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Abstract—The multi-precision methods commonly follow
approximate-iterate scheme by first obtaining the approximate
solution from a low-precision factorization and solve. Then, they
iteratively refine the solution to the desired accuracy that is
often as high as what is possible with traditional approaches.
While targeting symmetric and Hermitian eigenvalue problems
of the form Ax = λx, we revisit the SICE algorithm proposed
by Dongarra et al. By applying the Sherman-Morrison formula
on the diagonally-shifted tridiagonal systems, we propose an
updated SICE-SM algorithm. By incorporating the latest two-
stage algorithms from the PLASMA and MAGMA software
libraries for numerical linear algebra, we achieved up to 3.6×
speedup using the mixed-precision eigensolver with the blocked
SICE-SM algorithm for iterative refinement when compared with
full double complex precision solvers for the cases with a portion
of eigenvalues and eigenvectors requested.1

The symmetric eigenvalue problem is one of the most

important problems in numerical linear algebra for analysis of

invariant subspace. For real matrices, the objective is to find

an eigenvalue λ and the corresponding eigenvector x such that

Ax = λx where A = A⊺, A ∈ C
n×n (1)

The Hermitian eigenvalue problem is to find the eigenvalues

and eigenvectors in complex domain.

I. RELEATED WORK

a) Eigenvalue refinement: Symm and Wilkinson[1] pro-

posed an algorithm to determine the error bounds of com-

puted eigenvalues and eigenvectors, which can also be used

to improve the accuracy of a given eigen-pair. Dongarra,

Moler, and Wilkinson[2], [3], [4] later improved the algorithm

with reduced computational cost and provided additional error

analysis, including the comparison to Newton’s method[5], [6],

numerical results, and discussion of extending the algorithm

for ill-conditioned problems with multiple close eigenvalues.

Other related work from Stewart[7] and Chatelin[8] an-

swered the same question from the point of view of the

invariant subspace problem. Demmel[9] later pointed out that

these two methods and the one from Dongarra, Moler, and

Wilkinson [2], [3], [4] can all be reduced to solving the

same Riccati equation. He also extended the algorithm for the

generalized eigenvalue problem of the form Ax = λBx.

Alefeld and Spreuer[10] followed the same approach but

specifically targeted problems with doubly-repeated or nu-

merically close eigenvalues. Tisseur[11] did the analysis of

Newton’s method under floating-point arithmetic for general-

ized eigenvalue problems. Prikopa and Gansterer[12] used the

symmetry of the matrix and Householder tridiagonalization

A = QTQ⊺ to reduce the computational cost.

1Support: NSF OAC 2004541 and the Exascale Comp. Proj.(17-SC-20-SC).

Ogita and Aishima[13] proposed a different iterative

scheme, which heavily relies on matrix-matrix multiplication

for those applications which require accuracy that is higher

than the base IEEE-754 double precision. The algorithm is

applied on the entire spectrum of eigenvalues but it is capable

of improving at the same time the orthogonality and eigenvalue

accuracy. However, it requires high-precision computation for

the most parts of the algorithm, making it costly in practice.

Later the authors extended the algorithm for clustered eigen-

values and singular value decomposition[14], [15].

b) Parallel Eigensolvers: The most recent work intro-

duced a hybrid 2-stage algorithm[16], [17]. The first stage

still consisted of blocked Householder transformations but

it only reduced the matrix to a band form. Then, the left

transformation will only be needed, as the right transformation

will not be touching the first block of columns. It thus becomes

an LQ factorization for the block of columns, which is much

faster than applying the transformations from both sides (LQ

and QR). The second stage uses the bulge-chasing algorithm

from the successive band reductions.

c) The SICE Algorithm: In Algorithm 1, given the base

eigenpair λ, x and its nearby eigenpair λ+µ, x+ỹ, then based

on the original eigenproblem we have: [2], [3], [4]

A(x+ ỹ) = (λ+ µ)(x+ ỹ) (2)

Assuming that x is normalized |x|∞ = 1 ≡ xs, we can remove

one degree of freedom by requiring ỹs = 0 we get:

(A− λI)ỹ − µx = λx−Ax+ µỹ (3)

The last term is the second order term for the error in λ and

x. By simplify the equation, we introduce vector y, defined

as:

y⊺
△
= (ỹ1, ỹ2, . . . , ỹs−1, µ, ỹs+1, . . . , ỹn−1, ỹn) (4)

So y encodes information from both ỹ and µ and thus Eq. (3)

becomes:

By = r + ysỹ = r + µỹ (5)

where r = λx− Ax is the residual vector of λ and x and B
is the matrix A− λI with column s replaced by −x.

