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Abstract
We consider a mesh-based approach for training a neural network to produce field predictions of solutions to parametric 
partial differential equations (PDEs). This approach contrasts current approaches for “neural PDE solvers” that employ 
collocation-based methods to make pointwise predictions of solutions to PDEs. This approach has the advantage of natu-
rally enforcing different boundary conditions as well as ease of invoking well-developed PDE theory—including analysis of 
numerical stability and convergence—to obtain capacity bounds for our proposed neural networks in discretized domains. 
We explore our mesh-based strategy, called NeuFENet, using a weighted Galerkin loss function based on the Finite Element 
Method (FEM) on a parametric elliptic PDE. The weighted Galerkin loss (FEM loss) is similar to an energy functional that 
produces improved solutions, satisfies a priori mesh convergence, and can model Dirichlet and Neumann boundary condi-
tions. We prove theoretically, and illustrate with experiments, convergence results analogous to mesh convergence analysis 
deployed in finite element solutions to PDEs. These results suggest that a mesh-based neural network approach serves as a 
promising approach for solving parametric PDEs with theoretical bounds.

Keywords  Neural solvers · Deep learning · Physics informed learning · Parametric PDE · Data-free modeling

1  Introduction

Scientific machine learning is an emerging field combining 
machine learning developments with scientific computa-
tion. This field has witnessed a variety of approaches that 
deploy neural networks to solve partial differential equations 
(PDE). Such neural PDE solvers provide a very different 
strategy for solving differential equations than traditional 
numerical methods; they primarily rely on optimization tech-
niques rather than the exact solution of systems of equations. 
The seminal paper on Physics Informed Neural Networks 
(PINNs) [1] initiated this recent explosion in this line of 
work.

Neural PDE solvers span a wide spectrum in terms 
of the amount of data usage. Some methods are “data-
driven” [2–5], where the solution to a given PDE is con-
structed from available experimental data or the underlying 
PDE is inferred from available data (commonly termed as 
the discovery of hidden physics). In contrast, at the other end 
of the spectrum are the so-called “data-free” methods that 
do not rely on input–output pairs but solely use the PDE and 
the boundary conditions to obtain the solution. In the past 
few years, many such methods have been proposed [5–17]. 
Our work in this paper follows the latter data-free approach.

The core of neural PDE solvers is deep neural networks, 
which can represent arbitrarily complicated functions from 
the input to the output domain and, therefore, can approxi-
mate the PDE solution. Most neural methods use a point-
wise prediction framework (also known as implicit neural 
networks  [18]). These pointwise prediction frameworks 
take x ∈ D (the spatial coordinates of the field) as input and 
produce an output solution value of u(x) (the solution field 
value at x ) as shown in Fig. 1a. Thus, the neural PDE solvers 
create a mapping between the input domain D to the range 
of the solution. Due to a pointwise prediction framework, 
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these methods do not require a mesh and thus rely on col-
locating points from the domain. To take advantage of the 
modern stochastic gradient descent (SGD) based methods, 
this set of collocation points are often selected in a random 
or quasi-random manner [19]. The trained network approxi-
mates the discrete solution via a complicated and nonlinear 
mapping. This approach contrasts classical numerical PDE 
approaches, which usually rely on a linear combination of 
local functions with limited differentiability (even when the 
exact solution may be analytic). However, such pointwise 
prediction neural methods do not naturally account for the 
domain topology. In particular, the “local” nature of the 
solution and the sparsity of matrices that emerge naturally 
in classical methods are missing in these neural methods.

Some researchers have explored the idea of using clas-
sical methods such as finite difference methods (FDM) and 
finite volume methods (FVM) to construct neural archi-
tectures for solving PDEs [20–22]. Inspired by traditional 
numerical techniques, these frameworks construct a map-
ping between an input field and the solution field while using 
the discretization techniques associated with conventional 
numerical methods. These methods take advantage of the 
“local” nature of the solution and sparsity of matrices, simi-
lar to traditional numerical methods. In particular, math-
ematical concepts from finite element methods (FEM) are 
naturally translatable to neural networks (quadrature can be 
represented as convolutions) and provide interesting possi-
bilities, including variational arguments (monotone conver-
gence to the solution), mesh convergence, basis order-based 
convergence, and natural incorporation of boundary condi-
tions. The current work builds upon these ideas.

Neural architecture: In this paper, we develop a finite 
element (FEM)-based neural architecture for solving PDEs. 
Figure 1b shows an abstract outline of this idea where the 
mapping is obtained with the use of convolutional neural net-
works, a specific class of network architectures specialized 

in learning from discrete domains, such as input field Sd 
and the output field Ud , as shown in Fig. 1b. The nature of 
the input field Sd and the output field Ud (in Fig. 1b) would 
depend on the actual PDE under consideration and will be 
made more concrete in later sections. There are several ben-
efits in developing a finite element method (FEM)-based 
neural architecture. FEM-based numerical methods are often 
backed by a well-developed and elegant theory that con-
nects the discretization of the domain (in terms of element/
cell dimension, h) and the properties of the basis functions 
used to approximate the field (in terms of polynomial order, 
� ) with the quality of the ensuing numerical solution to the 
PDE.

In particular, numerical stability arguments and a priori 
error estimates allow users to reason about the accuracy, 
robustness, and convergence [23, 24]. Such theoretical argu-
ments rely on the spatial discretization of the domain and 
properties of the basis functions in finite elements.1 ReLU 
activation functions are continuous piecewise functions and, 
therefore, have been the subject of study in relation to finite 
element basis functions [28]. FEM has been used in con-
junction with neural networks for solving both forward and 
inverse problems, primarily with the help of mesh-based 
discretizations [29–32]. These methods construct the neural 
network in such a way that imitates the action of the stiff-
ness matrix on the gradient of the unknowns, i.e., the neural 
architecture is designed to mimic FEM. Our present work 
differs from these works, because we do not introduce the 
structure of FEM in the network architecture. However, our 

Fig. 1   a Several neural methods (like [1, 45]) are trained to pro-
duce point predictions: Gnn ∶ D → ℝ , which are easier to train, but 
more difficult to analyze and converge  [54, 55], b In the NeuFENet 
approach, we train a neural network to produce a discretized field 
solution over a mesh. Such an approach directly links powerful PDE 

analysis techniques at the cost of a larger network. The terms Sd and 
Ud can be considered the discrete version of any meaningful pair of 
input and output relevant to the PDE; these will be made precise in 
the next section

1  In contrast, state-of-art neural methods allow us to use basis func-
tions beyond polynomials or Fourier bases and approximate much 
more complicated mappings. Although such methods can be analyzed 
theoretically, the estimates are often impractical  [25–27] This is a 
very active area of research, and we expect tighter estimates in the 
future.
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method does share some similarities with these methods in 
mapping material properties to solution and using an energy-
based loss function [31, 32].

Among the more recent works, VarNet [33] introduces a 
neural method that uses the weak form of the PDE and uses 
randomly sampled training points for training the model; it 
also uses separate test functions for the weak form. A similar 
method is found in graph convolutional network (GCN) [34], 
which also utilizes the weak formulation and separate test 
function space as compared to the solution space. How-
ever, GCN imposes the boundary conditions exactly. FEA-
Net [35], on the other hand, is a data-based method that 
does use FEM approximations but not the PDE itself. In 
comparison, our method is data-free (i.e., we do not require 
{input, solution} pair to solve the PDE). However, we share 
a similarity with FEA-Net in calculating the derivatives of 
the solution function over the domain using convolution ker-
nels (as described in Sect. 4.3).

