been

used for optimizing machine learning applications. However,

these efforts lack attempts at complete performance tuning for

scientific applications.

Our work is motivated by low-data regime that precludes the

use of Artificial Neural Networks (ANN) which need large data

volumes to successfully generalize. Gaussian Process (GP) [1]

is a solution that needs augmentation to handle our complex

scenario of multiple applications/platforms. To handle the non-

stationary nature of our data sets, that are guaranteed to feature

discontinuities, we build our proposed approach on top of Deep

Gaussian Processs (DGPs) [2].

In the field of machine learning: (i) multitask learning

consists of learning several tasks simultaneously while sharing

common knowledge in order to improve the prediction accuracy

of each task and/or speed up the training process; (ii) transfer

learning consists in using the knowledge of one (or several)

task(s) to improve the learning accuracy and/or the speed of

another task. Following these two paradigms, we propose in

the present paper the Multitask Learning Algorithm (Multitask

Learning Autotuning (MLA)) and the Transfer Learning

Algorithms (Transfer Learning Autotuning (TLA)1 and TLA2).

The underlying assumption, which is at the core of these

algorithms, is that the objective function to optimize is expected

to be continuous or, at least similar, for similar tasks and for

similar parameter values.

a) Framework: Let us now define autotuning in the

multitask and transfer learning setting. The notations used

in this paper are summarized in Table I.

This work was supported by the U.S. Department of Energy, Office of
Science, ASCR under Award Number DE-SC0021419 the National Science
Foundation under OAC grant No. 2004541.

TABLE I
SYMBOLS USED IN THE TEXT.

Symbol Interpretation
S(T) task space
S(P) parameter space
S(O) output space (e.g., runtime)
D(T) dimension of S(T)
D(P) dimension of S(P)
D(O) dimension of S(O)
№T number of tasks
№P number of samples per task

Throughout the paper, we refer to input problem as an input

of the target application to be tuned. Moreover, we refer to

task as the problem of tuning the parameters of the target

application given a specific input problem.

We define S(T), the Task Space, as the space of all the

input problems that the application may encounter. We also

make the simple (non restrictive) assumption that S(T) may

be characterised as a finite dimensional space of dimension

D(T). Several application problems are amenable to such a

formalism, potentially after some approximations are made.

We then define S(P), the Parameter Space, or space of the

parameters to be optimized, of dimension D(P), the number

of parameters. Every point in S(P) can be referred to as a

parameter configuration.

We define S(O), the Output Space, as the space of the results

of the evaluation of objective function, for a given task and

for a given parameter configuration. It is a single dimensional

space (e.g., computation time, memory consumption, energy

. . .), the case of multi-dimensional spaces (corresponding to

multi-objective optimization) being left for future work.

We denote by y(t, x) ∈ S(O) and f(t, x) ∈ S(O) the values

of the objective function y and model prediction f , respectively,

for a task t ∈ S(T) and for a parameter configuration x ∈
S(P). As is the case in Bayesian optimization, the model f is

optimized instead of the measured value y, while the optimum

found is hoped to be that of y.

In this setting, it is possible to describe the application perfor-

mance autotuning problem under the mathematical framework

of black-box optimization. Every evaluation of the objective

function is an expensive run of the application and no gradient

information is available.

b) Paper contributions: We combine DGP model (instead

of GP) with multitask and transfer learning: (i) this allows us

to merge S(T) and S(P) instead of considering S(P) only as

in traditional approaches; (ii) we perform run-free autotuning

and accelerated on-line tuning with pre-trained model available

off-line.

U.S. Government work not protected by U.S. copyright

20
22

 IE
EE

 H
ig

h
Pe

rf
or

m
an

ce
 E

xt
re

m
e

Co
m

pu
tin

g
Co

nf
er

en
ce

 (H
PE

C)
 |

 9
78

-1
-6

65
4-

97
86

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
HP

EC
55

82
1.

20
22

.9
92

63
96

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on June 02,2024 at 04:56:27 UTC from IEEE Xplore. Restrictions apply.

• Multitask learning: the fact of tuning the application on

several tasks simultaneously helps the tuning of each

independent task

• Transfer learning: the model produced allows for predict-

ing good guesses of the parameters of the application for

completely new problems for which no data is available.

• Independence of the different optimizations (of the dif-

ferent tasks) allows for a high degree of parallelism,

that can easily be exploited. This comes in addition

to the parallelism available within the Efficient Global

Optimization (EGO) algorithm itself.