We can also view it as the Newton’s method. In particular,

by setting v =
(

x
λ

)

we formulate the eigenvalue problem as:

f(v) ≡

(

Ax− λx
e⊺sx− 1

)

= 0 (6)

where es is the s-th column of the identity matrix of size n.

The Newton’s method then solves the linear system of the

Jacobian matrix:
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J

(

ỹ
µ

)

=

(

A− λI −x
e⊺s 0

)(

ỹ
µ

)

=

(

r
0

)

= f(v) (7)

Expanding it, we get Eq. (3) without the second-order term:

(A− λI)ỹ − µx = r (8)

This is the basic idea of the SICE algorithm: by iteratively

solving Eq. (5) we obtain both the correction to the eigenvalue

and to the eigenvector. The original algorithm uses Schur

decomposition and applies two steps of Givens rotation in

order to solve Eq. (5). For any real matrix A, there exists

an orthogonal matrix Q and an upper quasi-triangular matrix

T , such that A = QUQ⊺ where U is upper quasi-triangular

with some 2 × 2 diagonal blocks arising from complex con-

jugate eignevalue pairs. Here, we define Zλ ≡ Z − λI and

zλs ≡ Zλes = (Z − λI)es. Using c = −x− aλs in Eq. (5):

[Aλ − (x+ aλs)e
⊺

s ]y = (Aλ + ce⊺s )y = r + ysỹ (9)

Then using the Schur decomposition A = QUQ⊺, we have:

Q(Uλ +Q⊺ce⊺sQ)Q⊺y = r + ysỹ (10)

(Uλ + d× f⊺)Q⊺y = Q⊺g (11)

where d = Q⊺c, f⊺ = e⊺sQ and g = r + ysỹ. Matrix d × f⊺

constitutes a rank-1 update. Then two steps of Givens rotation

are introduced: the first one Q1 is constructed so that

Q1d = (P2P3 . . . Pn)d = γe1 where γ = ‖d‖2 (12)

and Pi is the rotation in (i − 1, i) plane that eliminates the

i-th component in Pi+1 . . . Pnd. We also have:

Q1(Uλ + d× f⊺) = Q1Uλ + γe1f
⊺ (13)

The transformation Q1 introduces one more nonzero element

in the subdiagonal direction of Uλ. The new rank-one update

γe1 × f⊺ has nonzero elements only in the first row, which

preserves the original structure. The second step of Givens

rotation Q2 can be applied subsequently in order to obtain

the upper triangular form Ūλ = Q2Q1 (Uλ + d× f⊺) in

ŪλQ
⊺y = Q2Q1Q

⊺g.

II. ALGORITHM AND IMPLEMENTATION

The original SICE algorithm is designed for a general real

matrices and here we first focus on symmetric ones. The

proposed algorithm utilizes the tridiagonalization as well as

the Sherman–Morrison formula to solve the linear system for

eigenvalue and eigenvector corrections.

a) SICE-SM Algorithm: For symmetric eigenvalue prob-

lems, the matrix A is first reduced to tridiagonal through uni-

tary similarity transformations: T = Q⊺AQ where QQ⊺ = I
and T is a symmetric tridiagonal matrix. This corresponds

to LAPACK routines SSYTRD and DSYTRD for single- and

double-precision arithmetic, respectively. In the same fashion

as SICE algorithm in Section I-c, we start with Eq. (9) and

Algorithm 1 SICE algorithm

1: Input: Matrix A ∈ R
n×n. An approximate eigenvalue λ1 and

the corresponding eigenvector x. itermax denotes the maximum
number of iterations.

2: Output: Refined eigenvalue λ∞ and its eigenvector x.
3: function [λ∞, x] ← SICE(A, λ1, x, iter)

4: [Q,U ] ← schur(A) ⊲ obtain Schur decomposition
A = QUQ⊺, QQ⊺ = I .

5: [m, s] ← max(abs(x));x ← x/m ⊲ Normalizing x so that
‖x‖∞ = sx = 1.

6: for i in 1 : itermax do

7: r ← λix−Ax
8: c ← −x− aλs

9: d ← Q⊺c
10: f⊺ ← Q(s, :) = e⊺sQ ⊲ s-th row of Q.
11: Ūλ ← Q1(U − λiI); d̄ ← Q1d = ‖d‖2e1 ⊲ Givens

rotations Q1 from Eq. (12)
12: Ūλ ← Ūλ + d̄(1)f⊺

13: Ūλ ← Q2Ūλ ⊲ Givens rotations Q2 to introduce
upper triangular form.

