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Abstract—The wmulti-precision methods commonly follow
approximate-iterate scheme by first obtaining the approximate
solution from a low-precision factorization and solve. Then, they
iteratively refine the solution to the desired accuracy that is
often as high as what is possible with traditional approaches.
While targeting symmetric and Hermitian eigenvalue problems
of the form Axr = Az, we revisit the SICE algorithm proposed
by Dongarra et al. By applying the Sherman-Morrison formula
on the diagonally-shifted tridiagonal systems, we propose an
updated SICE-SM algorithm. By incorporating the latest two-
stage algorithms from the PLASMA and MAGMA software
libraries for numerical linear algebra, we achieved up to 3.6x
speedup using the mixed-precision eigensolver with the blocked
SICE-SM algorithm for iterative refinement when compared with
full double complex precision solvers for the cases with a portion
of eigenvalues and eigenvectors requested.’

The symmetric eigenvalue problem is one of the most
important problems in numerical linear algebra for analysis of
invariant subspace. For real matrices, the objective is to find
an eigenvalue A and the corresponding eigenvector x such that

Ax = \x where A = AT, A € C"*" (1

The Hermitian eigenvalue problem is to find the eigenvalues
and eigenvectors in complex domain.

I. RELEATED WORK

a) Eigenvalue refinement: Symm and Wilkinson[1] pro-
posed an algorithm to determine the error bounds of com-
puted eigenvalues and eigenvectors, which can also be used
to improve the accuracy of a given eigen-pair. Dongarra,
Moler, and Wilkinson[2], [3], [4] later improved the algorithm
with reduced computational cost and provided additional error
analysis, including the comparison to Newton’s method[5], [6],
numerical results, and discussion of extending the algorithm
for ill-conditioned problems with multiple close eigenvalues.

Other related work from Stewart[7] and Chatelin[8] an-
swered the same question from the point of view of the
invariant subspace problem. Demmel[9] later pointed out that
these two methods and the one from Dongarra, Moler, and
Wilkinson [2], [3], [4] can all be reduced to solving the
same Riccati equation. He also extended the algorithm for the
generalized eigenvalue problem of the form Az = ABz.

Alefeld and Spreuer[10] followed the same approach but
specifically targeted problems with doubly-repeated or nu-
merically close eigenvalues. Tisseur[11] did the analysis of
Newton’s method under floating-point arithmetic for general-
ized eigenvalue problems. Prikopa and Gansterer[12] used the
symmetry of the matrix and Householder tridiagonalization
A = QTQT to reduce the computational cost.
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Ogita and Aishima[13] proposed a different iterative
scheme, which heavily relies on matrix-matrix multiplication
for those applications which require accuracy that is higher
than the base IEEE-754 double precision. The algorithm is
applied on the entire spectrum of eigenvalues but it is capable
of improving at the same time the orthogonality and eigenvalue
accuracy. However, it requires high-precision computation for
the most parts of the algorithm, making it costly in practice.
Later the authors extended the algorithm for clustered eigen-
values and singular value decomposition[14], [15].

b) Parallel Eigensolvers: The most recent work intro-
duced a hybrid 2-stage algorithm[16], [17]. The first stage
still consisted of blocked Householder transformations but
it only reduced the matrix to a band form. Then, the left
transformation will only be needed, as the right transformation
will not be touching the first block of columns. It thus becomes
an L() factorization for the block of columns, which is much
faster than applying the transformations from both sides (LQ
and QR). The second stage uses the bulge-chasing algorithm
from the successive band reductions.

¢) The SICE Algorithm: In Algorithm 1, given the base
eigenpair A\, x and its nearby eigenpair A+ p, ¥, then based
on the original eigenproblem we have: [2], [3], [4]

Az +9) = A+ )z +9) 2

Assuming that x is normalized |z|. = 1 = x5, we can remove
one degree of freedom by requiring s = 0 we get:

(A= A)j — px = e — Az + pg 3)

The last term is the second order term for the error in A and
x. By simplify the equation, we introduce vector y, defined
as:

VANRPUE ~ ~ ~ ~
yT:(ylﬂy%"'?ysflalu“/yk@%»la'"aynfhy?’b) (4)