• Optimum of every task should be close to the optimum

of related (close) tasks. Thus, the exploration around the

optimum of one task will benefit the neighboring tasks as

new data is gathered in the vicinity of their own optimum.

• Increased confidence while predicting a given task when

taking into account other tasks’ contribution for the

prediction (decreases variance). This leads the MLA to

converge faster to the global optimum.

c) Overview: This paper is organized as follows. Sec-

tions II, III and IV describe our proposed algorithms

alongside the classic EGO algorithm which is central to our

work.Section V compares the performance of our proposed

algorithms against that of existing autotuning methods. Sec-

tion VI summarizes the presented work and describes the

potential future directions.

II. SAMPLING PHASE

The sampling phase in EGO consists in choosing an initial

sample of data with which an initial model can be built. While

the subsequent phases aim at selecting candidates that improve

upon the best solution found so far. The aim of the sampling

phase is not to find optima but rather to choose locations that

cover uniformly the search space, to ensure the homogeneous

accuracy of the model.

While a single sampling step (over S(P)) is needed in

a classical single-task Bayesian optimization scheme, two

sampling steps are needed in MLA (over both S(T) and S(P)).
a) First sampling step: The goal of this step is to select

a set T of №T tasks T = [t1; t2; . . . ; t№T] ∈ S(T)№T .

This set should contain a representative sample of the variety

of problems that the application may encounter, rather than

focusing on a specific type of problems. Given the freedom in

the selection of the tasks together with the existence of a space

of tasks S(T), we choose a space filling sampling in S(T) to

select T . Such samplings are widely used in the field of DoE.

Particularly, we choose a Latin Hypercube Sampling (LHS) [3]±

[5] in MLA. Such samplings try to cover the whole search

space uniformly. Several off-the-shelf software packages exist

that implement different types of sampling strategies (including

LHS). Alternatively, one might opt for a specific strategy to

select T or might even provide T altogether.

b) Second sampling step: The of this step is to select

an initial sampling X of parameter configurations for every

task X = [X1;X2; . . . ;X№T] ∈ S(P)№T×№P . For task ti, its

initial sampling Xi consists of №P parameter configurations

Xi = [xi,j]j∈[1,№P] ∈ S(P)№P . Two cases arise in the

multitask framework: (i) The isotropic case, when all the

tasks share the same sampling in PS; (ii) The heterotropic

case, when different tasks do not necessarily share the same

samples. In the former case, the advantage of a multi-output

regression is the sharing of information for the optimization of

the hyper-parameters of the model governing the tasks. In the

latter case, however, more knowledge can be shared. Indeed,

insights on the true cost of a task on an unknown configuration

can be learned from a similar task with a sample at that location.

Additionally, in real-life applications, given the existence of

constraints on the parameters, not all parameter configurations

are feasible for all tasks simultaneously; a configuration may

be valid for a subset of tasks, but violate the constraints on

another subset. Thus, we choose to generate the initial sampling

X in a heterotropic way by generating the Xi as independent

LHS.

c) Constraint handling: Given the application constraints,

a generic sampling technique might fail, both for the selection

of the task samples and for the selection of their corresponding

parameter samples. In such a case, either specific knowledge of

the application should be used to design a tailored space filling

sampling, or a Monte Carlo strategy should be implemented.

d) Samples evaluation: Once T and X are selected, every

sample xi,j is evaluated through a run of the application. The

set Y represent the results of all these evaluations, Y =
[Y1;Y2; . . . ;Y№T] ∈ S(O)№T×№P , where every Yi represents

the results corresponding to task ti, Yi = [yi,j]j∈[1,№P] ∈
S(O)№P .

III. MODEL PHASE

Once T and X are selected and Y evaluated, the modeling

phase consists in training a model of the black-box objective

function relative to tasks T . However, instead of building a

separate model for every task, as is usually the case in a regular

single-task Bayesian optimization scheme, the challenge in

MLA is to derive a single encompassing model that allows the

sharing of knowledge between tasks in order to better predict

them all.

GPs are customarily used in EGO for the modeling in single-

task tuning [6]. Moreover, Linear Coregionalization Model

(LCM) [7], [8] has already been used as a shallow learning

model in multitask tuning [9]±[11]. We propose to rely on

DGP in MLA as the generalization of GPs to the deep learning

and multitask settings.

