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Intelligence Sparse Sensor Network for Automatic Early
Evaluation of General Movements in Infants

Benkun Bao, Senhao Zhang,* Honghua Li, Weidong Cui, Kai Guo, Yingying Zhang,
Kerong Yang, Shuai Liu, Yao Tong, Jia Zhu, Yuan Lin, Huanlan Xu, Hongbo Yang,*
Xiankai Cheng,* and Huanyu Cheng*

General movements (GMs) have been widely used for the early clinical
evaluation of infant brain development, allowing immediate evaluation of
potential development disorders and timely rehabilitation. The infants’
general movements can be captured digitally, but the lack of quantitative
assessment and well-trained clinical pediatricians presents an obstacle for
many years to achieve wider deployment, especially in low-resource settings.
There is a high potential to explore wearable sensors for movement analysis
due to outstanding privacy, low cost, and easy-to-use features. This work
presents a sparse sensor network with soft wireless IMU devices (SWDs) for
automatic early evaluation of general movements in infants. The sparse
network consisting of only five sensor nodes (SWDs) with robust mechanical
properties and excellent biocompatibility continuously and stably captures
full-body motion data. The proof-of-the-concept clinical testing with 23 infants
showcases outstanding performance in recognizing neonatal activities,
confirming the reliability of the system. Taken together with a tiny machine
learning algorithm, the system can automatically identify risky infants based
on the GMs, with an accuracy of up to 100% (99.9%). The wearable sparse
sensor network with an artificial intelligence-based algorithm facilitates
intelligent evaluation of infant brain development and early diagnosis of
development disorders.
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1. Introduction

Brain development is a process of continu-
ous remodeling during the whole infant de-
velopment stage.[1] Early intervention may
improve outcomes in developed neuromo-
tor diseases, but this requires accurate early
identification of risky infants.[2] Functional
brain imaging (i.e., MRI,[3] fNIRs) can di-
rectly identify intracranial structural lesions
in high-risk children and predict neurode-
velopmental diseases, especially cerebral
palsy[4] (CP). However, expensive equip-
ment, the requirement for skilled profes-
sionals, and the complex imaging process
present challenges for use in large-scale
early detection, especially in remote and
low-resource settings.[5] Fortunately, clini-
cal data indicate that infant movement be-
haviors can reveal rich information about
the development of the central nervous
system.[6,7] For instance, motor develop-
ment assessment methods[8] (GMA, TIMP,
HINE) are widely used based on some
motor development scales[9] (i.e., GDS,
BSID, AIMS, PDMS) obtained from visual

S. Zhang, H. Cheng
Department of Engineering Science and Mechanics
The Pennsylvania State University
University Park, PA 16802, USA
E-mail: huanyu.cheng@psu.edu
H. Li
Department ofDevelopmental andBehavioral Pediatrics
TheFirstHospital of JilinUniversity
Changchun130021, P. R. China
J. Zhu, Y. Lin
School ofMaterial andEnergy
University of Electronic Science andTechnology of China
Chengdu610054, P. R. China
H.Xu
Department of RehabilitationMedicine
Children’sHospital of SoochowUniversity
Suzhou215025, P. R. China

Adv. Sci. 2024, 11, 2306025 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2306025 (1 of 13)

http://www.advancedscience.com
mailto:yanghb@sibet.ac.cn
mailto:chengxk@sibet.ac.cn
mailto:zhangsh@sibet.ac.cn
https://doi.org/10.1002/advs.202306025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:huanyu.cheng@psu.edu
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadvs.202306025&domain=pdf&date_stamp=2024-03-06


www.advancedsciencenews.com www.advancedscience.com

Figure 1. The schematic illustrating the system design and application of the intelligent sparse sensor network with soft wireless IMU devices (SSN-
SWDs).

examination by specialized experts and clinicians in practice.[10]

Although GMA can predict CP with high sensitivity and
specificity,[11] it is not widely adopted clinically due to subjec-
tive judgments and the significantly lower number of clinicians
specifically trained with Prechtl’s GMAmethod.[12] A new digital
approach (or digitization of scales) is therefore urgently needed
for the early evaluation of general movements in infants for clin-
ical application.
The general movements of infants can also be captured by us-

ing a video camera.[10] The spatial and temporal resolution of the
video-based system (i.e., multiview imagery, depth imagery, sin-
gle RGB stream) is sufficient for movement analysis, but the data
are inevitably accompanied by background noise.[13] The large
collected data also present challenges for high-speed process-
ing and efficient automatic classification.[14] Besides privacy con-
cerns, the complex camera setup and susceptibility to surround-
ing environments such as lighting further limit their real-world
implementation in community clinics or home settings.[15–17]