14: Solve the triangular system Ūλz = Q2Q1Q
⊺r

15: y ← Qz
16: λi+1 ← λi + y(s) ⊲ Update eigenvalue.
17: y(s) ← 0 ⊲ Set y(s) to 0.
18: x ← x+ y ⊲ Update eigenvector.
19: if desired accuracy is reached then
20: break
21: end if

22: end for

23: end function

apply the tridiagonal reduction to it. Eqs. (10) and (11) in this

case become

Q (Tλ +Q⊺ce⊺sQ)Q⊺y = r + ysỹ (14)

and

(Tλ + d× f⊺)Q⊺y = Q⊺g (15)

the same with d = Q⊺c, f⊺ = e⊺sQ and g = r + ysỹ.

Dongarra [2] discussed the approach of using the Sher-

man–Morrison formula [18]

(A− uv⊺)
−1

= A−1 −
A−1uv⊺A−1

1 + v⊺A−1u
(16)

for solving the rank-one updated system. Eq. (15) does not

apply since Tλ = T−λI is singular by construction. However,

this may not be so in mixed-precision setting. Consider the

scheme that first performs the tridiagonal reduction in single

precision and then solves the tridiagonal eigenvalue problem

in double precision. The initial λT will be the eigenvalue of

T with double-precision accuracy, but it only approximates

λA, the eigenvalue of A with single-precision accuracy. With

suitably chosen offset δ of order of ǫsingle, T − (λ + δ)I
will no longer be singular in double precision, and the

Sherman–Morrison formula can be applied. The special case

in which this would fail is when ‖λT − λA‖ = O(ǫdouble):
the initial eigenvalue is also an accurate eigenvalue of A in

double precision. In such a case, we do not need to refine the

eigenvalue and can simply apply the inverse iteration to find

the eigenvector.
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Algorithm 2 SICE-SM algorithm: SICE algorithm with Sher-

man–Morrison formula

1: Input: Matrix A = A⊺ ∈ R
n×n. An approximate eigenvalue

λ1 and the corresponding eigenvector x. itermax denotes the
maximum number of iterations.

2: Output: Refined eigenvalue λ∞ and eigenvector x.
3: function [λ∞, x] ← SICE SM(A, λ1, x, iter)

4: [Q,T ] ← tridiag(A) ⊲ Tridiagonalization A = QTQ⊺,
QQ⊺ = I .

5: [m, s] ← max(abs(x));x ← x/m ⊲ Normalization of x so
that ‖x‖∞ = sx = 1.

6: for i in 1 : itermax do

7: r ← λix−Ax
8: c ← −x− aλs

9: d ← Q⊺c
10: f⊺ ← Q(s, :) = e⊺sQ ⊲ s-th row of Q.
11: rhs ← Q⊺r
12: u ← (T − λiI)

−1d
13: v ← (T − λiI)

−1rhs
14: y ← v − f⊺v

1+f⊺u
u ⊲ Sherman–Morrison formula

15: y ← Qy
16: λi+1 ← λi + y(s) ⊲ Update eigenvalue.
17: if i �= 1 then

18: y(s) ← 0 ⊲ Set y(s) to 0.
19: x ← x+ y ⊲ Update eigenvector.

20: end if
21: break if accuracy reached

22: end for

23: end function

We outline the SICE algorithm with Sherman–Morrison

formula in Algorithm 2. Applying Sherman–Morrison formula

from Eq. (16) to Eq. (15) we get

Q⊺y =

(

T−1

λ −
T−1

λ d× f⊺T−1

λ

1 + f⊺T−1

λ d

)

Q⊺g (17)

or

Q⊺y = T−1

λ Q⊺g −
f⊺(T−1

λ Q⊺g)

1 + f⊺(T−1

λ d)
T−1

λ d (18)

These involve solving the tridiagonal system Tλ with two

different right hand sides d and Q⊺g. It can be easily done

with the Thomas algorithm which is a special case of Gaus-

sian elimination. There are other parallel tridiagonal solvers

available and we will discuss them in Section II-1.