So y encodes information from both § and p and thus Eq. (3)
becomes:
By =r+4ysy=r+py (&)

where » = Az — Az is the residual vector of A and x and B
is the matrix A — A\l with column s replaced by —z.
We can also view it as the Newton’s method. In particular,

by setting v = (i) we formulate the eigenvalue problem as:

f) = (ﬁfx‘ff) ~0 ©)

where e is the s-th column of the identity matrix of size n.
The Newton’s method then solves the linear system of the
Jacobian matrix:
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Expanding it, we get Eq. (3) without the second-order term:

(A= M)j—pz=r ®)

This is the basic idea of the SICE algorithm: by iteratively
solving Eq. (5) we obtain both the correction to the eigenvalue
and to the eigenvector. The original algorithm uses Schur
decomposition and applies two steps of Givens rotation in
order to solve Eq. (5). For any real matrix A, there exists
an orthogonal matrix () and an upper quasi-triangular matrix
T, such that A = QUQT where U is upper quasi-triangular
with some 2 x 2 diagonal blocks arising from complex con-
jugate eignevalue pairs. Here, we define Z, = Z — A\I and
2xs = Zzes = (Z — M )es. Using ¢ = —x — ays in Eq. (5):

C))
Then using the Schur decomposition A = QUQT, we have:

QUA+ QTeelQ)QTy =1+ ysy (10)

(Un+dx [1)QTy=QTg an

where d = QTc¢, fT =elQ and g = r + ysy. Matrix d x fT
constitutes a rank-1 update. Then two steps of Givens rotation
are introduced: the first one () is constructed so that

[Ax — (z +ars)elly = (Ax +cel)y =7+ ys¥

Qld: (PngPn)d:’yel where Y= ||d||2 (]2)

and P; is the rotation in (¢ — 1,4) plane that eliminates the
i-th component in P;y; ... P,d. We also have:

Q1(Ux+dx fT) = Q1Ux +ve1 fT (13)

The transformation (Q; introduces one more nonzero element
in the subdiagonal direction of Uy. The new rank-one update
~ve1 X fT has nonzero elements only in the first row, which
preserves the original structure. The second step of Givens
rotation Qo can be applied subsequently in order to obtain
the upper triangular form Uy = Q2Q1 (Ux +d x fT) in
UrQTy = Q2@:1QTy.

II. ALGORITHM AND IMPLEMENTATION

The original SICE algorithm is designed for a general real
matrices and here we first focus on symmetric ones. The
proposed algorithm utilizes the tridiagonalization as well as
the Sherman—Morrison formula to solve the linear system for
eigenvalue and eigenvector corrections.

a) SICE-SM Algorithm: For symmetric eigenvalue prob-
lems, the matrix A is first reduced to tridiagonal through uni-
tary similarity transformations: 7' = QTAQ where QQT =1
and T is a symmetric tridiagonal matrix. This corresponds
to LAPACK routines SSYTRD and DSYTRD for single- and
double-precision arithmetic, respectively. In the same fashion
as SICE algorithm in Section I-c, we start with Eq. (9) and
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Algorithm 1 SICE algorithm

1: Input: Matrix A € R™ ™. An approximate eigenvalue A\; and
the corresponding eigenvector x. itermax denotes the maximum
number of iterations.

2: Output: Refined eigenvalue A\ and its eigenvector x.

3: function [\, z| + SICE(A, A1, z, iter)

4: [Q, U] + schur(A) > obtain Schur decomposition
A=QUQT, QQT = 1.

5: [m, s] < maz(abs(z));x < x/m > Normalizing = so that
llloc = 52 = L.

6 for i in 1 : itermax do

7: ré iz — Ax

8: C4— —T — Q)s

9

0.

1

d<+ Q7c
[T+ Q(s,:) =el@Q > s-th row of Q.
: U>\ %Q1(U*/\11),d<*Q1d= ||d”2€1 > Givens
rotations ()1 from Eq. (12)
Oy + O +d(1) [T
Uy < Q22U > Givens rotations ()2 to introduce
upper triangular form.