The camera’s limited field of view makes it challenging to evalu-
ate large-area spatial posture and the engagements between chil-
dren and parents or clinic workers are impeded[18] as well. On the
other hand, wearable sensors such as accelerometers,[19,20] and
EMG electrodes[21] can also be explored for general movements.
To significantly reduce the risk of iatrogenic skin injuries due to
the fragility associated with infants’ immature skin,[22] it is highly
desirable to explore soft wearable wireless devices with “skin-
like” mechanical properties[23,24] to interface with the neonatal
skin. Despite recent advances in this class of soft devices[25] to
monitor various biomedical signals (e.g., acceleration/velocity,[26]

ECG,[27] PPG,[28] and cerebral hemodynamic[29]), challenges still
exist for the automatic early evaluation of general movements in
infants. Without losing detection accuracy, sparse sensor nodes
in the soft wearable device[30,31] are preferred to reduce the impact
of foreign body sensation and infants’ autonomousmovement, as
well as to cut the cost. Different from large-size AI frameworks,
tiny machine learning algorithms could provide rapid classifica-
tion, but their use for accurate automatic detection at different
network conditions still remains elusive.
Herein, this work presents a machine learning-powered wire-

less sparse sensor network with soft wireless inertial motion

units (IMUs) devices for automatic early evaluation of general
movements (GMs) in infants (Figure 1). In particular, five IMU
sensors with biocompatible soft materials are connected to the
BLE (Bluetooth low energy) one-to-five technology unit by ser-
pentine structures, forming a wireless sparse sensor network to
allow for comfortable contact with the skin of infants and a robust
collection of movement data. The data streams generated by this
sensor network are processed by a tiny machine-learning algo-
rithmwith a custom-developed graphical user interface (GUI) for
the automatic identification of infants at risk of abnormal neural
development. The proof-of-the-concept pilot study of validating
the device on infants between 4 and 21 weeks of age (n = 23) in
low-resource (Quwo, Linfen in China) settings demonstrates the
practical utility of the device for the assessment of general move-
ments and identification of infants at risk.

2. Results and Discussion

2.1. Sparse Sensor Network with Soft Wireless IMU Devices
(SSN-SWDs)

2.1.1. SWD Design Layouts and Sensor Network Configuration

The soft wireless IMU device (SWD) with the serpentine struc-
ture design and soft biocompatible silicone can conform to the
delicate skin of infants with a medical-grade silicone adhesive,
allowing for the real-time monitoring of general movements
through 3-axis acceleration and angular velocity (Figure 2a). The
device consists of three main units on a flexible printed circuit
board (fPCB) interconnected by serpentine traces: 1) an IMU for
continuous monitoring of movement; 2) a low-power wireless
communication unit based on BLE; and 3) a power management
unit based on a lithium polymer battery to support more than 4 h
of continuous real-time data streaming (Figure S1, Supporting
Information). The resulting fPCB encapsulated with a medical-
grade silicone elastomer yields a SWDwith a light weight of 4.1 g
and a small footprint of 54× 27 × 4 mm (Figure S2a, Support-
ing Information). The charging unit with magnetic pogo pins
fabricated by 3D printing allows for electrical and mechanical
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Figure 2. Design and application of the intelligent sparse sensor network with soft wireless IMU devices (SSN-SWDs) for automatic early evaluation
of general movements (GMs) in infants. a) Exploded view showing the structure of the SWD comprising of electronic components and flexible printed
circuit board encapsulated by soft silicone elastomers. b) Photograph of the fully integrated SSN-SWDs system that includes five time-synchronized
SWDs and a graphical user interface (GUI) on a desktop. c) Functional block diagram of the sparse sensor network showing the components of the
SWD: 3-axis acceleration and angular velocity sensor, IIC interface, MCU, flash memory, and radio interface, with a self-developed GUI that includes data
acquisition and analysis modules. d) Flowchart of the time-synchronized strategy. e) Measured numbers of data packets with sensor nodes positioned
at different distances from the GUI.

coupling to the SWD for stable and fast charging (Figure S2b,
Supporting Information).
Although rich sensing nodes can provide a high spatial reso-

lution of movement information, they are associated with a clear
foreign body sensation and inevitably affect the autonomous
movement of infants. Emphasis has been given to themovement
of limbs and the head by experienced clinicians when it comes to
assessing infants’ GMs. Therefore, the sparse sensor network in
this work strategically places five physically separated but wire-
lessly connected SWDs on the forehead, wrists, and ankles of
the infants (Figure 2b). Specifically, the captured raw data of 3-