The following Sections III-A and III-B describe the GP

and DGP models, respectively.

A. Gaussian Processes

We provide here a brief presentation of Gaussian Processes.

We invite the reader to consult [1] for a detailed description. A

Gaussian process is the generalization of a multivariate normal

distribution to an infinite number of random variables. It is a

stochastic process where every finite subset of variables follows

a multivariate normal distribution. While other regression

methods set a prior on the function to be predicted, attempting

to learn the parameters of such a function, GPs set a prior

U.S. Government work not protected by U.S. copyright
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on June 02,2024 at 04:56:27 UTC from IEEE Xplore. Restrictions apply.

on some characteristics of the functions (e.g. smoothness) to

learn the functions themselves. This shift in prior allows for

the expressiveness of a much richer variety of functions.

A GP is completely specified by its mean function µ(x) and

by its covariance function k(x, x′). A function f(x) following

such a GP is written as:

f(x) ∼ GP (µ(x), k(x, x′)) (1)

where:

µ(x) = E[f(x)] (2)

k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] (3)

In most practical scenarios, µ is taken to be the null function

and all the modeling is done through the kernel function k. A

variety of kernels exist in the literature. The adequate choice

depends on the data at hand. The runaway generic choice is

the following exponential quadratic kernel:

k(x, x′) = σ2 exp

(

−

D(P)
∑

i=1

(xi − x′
i)

2

li

)

(4)

where σ2 (variance) and li (lengthscales) are hyper-parameters

governing the behavior of the kernel. These are learned by

optimizing the following log-likelihood of the samples X with

values y on the GP:

log(p(y|X)) =−
1

2
(y − µ(X))T (K + σ2I)−1(y − µ(X))

−
1

2
log|K + σ2I| −

n

2
log(2π)

(5)

where σ2I is a regularization term, and K is the covariance

matrix whose elements are generated from the kernel k.

Given the high cost of computations as the size of the data

increases (O(N3)), several approximate training strategies have

been derived. One of the most popular is the inducing points

approximation. In this method, a set of pseudo data points (of

size M) is used in lieu of the original data (of size N) with

M << N . The location of the pseudo points (inducing inputs)

is defined by Z = {z1, . . . , zM}, whereas the corresponding

values (inducing outputs) are defined by U = f(Z).
After defining f = f(X), the joint density of y, f and u is

given by:

p(y, f, u) = p(f |u;X,Z)p(u, Z)
N
∏

i=1

p(yi, fi) (6)

Once the model is trained, i.e. its hyper-parameters optimized,

it can be queried for a prediction relative to input x∗ through

the formulation:

f(x∗) = K(x∗, X)TK(X,X)−1Y (7)

A fundamental property of GP-based models is the ability

to estimate the confidence in the predictions alongside the

predictions themselves. The confidence can be expressed as:

var(x∗) = K(x∗, x∗)−K(x∗, X)TK(X,X)−1K(x∗, X)
(8)

B. Deep Gaussian Processes

a) Model description: A Deep Gaussian Process

(DGP) [2] is a hierarchical composition of GPs (in our case, a

deep stacking). In a DGP of depth L, the GP at layer l models

a vector-valued stochastic function fl of dimension Dl whose

input is the output of function fl−1 at the previous layer and

whose output is the input of function fl+1 at the next layer.

Then, X is the input of the first layer and Y is the output of

the last layer. The noise between layers is assumed to be i.i.d.

Gaussian, which means that the output produced by a layer

is corrupted by a Gaussian noise before being fed to the next

layer.

Inference in DGPs is intractable. Indeed, the tractability

in GPs stems from the fact that the likelihood is assumed

to be Gaussian in such models, which greatly simplifies

the computations. Unfortunately, composition of Gaussian

probability distributions is in general not Gaussian, which

greatly complicates the integration of the probability densities.

Hence, the inducing point framework is used. The inducing

inputs at every layer are denoted by Z = {Z1, · · · , ZL}, and

the corresponding inducing outputs are denoted by U = {U1 =
f1(Z1), · · · , UL = fL(ZL)}. These inducing points are then

parameters of the model that can be optimized and used to

propagate the GPs predictions through the successive layers.