14: Solve the triangular system Uz = Q2Q1Q7r

15: y <+ Qz

16: Ait1 < Ni +y(s) > Update eigenvalue.
17: y(s) <0 > Set y(s) to 0.
18: T THyY > Update eigenvector.
19: if desired accuracy is reached then

20: break

21: end if

22: end for

23: end function

apply the tridiagonal reduction to it. Eqs. (10) and (11) in this
case become

Q(Th +QTeelQ) QTy =1 + ysy (14)

and
(Tx+dx f)QTy = Qg (15)
the same with d = QTe¢, fT = €IQ and g = 7 + y,7.

Dongarra [2] discussed the approach of using the Sher-
man-Morrison formula [18]

A~ lypT AL

1+vTA 1y
for solving the rank-one updated system. Eq. (15) does not
apply since T = T'— A is singular by construction. However,
this may not be so in mixed-precision setting. Consider the
scheme that first performs the tridiagonal reduction in single
precision and then solves the tridiagonal eigenvalue problem
in double precision. The initial Ay will be the eigenvalue of
T with double-precision accuracy, but it only approximates
Aa, the eigenvalue of A with single-precision accuracy. With
suitably chosen offset ¢ of order of €gnge, T — (A + )1
will no longer be singular in double precision, and the
Sherman—Morrison formula can be applied. The special case
in which this would fail is when ||Ar — Aa|| = O(€double):
the initial eigenvalue is also an accurate eigenvalue of A in
double precision. In such a case, we do not need to refine the
eigenvalue and can simply apply the inverse iteration to find
the eigenvector.

(A—UUT)_l =A"! (16)
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Algorithm 2 SICE-SM algorithm: SICE algorithm with Sher-
man—Morrison formula

1: Input: Matrix A = AT € R™ ™. An approximate eigenvalue
A1 and the corresponding eigenvector x. itermax denotes the
maximum number of iterations.

2: Output: Refined eigenvalue Ao and eigenvector z.

3: function [\, z| + SICE_SM(A, A1, z, iter)

4: [Q,T] < tridiag(A) > Tridiagonalization A = QTQT,
QRT =1

5: [m, s] <= max(abs(z)); x < x/m > Normalization of = so
that ||z]|ec = 52 =1

6 for 7 in 1 : itermax do

7: r < \ix — Ax

8: C4— —IT — Q)s

9: d+ QTc

10 T+ Q(s,:) =el@Q > s-th row of Q.
11: rhs < Q'r

12: < (T—NI)"td

13: v (T — \I)"trhs

14: Yy v %u > Sherman—Morrison formula
15: y <+ Qu

16: Aix1 — Xi +y(s) > Update eigenvalue.
17: if ¢ # 1 then

18: y(s) « 0 > Set y(s) to 0.
19: T T+Y > Update eigenvector.
20: end if
21: break if accuracy reached
22: end for

23: end function

We outline the SICE algorithm with Sherman—Morrison
formula in Algorithm 2. Applying Sherman—Morrison formula
from Eq. (16) to Eq. (15) we get

Titdx fTTy!
Ty — -1 _ X A T
Qy (TA EEYi )Qg (17)
or )
(T loT

L+ f7(Ty 'd)

These involve solving the tridiagonal system 7 with two
different right hand sides d and QTg. It can be easily done
with the Thomas algorithm which is a special case of Gaus-
sian elimination. There are other parallel tridiagonal solvers
available and we will discuss them in Section II-1.

The main difference between Algorithms 1 and 2 is the use
of the Sherman—Morrison formula to solve the system from
line 12 to 14 instead of using the Givens rotations for that
purpose. It is applied to solving the same tridiagonal system
T with two different right hand sides d and QTg. The two
vector inner products are needed to obtain the scalar in order
to form the solution. Note that in line 17, we only update
the eigenvalue at the first iteration and leave the eigenvector
unchanged because 7’ at the first iteration is nearly singular.
Other approaches to this issue include manually applying a
shift to the initial eigenvalue or using the Ritz value zTAz/xTx
as the starting point. Apart from tridiagonalization, the compu-
tational cost for algorithm 2 is dominated by the matrix-vector
multiplications.

45

TABLE I
PERFORMANCE OF . X n MATRIX TIMES 1 X m. AGGREGATED VECTORS
ON NVIDIA V100-SXM2-32GB GPU, DGEMM ROUTINE FROM CUBLAS

v11.0.