axis acceleration and angular velocity in hexadecimal format can
be stored by the micro control unit (MCU) in the Flash buffer
(Figure 2c). The wireless connection is made possible by the BLE
one-to-five technology, with the block diagrams showing the de-
sign architecture and overall data flow in Figure 2d. The custom
constant frequency of each sensor node set by a 32.768 kHz clock
timer allows periodic readings of the data with a given length.
Once the data length exceeds the custom threshold (24 bytes),
the raw data will be broadcast to the computer by the BLE mod-
ule. Moreover, the custom synchronization strategy exploits a 2.4
GHz wireless transmission scheme in a one-to-five technology,
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Figure 3. Mechanical property and biocompatibility of the SWD. a-i) Optical images of the bare fPCB during various mechanical deformations and the
corresponding finite element analysis of the fPCB upon (ii) stretching (10%) and (iii) bending (R = 70 cm). b) Optical images of the encapsulated
SWD upon twisting and stretching (the LED light is on to indicate the working condition). c-i) The corresponding finite element analysis, (ii) schematic
diagram, and (iii) optical image to show the folding of the fPCB for minimized footprint. d-i) Optical image of the folded encapsulated SWD and (ii) its
placement on the forehead of a neonatal head lime model. e) Optical microscopy images of the human lung fibroblast cells cultured with Ecoflex 0030
and Gel 4317 for 1, 2, and 3 d. f) Optical images of the skin after peeling off the SWD (on the skin for 2 h) to show no skin irritation.

allowing for communication of the time-synchronized data. The
GUI on the computer then stores and parses these data with a
defined length with a custom protocol to display the movement
data from each sensor node. The integrated system allows the
wireless operation of the sensor network that is physically sepa-
rated from the computer at a working distance of ≈10 m without
packet loss (Figure 2e). The high accuracy of the analysis, classi-
fication, and evaluation of general movements in infants via the
GUI showcases the feasibility of the integrated system for early
diagnosis of developmental disorders.

2.1.2. Mechanical Property and Biocompatibility of the SWD

The combination of miniaturized commercial off-the-shelf
(COTS) components with soft materials and stretchable struc-

tures could provide the hybrid electronics with a soft and biocom-
patible interface to the delicate neonatal skin for robust contin-
uous recording. The fPCB interconnected by serpentine-shaped
conductive traces allows the device to withstand mechanical de-
formations (e.g., stretching, twisting, and bending) without me-
chanical failure (Figure 3a). The serpentine trace with optimized
structures results in a maximum principal strain in the PI/Cu
layer being less than the yield strain (0.3%) under various me-
chanical loads. The system is configured to turn on the LED
light only when the establishment of a Bluetooth low energy
(BLE) connection is successful (Figure S3, Supporting Informa-
tion). Therefore, the LED indicator of the Bluetooth remains ON
to indicate robust performance during stretching and twisting
(Figure 3b and Movie S1, Supporting Information). Consider-
ing the limited size of the infant’s forehead, it is vital to exploit
the device with aminimized footprint. Althoughmulti-layer PCB
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design could be explored to reduce the size, it would result in sig-
nificantly increased manufacturing costs. As an alternative, fold-
ing of the three fPCBs at the serpentine region reduces the device
footprint to 1.6 × 2 cm2 with a maximum strain of 0.25% in Cu
(Figure 3c and Movie S2, Supporting Information). The folded
device size is much smaller than the flat area of 4.5 × 3 cm2 at 18
weeks of gestational age.[32] The device function is not affected
by folding as the Bluetooth indicator remains lit on the infant
model’s forehead (Figure 3d). Potential skin injury has been a
significant concern in the standard clinical care for infants. The
cytocompatibility test by culturing human lung adenocarcinoma
cell line A549[33] with Ecoflex 0030 for 2 d demonstrates healthy
growth of the cells and biocompatibility of the device materials
(Figure 3e). Furthermore, there is no sign of skin irritation or al-
lergic reactions after using the device on the skin for 2 h (Figure 3f
and Figure S4, Supporting Information). With the drastically re-
duced cost in manufacturing, the device cost has been reduced
to $15 per sensor node. Together with the excellent biocompat-
ibility and high accuracy for automatic detection, the integrated
device from this work compares favorably with the commercial
equipment and other reported works (Tables S1 and S2, Support-
ing Information). The low-cost yet high-fidelity device promises
wide adoption for large-scale screening of infants at risk espe-
cially in regions with limited medical resources.

2.1.3. Characterization of the Electrical Property

The 3-axis acceleration (Acc.) and angular velocity (Av.) captured
by the IMU in the integrated device from different body posi-
tions can be directly compared to those from the commercial
rigid IMU sensor by using the Pearson correlation coefficient[34]

(r), defined as:

r =
∑n

i = 1

(
Xi− „X

) (
Yi−„Y

)
√∑n

i = 1

(
Xi− „X

)2√∑n
i = 1

(
Yi−„Y

)2 (1)