Loss functions: Having decided on borrowing the dis-
cretization scheme from FEM, multiple avenues exist to 
define the loss function. First, we need to define the spatial 
derivatives at each quadrature point. In FEM, this is done 
by directly differentiating the basis functions. Pointwise pre-
diction methods perform this by differentiating the neural 
network with respect to the input variable. The differen-
tiation process in the numerical method is straightforward 
and interpretable, while that is not necessarily the case in 
pointwise neural methods. Once the spatial derivatives are 
defined via the basis functions, we can either compare the 
weak form against the predefined basis functions from the 
test function space and perform a residual minimization 
or use an energy minimization approach. There have been 
some efforts in introducing weak formulation in physics-
based neural solvers such as [6, 33–35], but most of them 
are still collocation-based, and satisfy the Dirichlet boundary 
conditions approximately. In the present work, we choose 
the Rayleigh–Ritz (RR) method [36, 37]. The RR method 
states that the solution to a PDE must be the stationary point 
of some functional (i.e., “energy”) under certain conditions. 
We note that the RR method has been used in a neural net-
work for solving PDEs before [13, 38–43]. However, the 
approach used in these methods closely matches the point-
wise prediction approach outlined in Fig. 1a, in contrast to 
our proposed approach.

Boundary conditions: The imposition of boundary 
conditions can also be challenging in neural methods. 
Very few neural methods satisfy/apply the boundary con-
ditions exactly [34, 44–47], with most methods relying on 
approximate approaches [1, 7, 48] usually by including 
an additional loss function corresponding to the imposed 
boundary conditions. It has been shown by Van der Meer 
et al. [49] and Wang et al. [50] that these losses have to 
be carefully weighed, making this a non-trivial exercise in 

hyperparameter tuning. This hyperparameter sensitivity 
underlines the difficulty of applying the boundary condi-
tions in a neural network-based method (or simply a neural 
method). Also, note that the method by Yu et al. [38] (using 
RR method) is unable to apply the Dirichlet boundary con-
ditions precisely and consequently makes use of a penalty-
based approach for imposing a Dirichlet boundary condition, 
which we avoid altogether.

Parametric PDEs: Going beyond a single PDE, there is 
growing interest in neural approaches that solve paramet-
ric PDEs (i.e., PDEs defined by a family of parametrized 
boundary conditions or coefficient fields). Most neural PDE 
methods have been limited to solving for a single instance 
of the PDE than a class of parametric solutions. Extend-
ing an instance PDE solver into a parametric PDE solver 
can greatly augment rapid design exploration, as alluded 
to in SimNet [51] and Wang and Perdikaris [52], where the 
authors build a conventional implicit neural solver for para-
metric PDEs.

In this paper, we build upon recent efforts that train net-
works to predict the full-field solution [15, 20, 53] on para-
metric PDEs. Our contributions are as follows: 

1.	 We present an algorithm that bridges traditional numeri-
cal and neural methods. The neural network is designed 
to map inputs to the discretized field solution u. How-
ever, the neural network is not responsible for ensur-
ing the spatial differentiability of the solution. Rather, 
the discrete field solution relies on traditional numeri-
cal methods (and associated numerical differentiation 
and quadrature) to construct the loss function. Such an 
approach allows the natural incorporation of different 
boundary conditions and allows a priori error estimates.

2.	 We define the loss functions based on the Rayleigh–
Ritz method coupled with the approximation scheme 
provided by a continuous Galerkin FEM. By defining 
such loss functions, we utilize function spaces with 
appropriate differentiability. This also accounts for the 
“local” nature of the solution, resulting in computation-
ally efficient loss evaluations.

3.	 We prove error convergence (similar to conventional 
mesh convergence) for a particular class of PDEs.

4.	 We demonstrate NeuFENet’s performance on linear 
Poisson equation in 2D and 3D with both Dirichlet and 
Neumann boundary conditions. Further, we test the par-
ametric capability of this method on Poisson’s equation 
by considering a case involving stochastic diffusivity, 
which requires access to a parametric PDE solver.

The rest of the paper is arranged as follows: the definitions 
and terminologies regarding the parametric Poisson’s equa-
tion are introduced in Sect. 2 and the mathematical formula-
tions are described in detail in Sect. 3. The implementation 
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aspects of NeuFENet are described in Sect. 4. Section 5 pre-
sents a theoretical analysis of the errors, and finally, compu-
tational results are presented in Sect. 6.

2 � Mathematical preliminaries

Consider a bounded open (spatial) domain D ∈ ℝ
n, n ≥ 2 

with a Lipschitz continuous boundary Γ = �D . We will 
denote the domain variable as x , where the boldface 
denotes a vector or tuple of real numbers. In ℝn , we have 
x = (x1, x2,… , xn) ; but for 2D and 3D domains, we will fre-
quently use the notation x = (x, y) and x = (x, y, z) , respec-
tively. Consider also a probability space (Ω,F,P) , where Ω 
is the sample space, F is the �-algebra of the subsets of Ω 
and P, a probability measure. We consider an abstract PDE 
on the function u ∶ D × Ω → ℝ as 

 Here, N  is a differential operator (possibly nonlinear) oper-
ating on a function u. The differential equation depends on 
the input-data (e.g., material property) s which in turn is 
a function of the domain variable x and parameter � ∈ Ω . 
Thus, N  is essentially a family of PDE’s parameterized by 
�.2 B is a boundary operator on u. In general, there can be 
multiple boundary operators for different part of the bound-
ary Γ.

Given a PDE along with some boundary conditions, such 
as the one presented in Eq. 1, the goal is to find a solu-
tion u that satisfies Eq. 1 as accurately as possible. Previous 
works such as [1, 7, 45] seek to find a pointwise mapping 
u ∶ D → ℝ . Here (see next section), by coupling deep neural 
networks with numerical methods, we explore other map-
pings to retrieve a discrete field solution.

In this work, we focus on the Poisson’s equation consider-
ing both Dirichlet and Neumann boundary conditions, along 
with a heterogeneous and stochastic diffusivity

along with the boundary conditions

(1a)N[u;s(x,�)] = f (x), x ∈ D, � ∈ Ω

(1b)B[u] = g(x), x ∈ Γ.

(2)−� ⋅ (�(x,�)�u) = f (x) in D

(3)u = g on ΓD

where � is the permeability (or diffusivity) which depends 
on both x and the random variable � ; and f is the forcing. In 
relation to Eq. 1, � plays the role of the data s. ΓD and ΓN are 
the boundaries of the domain D where Dirichlet and Neu-
mann conditions are specified respectively. We will assume 
that �D = Γ = ΓD ∪ ΓN.

2.1 � Poisson’s equation in heterogeneous media

We are mostly interested in the problem of a steady state 
mass (or heat) transfer through an inhomogeneous medium 
(material). This essentially means that the material has dif-
ferent properties at different points. The only material prop-
erty appearing in the Poisson’s equation (Eq. 2) is �(x) , and 
thus, the inhomogeneity can be modeled by a spatially vary-
ing � , i.e., � = �(x) . The equation and the BC’s are given by 

 where D is a hypercube domain in ℝn , n = 2, 3 . The dif-
fusivity/permeability 𝜈̃ is heterogeneous with respect to x 
and is also parameterized by � ∈ Ω . The specific form of 𝜈̃ 
is given in Eq. 51.

3 � Formulations

3.1 � Neural approximation of the solution

Instead of seeking a mapping between the domain and 
an interval on the real line (Fig. 1a), we seek a mapping 
between the input s and the full-field solution u in the dis-
crete spaces (Fig. 1b). Sd denotes the discrete representation 
of the known quantity s. Sd could be either available only 
at discrete points (perhaps from some experimental data) 
or, in many cases, s might be known in a functional form, 
and thus, Sd will be simply the values of s evaluated on the 
discrete points. Therefore, if we denote a NeuFENet (see 

(4)
�u

�n
= h on ΓN ,

(5a)−� ⋅ (𝜈̃(x)�u) = 0 in D

(5b)u(0, y) = 1

(5c)u(1, y) = 0

(5d)
�u

�y
(x, 0) = 0

(5e)
�u

�y
(x, 1) = 0,

2  While a probability-based definition of � is not needed for defining 
a parameteric PDE, we choose this definition for two reasons. First, 
such a formulation allows easy extension to the stochastic PDE case. 
Second, such a formulation will allow using expectation-based argu-
ments in the analysis of convergence.
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Fig. 1b) network by Gnn , then Gnn takes as input a discrete 
or functional representation of s and outputs a discrete solu-
tion field Ud

�
 as

where � denotes the network parameters. The mathematical 
formulations presented in this section only assume a suitable 
neural network that provides the mapping mentioned above 
between Sd and Ud . The network architecture is discussed in 
Sect. 4.1. A full flowchart of the method is shown in Fig. 2.