The joint probability density function of Y , F and U can

be extended from that of a GP model (Equation 6) as:

p(Y, {F l, U l}Ll=1) =
L
∏

l=1

p(F l|U l;F l−1, Zl−1)p(U l;Zl−1)
N
∏

i=1

p(yi|f
l
i) (9)

b) Model training: Two main families of methods exist

for training (i.e. hyper-parameter optimization) and inference

(i.e. prediction) in DGPs: Variational Inference (VI) [12] and

Markov Chain Monte Carlo (MCMC) [13]. The difficulty with

DGPs is the existence of complex correlations both within and

between layers.

The original paper on DGPs [2] relies on a mean-field

variational approach that uses a variational posterior which

maintains the exact model conditioned on the inducing out-

puts but forces independence between layers. A consequent

advantage is that this approach admits a tractable lower bound

on the log marginal likelihood (under some assumptions). A

drawback, however, is that the probability density over the

outputs is merely a single-layer GP with independent Gaussian

inputs and therefor cannot express the complexity of the full

model.

The Doubly Stochastic Variational Inference (DSVI) [14]

relies on a double source of stochasticity: (i) a sparse inducing

point variational inference scheme [15] is used to simplify

the correlations and achieve computational tractability within

each layer. However, the correlations between layers are

maintained (independence is not forced as is the case in

previous methods). This leads to a sacrifice of the analytic

tractability of the variational lower bound. However, this is

U.S. Government work not protected by U.S. copyright
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on June 02,2024 at 04:56:27 UTC from IEEE Xplore. Restrictions apply.

overcome by the ability to draw efficiently unbiased samples

from the variational posterior which has the same structure

as the exact model conditioned on the inducing points. (ii) a

minibatch subsampling of the data is used to scale to extremely

large datasets (up to a billion data points).

The Stochastic Gradient Hamiltonian Monte Carlo

(SGHMC) [16], [17] method can be used to generate samples

from the intractable posterior distribution of the inducing

outputs p(U, Y). The underlying idea is to rely on the principles

of Hamiltonian dynamics by trying to minimize a total energy

of a dynamic system described as:

p(U,R|Y) ∝ exp

(

−U(u)−
1

2
rTM−1r

)

(10)

where the negative log posterior U(u) = −log(p(U |Y)) plays

the role of the potential energy, and the 1
2r

TM−1r term

plays the role of the kinetic energy, where r is an artificially

introduced momentum variable.

Given that the computation of gradients in the Hamiltonian

Monte Carlo (HMC) [18] method is intractable in DGP in the

case of large training data, stochastic gradient estimates can

be computed following the work of [17], where:

∆u = ϵM−1r (11)

∆r = −ϵ∇U(u)− ϵCM−1r +N (0, 2ϵ(C −B)) (12)

where C is the friction term (introduced to allow for batched

computations), M is the mass matrix, B is the Fisher infor-

mation matrix and ϵ is the step-size.

Given this sampling framework, a Markov Chain can be

built. However, due to the high correlation between successive

samples, the optimization of the hyper-parameters of the model

while the sampler progresses is an operation likely to fail.

As a remedy, the authors in [16] propose a variant of the

Monte Carlo Expectation Maximization (MCEM) [19] that they

call Moving Window Markov Chain Expectation Maximization

(MWEM). While MCEM alternates between the sampling from

the posterior (E-step, Eq 13) and the maximization of the joint

probability of the samples and the data (M-step, Equation 14),

u1,...,m ∼ p(u|Y,X, θ) (13)

θ = argmax
θ

1

m
Σm

i=1 log p(Y, ui|X, θ) (14)

MWEM maintains a window of samples, where a newly

generated sample replaces the oldest one. Additionally, the

number of samples in the E-step is set to m = 1. At every

M-step, a random sample from the window is selected and the

hyper-parameters θ of the model are optimized with respect to

this sample only. Experimentally, MWEM is able to converge

faster than alternate methods such as DSVI.

While DSVI is often used for training DGPs, we choose

SGHMC instead. It makes no assumptions regarding the kernels

and the likelihood being used. Moreover, the accuracy of the

model can be controlled and traded off with computational

training time, which is not necessarily the case with other

training methods. These two characteristics are advantageous in

a practical setting such as autotuning. The pros of DGPs make

them a great tool for tuning exascale applications, while their

usual computational drawbacks are leveraged in the exascale

setting where few samples only can be collected, making the

DGP model tractable (albeit with some approximations).