The 3-axis angular velocity from the device matches remark-
ably well with that obtained from a commercial rigid sensor (PN3
pro, Noitom) (Figure 4a), which exhibits r of 98.6%, 98.2%, and
97.7% for the x-, y-, and z-axis angular velocity between the two.
Compared with the commercial rigid device, the soft integrated
device is immune to the relative motion or motion artifacts for
both high- and low-frequency movements, because of the robust
and stable sensor/skin interface during movement (Figure S5,
Supporting Information). For instance, the stable/intimate con-
tact can reduce the impact of the relative motion at the inter-
face on the measured data and calculated feature values for the
machine learning model (Figure S6, Supporting Information).
The on-chip low-pass filter can also help remove the background
noise to enhance the accuracy of the captured movements for
clinical evaluation of GMs. In addition, subtle human physio-
logical information such as respiration rate (RR), pulse rate, and
heart rate (HR) can be obtained from the 3-axis raw angular ve-
locity based on the data processing flow algorithms shown in
Figure 4b. In brief, the x-axis angular velocity measured with the
device placed on the abdomen gives the respiration signal after
applying a bandpass filter (low cutoff frequency flow of 0.08 Hz

and high cutoff frequency fhigh of 0.9 Hz) and a custom peak-
detection algorithm (Figure 4c and Note S1, Supporting Infor-
mation). The pulse wave is separated from the raw x-axis angular
velocitymeasured from thewrist bymodifying the bandpass filter
(flow = 1 Hz, fhigh = 5 Hz) and the custom algorithm (Figure 4d
and Note S2, Supporting Information). Normalizing and sum-
ming the 3-axis angular velocities measured near the heart gen-
erates a heart waveform that correlates well with the waveform
from the commercial I-lead electrocardiogram (ECG) equipment
(Figure 4e). The easy detection of the R peak using a custompeak-
detection algorithm gives the heart rate (Note S3, Supporting
Information).

2.2. Automatic Early Evaluation of GMs in Infants Based on Tiny
ML Module

2.2.1. Clinical Experimental Setup and Data Collection

To validate the automatic early evaluation of GMs in infants
with the integrated device and tiny machine learning module, a
standalone room that meets the requirements of clinical GMs
assessment[35] (Figure S7, Supporting Information) is used for
the data collection. Although the integrated device does not pose
a specific requirement for the room, the quiet roomwith no other
stimuli (sound, light, etc.) is still used to capture the neonatal
autonomous movement for clinical evaluation. The clinical eval-
uation system includes a video camera for real-time recording,
which is meticulously assessed and labeled by a team of three
professional pediatricians from the First Hospital of Jilin Uni-
versity (Figure S7, Supporting Information). The SSN-SWDs are
also placed on the right wrist, left wrist, right ankle, left ankle, and
the head of an infant lying in a crib, with minimal effect on the
movement as shown in the insets (Figure 5a). The collected data
from both the camera and our device are stored and displayed by
the custom GUI on the computer (Figure S8, Supporting Infor-
mation).
In the proof-of-the-concept pilot study, acceleration and angu-

lar velocity are continuously recorded for approximately 5 min
from 23 neonatal subjects. Because the clinical evaluation of the
GMs with the camera requires no crying in the infants, five sam-
ples with crying during the 5-min data collection cannot be used.
As a result, there are 12 infant samples labeled as “Normal”, and
6 labeled as “Risky” (3 “Low Risk” and 3 “High Risk”) (Table
S3, Supporting Information), providing a labeled dataset for data
processing, feature extraction, and training of machine learning
models.

2.2.2. Visualization and Pre-analysis of the Dataset

In the clinical evaluation, normal infant subjects are associated
with general movements that have a variable sequence, ampli-
tude, speed, and intensity, with slight variations in the direction,
rotation, and frequency of motion, exhibiting relatively smooth
yet complex features.[36] In comparison, the infants at risk often
show the absence of GMs or abnormal GMs depending on the
severity of the disorder.[37] Therefore, it is possible to character-
ize the intensity and rotations of the body movement with the
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Figure 4. The electrical property of the SWD and its potential use for physiological monitoring. a) Comparison of the normalized signals simultaneously
acquired from the 3-axis commercial accelerometer (black line) and our device (red line) at the same position. b) Block diagram of the post-processing
algorithms to obtain the respiration, pulse, and heart rates. Signals detected by the device placed on the c) abdomen for respiration, d) wrist for pulse
wave, and e) central anterior region for the heartbeat, with detected peaks used for calculating the respiration, pulse, and heart rates. The mechano-
acoustic signal captured by our device (black line) is also compared with the ECG signals (red line) recorded by the commercial I-lead equipment.