Matrix size ~ Number of vectors  Time (ms)  Performance (GFLOP/s)
20000 1 3.76 212.65
20000 8 3.79 1688.17
20000 32 6.48 3949.32
20000 128 13.57 7544.43

Alternatively, as described in [12], one can also solve the Ja-
T—-M y

27 0/’
which is a tridiagonal system with an extra row and column
at the bottom and right. However, it is hard to parallelize
the corresponding solver for this special structure and it is
even harder make it scalable. This is in stark contrast with
the approach of solving the tridiagonal system which is well
studied and admits several parallel implementations that target
a variety of computing environments.

b) Blocked SICE-SM Algorithm: The computational cost
of Algorithm 2 is dominated by matrix-vector multiplications
especially inside the refinement iteration. In the matrix-vector
multiplication, the whole matrix is read once and only a single
multiplication and addition are performed per each of the
fetched elements. This results in a low arithmetic intensity of
2, which results in very low inefficient on modern hardware
including CPU, GPUs, and computational accelerators. To
improve on this implementation aspect, we can aggregate
several eigenpairs simultaneously and refine them at the same
time while they are cached in higher levels of the memory
hierarchy. This blocking strategy is common in numerical
linear algebra since it was introduced in LAPACK[19] and
relies on grouping computations so that Level 3 Basic Linear
Algebra Subprograms (BLAS) may be utilized to perform
operations that are rich in matrix-matrix multiplications. These
operations perform more efficiently as they have higher arith-
metic intensity resulting from higher data reuse in fast portions
of the cache hierarchy. In our case, we assume that the matrix
size is far greater than the number of eigenpairs to refine.
Then the matrix-vector multiplication is dominated by the
reading of the matrix elements. And with the blocked version,
it the additional cost of refining extra eigenpairs is negligible.
In Table I, we show examples of the performance rates and
execution times for different numbers of vectors submitted to
the DGEMM routine from cuBLAS on the NVIDIA V100 GPU.
The times for 1 and 8 vectors are almost the same. And for
32 or 128 vectors the elapsed time increases 3.6x.

cobian matrix with the special structure J =

There are a few issues we need to solve while formulat-
ing a blocked variant of the algorithm. First, in SICE, the
eigenvector is first normalized in infinity norm. The index
s is also picked so that ||z|cc = Sz 1. If we allow
different s for each of the eigenpairs, then we will have to
access different columns in A to construct vector ¢, and also
different rows of @ for vector f7. The row access required
for the latter is performed in column major layout and results
in non-coalescing memory accesses which are extremely slow
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and should be avoided as much as possible due to their low
utilization of the GPU’s memory bandwidth. To show that it
is fine to choose s arbitrarily, we need to take a closer look
at the matrix in Eq. (14) and expand it without canceling any
terms we get

(QTAQT + QQTvelQQT)y =7 + ysy 19)

Again, for our mixed-precision scheme, we would like to per-
form the tridiagonalization in single precision. Hence QT)\QT
is only an approximation of A with precision €ngle, i.€.
|Ax —QT\QT|| ~ O(€singte). The same applies to QQT which
is only an approximation of I with |QQT — I|| ~ O(éingte)-
So no matter which index s we pick, we will always get an
error of order €gngle in the correction of eigenvalue y, coming
from the other elements in the solution vector y. There could
be a potential problem if the eigenvalue itself is small and
the error is preventing the eigenvalue to be refined to desire
accuracy. This can be remedied by pre-scaling the matrix so
that the eigenvalues are not too small.

The other issue is that by treating the eigenpairs indepen-
dently they might lose their orthogonality. In the worst case,
they might all converge to the same eigenpair. However, it is
easy to reorthogonalize with

X/:X+%X(I7XTX) (20)
In practice, we found that it is sufficient to reorthogonalize
after the refinement is done. Doing so in each iteration would
not speed up the convergence. The computation of [ — XTX
also lets us detect if they converged to the same eigenvector.
By combining these considerations, we arrive at Algorithm 3.