IV. SEARCH PHASE

A. Acquisition function optimization

Once the Bayesian model is either built (at the first iteration)

or updated (at subsequent iterations), the EGO algorithm relies

on a model-free black-box optimization algorithm to optimize a

quantity called acquisition function. This latter is based on both

the prediction and the confidence of the model in the outcome

of the black-box objective function at different locations in

the search space. In our multitask setting, not one but many

such optimizations need to be carried out. Given their relative

independence, they can occur in parallel. The TLA2 strategy

we propose is not an optimization of an acquisition function

but rather a direct optimization of the mean prediction of the

model. The underlying idea is that there are not enough runs

available to balance exploration and exploitation, as the goal

is only to exploit previous data. This strategy is meant for

the transfer learning setting, when the user is not interested in

tuning the application on a completely new input problem but

is rather interested in leveraging the data and model built on a

previous tuning of the application.

B. Fast online prediction of the optima

In a practical setting, after spending enough time offline in

tuning the application on a variety of relevant input problems,

one can rely on TLA2 to guess the best parameter values

of the application on a new problem. However, although the

optimization queries a DGP model that is much cheaper to

query than the real application, the search phase can take tens of

seconds to minutes. When such waiting times are unacceptable,

we propose a quick online prediction strategy, TLA1, that can

return a good guess within a fraction of a second.

TLA1 applies if an approximation to the optimum parameter

configuration of a new task is considered enough, or, if a

specific tuning for that task cannot be afforded. It consists of

building a model of the optima of any new unexplored tasks,

for which no data is available. Specifically, a Gaussian Process

model predicting the optima is built over S(T) and is trained

on the parameter configuration of the optimum found for every

task ti in T .

Let us define the set of optima OPT corresponding to the

set of tasks T as:

OPTi = argmin
x∈S(P)

f(ti, x), ∀i ∈ [1,№T] (15)

An optimum parameter configuration is composed of as

many parameters as D(P). Consequently, the solution that

we propose is to create D(P) separate and independent

Gaussian Processes Gi∈[1,D(P)] to model every component of

the optimal solutions separately. Such a GP model is described

in Section III-A. The set OPT represents the input data of

U.S. Government work not protected by U.S. copyright
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on June 02,2024 at 04:56:27 UTC from IEEE Xplore. Restrictions apply.

every one of these GPs. It is important to notice that the

input and output spaces of the GPs in EGO and in TLA1 are

different. In the former case, the input space is S(P) and the

output space is S(O). In the latter case, the input space is S(T)
and the output space is one of the dimensions of S(P). For

any unexplored task t∗, a prediction of its optimal parameter

configuration is then given by:

OPT (t∗) = [G1(t
∗), G2(t

∗), . . . , GD(P)(t
∗)] ∈ S(P) (16)

Additionally, the confidence in the prediction of the Gi models

can serve as an indicator on whether an extra tuning step is

needed. An alternative solution could be to define a single

multi-output GP to model all the components simultaneously.

However, no a priori hypothesis can be made in the general

case on the correlation between the different components

characterising the optima.

V. RESULTS AND DISCUSSION

This section presents the experimental results assessing the

combined advantage of a DGP model in a multitask and transfer

learning setting.

A. Experimental setting

1) Hardware Setup: Two computers are used for the

experiments: ALPHA is a 64 nodes computer, each containing

12 cores of Intel(R) Xeon(R) X5660 at 2.80GHz. BETA is a

single-node computer, containing 40 cores of Intel(R) Xeon(R)

CPU E5-2650 v3 at 2.30GHz.

2) Optimization Problems: Two applications are considered:

the DGEQRF routine of the PLASMA library and the DGEMM

routine of the SLATE library.

The first problem aims at computing the QR factorization of

a rectangular matrix on shared-memory computers. The task

space is characterized by m and n, the number of rows and

columns of a matrix, together with nth, the number of OpenMP

threads to be used in the computation. The parameter space is

characterized by nb and ib, the block and internal panel sizes.

The output space is simply described by the resulting GFlops of

the application. The range of sizes of the matrices considered

(together with the parameters to be tuned) is [1, 5000] and

the range of number of threads is [1, 40]. 100 tasks are used

for training and 100 others are used for testing. The budget

of number of runs per task is 30, split equally between the

sampling phase and the remaining optimization phase.