measured acceleration and angular velocity. The features could
be analyzed and displayed in both time and frequency domains.
Compared to the “Normal” infant, the “Risky” subject exhibits

a single abrupt change occasionally in the 3D line graphs of real-
time acceleration and angular velocity measured from the left an-
kle, resulting in a distinct separate bulge marked by the dotted
circle (Figure 5b). The ranges of the measured acceleration and
angular velocity from the “Risky” subject are also narrower than
those from the “Normal” infant, which can be clearly observed
in the projected scatter maps on different planes (Figure 5c).
The range of acceleration from the “Normal” infant is approxi-
mately 2.5, 2, and 1.5 times larger than that of the “Risky” sample
in the x-y, x-z, and y-z planes, representatively, implying larger

variability in the acceleration for less convulsive movements.
This observation remains valid from all five sensing nodes as
shown in the 2D line graphs of acceleration and angular velocity
(Figure S9, Supporting Information).
In addition to the time domain, the power spectrum of acceler-

ation and angular velocity in the frequency domain obtained by
the fast Fourier transform (FFT) (Note S4, Supporting Informa-
tion) also confirms the clear difference between the two groups
(Figure 5d). The average power magnitude of the x-axis acceler-
ation (Acc.x) and angular velocity (Av.x) from the left ankle of
all “Normal” samples exhibits a pronounced higher energy than
that of “Risky” samples over the entire frequency range, confirm-
ing the higher variation in the movements of normal infants.
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Figure 5. Clinical configuration for dataset building, visualization, and pre-analysis. a) Photograph showing the experimental setup with the integrated
device placed on the right wrist, left wrist, right ankle, left ankle, and the head of an infant (12 week) lying in a crib. b) 3D scatter plots from 3-axis
(i) acceleration and (ii) angular velocity on the left ankle of a “Normal” (left, ID-01) and “Risky” infant (right, ID-20). c) The distribution of projected
scatter maps of (i) acceleration and (ii) angular velocity on x-y, x-z, and y-z planes based on the distribution density of the “Normal” and “Risky” samples
larger than 0.3%. d) The power spectrum of the x-axis acceleration (Acc.x) and angular velocity (Av.x) with error band from the left ankle (red/blue:
“Normal”/“Risky” infant) (n = 18). e) Heatmaps of overlap frequency rates of 3-axis acceleration and angular velocity between the “Normal” and “Risky”
samples at different positions (n = 18).

The same characteristics are consistently reflected in the power
spectrum of the y-axis and z-axis acceleration and angular veloc-
ity across all sensor nodes (Figures S10–S14, Supporting Infor-
mation), which indicates that normal infants are associated with
a higher variation in the movements across these sensor nodes.

However, the error band (described in Note S5, Supporting Infor-
mation) of these two groups overlaps, suggesting the challenge to
just use this magnitude to differentiate the individuals within the
two groups. Furthermore, the degree of overlap (or similarity) of
movement signals at different positions in the frequency domain
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 21983844, 2024, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202306025 by C

ochraneC
hina, W

iley O
nline Library on [23/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

can be obtained by averaging the ratios of the coverage magni-
tude over the total magnitude at each frequency point (Note S6,
Supporting Information). Although varied, the degree of overlap
clearly exists in the 3-axis acceleration and angular velocity from
five sensing nodes at different positions between the “Normal”
and “Risky” samples (Figure 5e). The lowest degree of overlap of
24.26% is observed in the y-axis angular velocity from the right
wrist, whereas the one in the x-axis acceleration from the head is
as high as 63.60%. While the low similarity of the features could
contribute to the easy differentiation of two groups, there is no
single feature to distinguish all individuals. Therefore, it’s desir-
able to exploit machine learning algorithms to consider multi-
ple features (in time and frequency domains) as in the clinical
evaluation of GMs for comprehensive assessment and accurate
classification.

2.2.3. Classification of GMs Assessment by Building Tiny Machine
Learning Flow

With the tiny machine learning model, the 3-axis acceleration
and angular velocity can be processed after data segmentation
and feature extraction with high-precision classification mod-
els to evaluate the neurological risks in infants (Figure 6a).
First, linear interpolation is explored to replace the missing
values[38] (“NULL”) for cleaning invalid data, and a Butterworth
low-pass filtering (fhigh = 14Hz) is used before data segmentation
to filter out high-frequency noise while retaining the neonatal
movements[39] The data stream is further segmented into frames
with a length of 120 s including a 10 s overlapping length by using
an overlapping sliding windows technique[40] (Figure 6b), which
gives over 90% different data in each segmented frame to ensure
significant independence between data frames. As a result of the
effective data segmentation, 54 data frames (38/16 with the “Nor-
mal”/“Risky” label) are obtained.
Adding the root mean square of the 3-axis acceleration and

angular velocity respectively expands the raw data from 6 to 8
dimensions[41] (i.e., data fusion). With 29 distinct features in the
time and frequency domains (Table S4, Supporting Information)
that are effective for pattern recognition of general acceleration
and angular velocity,[42] the N×29×8 feature matrices (with N be-
ing the number of the samples) are formed for each sensing
node. The seven entropy features (Table S4, Supporting Infor-
mation) commonly employed to characterize the complexity of
movement[43] are also calculated, leading to the construction of
an N×7×8×5 feature matrix that integrates seven entropy fea-
tures derived from 8D data obtained from five distinct positions.
As a result, six feature matrices are meticulously constructed to
facilitate further feature selection.
Due to the significantly larger number of features than that of

samples, it is important to perform feature selection. This can
be done based on the p-value that quantifies the statistical signif-
icance and contribution of each feature for the prediction. The
p-values were calculated with the above data (n = 54) using the
ttest2 function (MATLAB, 2021) (see the details in the Experi-
mental Section). Arranging elements within each feature matrix
in ascending order based on their p-values gives the top 20 fea-
tures from the five position feature matrices and the top 12 fea-
tures from the entropy feature matrix (Figure 6c and Note S7,