An untrained network, as expected, will produce a map-
ping that does not satisfy the discrete PDE and will pos-
sess a large error. We aim to bring this error down to an 
acceptable level, thereby reaching a solution that is “close 
enough” to the exact solution. As explained below, we do 
this by designing the loss function based on major ideas 
from the classical numerical methods.

3.2 � Loss functions inspired by variational methods

The design of the loss function, along with the choice of 
the neural mapping, forms the central part of our approach. 
The finite element-based loss function is inspired by the 
Galerkin formulation of an elliptic PDE as well as the 
Rayleigh–Ritz method. In this case, we actually construct 
a function of certain regularity in the domain variable x , as 
opposed to just assuming a function of certain differenti-
ability at the collocation points.

(6)Ud
�
= Gnn

(
Sd;�

)
,

Suppose H1(D) = W1,2(D) denotes the Sobolev space of 
functions whose first derivatives are square integrable. Define 
the space V as

where ‖v‖V is defined as

Then, the Galerkin formulation for the Poisson’s equation 
presented in Eq. 5 is to find u ∈ V  , such that

where 

Equation 9 actually represents a number of equations each 
for a different test function w taken from the space V . Thus, if 
V is discretized such that it can be represented by a finite basis, 
then the Galerkin formulation (Eq. 9) yields a finite system of 
algebraic equations.

From the theory of variational calculus [36, 56], it is also 
known that Eq. 9 is the Euler–Lagrange equation of the fol-
lowing functional J(u) of u ∈ V:

Therefore, the solution u can also be written as the mini-
mizer of the cost function J

In NeuFENet, we make use of this functional J, but instead of 
minimizing it against the solution u, we minimize it against 
the network parameters � . Since V is an infinite dimensional 
space, we need to discretize it to a finite subspace where we 
can evaluate J. For this, let Kh be a discretization of D into 
nel finite elements Ki such that ∪nel

Ki = D . Then, the discrete 
function space Vh is defined as

where Pm(K) denotes the set of polynomial functions of 
degree m define on K. Let the dimension of Vh be N, which 
essentially means that the number of unknowns in the 
domain is also N. Suppose {�i(x)}

N
i=1

 is a suitable basis that 
span Vh . Then, any function uh ∈ Vh can be written as

(7)V =
�
v ∈ H1(D) ∶ v(0, y) = 1, v(1, y) = 0, ‖v‖V < ∞

�
,

(8)‖v‖V = ∫D

�(x)��v�2dx.

(9)B(u,w) = L(w) ∀w ∈ V ,

(10a)B(u,w) = ∫D

�(�w ⋅ �u)dx

(10b)L(w) = ∫D

wfdx.

(11)J(u) =
1

2
B(u, u) − L(u).

(12)u = argmin
u∈V

J(u).

(13)Vh =
{
vh ∈ V ∶ vh|K ∈ Pm(K), K ∈ K

h
}
,

Fig. 2   NeuFENet flowchart. The approximation is discussed in 
Sect. 3.1, the loss function is discussed in Sect. 3.2, and the training 
algorithm is discussed in Sect. 3.3



	 Engineering with Computers

where Ui are the function values at the nodal points in the 
mesh Kh . Then, Eq. 12 can be rewritten for uh as

This minimization of the energy functional in a finite-
dimensional space is commonly known as the Rayleigh–Ritz 
method. However, in the presence of a neural network, we 
minimize J with respect to the network parameter � instead 
of uh . For this, we need to first explicitly state the � depend-
ence of uh . This can be done by a slight modification to 
Eq. 14 as below

along with a generalization of the function space Vh as

Then, we can finally write down the NeuFENet solution uh
�∗

 
in two steps 

 where uh
�∗

∈ Vh�

�
.

The discussion leading to Eq. 18 is based on a non-paramet-
ric diffusivity, i.e., 𝜈̃ = 𝜈(x) . Extension of this formulation to 
the parametric PDE case is straightforward. Specifically, for 
a parameterized � , i.e., 𝜈̃ = 𝜈(x,𝜔) , the function space Vh′

�
 is 

modified as

where ‖ ⋅ ‖Vh
�
 is the energy norm

With this choice of function space, the NeuFENet loss func-
tion can be written as

(14)uh(x) =

N∑

i=1

�i(x)Ui,

(15)uh = argmin
uh∈Vh

J(uh).

(16)uh(x;�) =

N∑

i=1

�i(x)Ui(�),

(17)
Vh�

�
=
{
v(�) ∈ Vh ∶ v(x = 0, y;�) = 1, v(x = 1, y;�) = 0

}
.

(18a)�∗ = argmin
�∈Θ

J(uh(x;�))

(18b)uh
�∗

= uh(x;�∗),

(19)
Vh
𝜃
=
�
v ∶ ‖v(x,𝜔;𝜃)‖Vh

𝜃
< ∞, v(x = 0, y,𝜔;𝜃) = 1,

v(x = 1, y,𝜔;𝜃) = 0, }

(20)‖v‖2
Vh
�

= ��∼Ω

�

∫D

�(x,�;�)�∇v�2dx
�
.

The right-hand side of Eq. 21 involves two integrations: one 
over the spatial domain D and the other an expectation over 
Ω . The integration over D is evaluated numerically using 
Gaussian quadratures rules. And the expectation over Ω is 
evaluated approximately by a summation over a finite num-
ber of samples, that is

The loss function L̂(𝜃) is now just a function of � and we can 
minimize it with respect to �

Remark 1  To simplify notations when we analyze errors in 
Sect. 5, we make a distinction between two representations 
of �∗ : one of them is the theoretical minimum (denoted by 
𝜃 in Sect. 5) and the other is the actual set of parameters 
(denoted by � in Sect. 5) obtained by optimizing Eq. 23a 
with an optimization algorithm. This terminology then 
spawns two variants for uh

�∗
 : u𝜃 and u� , respectively.

3.3 � Training algorithm for NeuFENet

We provide two versions of the training algorithm. (i) an algo-
rithm for computing the solution for an instance of a PDE and 
(ii) an algorithm for approximating the solution for a paramet-
ric PDE. The model architecture and the loss function remain 
the same for both. For the instance version, we use a simple 
approach as explained in Algorithm 1. While sampling from a 
distribution of coefficients/forcing field for a parametric PDE, 
we employ the mini-batch-based optimization approach as 
explained in Algorithm 2. The sampling of the known quanti-
ties can be performed using any random or qseudo-random 
sequence (see Sect. 6.3 for an example). For training the neural 
network, we predict the solution field using sampled inputs and 
compute the loss using the loss function derived above. We 
employ gradient descent-based optimizers such as Adam [57] 
to perform the numerical optimization.

(21)L(�) = ��∈ΩJ
(
uh(x,�;�)

)
.

(22)L̂(𝜃) =
1

Ns

Ns∑

i=1

J
(
s(𝜔i), u

h(x,𝜔i);𝜃
)
.

(23a)𝜃∗ = argmin
𝜃∈Θ

L̂(𝜃)

(23b)uh
�∗

= uh(x,�;�∗).
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Algorithm 1   Algorithm for instance PDE solver

Algorithm 2   Algorithm for parametric PDE solver

4 � Implementations

4.1 � Model architecture for NeuFENet

Due to the structured grid representation of Sd and similarly 
structured representation of Ud

�
 , deep convolutional neural net-

works are a natural choice of network architecture. The spatial 
localization of convolutional neural networks helps learn the 
local interaction between the discrete points. Since the net-
work takes an input of a discrete grid representation (similar 
to an image, possibly with multiple channels) and predicts an 
output of the solution field of a discrete grid representation 
(similar to an image, possibly with multiple channels), this is 
considered to be similar to an image segmentation or image-
to-image translation task in computer vision. U-Nets [58, 
59] have been known to be effective for applications such as 
semantic segmentation and image reconstruction. Due to its 
success in diverse applications, we choose U-Net architecture 
for NeuFENet. The architecture of the network is shown in 
Fig. 5. First, a block of convolution and instance normalization 

is applied. Then, the output is saved for later use via skip-
connection. This intermediate output is then down-sampled 
at a lower resolution for a subsequent block of convolution, 
instance normalization layers. This process is repeated two 
times. Now, the upsampling starts where the saved outputs 
of similar dimensions are concatenated with the output of 
upsampling for creating the skip connections, followed by a 
convolution layer. LeakyReLU activation was used for all the 
intermediate layers, with Sigmoid activation for the final layer.