The second problem aims at computing the multiplication

of two matrices on distributed-memory computers. The task

space is described by m, n and k, the sizes of the matrices to

be multiplied, together with the number of nodes to be used

for the computations. The parameter space is described by the

block size nb, the number of threads nth in each MPI process,

the ratio p× q of number of processes per row versus column

in the 2D block cyclic process mapping, and the number la of

lookahead panels to be prefetched and precomputed. The range

of matrix sizes is [1, 10000] and the range of compute nodes

is [1, 64]. The range of number of threads is [1, 12], the range

of the p × q parameter is [0, 1] and of la is [0, 2]. In order

to get a fair comparison between different runs, the number

of threads can only be 1, 2, 3, 4, 6, 12, which guarantees that

all cores of all nodes are used in all runs. 100 tasks are used

for training and 100 others are used for testing. The budget

of number of runs per task is 50, split equally between the

sampling phase and the remaining optimization phase.

For both DGEQRF and DGEMM problems, the number of

runs per task follows a simple rule of thumb of five times

the number of parameters for the initial sampling phase and

as many runs for the subsequent optimization iterations. This

allows for enough runs for the tuners to find relevant results

while keeping the budget of runs sufficiently low for the whole

tuning process to be attractive in a real life setting. It is likely

that, given a large enough number of runs, all tuners would

likely converge to an optimum. However, the goal of autotuning

is to reach such a goal at reduced cost. Moreover, the choice

of number of tasks (100 for DGEQRF and 100 in DGEMM)

follows a similar argument of having enough tasks to enrich

the DGP model with enough data to make it able to predict

the behaviour of the application on new unknown tasks. At the

same time, we must keep the number of tasks small enough

so that the total wallclock time of the tuning process remains

attractive. The average autotuning time in our experiments for

most tuners (given the chosen numbers of samples and tasks)

is about 24 hours for the DGEQRF problem and 48 hours for

the DGEMM problem.

3) Autotuner Types: Our proposed algorithms are compared

against several autotuning techniques: OpenTuner [20] and

HpBandSter [21], two general purpose model-free autotuners ,

and EGO with a GP model at its core (EGO-GP).

B. Experimental results

1) Multitask learning setting (MLA): The initial experiments

consist in tuning a set of training tasks in a multitask learning

setting while building a DGP model to be used subsequently

for transfer learning. While MLA attempts to tune all training

tasks simultaneously, OpenTuner, HpBandster and EGO-GP

operate on singe-tasks independently. Figures 1 and 2 show the

results for the DGEQRF and DGEMM problems, respectively.

The result of a given tuner on a given task is the smallest

runtime of the application obtained within the multiple runs

attempted. In each figure, the black horizontal line (on y-axis

at 1) is the reference result obtained by MLA for every test task

represented on the X-axis. The tasks are sorted in each sub-

figure in increasing ratio of performance of the compared tuner

with MLA. Each sub-figure compares the best performance

found with a given tuner (colored bars) with that found by

MLA (black horizontal line). Graphically, the metric of success

of MLA compared to the others is the number of times a

colored bar is below the black horizontal line, the more often

the better.

On both the DGEQRF and DGEMM cases, MLA is able

to bring better application performance in average than the

competing methods.

2) Transfer learning setting (TLA1 and TLA2): After train-

ing the DGP model on the training tasks, new test tasks are

U.S. Government work not protected by U.S. copyright
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on June 02,2024 at 04:56:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine

Learning. MIT Press, 2006.

[2] A. Damianou and N. Lawrence, ªDeep gaussian processes,º Artificial

Intelligence and Statistics, pp. 207±215, 2013.

[3] M. D. McKay, R. J. Beckman, and W. J. Conover, ªA comparison of
three methods for selecting values of input variables in the analysis
of output from a computer code,º Technometrics. American Statistical

Association., vol. 21, no. 2, pp. 239±245, May 1979.

[4] V. Egl ajs and A. P., ªNew approach to the design of multifactor
experiments,º Problems of Dynamics and Strengths, vol. 35, pp. 104±107,
1977.

[5] R. L. Iman, J. C. Helton, and J. E. Campbell, ªAn approach to sensitivity
analysis of computer models, part 1. introduction, input variable selection
and preliminary variable assessment,º Journal of Quality Technology,
vol. 13, no. 3, pp. 174±183, 1981.

[6] J. Snoek, H. Larochelle, and R. P. Adams, ªPractical bayesian optimiza-
tion of machine learning algorithms,º in Proceedings of NIPS, 2012.