Supporting Information). Furthermore, the best relative features
at some sensor nodes only include one of acceleration or angu-
lar velocity according to the analysis of the p-values. As a result,
it is possible to further reduce fabrication cost and power con-
sumption by replacing the current gyroscope with a 3-axis gyro-
scope or removing dispensable data flow. For instance, the an-
gular velocity exhibits a much larger impact than the accelera-
tion at the neonatal head, which is attributed to the limited lat-
eral shaking movement at the supine position. Equal-weight fea-
ture processing[44] is then employed to construct the new 60 fea-
tures by integrating the top 10 features with a p-value less than
0.05 from each feature matrix, which avoids overfitting of the
model.[45]

As the number of the “Normal” samples is much larger
than that of the “Risky” samples even after data segmentation,
the accuracy of the prediction models can be greatly affected.
To address this challenge, the synthetic minority oversampling
technique[46] (SMOTE) is utilized to generate new synthetic sam-
ples by interpolating samples in the minority class to balance
the class distribution, which could enhance the performance and
generalization of classification models. The comparison in the
distribution of features before and after SMOTE indicates that
the generated synthetic new data are within the original data dis-
tribution (Figure 6d-i and Figure S15, Supporting Information).
Further comparison in the accuracy of various machine learn-
ing models[47] (except for SVM) to differentiate the “Risky” from
“Normal” samples shows a clear enhancement in the accuracy af-
ter using SMOTE (Figure 6d-ii and Tables S5 and S6, Supporting
Information). The most significant improvement is observed for
MNB, with its accuracy increased from 93.3% to 99.5%.
To further use the tinymachine learningmodel for rapid detec-

tion in low-resource settings, there is a strong motivation to ex-
plore dimension reduction in the features to remove excessive re-
dundancy in the predictionmodels. Although significantly deteri-
orated accuracy from 99.9% to 65.5% is observed for the data just
from the right wrist with the logistic regression[48] (LR) model,
the accuracy from the left ankle is close to the optimum one ob-
tained with hybrid features (Figure 7a). Because the clinical gen-
eral movement assessment relies on the entire body movement,
the following investigations exploit hybrid features unless other-
wise specified. The results also reveal the difference between fea-
turematrices from different sensor nodes, so the weight for them
should be different rather than the same. For instance, the feature
matrix of the ankle should have a larger weight than that of the
wrist. Similarly, the number of features from each matrix could
be different. As the dimension of the feature matrix is reduced
from 60 to 10, the changes in the accuracy from 9 distinct ma-
chine learning models[49] are different (Figure 7b and Table S7,
Supporting Information). The comparison leads to the choice of
the LRmodel in the subsequent studies for its high average accu-
racy of 99.2%. There is minimal fluctuation in the binary classifi-
cation accuracy as the dimension of the feature matrix is reduced
from 60 to 30, maintaining a high level of 99.9% (Figure 7c).
When 30 features are used for all models, the LR model clearly
outperforms the others (Figure 7d).
Convolutional neural network (CNN), as a class of feedfor-

ward neural network with convolution computation and deep
structure, is currently widely adopted for classification. After sev-
eral rounds of training, a two-layer CNN model (Figure S16,
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Figure 6. Strategies used for data processing and building a tiny machine learning model. a) The block diagram demonstrating the training of the
machine-learning model from data processing to classification. b) The use of long-term overlapping sliding window processing for the raw data. c)
The normalized p-value of the (i–v) top 20 features from position feature matrices and (vi) top 12 features from the entropy feature matrix. (d-i) The
comparison in the feature (Acc.x.P2) distribution from the left wrist of the “Risky” and “Normal” samples before and after SMOTE, and (ii) the change
in the classification accuracy from various machine learning models before and after SMOTE.