Because a Hermitian matrix can also be tridiagonalized
into real matrix, algorithm 3 can easily be extended to be
applied on Hermitian matrices. The transformation matrix
now becomes complex, as well as the intermediate vectors.
However, the coefficients in 7" — Al are all real so it can be
optimized to avoid doing all the operations in complex space.

c) Implementation Details: The one-stage eigensolver
has the following components with its corresponding LAPACK
routine names: DSYTRD (Tridiagonalization via Householder
transformations), DSTEDC (Tridiagonal symmetric eigen-
solver based on divide-and-conquer), DORMTR (back trans-
formation for eigenvectors).

First the system is transformed to the tridiagonal form via
Householder transformations. Then the tridiagonal eigensolver
is called. We will not discuss the details of eigensolvers here,
as it is not the focus of this work. After the eigenvalues
and eigenvectors of the tridiagonal system are computed,
the back transformation is applied, which is the inverse of
the Householder transformations from tridiagonalization stage.
Because the transformation is orthogonal, the inverse is simply
a transpose. If only a portion of the eigenvectors are requested,
the transform would not be explicitly formed for performance
reasons. The transform in the form of elementary reflectors is
directly applied on eigenvectors of the tridiagonal system to
obtain the eigenvectors for the original matrix.
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Algorithm 3 Blocked SICE-SM algorithm

1: Input: A AT ¢ R™™, initial eigenvectors X
[x1]x2]...|ze] € R™ ¥ and the corresponding initial eigenvalues
A = (M, h2,...,0)T € R itermax denotes the maximum
number of iterations.

2: Output: Refined eigenvectors X and refined eigenvalues A.

3: function [X, A] < SICE_SM_BLK(A, X, A, iter)

4: [Q,T] « tridiag(A) > Tridiagonalization A = QTQT,
QT =1

5: for 7 in 1 : itermax do

6: $41

7: R + X x diag_matrix(A) — A x X »> Residual vectors
need higher precision.

8: for jin1l:/do

9: ¢ —xj — A, 8)

10: end for

11: Compose matrix C' = [c1]c2]...|c¢] from column vectors
¢

12: C(s,:) + C(s,:) + AT

13: D = [di|d2]...|de] + QT x C > Can be in lower
precision.

14: RHS = [rhsi|rhsa]...|rhse] < QT x R > Can be in
lower precision.

15: f+Q(s,) > s-th row of Q.

16: for jin 1: /¢ do

17: Ui — (T—AI)_ldi

18: vy« (T — /\11)717"}131-

19: Yi & Vi — 7 I fflui i > Sherman—-Morrison

20: end for

21: Compose matrix Y = [y1|y2|...|ye] from correction
vectors y;

22: Y+~ Q@QxY

23: A= A+Y(s,)T > Update eigenvalues.

24: if ¢ # 1 then

25: Y(s,:) <0 > Set y;(s) to 0.

26: X+~ X+Y > Update eigenvectors.

27: Normalize eigenvectors x; in X.

28: end if

29: if desired accuracy reached then

30: break

31: end if

32: end for

33: X+ X+1iX(I-X"X) > Orthogonalization.

34: end function

Algorithm 4 Mixed precision one stage symmetric eigensolver
with iterative refinement
1: SSYTRD: Tridiagonalization via Householder transforma-
tions in single precision.
2: DSTEDC: Tridiagonal symmetric eigensolver (divide and
conquer) in double precision.
3: SORGTR: Generate the transformation matrix @ from
elementary reflectors in single precision.
4: Blocked SICE-SM (algorithm 3) for iterative refinement.

For the mixed-precision eigensolver in Alg. 4, we first
perform tridiagonalization in single precision as it is com-
putationally intensive requiring O(n3) operations. After the
system is transformed to tridiagonal form, the eigensolver
is applied. The eigensolver operates in double precision as
we need to be able to distinguish nearby eigenvalues that
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are closer than €gipq1c but not closer than €goupie. If single
precision is used for this case, the eigenvalues are very likely
to be considered as repeated, and the returned eigenvectors
could be an arbitrary orthogonal basis of the eigenspace. For
the back transformation, the matrix () needs to be explicitly
formed in order for us to solve Eq. (15). Then the Blocked
SICE-SM (Algorithm 3) is used to iteratively refine the eigen-
pairs to the desired accuracy. Most of the operations in the
refinement process are matrix-matrix operations, which have
been developed internally. The batched tridiagonal solver in
line 16 will be discussed in section II-1.