4.2 � Applying boundary conditions

In NeuFENet, the Dirichlet boundary conditions are applied 
exactly. The output Ud

�
 does not contain the boundary condi-

tions. Thus, a small post-processing step is done to the net-
work output to force the Dirichlet boundary conditions onto 
the respective boundaries. This can be done in a differentiable 
manner in modern machine learning software libraries such 
as PyTorch [60]. This exact imposition of Dirichlet boundary 
conditions allows the training process to be much smoother 
and interpretable, because there is no penalty term involved 
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in the loss function. Thus, the loss function retains its con-
vex nature with respect to the solution uh . On the other hand, 

Neumann conditions are included in the variational form of the 
PDE right at the continuous level. Especially, zero-Neumann 
conditions are exactly satisfied at the discrete level without 
requiring us to do anything (“do-nothing” conditions).

4.3 � Calculation of derivatives and integration

The full domain integration (i.e., ∫ D ) is nothing but the 
simple sum of the integration over the individual elements 
(i.e., 

∑Nel

i=1
∫ Di ). This integration over an individual element 

is, in turn, the simple weighted sum of the integrand evalu-
ated at the Gauss quadrature points. This evaluation at a 
single Gauss point can be represented as convolution. Thus, 
if there are 4 Gauss points in each element, then 4 convolu-
tion operations will evaluate the integrand at those points for 
each element. After that, we only need to sum across Gauss 
points first, followed by a sum across elements. See Figs. 3 
and 4 for visualized representation of this process.

Remark 2  Since the result of the integration process is a 
scalar loss value, there is no requirement to compute, store, 
or assemble a matrix.

5 � Error analysis

5.1 � Error analysis for the instance case

We provide estimates on the errors incurred by NeuFENet 
in approximating the solution. Suppose the exact solution 
of Eq. 5 is u and the solution obtained at the end of the 
training process is given by u� (see Remark 1). Let us define 
u𝜃 as the best possible function in V� . Note that this func-
tion may or may not be able to match uh , but it represents 
the best possible function that the neural network function 
class can produce. Note also that u𝜃 might be different than 
u� , especially if the optimization algorithm cannot reach the 
optimum 𝜃 . We try to bound the error u� − u by first break-
ing down the total error into errors from different sources. 
Theorem 2 is our main result for the single instance PDE 
version, while Theorem 3 is our main result for the para-
metric PDE version.

Lemma 1  Let u� be the solution of Eq.  11 when it 
is optimized by Algorithm 1. Then, the optimiza-
tion error ‖e�‖Vh =

√
2‖EJ‖1  , where e𝜃 = u𝜃 − u𝜃 and 

EJ = J(u𝜃) − J(u𝜃).

Fig. 3   (Left) A single 2D element in FEM, with black dots denoting 
“nodes” and red dots denoting 2 × 2 Gauss quadrature points. (Right) 
A finite element mesh, with 4 × 3 linear elements and 5 × 4 nodes. 
Each of these elements contains Gauss points for integration to be 
performed within that element. Within each element, the “first” quad-
rature point (marked “1” on left) is marked green, and others red

Fig. 4   Quadrature quantity evaluation in FEM context. (Ud
�
)M is the 

matrix view of the nodal values.KGP1 is kernel containing the basis 
function values at “gauss point - 1" (top left corner). This convolution 
results in the function values evaluated at the Gauss point “1” of each 
element (marked green). (Ud

�GP1
)M is the matrix of this result. Func-

tion values (or their derivatives) evaluated at Gauss points can then be 
used in any integral evaluation. For example, 
∫ uhdD = �J�

∑
I∈M

�∑4

i=1
(wi(U

d
�
)GPi)M

�
 , where |J| is the transforma-

tion Jacobian for integration and w are the quadrature weights

Fig. 5   UNet architecture used for training NeuFENet 
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Proof 

where in the final step, we have used the definitions of J and 
‖e�‖Vh along with the fact that

∫
D

[
𝜈�e𝜃 ⋅ �u𝜃 − fe𝜃

]
dx = 0 , since e� ∈ Vh (see Eqs. 9 

and  10). Therefore, we have

since EJ = J(u𝜃) − J(u𝜃) > 0 . 	�  ◻

We next describe a theorem that provides an estimate on 
the network capacity.

Theorem 1  Fix p ∈ Ω and consider a PDE as defined in 
Eq. 1 over a compact domain D which is uniformly discre-
tized with resolution h. Let u∗

h
 be the true solution evaluated 

at the grid points. Consider the hypothesis class

defined as the set of all two-layer neural networks with k 
hidden neurons equipped with ReLU activation. Then, as 
long as k = Ω(1∕h) , there exists a network in H for which 
ErrH = 0.

Proof  The proof follows a recent result by Bubeck et al. [61]. 
Let the output resolution of the network be n. For a fixed p, 
consider the (linear) vector space spanned by all possible 
(perhaps uncountably many) basis functions of the form

where a,  b,  w are arbitrary real-valued weights. Since 
i = 1,… , n , the span of this space is no more than n-dimen-
sional and isomorphic to ℝm for some m ≤ n . Therefore, 
there is a set of no more than n basis functions (i.e., n neu-
rons) that can be used to represent u∗

p
 any fixed p. Assuming 

the dimension of p is small, we have n ≲ 1∕h . Therefore, 
k = Ω(1∕h) neurons are sufficient to reproduce u∗

p
 . 	�  ◻

(24)

J(u𝜃) = ∫D

�
1

2
𝜈��u𝜃�2 − fu𝜃

�
dx

= ∫D

�
1

2
𝜈��u𝜃 + �e𝜃�2 − f (u𝜃 + e𝜃)

�
dx (using e𝜃 = u𝜃 − u𝜃)

= ∫D

�
1

2
𝜈��u𝜃�2 +

1

2
𝜈��e𝜃�2 + 𝜈�u𝜃 ⋅ �e𝜃 − f (u𝜃 + e𝜃)

�
dx

= ∫D

�
1

2
𝜈��u𝜃�2 − fu𝜃

�
dx +

1

2 ∫D

𝜈��e𝜃�2dx + ∫D

�
𝜈�e𝜃 ⋅ �u𝜃 − fe𝜃

�
dx

= J(u𝜃) +
1

2
‖e𝜃‖2Vh ,

(25)‖e𝜃‖2Vh = 2
�
J(u𝜃) − J(u𝜃)

�
= 2EJ = 2‖EJ‖1,

(26)

H ∶=

{
uΘ ∶ p ↦

k∑

l=1

ai
l
ReLU

(⟨
wi
l
, p
⟩
+ bi

l

)
, i = 1,… , n.

}

f (⋅) = ai
l
ReLU

(⟨
wi
l
, ⋅
⟩
+ bl

)
,

Notice that the above theorem shows that there exist 
NeuFENet architectures that exactly drive the modeling 
error down to zero. However, the proof is non-construc-
tive, and there is no obvious algorithm to find the basis 
functions that reproduce the solution at the evaluation 
points. Theorem 1 essentially allows us to choose the neu-
ral network parameter family Θ , such that the modeling 
error eH is low. Since we are free to choose the network 
architecture, we can always assume ( and a posteriori con-
firm) that

Remark 3  NeuFENet is designed to be agnostic to a neural 
network. Therefore, either a fully connected neural network 
or a convolutional neural network can be used for the net-
work approximation. Since a convolutional neural network 
can be interpreted as a special case of a fully connected net-
work with sparse weights [62], the above estimate still holds.