The main difference between Algorithms 1 and 2 is the use

of the Sherman–Morrison formula to solve the system from

line 12 to 14 instead of using the Givens rotations for that

purpose. It is applied to solving the same tridiagonal system

Tλ with two different right hand sides d and Q⊺g. The two

vector inner products are needed to obtain the scalar in order

to form the solution. Note that in line 17, we only update

the eigenvalue at the first iteration and leave the eigenvector

unchanged because Tλ at the first iteration is nearly singular.

Other approaches to this issue include manually applying a

shift to the initial eigenvalue or using the Ritz value x⊺Ax/x⊺x
as the starting point. Apart from tridiagonalization, the compu-

tational cost for algorithm 2 is dominated by the matrix-vector

multiplications.

TABLE I
PERFORMANCE OF n× n MATRIX TIMES n×m AGGREGATED VECTORS

ON NVIDIA V100-SXM2-32GB GPU, DGEMM ROUTINE FROM CUBLAS
V11.0.

Matrix size Number of vectors Time (ms) Performance (GFLOP/s)

20000 1 3.76 212.65

20000 8 3.79 1688.17

20000 32 6.48 3949.32

20000 128 13.57 7544.43

Alternatively, as described in [12], one can also solve the Ja-

cobian matrix with the special structure J =

(

T − λI y
z⊺ 0

)

,

which is a tridiagonal system with an extra row and column

at the bottom and right. However, it is hard to parallelize

the corresponding solver for this special structure and it is

even harder make it scalable. This is in stark contrast with

the approach of solving the tridiagonal system which is well

studied and admits several parallel implementations that target

a variety of computing environments.

b) Blocked SICE-SM Algorithm: The computational cost

of Algorithm 2 is dominated by matrix-vector multiplications

especially inside the refinement iteration. In the matrix-vector

multiplication, the whole matrix is read once and only a single

multiplication and addition are performed per each of the

fetched elements. This results in a low arithmetic intensity of

2, which results in very low inefficient on modern hardware

including CPU, GPUs, and computational accelerators. To

improve on this implementation aspect, we can aggregate

several eigenpairs simultaneously and refine them at the same

time while they are cached in higher levels of the memory

hierarchy. This blocking strategy is common in numerical

linear algebra since it was introduced in LAPACK[19] and

relies on grouping computations so that Level 3 Basic Linear

Algebra Subprograms (BLAS) may be utilized to perform

operations that are rich in matrix-matrix multiplications. These

operations perform more efficiently as they have higher arith-

metic intensity resulting from higher data reuse in fast portions

of the cache hierarchy. In our case, we assume that the matrix

size is far greater than the number of eigenpairs to refine.

Then the matrix-vector multiplication is dominated by the

reading of the matrix elements. And with the blocked version,

it the additional cost of refining extra eigenpairs is negligible.

In Table I, we show examples of the performance rates and

execution times for different numbers of vectors submitted to

the DGEMM routine from cuBLAS on the NVIDIA V100 GPU.

The times for 1 and 8 vectors are almost the same. And for

32 or 128 vectors the elapsed time increases 3.6×.

There are a few issues we need to solve while formulat-

ing a blocked variant of the algorithm. First, in SICE, the

eigenvector is first normalized in infinity norm. The index

s is also picked so that ‖x‖∞ = sx = 1. If we allow

different s for each of the eigenpairs, then we will have to

access different columns in A to construct vector c, and also

different rows of Q for vector f⊺. The row access required

for the latter is performed in column major layout and results

in non-coalescing memory accesses which are extremely slow
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and should be avoided as much as possible due to their low

utilization of the GPU’s memory bandwidth. To show that it

is fine to choose s arbitrarily, we need to take a closer look

at the matrix in Eq. (14) and expand it without canceling any

terms we get

(QTλQ
⊺ +QQ⊺ve⊺sQQ⊺)y = r + ysỹ (19)

Again, for our mixed-precision scheme, we would like to per-

form the tridiagonalization in single precision. Hence QTλQ
⊺

is only an approximation of A with precision ǫsingle, i.e.

‖Aλ−QTλQ
⊺‖ ∼ O(ǫsingle). The same applies to QQ⊺ which

is only an approximation of I with ‖QQ⊺ − I‖ ∼ O(ǫsingle).
So no matter which index s we pick, we will always get an

error of order ǫsingle in the correction of eigenvalue ys coming

from the other elements in the solution vector y. There could

be a potential problem if the eigenvalue itself is small and

the error is preventing the eigenvalue to be refined to desire

accuracy. This can be remedied by pre-scaling the matrix so

that the eigenvalues are not too small.