For two-stage algorithms, the structure is similar to the one-
stage method but both the forward- and back-transformations
are split into two reduction steps: first stage symmetric to
band via Householder transformations, second stage band to
tridiagonal via bulge chasing, tridiagonal symmetric eigen-
solver (divide and conquer), back-transformation for second
stage on eigenvectors, back-transformation for first stage on
eigenvectors.

Mixed precision for a two-stage eigensolver is actually more
problematic performance-wise. The main reason is that accu-
mulation of the back transformations from the second stage of
bulge chasing is costly: it has a lot of small transformations
and is expensive to apply on a square transform matrix @)
compared to the case of only computing the eigenvectors.
However, we need to explicitly form @ for the later refinement.
Here, we exploit the fact that the back transformation is not
applied on the eigenvectors; it can actually start as soon
as the first stage is finished. So we are reversing the order
of back transformations to start it first. Similarly, the back
transformation of the second stage can start when both the
second stage and the back transformation of the first stage
are completed. This is shown in Algorithm 5. For the case of
MAGMA implementation, this would enable more parallelism.
The back transformation of the first stage can be done on the
GPU while the second stage of bulge chasing is done on the
CPU. The eigensolver, which is mainly done on the CPU,
can be overlapped with the back-transformation of the second
stage on the GPU.

Algorithm 5 Mixed precision two stages symmetric eigen-
solver with iterative refinement

1: First stage symmetric to band via Householder transfor-
mations in single precision.

2: Second stage band to tridiagonal via bulge chasing in
single precision.

3: Tridiagonal symmetric eigensolver (divide and conquer)
in double precision.

4: Generate the transformation matrix () from first stage in
single precision. This can start as soon as 1. finishes.

5: Apply the back transformation for second stage onto @ in
single precision. This can start as soon as both 2. and 4.
finish.

6: Blocked SICE-SM (algorithm 3) for iterative refinement.
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1) Batched Tridiagonal Solver: Line 16 in Algorithm 3 iter-
ates over all the eigenvalues and solves the shifted tridiagonal
system for each of them as in Batched BLAS[20], [21]. On
multicore CPUs, the straightforward and efficient approach
is to assign one system to each thread at a time which is
likely bound to a single CPU core. Each thread can use the
Thomas algorithm. But on the GPU, we need more parallelism
to saturate the computational potential of the hardware. There
are previous studies[22], [23], [24] that investigated the solving
of one big tridiagonal system on GPUs. One of the techniques
is based on the cyclic reduction (CR). Consider a tridiagonal
system with 8 unknowns:

R85 AxF=ycR® 1)

By combing all the even-indexed equations with odd-indexed
equation, we are able to have an updated system with half of
the size:

/ / !

b} i Z1 Y1

/ / / . !

as by C3 r3| _ |Y3
! / / - / (22)

ay b5, cs| | s U5

I / !

ar bz x7 Y7

The coefficients of the updated system can be computed with
the following formulas:

a; C;
ky=—— ky=—
bi_1 bit1 )
a; = —a;_1k1, b = by — ci_1k1 — aip1ke (23)
¢; = —Cip1ka, Yi = yi — Yi—1k1 — Yip1ko

By recursively reducing the size of the system by half,
it is possible to bring the size down to a single unknown
with a trivial solution. Then, the back-substitutions follows
the same path in reverse order and thus the solution of the full
system is obtained. Alternatively, while reducing the size of
systems, we can produce two independent systems, one with
odd-indexed unknowns and the other with the even-indexed
unknowns. Both systems can be solved independently with
only its own coefficients. By repeating the process, we will
arrive at trivial systems with a single unknown bz, = y/
for all of the unknowns x;. The back substitutions wold not
be needed for this approach, which is called parallel cyclic
reduction (PCR). The PCR method exposes more parallelism
towards the end but with requires more computation which
represents a design trade-off. For our GPU implementation,
we used PCR to solve one tridiagonal system by each of the
thread blocks.