For the third source of error, i.e., the error due to dis-
cretization using finite element method can be estimated 
from standard finite element analysis literature. We start 
with the following assumption:

Assumption 1  Assume that the spatial domain D is discre-
tized by a mesh Kh that consists of hyperrectangular ele-
ments. Each element K ∈ K

h has a bounded radius, i.e., 
0 < hmin ≤ r(K) ≤ hmax < ∞ . We define the mesh length 
h = min{r(K)}

nel
i=1

Lemma 2  The exact solution to Eq. 9, u ∈ H2(D).

Proof  In Eq. 9, the diffusivity �(x;�) ∈ C(D) for any fixed 
� ∈ Ω . Furthermore, the forcing function f = 0 ∈ L2(D) . 
Using results from regularity theory (such as [36], Sec. 6.3 
Theorem 1), we conclude u ∈ H2(D) . 	�  ◻

Lemma 3  Let Assumption 1 hold. Further assume that 
the basis functions �i(x) in Eq. 14 are chosen, such that 

(27)‖eH‖ = ‖u𝜃 − uh‖ ≤ 𝜖, 𝜖 > 0.
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�i(x) ∈ C�(K) ( � ≥ 1 ) locally within each element K ∈ K
h . 

Then

where Cd = Cd(D, |u|H2) is a constant.

Proof  We refer to standard texts such as Oden and Reddy 
[63](Sec. 8.6, Theorem 8.5) or Brenner and Scott [23](Sec. 
5.7) for the proof. 	�  ◻

Finally we can write down the estimate for the generaliza-
tion error in NeuFENet in the form of the following theorem.

Theorem 2  Consider any NeuFENet architecture produc-
ing fields with grid spacing h. Let H denote the hypothesis 
class of all networks obeying that architecture. Suppose 
that Θ ∈ H is a NeuFENet trained using the loss function J 
defined in Eq. 12. Then, its generalization error obeys

where ErrΘ is a term that only depends on the NeuFENet 
optimization procedure and ErrH only depends on the choice 
of hypothesis class H . The � in the third term is the local 
degree of the basis functions as in Lemma 3.

Proof  The result is simply an application of the triangle 
inequality. Dropping the subscript V�

Using Lemma 1, the optimization error ErrΘ is nothing but √
2‖EJ‖1 . 	�  ◻

5.2 � Extending the error analysis for the parametric 
version

The above theorem is for a single parameter choice p ∈ Ω . 
An identical argument can be extended to the loss con-
structed by sampling a finite number (say m) of parameters 
from a distribution over Ω . We obtain the following corol-
lary from Theorem 1:

Lemma 4  (Barron [64]) Consider a finite-sample version of 
the loss L̂ constructed by taking the average over m param-
eter choices sampled from Ω . Consider the hypothesis class

(28)‖uh − u‖L2(D) ≤ Cdh
�+1,

(29)‖eG‖V�
≤ ErrΘ + ErrH + O

�
h�+1

�
,

(30)

‖eG‖ = ‖u𝜃 − u𝜃 + u𝜃 − uh + uh − u‖
≤ ‖u𝜃 − u𝜃‖ + ‖u𝜃 − uh‖ + ‖uh − u‖
= ‖e𝜃‖ + ‖eH‖ + ‖eh‖
= ErrΘ + ErrH + O(h𝛼+1).

defined as the set of all two-layer neural networks with k 
hidden neurons equipped with ReLU activation. Then, as 
long as k = Ω(m∕h) , there exists a network in H for which 
ErrH = 0.

This lemma shows that a wide two-layer network exists 
that can reproduce any (finite) set of field solutions to a PDE 
system as long as the width scales linearly in the cardinality 
of the set. Getting bounds independent of the cardinality is 
an interesting open question. We have the following result 
for the optimization error:

Lemma 5  Let u� be the solution of the optimization problem 
in Eq. 23 when it is optimized by Algorithm 2. Then, the 
optimization error ‖e𝜃‖Vh

𝜃
=
√
2‖EL̂‖1 , where e𝜃 = u𝜃 − u𝜃 , 

EL̂ = L̂(𝜃) − L̂(𝜃).

Proof  Starting with the definition of L̂ from Eq. 22 and 
denoting �i = �(x,�i) and u�,i = u(x,�i;�)

where we have used ‖e�‖2Vh
�

= �‖e�‖Vh =
1

Ns

∑Ns

i=1
‖e�,i‖2Vh

 . 

Denoting EL̂ = L̂(𝜃) − L̂(𝜃) > 0 , we have the result. 	�  ◻

With this, an analog of Theorem 2 can be stated for the 
parametric training with finite data as below.

Theorem 3  Consider any NeuFENetarchitecture produc-
ing fields with grid spacing h. Let H denote the hypothesis 
class of all networks obeying that architecture. Suppose 
that Θ ∈ H is a NeuFENet trained using the loss function 
L̂ defined in Eq. 22. Then, its generalization error obeys:

where ErrΘ is a term that only depends on the NeuFENet 
optimization procedure; ErrH only depends on the choice 
of hypothesis class H and � is the local degree of the basis 
function as in Lemma 3.

Proof  The result is simply an application of the triangle 
inequality. Dropping the subscript V�

(31)

H ∶=

{
uΘ ∶ p ↦

k∑

l=1

ai
l
ReLU

(⟨
wi
l
, p
⟩
+ bi

l

)
, i = 1,… , n

}

(32)

L̂(𝜃) =
1

N
s

Ns�

i=1

J(𝜈
i
, u𝜃,i)

=
1

N
s

Ns�

i=1

�
J(𝜈

i
, u𝜃,i) +

1

2
‖e𝜃,i‖2Vh

�

= L̂(𝜃) +
1

2
‖e𝜃‖2Vh

𝜃

,

(33)‖eG‖Vh
�
≤ ErrΘ + ErrH + O

�
h�+1

�
,
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The third norm can be estimated as

 where Ce = Ce

(
Ω̂Ns

,D,Ch
I
,A,B

)
 . Here, Ch

I
 is the discrete 

inverse Poincaré constant, such that ‖�u‖L2(K) ≤ Ch
I
‖u‖L2(K) 

f o r  a l l  K ∈ K
h  ;  A = max{‖�i‖L2(D)}

Ns

i=1
 a n d 

B = max{|ui|H2(D)}
Ns

i=1
 . 	�  ◻

6 � Results

6.1 � Error convergence for a Poisson problem

At the outset, we would like to validate the error bounds 
stated in Sect. 5. To this end, we solve the following non-
parametric Poisson’s equation: 

 where D = [0, 1]2 is a two-dimensional square domain. The 
forcing is chosen as

(34)

‖eG‖Vh
𝜃
= ‖u𝜃 − u𝜃 + u𝜃 − uh + uh − u‖Vh

𝜃

≤ ‖u𝜃 − u𝜃‖Vh
𝜃
+ ‖u𝜃 − uh‖Vh

𝜃
+ ‖uh − u‖Vh

𝜃

≤ ‖e𝜃‖Vh
𝜃
+ ‖eH‖Vh

𝜃
+ ‖eh‖Vh

𝜃
.

‖eh‖Vh
�
= ‖uh − u‖Vh

�
=

�
��∼Ω‖uhi (�) − u(�)‖2

V
=

���� 1

Ns

Ns�

i=1

‖uh
i
− ui‖2V ≤

���� 1

Ns

Ns�

i=1

‖�i‖2L2(D)‖�(u
h
i
− ui)‖2L2(D)

≤
����� 1

Ns

Ns�

i=1

‖�i‖2L2(D)

� �

K∈Kh

‖�(uh
i
− ui)‖2L2(K)

�
≤
����� 1

Ns

Ns�

i=1

‖�i‖2L2(D)C
h
I

� �

K∈Kh

‖(uh
i
− ui)‖2L2(K)

�

=

���� 1

Ns

Ns�

i=1

Ch
I
‖�i‖2L2(D)‖(u

h
i
− ui)‖2L2(D) ≤

���� 1

Ns

Ns�

i=1

Cdih
2(�+1) ≤ Ceh

�+1,

(35a)−Δu = f in D ⊂ ℝ
2

(35b)u = 0 on �D,

The exact solution to Eq. 35 with the forcing function in 
Eq. 36 is given by uex(x, y) = sin(�x) sin(�y) . For solving 
this problem, we seek to train a NeuFENet that can predict 
the solution u given the forcing f. At the discrete level, the 

(36)f = f (x) = f (x, y) = 2�2 sin(�x) sin(�y).