The other issue is that by treating the eigenpairs indepen-

dently they might lose their orthogonality. In the worst case,

they might all converge to the same eigenpair. However, it is

easy to reorthogonalize with

X ′ = X +
1

2
X(I −X⊺X) (20)

In practice, we found that it is sufficient to reorthogonalize

after the refinement is done. Doing so in each iteration would

not speed up the convergence. The computation of I −X⊺X
also lets us detect if they converged to the same eigenvector.

By combining these considerations, we arrive at Algorithm 3.

Because a Hermitian matrix can also be tridiagonalized

into real matrix, algorithm 3 can easily be extended to be

applied on Hermitian matrices. The transformation matrix Q
now becomes complex, as well as the intermediate vectors.

However, the coefficients in T − λI are all real so it can be

optimized to avoid doing all the operations in complex space.

c) Implementation Details: The one-stage eigensolver

has the following components with its corresponding LAPACK

routine names: DSYTRD (Tridiagonalization via Householder

transformations), DSTEDC (Tridiagonal symmetric eigen-

solver based on divide-and-conquer), DORMTR (back trans-

formation for eigenvectors).

First the system is transformed to the tridiagonal form via

Householder transformations. Then the tridiagonal eigensolver

is called. We will not discuss the details of eigensolvers here,

as it is not the focus of this work. After the eigenvalues

and eigenvectors of the tridiagonal system are computed,

the back transformation is applied, which is the inverse of

the Householder transformations from tridiagonalization stage.

Because the transformation is orthogonal, the inverse is simply

a transpose. If only a portion of the eigenvectors are requested,

the transform would not be explicitly formed for performance

reasons. The transform in the form of elementary reflectors is

directly applied on eigenvectors of the tridiagonal system to

obtain the eigenvectors for the original matrix.

Algorithm 3 Blocked SICE-SM algorithm

1: Input: A = AT ∈ R
n×n, initial eigenvectors X =

[x1|x2|...|x�] ∈ R
n×� and the corresponding initial eigenvalues

Λ = (λ1, λ2, . . . , λ�)
T ∈ R

l. itermax denotes the maximum
number of iterations.

2: Output: Refined eigenvectors X and refined eigenvalues Λ.
3: function [X,Λ] ← SICE SM BLK(A,X,Λ, iter)

4: [Q,T ] ← tridiag(A) ⊲ Tridiagonalization A = QTQ⊺,
QQ⊺ = I .

5: for i in 1 : itermax do
6: s ← i
7: R ← X × diag matrix(Λ)−A×X ⊲ Residual vectors

need higher precision.
8: for j in 1 : ℓ do
9: cj ← −xj −A(:, s)

10: end for
11: Compose matrix C = [c1|c2|...|c�] from column vectors

cj
12: C(s, :) ← C(s, :) + ΛT

13: D = [d1|d2|...|d�] ← QT × C ⊲ Can be in lower
precision.

14: RHS = [rhs1|rhs2|...|rhs�] ← QT ×R ⊲ Can be in
lower precision.

15: f ← Q(s, :) ⊲ s-th row of Q.
16: for j in 1 : ℓ do
17: ui ← (T − λI)−1di
18: vi ← (T − λI)−1rhsi
19: yi ← vi −

f⊺vi
1+f⊺ui

ui ⊲ Sherman–Morrison

20: end for
21: Compose matrix Y = [y1|y2|...|y�] from correction

vectors yj
22: Y ← Q× Y
23: Λ ← Λ + Y (s, :)T ⊲ Update eigenvalues.
24: if i �= 1 then
25: Y (s, :) ← 0 ⊲ Set yi(s) to 0.
26: X ← X + Y ⊲ Update eigenvectors.
27: Normalize eigenvectors xi in X .
28: end if
29: if desired accuracy reached then
30: break
31: end if
32: end for
33: X ← X + 1

2
X(I −X⊺X) ⊲ Orthogonalization.

34: end function

Algorithm 4 Mixed precision one stage symmetric eigensolver

with iterative refinement

1: SSYTRD: Tridiagonalization via Householder transforma-

tions in single precision.

2: DSTEDC: Tridiagonal symmetric eigensolver (divide and

conquer) in double precision.

3: SORGTR: Generate the transformation matrix Q from

elementary reflectors in single precision.

4: Blocked SICE-SM (algorithm 3) for iterative refinement.