Supporting Information) can achieve an accuracy of 91.81% for
the binary classification of GMs assessment (Figure 7d). Al-
though the accuracy of CNNs may be constrained by the limited
scale of the dataset in the current study, the intrinsic emphasis
on data interaction within the network still suggests a high po-
tential for the creation of more meaningful models as the data
volume expands. However for this study, the LR model is still
considered to be themost suitable classificationmodel for the au-

tomatic evaluation of general movements from infants. Besides
the binary classification, the samples with the “Normal,” “High
Risk,” and “Low Risk” labels by the team of clinical experts (Table
S3, Supporting Information) can also be classified but with lower
accuracy for all models (Figure 7e). The LR model still exhibits a
remarkable accuracy of 95.3%, outperforming the other models.
The confusion matrix further indicates a high accuracy of 100%
and 94.6% for the samples with “Normal” and “Low Risk” labels

Figure 7. Automatic early evaluation of general movements in infants with the integrated device. The binary classification accuracy as a function of
a) the applied various feature matrixes using the LR model and b) various machine learning models with different numbers of features. c) The binary
classification accuracy versus the number of features and d) the accuracy of various machine learning models with 30 features. e) The three-label
classification accuracy of the various machine learning models with 30 features and f) the confusion matrix from the logistic regression model.
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(Figure 7f). However, the accuracy pertaining to the “High Risk”
samples is only 66.1%, primarily due to the limited number of six
samples available in this class for training and evaluation. Never-
theless, the results establish the feasibility of combining the in-
tegrated device with a tiny machine-learning model for the auto-
matic classification of general movements in infants, paving the
way for early evaluation and assessment of brain development.

3. Conclusion

In summary, soft sparse sensor nodeswirelessly connected by the
BLE one-to-five technology could be pliably attached to the deli-
cate neonatal skin for monitoring the general movement of the
infants. The integrated device combined with the custom GUI
and a tiny machine-learning model provides continuous and ro-
bust monitoring and processing of the general movements to
achieve a prediction accuracy of nearly 100% in clinical settings.
Furthermore, the model with the feature dimension reduced by
half still achieves almost unchanged accuracy, showing the high
potential for future deployment in low-resource settings. As the
medical cloud database builds up with more samples added in
the future, the design strategies from this work could promise
AI-powered intelligent medical services for other disease appli-
cations such as lung function and stroke balance assessments as
well as assisting rehabilitation in remote settings.

4. Experimental Section
Fabrication of Soft Wireless IMU Device: The self-designed flexible

printed circuit board (fPCB) was fabricated by a commercial vendor (Shen-
zhen HuiTai Electronic Technology Co.). All electronic components such
as the inertial measurement unit (IMU) (MPU9250, InvenSense) and
power management unit based on a 3.7 V lithium polymer battery (40
mAh, AngJie) with a voltage and current protection integrated circuit
(BQ24040, Texas Instruments) were mounted on the board with a reflow
soldering process. Customized firmware was debugged and loaded to the
BLE system on a chip (SoC) (nRF52832, Nordic Semiconductor) by Keil
5.0. Low-modulus elastomer (Ecoflex 0030, Smooth-On) with color paste
(Turquoise and Whit, SILC Pig) was used for the top and bottom encap-
sulation layers with shapes defined by aluminum molds, leaving only the
switch and charging ports exposed. Conformal stable contact of the device
with the skin was achieved by using an adhesive silicone layer (Gel 4317,
SILBIONE RT). Specifically, the adhesive silicone mixed with a weight ra-
tio of 1:1 on a release paper substrate was cured at 60 °C in an oven for
20 min. After cooling to room temperature, a CO2 laser system was uni-
tized for cutting the shapes matched to the SWD before assembly.

Development of the Computer GUI: The commercial software Unity
2020.3.41 was used to develop the GUI system. Various Unity components
such as Unity Engine, Unity UI, and Unity 2D were utilized to implement
the primary functions of theGUI. C# scriptingwas employed to implement
the GUI and data processing. With the help of MySQL Connector/NET, the
Unity project was connected to a MySQL database (version 8.0.17.0) to fa-
cilitate data storage, exportation, and other functions. The Unity software
was used to receive the data collected from the sensors in the integrated
device and the data collection process was also recorded and saved in
video format (Figure S8, Supporting Information). Additionally, the mag-
netic field correction function in the software using the C# programming
language could implement the IMU magnetic field’s ellipsoid fitting algo-
rithm to remove the influence of the magnetic field, resulting in improved
precision of the angel calculation for other applications in future investi-
gations.

A personal information file library was created for each subject, allow-
ing for the creation of personalized rehabilitation training plans for each

individual in the future. Following the instructions of the software, an ac-
count was registered by the user, with a proprietary account file that links
all subject information under that account automatically generated by the
software. As a result, personal information was secured to facilitate future
large-scale studies.

Machine Learning and CNN Classification Model Building: A computer
with an Intel Core i5-11400 processor, 16GB of memory, an NVIDIA
GeForce RTX 3060 GPU, and a Windows 10 operating system was uti-
lized for the training and testing of machine learning models. The algo-
rithms were implemented using the Python programming language. The
TensorFlow-GPU 2.4 deep learning framework was used for CNN.