Fig. 6   Solution to Eq.  35 with the forcing term as shown in Eq.  36 
on a 256 × 256 grid. (Left) the discrete forcing Fd , (middle-left) the 
solution Ud obtained from a NeuFENet with a U-net architecture, 
(middle-right) the exact solution uex = sin(�x) sin(�y) evaluated 

on the mesh, denoted Ud
ex

 , (right) the error (Ud − Ud
ex
) . From left to 

right: f, uh
�
 , unum and ( uh

�
− unum ). Note: ‖u�‖ = 0.499979 , ‖u‖ = 0.5 , 

‖u� − u‖ = 2.4 × 10−5

Fig. 7   Convergence of the error in L2 norm for the Poisson’s equation 
with analytical solution u = sin (�x) sin (�y)
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network takes input Fd and outputs Ud . The loss function 
Eq. 11 takes the concrete form

Figure 6 shows the contours of the network input Fd , output 
Ud , the exact solution evaluated on the mesh Kh (a 256 × 256 
grid) and the error ( Ud − Uex).

To study convergence behavior, we repeat this procedure 
with varying mesh length h, starting from h =

1

8
 and gradu-

ally decreasing h till h =
1

256
 . The calculated errors for each 

resolution are reported in Fig. 7.
Theorem 2 estimates the total error by the contributions 

from three individual sources of errors, namely, the error due 
to finite element discretization ( eh ), the error due to network 
approximation capacity ( eH ), and the error due to the opti-
mization process ( e� ). Of these three errors, eh maintains a 
particular relation to the discretization parameter h (i.e., the 
mesh size). The other two errors do not hold a straightfor-
ward relation with the mesh size or the network parameters. 
Thus, we put the estimate in Eq. 29 to test by keeping both 
eH and e� sufficiently low, so that the dominating error is the 
discretization error eh.

We illustrate this by running two sets of NeuFENet 
simulations.

•	 The first set is where we completely remove the neural 
network and optimize the loss directly with respect to the 
function uh , that is 

 which is nothing but classic Rayleigh–Ritz optimization. 
The absence of a neural network eliminates the error eH . 
Therefore, the total error is a combination of only eh and 
e� . The total errors from this algorithm are plotted against 
the mesh size h in Fig. 7 under the legend “NeuFENet 
(No network)”. We see that the error plot has a slope of 2.

•	 The second set uses a neural network. Thus, the optimiza-
tion statement is the same as presented in Eq. 18. There-
fore, as discussed in Theorem 2, the total error combines 
all three errors indicated in Eq. 29. To keep eH negligible, 
we need to be aware that the spatial degrees of freedom 
(i.e., the number of bases in Vh ) are inversely propor-
tional to h2 (for a 2D domain). Thus, as we decrease h, 
the “size" of Vh increases. Therefore, the function space 
Vh
�
 must also get bigger; in particular, it should be big 

enough to satisfy Vh
𝜃
⊃ Vh . One way to accommodate this 

is to use a high-capacity network to solve the equation at 
all h-levels. However, the UNet architecture described in 
Sect. 4.1 does not allow very high depth when the input/

(37)J(u) =
1

2 ∫ |�u|2dx − ∫ ufdx.

(38)uh = argmin
uh∈Vh

J
(
uh
)
,

output size is low. Thus, we must gradually enhance the 
network capacity at different h levels by increasing the 
network depth. Using this strategy, we solve Eq. 35 at 
various h-levels and plot the errors in Fig. 7. The slope 
of 2 of the error curve confirms that both eH ≈ 0 and 
e� ≈ 0 . Interestingly, if we do not keep eH negligible by 
increasing the depth of the network for smaller h, both eH 
and e� can dominate (see Appendix 2). This suggests that 
a gradual increase in network complexity is warranted as 
the discretization becomes finer. This is made computa-
tionally efficient using multi-grid-like approaches [65].

Figure 7 also shows a plot of errors obtained from solving 
the same problem using three other methods for reference, 
namely, (i) conventional FEM, (ii) physics-informed neural 
networks (PINN), and (iii) the deep Ritz method (DRM). The 
conventional FEM solution was obtained using a GMRES 
solver with a 10−8 tolerance. A multilayer perceptron was 
used with 8 hidden layers, each with 100 neurons with tanh 
activation function for both the PINN and DRM solutions. 
The learning rate was kept at 10−3 for PINN, and 10−4 for 
DRM. In both PINN and DRM, the boundary conditions are 
applied approximately by minimizing the errors incurred on 
the boundary. This necessitates weighing the loss values in 
the interior (PDE) and at the boundary differently, i.e., the 
loss function has the form L = �(RPDE) + ��(RBC) , where 
R stands for residual, and � and � are functions that depend 
on the flavor of the method. In PINN, � = � = ‖ ⋅ ‖2

2
 [1, 

66]; in DRM, � takes the energy form of the residual, and 
� = ‖ ⋅ ‖2

2
 [38, 39]. In Fig. 7, PINN errors are comparable 

to that obtained from NeuFENet. On the other hand, DRM 
exhibits much higher errors compared to NeuFENet.

The high errors in DRM is not surprising, and can be 
understood as follows. If we take our model equations (Eq. 2 
and Eq. 3) (and assume ΓD = Γ ), then the DRM loss can be 
written as

where 0 < 𝜆 ∈ ℝ . The Euler–Lagrange equations for this 
loss function, however, turn out to be [40]:

Because of this inconsistency, the exact solutions of Eqs. 2 
and  3 do not satisfy Eq. 39. This leads to larger errors in 
DRM in Fig. 7. In NeuFENet, the boundary conditions are 
applied exactly; thus, it is a consistent method and obviates 
the need for a penalty parameter �.

(39)

LDRM = ∫D

[
1

2
�(�w ⋅ �u) − wf

]
dx + �∫ΓD

(u − g)2dΓ,

(40)−� ⋅ ��u = f in Ω,

(41)n ⋅ ��u + 2�u = g on ΓD.
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6.2 � Exact imposition of Dirichlet boundary 
conditions

As mentioned in Sect. 4.2, Dirichlet boundary conditions can 
be applied exactly (subject to discretization) in NeuFENet. 
The exact imposition of boundary conditions is almost uni-
versal across numerical methods unless there is an explicit 
need to apply it weakly (or in an integral sense). Yet, this 
is not very common in neural methods. Most of the current 
neural methods apply only approximately the Dirichlet (as 
well as other) boundary conditions. We illustrate this with 
two simple examples below, the first with a homogeneous 
BC and the other with a non-homogeneous one.

•	 Homogeneous BC: We take the same equation and 
boundary conditions described in Sect. 6.1 (see Eq. 35 
and Eq. 36). The boundary condition, in this case, is 
homogeneous throughout the entire boundary. We solve 
this problem using NeuFENet and also with a physics-
informed neural network (PINN, [1]). In the case of Neu-
FENet, the FEM mesh Kh for NeuFENet is a 255 × 255 
mesh of bilinear quadrilateral elements (i.e., 256 × 256 
nodes), which is solved by optimizing Eq. 37 using Adam 
optimizer. The PINN solution is obtained by performing 

residual optimization using 65536(= 256 × 256) points 
randomly selected from D = [0, 1]2 . The contours of the 
solutions and their difference from the analytical solution 
are shown in Fig. 8(a).

•	 Non-homogeneous BC: Consider the following equation: 

 The analytical solution to Eq.  42 is given by 
u(x, y) = exp(−�x) sin(�y) . We solve this set of equa-
tions with NeuFENet using a 32 × 32 bilinear quadrilat-
eral mesh and PINN using 1024(= 32 × 32) randomly 
selected points. The contours are shown in Fig. 8b.