For the mixed-precision eigensolver in Alg. 4, we first

perform tridiagonalization in single precision as it is com-

putationally intensive requiring O(n3) operations. After the

system is transformed to tridiagonal form, the eigensolver

is applied. The eigensolver operates in double precision as

we need to be able to distinguish nearby eigenvalues that
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are closer than ǫsingle but not closer than ǫdouble. If single

precision is used for this case, the eigenvalues are very likely

to be considered as repeated, and the returned eigenvectors

could be an arbitrary orthogonal basis of the eigenspace. For

the back transformation, the matrix Q needs to be explicitly

formed in order for us to solve Eq. (15). Then the Blocked

SICE-SM (Algorithm 3) is used to iteratively refine the eigen-

pairs to the desired accuracy. Most of the operations in the

refinement process are matrix-matrix operations, which have

been developed internally. The batched tridiagonal solver in

line 16 will be discussed in section II-1.

For two-stage algorithms, the structure is similar to the one-

stage method but both the forward- and back-transformations

are split into two reduction steps: first stage symmetric to

band via Householder transformations, second stage band to

tridiagonal via bulge chasing, tridiagonal symmetric eigen-

solver (divide and conquer), back-transformation for second

stage on eigenvectors, back-transformation for first stage on

eigenvectors.

Mixed precision for a two-stage eigensolver is actually more

problematic performance-wise. The main reason is that accu-

mulation of the back transformations from the second stage of

bulge chasing is costly: it has a lot of small transformations

and is expensive to apply on a square transform matrix Q
compared to the case of only computing the eigenvectors.

However, we need to explicitly form Q for the later refinement.

Here, we exploit the fact that the back transformation is not

applied on the eigenvectors; it can actually start as soon

as the first stage is finished. So we are reversing the order

of back transformations to start it first. Similarly, the back

transformation of the second stage can start when both the

second stage and the back transformation of the first stage

are completed. This is shown in Algorithm 5. For the case of

MAGMA implementation, this would enable more parallelism.

The back transformation of the first stage can be done on the

GPU while the second stage of bulge chasing is done on the

CPU. The eigensolver, which is mainly done on the CPU,

can be overlapped with the back-transformation of the second

stage on the GPU.

Algorithm 5 Mixed precision two stages symmetric eigen-

solver with iterative refinement

1: First stage symmetric to band via Householder transfor-

mations in single precision.

2: Second stage band to tridiagonal via bulge chasing in

single precision.

3: Tridiagonal symmetric eigensolver (divide and conquer)

in double precision.

4: Generate the transformation matrix Q from first stage in

single precision. This can start as soon as 1. finishes.

5: Apply the back transformation for second stage onto Q in

single precision. This can start as soon as both 2. and 4.

finish.

6: Blocked SICE-SM (algorithm 3) for iterative refinement.

1) Batched Tridiagonal Solver: Line 16 in Algorithm 3 iter-

ates over all the eigenvalues and solves the shifted tridiagonal

system for each of them as in Batched BLAS[20], [21]. On

multicore CPUs, the straightforward and efficient approach

is to assign one system to each thread at a time which is

likely bound to a single CPU core. Each thread can use the

Thomas algorithm. But on the GPU, we need more parallelism

to saturate the computational potential of the hardware. There

are previous studies[22], [23], [24] that investigated the solving

of one big tridiagonal system on GPUs. One of the techniques

is based on the cyclic reduction (CR). Consider a tridiagonal

system with 8 unknowns:

R
8×8 ∋ A× �x = �y ∈ R

8 (21)

By combing all the even-indexed equations with odd-indexed

equation, we are able to have an updated system with half of

the size:

⎡

⎢

⎢

⎣

b′1 c′1
a′3 b′3 c′3

a′5 b′5 c′5
a′7 b′7

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x1

x3

x5

x7

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

y′1
y′3
y′5
y′7

⎤

⎥

⎥

⎦

(22)

The coefficients of the updated system can be computed with

the following formulas:

k1 =
ai
bi−1

, k2 =
ci

bi+1

a′i = −ai−1k1, b′i = bi − ci−1k1 − ai+1k2

c′i = −ci+1k2, y′i = yi − yi−1k1 − yi+1k2

(23)

By recursively reducing the size of the system by half,

it is possible to bring the size down to a single unknown

with a trivial solution. Then, the back-substitutions follows

the same path in reverse order and thus the solution of the full

system is obtained. Alternatively, while reducing the size of

systems, we can produce two independent systems, one with

odd-indexed unknowns and the other with the even-indexed

unknowns. Both systems can be solved independently with

only its own coefficients. By repeating the process, we will

arrive at trivial systems with a single unknown b′′i xi = y′′i
for all of the unknowns xi. The back substitutions wold not

be needed for this approach, which is called parallel cyclic

reduction (PCR). The PCR method exposes more parallelism

towards the end but with requires more computation which

represents a design trade-off. For our GPU implementation,

we used PCR to solve one tridiagonal system by each of the

thread blocks.