III. NUMERICAL AND PERFORMANCE RESULTS

The numerical experiments in this section will be divided
into two parts: convergence and performance.

a) Numerical Convergence: The numerical experiments
in this section were performed in MATLAB version R2020a
with implementations of Algorithm 3 (blocked SICE-SM).
The expression A = gallery (’randsvd’,n,-cond)
was used to generate symmetric test matrices with a prescribed
condition number from random eigenvectors and geometrically
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distributed eigenvalues in range (1, —1-). The input matrix

is first converted to single precision and subsequently
tridiagonalized using [Q, T] hess (A) function in single
precision. Then converted back to double precision for finding
the eigenvalues and eigenvectors using expression [V, D]
eig(A). The eigenvectors in D and column eigenvectors
in QV will be used as the starting point of our refinement
algorithms.

Figure 1 shows the convergence of Algorithm 3: the blocked
SICE-SM. The input symmetric input matrix had size 100 with
geometrically distributed eigenvalues from 1 to 10~7. The con-
vergence in terms of residual || Az — Az||« of each eigenvalues
are plotted in different colors from blue as largest eigenvalue
1 to red as the smallest eigenvalue 10~7. For the first iteration,
we only updated the eigenvalues so there was no initial
improvement. For large eigenvalues, the method converges
quickly in two iterations. However, for small eigenvalues,
that are much closer to each other due to the geometrical
distribution and thus we observer the resulting slowdown of
convergence.

10

Residual [Ax-) x|
3

g0

1072

10 L I
0 2 4 6 8 10 12 14 16 18 2
Iteration

Fig. 1. Blocked SICE-SM convergence of a 100 x 100 matrix with
geometrically distributed eigenvalues from 1 (blue) to 10~7 (red).

b) Performance Results: The system we are using has
two sockets of Intel(R) Xeon(R) CPU E5-2650 v3 CPUs. But
only one is being used for more stable results. The system
is accelerated by a Tesla V100 GPU. The theoretical peak
performance of a V100 is 7.8 TFLOP/s in double precision
and 15.6 TFLOP/s in single precision. The software stacks
was composed of Intel Parallel Studio Cluster 2020. (for
C and Fortran compilers and BLAS rouintes from MKL
library), NVIDIA CUDA v11.0.2, and MAGMA version 2.5.4.
The input symmetric matrix A = [a,;] was generated with
random elements from a uniform distribution in range (0, 1):
a;; ~U(0,1) and a;; = a;;. The Hermitian matrix is also gen-
erated in the same fashion for it’s imaginary part. The largest
eigenvalues in the spectrum were requested. The blocked
SICE-SM algorithm was implemented in both PLASMA and
MAGMA.

In Figure 2, PLASMA was used in a CPU-only mode
and no GPUs were used in the system. The symmetric input
matrix had size n = 10000. The three stacked bars represent
the breakdown of time from mixed-precision with refinement,
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single precision, and double precision from the two-stage
algorithm, respectively. The time for single precision is about
half of that of double precision and each of the components

take proportionally the same time for both precisions.
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Fig. 2. Breakdown of timings of two-stage eigensolvers with 32 largest
eigenparis requested in PLASMA (top), MAGMA on NVIDIA Volta V100
(middle), and MAGMA on NVIDIA GTX1060 (bottom). The problem sizes
are 10000, 20 000, and 12000, respectively.

Figure 3 shows the performance results from the MAGMA.
First the solid lines are the one-stage algorithm in double,
single, and mixed precision (with iterative refinement). The
input matrix sizes range from 1000 to 20000, and the largest 32
eigenpairs are requested. Single precision is about 1.7x faster
than double precision and the mixed precision is about 1.3x
faster. The dashed lines represent the two-stage algorithm.
They are at least 2x faster than their corresponding single
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stage algorithm in general. The performance improvement over
double precision is about 1.2x. Left of Figure 4 shows the
performance results of complex Hermitian solvers. Complex
operations has higher arithmetic intensity so the performance
gap between single and double would also be larger. Mixed
precision algorithm can also have greater chance to benefit
it. On the system wit NVIDIA V100, we are observing
complex single is 2.44 x faster than complex double and mixed
precision solver is 1.45X.