In both experiments, we notice that a non-exact application 
of boundary conditions can affect the ability of the network 
to approximate the solution in the interior, thus rendering a 
higher level of errors overall.

(42a)−Δu = 0 in [0, 1]2

(42b)u = sin(�y) on x = 0

(42c)u = 0 other boundaries.

Fig. 8   Typical comparison between a NeuFENet solution and a PINN solution for two different boundary conditions

Fig. 9   (Left) contours of ln(�) corresponding to a = (−0.24,−0.17, 0.13, 0.07,−0.07, 0.14) , (middle-left) NeuFENet prediction ( u� ), (middle-
right) reference numerical solution using FEM ( uh ), (right) contours of (u� − uh)
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6.3 � Poisson’s equation with parametric log 
permeability

Our second illustration is the solution of the PDE defined 
in Sect. 2.1 (Eq. 5), which is frequently used for simulating 
practical problems such as heat or mass transfer through 
an inhomogeneous media. We solve this problem in both 
2D and 3D domains, i.e., D = [0, 1]2 as well as D = [0, 1]3 ; 
𝜈̃ is now a function of x = (x, y) and is also parametric, as 
mentioned in Eq. 51.

We seek a mapping of the form u = Gnn(�) , where 
Gnn denotes the neural network. Therefore, Sd refers to 
the discrete version of � . Following the principle of Kar-
hunen–Loeve expansion as described in Appendix 1, the 
infinite-dimensional random space is truncated into a finite-
dimensional space. Thereafter, a finite set of samples is pre-
pared from this space for the training process. Suppose the 
number of samples is Ns . Then, the loss function takes the 
concrete form

where, ui = Gnn(�i, �) . Both Dirichlet and Neumann condi-
tions are present in this equation. In NeuFENet, the Dirichlet 
conditions are applied exactly. The zero-Neumann condi-
tion is also applied exactly at the continuous level, since 
the boundary integrals vanish at the continuous level (see 
Eq. 10).

(43)J =
1

Ns

Ns∑

i=1
∫D

𝜈̃i(x)|�ui(x)|2dx,

By optimizing the loss (Eq. 43), we attempt to learn the 
distribution of the stochastic solution, given that the coef-
ficients in the log permeability K–L sum come from a known 
range of values that depends on the parameter space � . We 
truncate the K–L sum after 6 terms. These six coefficients 
form a six-dimensional space from which the coefficient 
tuples {ai}6i=1 can be drawn. The NeuFENet is trained by 
selecting a finite number ( Ns ) of pseudo-random samples 
from this 6-dimensional space, specifically a ∈ [−

√
3,
√
3]6 

(see also Appendix 1). For the results shown below, we 
have taken Ns = 65536 . We used the Adam optimization 
algorithm, with a learning rate of 10−4 . Once the network is 
trained, we can perform inference by evaluating the solu-
tion for any diffusivity � taken from the sample space. To 
illustrate the nature of the input ( � or Sd ) and the solution 
(u or Ud ), we present an anecdotal (i.e., a non-special and 
random) set of Sd and Ud in Fig. 9. A reference solution 
using a conventional FEM program is also presented therein. 
Furthermore, sectional line cuts for these contours are shown 
in Fig. 10. The line cuts display a close match between Neu-
FENet and the numerical solution.

6.3.1 � Statistical distribution of solution

Since Eq. 5 is parametric, we can compare the quality of the 
solution from NeuFENet with a reference numerical solu-
tion in a statistical manner. We choose some points on the 
domain D (shown by black dots in Fig. 11a) and evaluate the 

Fig. 10   Line cuts for the contours presented in Fig 9. (Top row) x-parallel line cuts at y = 0.2, 0.5, 0.8. (Bottom row) y-parallel line cuts at x = 
0.2, 0.5, 0.8
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Fig. 11   Normalized histograms plotted for the query points shown in Fig. 11a



	 Engineering with Computers

solution values at those query points for 16, 384 samples of 
� , where the {ai}6i=1 tuples are taken from a smaller subset 
of the full sample space, namely, a ∈ [−

1

4
,
1

4
]6 . Therefore, 

at a particular query point, those 16, 384 solution values 
approximately represent a distribution of the solution values 
at that point. This sample of solution values at each query 
point allows us to create histograms of the solution values 
at each query point.

The histograms are shown in Fig.  11. We notice a 
very close match between the histograms obtained from 

NeuFENet and a conventional FEM solver. This once again 
confirms that NeuFENet effectively provides the correct sta-
tistics of the parametric Poisson equation.

6.3.2 � Comparisons with traditional FEM solver

Table 1 presents a comparison of the time taken for a sin-
gle NeuFENet inference against the solve time for a single 
case using a conventional FEM solver. Note that the infer-
ence time does not include the “training time.” The number 
of parameters present in the network is approximately 4.2 
million. The NeuFENet model is queried on an NVIDIA 
A100-SXM4-80GB GPU. For the conventional solver, the 
reported timings are taken to be the lowest time obtained 
when run on 1, 2, 4, and 8 processors on a AMD EPYC 
7543 32-Core compute node. It can be noted from Table 1 
that the respective timings differ from each other by a few 
orders of magnitude.

This disparity in inference/solve times clearly demon-
strate the benefit of using a neural solver for parametric 

Table 1   Inference times of NeuFENet compared with solve time of a 
conventional FEM solver for the parametric problem

The 642 , 1282 , and 2562 results are obtained by averaging over 500 
inferences/solves. All timing values are in seconds

NeuFENet FEM (conventional)

642 4.76 × 10−5 1 × 10−2

1282 9.8 × 10−5 3.6 × 10−2

2562 2.74 × 10−4 21.0 × 100

Fig. 12   Contours of ln(�(x, y, z)) and the solution u�(x, y, z) to the 3D Poisson’s problem (Eq.  44) on a 64 × 64 × 64 mesh (for 
a = (−1, 1.4, 1.5,−1.3,−1.6, 0.3))
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problems. Once the training is completed offline, inferences 
become very cheap compared to the conventional solver.

6.4 � 3D Poisson’s equation

So far, we have focused on two-dimensional problems. 
Although 2D problems are useful in demonstrating the key 
features and properties of the NeuFENet method, a real test 
of neural PDE solvers lies in their ability to solve three-
dimensional problems. NeuFENet can solve both 2D and 
3D problems without much changes to the architecture. To 
provide an example of this, we solve the 3D counterpart of 
the PDE defined in Eq. 5, which is 

 where n̂ denotes the outward normal to the boundary. Once 
again, the functional form of ̃𝜈(x) is described in Appendix 
1. The loss function is a direct analog of Eq. 43

In Fig. 12, we show one randomly selected pair of � and 
u for a 3D problem obtained using NeuFENet. We opti-
mize Eq. 45 for a randomly selected set of coefficients 
a = (−1, 1.4, 1.5,−1.3,−1.6, 0.3) . The plots of �(x, y, z) and 
u�(x, y, z) are shown in Fig. 12.

7 � Conclusions and future directions

In this paper, we develop a neural method NeuFENet for 
solving parametric PDEs where the discretization and the 
loss functions are inspired by the continuous Galerkin (cG) 
method and the Rayleigh–Ritz method, respectively. Due 
to the choice of discretization scheme, NeuFENet inherits 
the approximation properties of the cG method. This allows 
us to (i) calculate spatial derivatives in the same way as in 
finite element methods, (ii) perform spatial integration using 
simple Gaussian quadrature schemes, (iii) apply Dirichlet 
and (zero) Neumann boundary conditions exactly, and (iv) 
derive a priori error estimates.