The collected data were randomly divided into training and testing sets
using a hold-out method, with 80% allocated to the training set and 20%
to the testing set. For the logistic regression model, 50 rounds of hold-out
training were used, with fivefold cross-validation in each round to obtain
objective final results. The algorithmwas also run for more than 10 rounds
and the average value of the results was calculated to ensure consistency
in the results.

For the convolutional neural network (CNN), a two-layer CNN classi-
fication network was designed using the Keras framework. The network
consisted of the following layers: 1) the first convolutional layer with 128
channels of 2×2 convolution and ReLU activation function, 2) the second
convolutional layer with 64 channels of 3×3 convolution and ReLU acti-
vation function, 3) a dropout layer (P = 0.5), 4) a 2×2 max pooling layer,
4) a flattened layer to convert the multidimensional tensor to a 1D vector,
5) a fully connected layer with 100 neurons and ReLU activation function,
and 6) an output layer with two neurons and a softmax activation func-
tion for classifying the results. The Adam optimizer was used to train the
CNN model. The hold-out method was also used for the training of the
CNN, with 50 rounds of training in each iteration. This iteration process
was repeated for 10 cycles and the average of the evaluation results was
calculated to ensure consistency and reliability.

The evaluation metrics included precision, recall, accuracy, and F1 de-
fined as follows.

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

Accuracy = TP + TN
TP + FP + TN + FN

(4)

F1 =
2 × precision × recall
precision + recall

(5)

where TP is true for predicted as positive, FP is false for predicted as pos-
itive, TN is true for predicted as negative, and FN is false for predicted as
negative.

Characterization of Mechanical Properties and Biocompatibility—Finite
Element Analysis (FEA): The commercial software ABAQUS (ABAQUS
Analysis User’sManual 2010, version 6.10) was used to calculate the strain
distribution in the PI/Cu layer and the sensor upon stretching and bend-
ing. The tetrahedral elements (C3D10) were used to model both the PI/Cu
and sensor components. In the simulation, the PI/Cu/PI/Cu/PI compos-
ite was sandwiched between two Ecoflex0030 layers. The model involved
approximately 3 × 105 elements and the mesh refinement was carried out
to ensure convergence. The elastic modulus (E) and Poisson’s ratio (𝜈)
of the PI are 2500 kPa and 0.34, respectively. The elastic modulus (E) of
Cu is 119 GPa and Poisson’s ratio (𝜈) is 0.34. Ecoflex0030 is modeled as
a hyperelastic solid with a bulk modulus (C10) of 0.0 08054 Pa, a shear
modulus (C01) of 0.0 02013 Pa, and a third-order elasticity constant (D1)
of 2. The elastic modulus of 155/100/150 GPa and a Poisson’s ratio of
0.255/0.25/0.3 were used for the chip/capacitor/resistor.

Characterization of Mechanical Properties and Biocompatibility—In Vitro
Evaluation of Cell Biocompatibility: A549 cells were cultured in the DMEM
medium (Gibco, USA) with 10% fetal calf serum (CelliGent, NewZealand),
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100 units/mL penicillin, 100 μgmL−1 streptomycin (Invitrogen, USA), and
3 g ecoflex0030. The culturing was maintained at 37 °C in a humidified 5%
CO2 atmosphere. Cell survival was then observed using microscopy after
0, 24, and 48 h of cell culture.

Ethical Approval and Experimental Design for Human Study: The hu-
man subject study was approved by the Medical Ethics Committee of
Bethune First Hospital of Jilin University (Approval No. IRB202202-001).
After confirming that the subjects were awake and quiet and able to per-
form basic limb movements, the participants were recruited for the study.
Prior to the experiment, the guardians of the participants were informed of
the experimental details (e.g., the purpose, procedure, and other related
information). The informed consent form was signed and a detailed infor-
mation form about the participants was completed by the guardians.

The data were collected to assess infant movement and neurodevelop-
ment only for clinical research. During the data collection from the sensor
nodes for about 6 min, the video recording of the participants lying on
their backs in a crib was also performed. A quiet environment was main-
tained during the experiment to avoid affecting the sensory perception of
the participants. The acceleration and angular velocity were collected at
a frequency of 30 Hz from the integrated device on the participants and
the collected data were transmitted to the computer through low-power
Bluetooth in real time for display on the custom GUI. Confidentiality was
strictly maintained, with the data made only available to the physicians. In
all other use situations, the data were processed with personal information
removed.

Statistical Analysis: The unpaired T-test was used to investigate dis-
similarities between features in “Normal” and “Risky” samples (n = 54).
Specifically, the ttest2 function (MATLAB 2021) was used to calculate the
p-value for each feature in “Normal” and “Risky” samples. A significance
threshold of 0.05 was applied, and features with p-values below this thresh-
old were considered statistically significant. Subsequently, the features
with p-values less than 0.05 were sorted in each feature matrix based on
their significance and contribution (Figure 6b). The optimized feature ma-
trices were obtained for further feature selection and construction of tiny
machine learning classification modules.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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