III. NUMERICAL AND PERFORMANCE RESULTS

The numerical experiments in this section will be divided

into two parts: convergence and performance.

a) Numerical Convergence: The numerical experiments

in this section were performed in MATLAB version R2020a

with implementations of Algorithm 3 (blocked SICE-SM).

The expression A = gallery(’randsvd’,n,-cond)

was used to generate symmetric test matrices with a prescribed

condition number from random eigenvectors and geometrically
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distributed eigenvalues in range (1, 1

cond
). The input matrix

is first converted to single precision and subsequently

tridiagonalized using [Q,T] = hess(A) function in single

precision. Then converted back to double precision for finding

the eigenvalues and eigenvectors using expression [V,D] =

eig(A). The eigenvectors in D and column eigenvectors

in QV will be used as the starting point of our refinement

algorithms.

Figure 1 shows the convergence of Algorithm 3: the blocked

SICE-SM. The input symmetric input matrix had size 100 with

geometrically distributed eigenvalues from 1 to 10−7. The con-

vergence in terms of residual ‖Ax−λx‖∞ of each eigenvalues

are plotted in different colors from blue as largest eigenvalue

1 to red as the smallest eigenvalue 10−7. For the first iteration,

we only updated the eigenvalues so there was no initial

improvement. For large eigenvalues, the method converges

quickly in two iterations. However, for small eigenvalues,

that are much closer to each other due to the geometrical

distribution and thus we observer the resulting slowdown of

convergence.

Fig. 1. Blocked SICE-SM convergence of a 100 × 100 matrix with
geometrically distributed eigenvalues from 1 (blue) to 10

−7 (red).

b) Performance Results: The system we are using has

two sockets of Intel(R) Xeon(R) CPU E5-2650 v3 CPUs. But

only one is being used for more stable results. The system

is accelerated by a Tesla V100 GPU. The theoretical peak

performance of a V100 is 7.8 TFLOP/s in double precision

and 15.6 TFLOP/s in single precision. The software stacks

was composed of Intel Parallel Studio Cluster 2020. (for

C and Fortran compilers and BLAS rouintes from MKL

library), NVIDIA CUDA v11.0.2, and MAGMA version 2.5.4.

The input symmetric matrix A ≡ [aij ] was generated with

random elements from a uniform distribution in range (0, 1):
aij ∼ U(0, 1) and aij = aji. The Hermitian matrix is also gen-

erated in the same fashion for it’s imaginary part. The largest

eigenvalues in the spectrum were requested. The blocked

SICE-SM algorithm was implemented in both PLASMA and

MAGMA.

In Figure 2, PLASMA was used in a CPU-only mode

and no GPUs were used in the system. The symmetric input

matrix had size n = 10000. The three stacked bars represent

the breakdown of time from mixed-precision with refinement,

single precision, and double precision from the two-stage

algorithm, respectively. The time for single precision is about

half of that of double precision and each of the components

take proportionally the same time for both precisions.

Fig. 2. Breakdown of timings of two-stage eigensolvers with 32 largest
eigenparis requested in PLASMA (top), MAGMA on NVIDIA Volta V100
(middle), and MAGMA on NVIDIA GTX1060 (bottom). The problem sizes
are 10 000, 20 000, and 12 000, respectively.

Figure 3 shows the performance results from the MAGMA.

First the solid lines are the one-stage algorithm in double,

single, and mixed precision (with iterative refinement). The

input matrix sizes range from 1000 to 20000, and the largest 32

eigenpairs are requested. Single precision is about 1.7× faster

than double precision and the mixed precision is about 1.3×
faster. The dashed lines represent the two-stage algorithm.

They are at least 2× faster than their corresponding single
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stage algorithm in general. The performance improvement over

double precision is about 1.2×. Left of Figure 4 shows the

performance results of complex Hermitian solvers. Complex

operations has higher arithmetic intensity so the performance

gap between single and double would also be larger. Mixed

precision algorithm can also have greater chance to benefit

it. On the system wit NVIDIA V100, we are observing

complex single is 2.44× faster than complex double and mixed

precision solver is 1.45×.p

Fig. 3. Performance comparison of single, double, and mixed precision solvers
for real symmetric matrix on MAGMA for both single stage and two-stage
algorithms on NVIDIA V100 GPU with varying sizes of matrices and fixed
number of requested eigenpairs.