The optimization problem is defined in terms of an 
energy functional derived from variational principles. 
This is in contrast to residual-based minimization, the 
more widely followed process across the current neural 

(44a)−� ⋅ (𝜈̃(x)�u) = 0 in D = [0, 1]3,

(44b)u(x = 0, y, z) = 1,

(44c)u(x = 1, y, z) = 0,

(44d)n̂ ⋅ �u = 0 on all other boundaries,

(45)J = ∫D

𝜈̃(x)|�u(x)|2dx,

methods. There are some exceptions (see, for instance, [13, 
38, 39]) that apply energy-based loss functions but do not 
apply the boundary conditions exactly, thereby incurring 
large errors. We showed examples of Poisson’s equation 
solved using NeuFENet. Since Poisson’s equation is a self-
adjoint equation, its energy functional is convex and thus 
possesses a unique minima, which can be easily found by a 
gradient-based optimization method. We further illustrate 
that such a method can successfully solve stochastic PDEs 
and determine its statistical properties.

NeuFENet offers direct control over the regularity of 
the solution with respect to the spatial domain. For exam-
ple, in the examples presented in this paper, the solutions 
belong to the H1(Ω)-space. Also, the Dirichlet boundary 
conditions are imposed exactly; thus, there is no need for a 
boundary loss function common in collocation-based neu-
ral methods. This leads to another advantage: the absence 
of any hyperparameter associated with the relative weight 
of the “interior” and “boundary” loss values. The only 
hyperparameter in this method is the learning rate for the 
optimization process.

7.1 � Limitations and future work

Finally, we also identify some limitations of our work and 
opportunities for future work:

•	 Non-self-adjoint equations: Equation 21 is based on 
the Rayleigh–Ritz method (Eq. 11, 12), which is a 
well-known formalism for elliptic equations. It has the 
interpretation of minimization of “energy.” However, 
when it comes to non-parabolic and hyperbolic equa-
tions, such “energy” functionals are not readily avail-
able. In the absence of an “energy” functional for non-
self-adjoint equations, we need to resort to minimizing 
norms of the residuals. This gives rise to an interesting 
question as to what norm should be minimized and how 
to treat the loss function, such that the optimization 
problem is well conditioned and converges faster.

•	 Inheritance from the continuous Galerkin methods: The 
NeuFENet method, as discussed in the current work, 
relies on the continuous Galerkin formalism, which 
is shown to exhibit spurious oscillations convection-
driven elliptic and parabolic equations. This issue can 
be addressed by the Petrov–Galerkin family of meth-
ods  [67], where the test and trial functions may be 
taken from different spaces.

•	 Dependence on a mesh: NeuFENet is mesh based. For 
the examples shown in this paper, we did not need to 
store a mesh explicitly, because the meshes were struc-
tured and fully regular. However, for an arbitrary geom-
etry, such a mesh will need to be saved to memory, 
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which can be memory-intensive, especially for 3D or 
higher dimensional problems. This issue of memory 
intensiveness can be alleviated by considering distrib-
uted frameworks (such as Balu et al. [65]).

•	 Irregular geometry: The current paper focuses only 
on axis-aligned meshes. However, this method can 
be easily extended to handle irregular geometries. A 
domain with an irregular boundary can be embedded 
in a regular axis-aligned domain, and the calculations 
can be carried out exactly as described in this paper. In 
this case, additional information is required to describe 
which nodes lie within the irregular boundary and 
which lie outside.

We anticipate that such approaches that tightly integrate 
neural architectures with well-developed scientific com-
puting approaches will successfully achieve our goal of a 
(near) real-time neural PDE inference.

Appendix 1: Representation of random 
diffusivity

With � taken from the sample space Ω , the diffusivity/permea-
bility � can be written as an exponential of a random quantity Z

We assume that Z  is  square integrable,  i .e. , 
�
[
|Z(x;𝜔)|2

]
< ∞ . Then, we can write Z using the Kar-

hunen–Loeve expansion [68], as

where Z̄(x) = �(Z(x,𝜔)) , and �i(�) are independent random 
variables with zero mean and unit variance. �i and �i(x) are 
the eigenvalues and eigenvectors corresponding to the Fred-
holm equation

where CZ(s, t) is the covariance kernel given by,

where �i is the correlation length in the xi coordinate. This 
particular form of the covariance kernel is separable in the 
three coordinates, thus the eigenvalues and the eigenfunc-
tions of the multi-dimensional case can be obtained by 
combining the eigenvalues and eigenfunctions of the one-
dimensional covariance kernel given by:

(46)� = exp (Z(x;�)).

(47)Z(x;𝜔) = Z̄(x) +

∞�

i=1

√
𝜆i𝜙i(x)𝜓i(𝜔),

(48)∫D

CZ(s, t)�(s)ds = ��(t),

(49)CZ(s, t) = �2
z
exp

(
−

[
s1 − t1

�1
+

s2 − t2

�2
+

s3 − t3

�3

])
,

Fig. 13   Convergence of the error in L2 norm for the Poisson equation 
with analytical solution u = sin (�x) sin (�y)

Table 2   Norm of solution fields for a few randomly selected

# a1 a2 a3 a4 a5 a6 ‖u�‖L2(D) ‖uh‖
L2(D) ‖u� − u

h‖
L2(D)

‖u�−uh‖L2 (D)
‖uh‖

L2 (D)

1 0.223 0.134 −0.141 −0.215 0.124 −0.201 37.397 37.377 0.150 0.0040
2 0.002 −0.050 0.014 0.183 0.147 −0.096 38.673 38.657 0.269 0.0069
3 0.182 −0.246 −0.087 −0.132 0.024 −0.052 37.446 37.464 0.237 0.0063
4 0.143 0.048 0.098 −0.090 −0.101 −0.071 37.929 37.972 0.234 0.0062
5 −0.133 −0.020 −0.110 0.194 0.093 0.022 37.912 37.825 0.253 0.0067
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where �Z is the variance and � is the correlation length in 
one-dimension.

Equation 46 can then be written as

where ai is an m-dimensional parameter, �x and �y are vec-
tors of real numbers arranged in the order of monotonically 
decreasing values; and � and � are functions of x and y, 
respectively. �xi is calculated as

where �x is the solution to the system of transcendental 
equations obtained after differentiating Eq. 48 with respect 
to t . �yi are calculated similarly. �i(x) are given by

and �i(y) are calculated similarly. We take m = 6 and assume 
that each ai is uniformly distributed in [−

√
3,
√
3] , and thus, 

a ∈ [−
√
3,
√
3]6 . The input diffusivity � in all the examples 

in Sects. 6.3 and 6.4 are calculated by choosing the 6-dimen-
sional coefficient a from [−

√
3,
√
3]6.

(50)CZ(s, t) = �2
Z
exp

(
−
s − t

�

)
,

(51)𝜈̃(x;𝜔) = exp

(
m∑

i=1

ai

√
𝜆xi𝜆yi𝜙i(x)𝜓i(y)

)
,

(52)�xi =
2��x

(1 + �2�2
x
)
,

(53)�i(x) =
ai

2
cos(aix) + sin(aix),

Appendix 2: Further discussion 
on convergence studies

Discussion on the role of keeping eH and e� low

If we choose a fixed network architecture and use it to 
solve Eq. 35 across different h-levels, then the errors do 
not necessarily decrease with decreasing h. As shown in 
Fig. 13, the errors actually increase when h > 2−5 . This 
reason for this behavior is that, when h becomes low, 
the number of discrete unknowns in the mesh (i.e., Ui ’s 
in Eq. 14) increases. In fact, in this case, the number of 
basis functions/unknowns, N is exactly equal to 1

h2
 . As h 

decreases, the size of the space Vh increases. However, 
since the network remains the same, the discrete func-
tion space Vh does not remain a subspace of Vh

�
 anymore. 

This network function class also needs to get bigger to 
accommodate all the possible functions at the lower val-
ues of h. Figure 13 also shows the errors obtained when 
the network is indeed enhanced to make Vh

𝜃
⊃ V  (this is a 

clone of the errors plotted in Fig. 7).

Appendix 3: Solutions to the parametric 
Poisson’s equation

Randomly selected examples

See Figs. 14, 15.
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Fig. 14   Contours for the randomly selected examples presented in Table 2: (left) ln(�) , (mid-left) u� , (mid-right) uh and (right) (u� − uh)
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Mean and standard‑deviation fields

See Table 3.
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