17 —+— double precision single stage
+— single precision single stage
15.09 — mixed precision single stage + iterative refinement
—+=- double precision two stages
12.5 single precision two stages
—+=- mixed precision two stage + iterative refinement

8000 10000 12000 14000 16000
Matrix Size

2000 4000 6000

Fig. 3. Performance comparison of single, double, and mixed precision solvers
for real symmetric matrix on MAGMA for both single stage and two-stage
algorithms on NVIDIA V100 GPU with varying sizes of matrices and fixed
number of requested eigenpairs.

The left of Figure 5 shows the performance when requesting
different numbers of eigenpairs with the input matrix size fixed
at n = 20000. Mixed precision is noticeably faster than double
precision if 64 or fewer eigenpairs are requested. For larger
eigenpair count, the time in iterative refinement grows linearly
with the number of requested eigenpairs and it eventually
looses its performance advantage.

The middle of Figure 2 shows the detailed profile for matrix
size n = 20000 and 32 eigenvalues/eigenvectors requested.
The details of computational components were explained in
Section II-Oc. The single precision routine took 60% of time
compared to double, and the ratios between components across
precisions were about the same. For mixed precision, there is
a 0.5 second overhead at the beginning to convert the whole
matrix from double to single precision.

We tested another machine with a drastically different setup
by using a consumer-grade gaming GPU. It has the same
CPUs as the V100 system. The GPU is NVIDIA GTX1060
6GB GPU. The theoretical peak performance of GTX1060
is 136.7 GFLOP/s in double and 4.375 TFLOP/s in single
precision. This is a notable different as the gaming maintains
1:32 double-single ratio compared to server-grade NVIDIA
V100 with the ratio being 1:2. The right of Figure 4 shows
the performance with different matrix sizes on GTX1060 when
requesting the largest 32 eigenpairs. The performance of single
precision is about 8 better than that of double precision and
the mixed precision with refinement is about 2x better than
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Fig. 4. Performance of single, double, and mixed precision solvers for
complex Hermitian matrix based on MAGMA two-stage algorithm with
varying sizes of matrices and fixed number of requested eigenpairs on

NVIDIA V100 GPU (top) and NVIDIA GTX1060 GPU (bottom).
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double precision. The left of Figure 4 shows the complex
Hermitian solver and the the speed up over complex double is
3.6x. In the right of Figure 5, we show performance results
when the matrix size was fixed at n = 12000 but with varied
number of requested eigenpairs. The mixed precision solver is
still faster than double precision when 128 eigenpairs are re-
quested, but the time in iterative refinement became significant
if more eigenvalues and eigenvectors were requested.

The right of Figure 2 shows the profiling results with timing
breakdown for matrix size n = 12000 and the 32 largest
eigenpairs requested. In double precision, almost 80% of time
was spent at the first stage to reduce the matrix from symmetric
to band-symmetric form. The operation is compute-bound and
relies on GPU’s matrix-matrix multiplication efficiency. But
the consumer-grade GPU does not have hardware to support
high-efficiency processing for the double floating-point units
and consequently extra clock cycles are used to emulate
higher precision with single precision instructions. The mixed-
precision algorithm does the first-stage reduction in single
precision and does not suffer from the same penalty. The back-
transformation of second stage is still costly but it is done
with single precision on the GPU. Overall, the performance
of mixed precision with the iterative refinement algorithm is
2x faster over purely double two-stage algorithm.
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IV. CONCLUSIONS

We developed an iterative refinement algorithm for sym-
metric and Hermitian eigenvalue problems based on the ini-
tial work from the SICE algorithm. By utilizing the Sher-
man—Morrison formula, our new solver has more opportunity
to be parallelized compared to the serial Givens rotations in
the SICE algorithm. The blocked version of the algorithm was
also proposed in order to refine multiple pairs of eigenvalues
and eigenvectors simultaneously for higher utilization of the
computational resources with lower demand for memory band-
width. The implementation of the mixed-precision algorithm
is based on the two-stage eigensolver in either the PLASMA
and MAGMA software libraries for numerical linear alge-
bra, which gives our implementation the advantage of both
portability and performance. The computational components
inside the mixed-precision algorithm have been reordered
to create more parallelism at runtime and allow additional
overlap to computational stages more efficiently. Compared to
the double-precision solver, the performance benefit has been
shown for the cases in which only a portion of eigenvalues
and corresponding eigenvectors are requested. This remains
true across hardware with a varying ratio of performance of
single and double precision units.
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