[7] A. G. Journel and C. J. Huijbregts, Mining Geostatistics. London:
Academic press, 1978.

[8] P. Goovaerts, ªGeostatistics for natural resources evaluation,º 1997.

[9] K. Swersky, J. Snoek, and R. P. Adams, ªMulti-task
bayesian optimization,º in Advances in Neural Information

Processing Systems, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds.,
vol. 26. Curran Associates, Inc., 2013. [Online]. Available:
https://proceedings.neurips.cc/paper/2013/file/f33ba15effa5c10e873bf3842afb46a6-
Paper.pdf

[10] W. M. Sid-Lakhdar, J. W. Demmel, X. S. Li,
Y. Liu, and O. Marques, ªGptune users guide,º 2020,
https://github.com/gptune/GPTune/tree/master/Doc.

[11] Y. Liu, W. M. Sid-Lakhdar, O. A. Marques, X. Zhu, C. Meng,
J. W. Demmel, and X. S. Li, ªGptune: Multitask learning for
autotuning exascale applications,º in Proceedings of the 26th

ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, ser. PPoPP ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 234±246. [Online]. Available:
https://doi.org/10.1145/3437801.3441621

[12] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, ªVariational inference:
A review for statisticians,º Journal of the American Statistical

Association, vol. 112, no. 518, p. 859±877, Apr 2017. [Online].
Available: http://dx.doi.org/10.1080/01621459.2017.1285773

[13] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, ªAn
introduction to mcmc for machine learning,º Machine Learning,
vol. 50, no. 1, pp. 5±43, Jan 2003. [Online]. Available:
https://doi.org/10.1023/A:1020281327116

[14] H. Salimbeni and M. Deisenroth, ªDoubly stochastic variational
inference for deep gaussian processes,º in Advances in Neural

Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017. [Online]. Available:
https://proceedings.neurips.cc/paper/2017/file/8208974663db80265e9bfe7b222dcb18-
Paper.pdf

[15] A. G. d. G. Matthews, J. Hensman, R. Turner, and Z. Ghahramani,
ªOn sparse variational methods and the kullback-leibler divergence
between stochastic processes,º in Proceedings of the 19th International

Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, A. Gretton and C. C. Robert, Eds.,
vol. 51. Cadiz, Spain: PMLR, 09±11 May 2016, pp. 231±239. [Online].
Available: https://proceedings.mlr.press/v51/matthews16.html

[16] M. Havasi, J. M. HernÂandez-Lobato, and J. J. Murillo-Fuentes, ªInference
in deep gaussian processes using stochastic gradient hamiltonian monte
carlo,º in Proceedings of the 32nd International Conference on Neural

Information Processing Systems, ser. NIPS’18. Red Hook, NY, USA:
Curran Associates Inc., 2018, p. 7517±7527.

[17] T. Chen, E. B. Fox, and C. Guestrin, ªStochastic gradient Hamiltonian
Monte Carlo,º in International Conference on Machine Learning, 2014,
pp. 1683±1691.

[18] R. M. Neal, ªMCMC using Hamiltonian dynamics,º Handbook of Markov

Chain Monte Carlo, vol. 54, pp. 113±162, 2010.

[19] G. C. Wei and M. A. Tanner, ªA Monte Carlo implementation of the em
algorithm and the poor man’s data augmentation algorithms,º Journal

of the American Statistical Association, vol. 85, no. 411, pp. 699±704,
1990.

[20] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bos-
boom, U.-M. O’Reilly, and S. Amarasinghe, ªOpenTuner: an exten-
sible framework for program autotuning,º in International Confer-

ence on Parallel Architectures and Compilation Techniques. Ed-
monton, Canada: Association for Computing Machinery, 2014, p.
303±316, http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-
opentuner.pdf.

[21] S. Falkner, A. Klein, and F. Hutter, ªBOHB: robust and efficient
hyperparameter optimization at scale,º in Proceedings of the 35th

International Conference on Machine Learning (Proceedings of Machine

Learning Research, Vol. 80), J. Dy and A. Krause, Eds., vol. 80,
PMLR, StockholmsmÈassan, Stockholm Sweden, 2018, pp. 1437±1446,
http://proceedings.mlr.press/v80/ falkner18a.html.

U.S. Government work not protected by U.S. copyright
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on June 02,2024 at 04:56:27 UTC from IEEE Xplore. Restrictions apply.