The left of Figure 5 shows the performance when requesting

different numbers of eigenpairs with the input matrix size fixed

at n = 20000. Mixed precision is noticeably faster than double

precision if 64 or fewer eigenpairs are requested. For larger

eigenpair count, the time in iterative refinement grows linearly

with the number of requested eigenpairs and it eventually

looses its performance advantage.

The middle of Figure 2 shows the detailed profile for matrix

size n = 20000 and 32 eigenvalues/eigenvectors requested.

The details of computational components were explained in

Section II-0c. The single precision routine took 60% of time

compared to double, and the ratios between components across

precisions were about the same. For mixed precision, there is

a 0.5 second overhead at the beginning to convert the whole

matrix from double to single precision.

We tested another machine with a drastically different setup

by using a consumer-grade gaming GPU. It has the same

CPUs as the V100 system. The GPU is NVIDIA GTX1060

6GB GPU. The theoretical peak performance of GTX1060

is 136.7 GFLOP/s in double and 4.375 TFLOP/s in single

precision. This is a notable different as the gaming maintains

1:32 double-single ratio compared to server-grade NVIDIA

V100 with the ratio being 1:2. The right of Figure 4 shows

the performance with different matrix sizes on GTX1060 when

requesting the largest 32 eigenpairs. The performance of single

precision is about 8× better than that of double precision and

the mixed precision with refinement is about 2× better than

Fig. 4. Performance of single, double, and mixed precision solvers for
complex Hermitian matrix based on MAGMA two-stage algorithm with
varying sizes of matrices and fixed number of requested eigenpairs on
NVIDIA V100 GPU (top) and NVIDIA GTX1060 GPU (bottom).

double precision. The left of Figure 4 shows the complex

Hermitian solver and the the speed up over complex double is

3.6×. In the right of Figure 5, we show performance results

when the matrix size was fixed at n = 12000 but with varied

number of requested eigenpairs. The mixed precision solver is

still faster than double precision when 128 eigenpairs are re-

quested, but the time in iterative refinement became significant

if more eigenvalues and eigenvectors were requested.

The right of Figure 2 shows the profiling results with timing

breakdown for matrix size n = 12000 and the 32 largest

eigenpairs requested. In double precision, almost 80% of time

was spent at the first stage to reduce the matrix from symmetric

to band-symmetric form. The operation is compute-bound and

relies on GPU’s matrix-matrix multiplication efficiency. But

the consumer-grade GPU does not have hardware to support

high-efficiency processing for the double floating-point units

and consequently extra clock cycles are used to emulate

higher precision with single precision instructions. The mixed-

precision algorithm does the first-stage reduction in single

precision and does not suffer from the same penalty. The back-

transformation of second stage is still costly but it is done

with single precision on the GPU. Overall, the performance

of mixed precision with the iterative refinement algorithm is

2× faster over purely double two-stage algorithm.
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Fig. 5. Performance comparison of single, double, and mixed precision
solvers on top of MAGMA with varying number of requested eigenpairs and
fixed matrix size on NVIDIA V100 GPU (top) and NVIDIA GTX1060 GPU
(bottom). The problem sizes are 12 000, and 20 000, respectively.

IV. CONCLUSIONS

We developed an iterative refinement algorithm for sym-

metric and Hermitian eigenvalue problems based on the ini-

tial work from the SICE algorithm. By utilizing the Sher-

man–Morrison formula, our new solver has more opportunity

to be parallelized compared to the serial Givens rotations in

the SICE algorithm. The blocked version of the algorithm was

also proposed in order to refine multiple pairs of eigenvalues

and eigenvectors simultaneously for higher utilization of the

computational resources with lower demand for memory band-

width. The implementation of the mixed-precision algorithm

is based on the two-stage eigensolver in either the PLASMA

and MAGMA software libraries for numerical linear alge-

bra, which gives our implementation the advantage of both

portability and performance. The computational components

inside the mixed-precision algorithm have been reordered

to create more parallelism at runtime and allow additional

overlap to computational stages more efficiently. Compared to

the double-precision solver, the performance benefit has been

shown for the cases in which only a portion of eigenvalues

and corresponding eigenvectors are requested. This remains

true across hardware with a varying ratio of performance of

single and double precision units.
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