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Abstract

We consider a mesh-based approach for training a neural network to produce field predictions of solutions to parametric
partial differential equations (PDEs). This approach contrasts current approaches for “neural PDE solvers” that employ
collocation-based methods to make pointwise predictions of solutions to PDEs. This approach has the advantage of natu-
rally enforcing different boundary conditions as well as ease of invoking well-developed PDE theory—including analysis of
numerical stability and convergence—to obtain capacity bounds for our proposed neural networks in discretized domains.
We explore our mesh-based strategy, called NeuFENet, using a weighted Galerkin loss function based on the Finite Element
Method (FEM) on a parametric elliptic PDE. The weighted Galerkin loss (FEM loss) is similar to an energy functional that
produces improved solutions, satisfies a priori mesh convergence, and can model Dirichlet and Neumann boundary condi-
tions. We prove theoretically, and illustrate with experiments, convergence results analogous to mesh convergence analysis
deployed in finite element solutions to PDEs. These results suggest that a mesh-based neural network approach serves as a

promising approach for solving parametric PDEs with theoretical bounds.

Keywords Neural solvers - Deep learning - Physics informed learning - Parametric PDE - Data-free modeling

1 Introduction

Scientific machine learning is an emerging field combining
machine learning developments with scientific computa-
tion. This field has witnessed a variety of approaches that
deploy neural networks to solve partial differential equations
(PDE). Such neural PDE solvers provide a very different
strategy for solving differential equations than traditional
numerical methods; they primarily rely on optimization tech-
niques rather than the exact solution of systems of equations.
The seminal paper on Physics Informed Neural Networks
(PINNGs) [1] initiated this recent explosion in this line of
work.
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Neural PDE solvers span a wide spectrum in terms
of the amount of data usage. Some methods are “data-
driven” [2-5], where the solution to a given PDE is con-
structed from available experimental data or the underlying
PDE is inferred from available data (commonly termed as
the discovery of hidden physics). In contrast, at the other end
of the spectrum are the so-called “data-free” methods that
do not rely on input—output pairs but solely use the PDE and
the boundary conditions to obtain the solution. In the past
few years, many such methods have been proposed [5—-17].
Our work in this paper follows the latter data-free approach.

The core of neural PDE solvers is deep neural networks,
which can represent arbitrarily complicated functions from
the input to the output domain and, therefore, can approxi-
mate the PDE solution. Most neural methods use a point-
wise prediction framework (also known as implicit neural
networks [18]). These pointwise prediction frameworks
take x € D (the spatial coordinates of the field) as input and
produce an output solution value of u(x) (the solution field
value at x) as shown in Fig. 1a. Thus, the neural PDE solvers
create a mapping between the input domain D to the range
of the solution. Due to a pointwise prediction framework,
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(a) Conventional neural view: domain-to-range mapping

Fig. 1 a Several neural methods (like [1, 45]) are trained to pro-
duce point predictions: G,,, : D — R, which are easier to train, but
more difficult to analyze and converge [54, 55], b In the NeuFENet
approach, we train a neural network to produce a discretized field
solution over a mesh. Such an approach directly links powerful PDE

these methods do not require a mesh and thus rely on col-
locating points from the domain. To take advantage of the
modern stochastic gradient descent (SGD) based methods,
this set of collocation points are often selected in a random
or quasi-random manner [19]. The trained network approxi-
mates the discrete solution via a complicated and nonlinear
mapping. This approach contrasts classical numerical PDE
approaches, which usually rely on a linear combination of
local functions with limited differentiability (even when the
exact solution may be analytic). However, such pointwise
prediction neural methods do not naturally account for the
domain topology. In particular, the “local” nature of the
solution and the sparsity of matrices that emerge naturally
in classical methods are missing in these neural methods.

Some researchers have explored the idea of using clas-
sical methods such as finite difference methods (FDM) and
finite volume methods (FVM) to construct neural archi-
tectures for solving PDEs [20-22]. Inspired by traditional
numerical techniques, these frameworks construct a map-
ping between an input field and the solution field while using
the discretization techniques associated with conventional
numerical methods. These methods take advantage of the
“local” nature of the solution and sparsity of matrices, simi-
lar to traditional numerical methods. In particular, math-
ematical concepts from finite element methods (FEM) are
naturally translatable to neural networks (quadrature can be
represented as convolutions) and provide interesting possi-
bilities, including variational arguments (monotone conver-
gence to the solution), mesh convergence, basis order-based
convergence, and natural incorporation of boundary condi-
tions. The current work builds upon these ideas.

Neural architecture: In this paper, we develop a finite
element (FEM)-based neural architecture for solving PDEs.
Figure 1b shows an abstract outline of this idea where the
mapping is obtained with the use of convolutional neural net-
works, a specific class of network architectures specialized
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(b) A more complex view: field-to-field mapping

analysis techniques at the cost of a larger network. The terms S¢ and
U? can be considered the discrete version of any meaningful pair of
input and output relevant to the PDE; these will be made precise in
the next section

in learning from discrete domains, such as input field sS4
and the output field U4, as shown in Fig. 1b. The nature of
the input field §¢ and the output field U? (in Fig. 1b) would
depend on the actual PDE under consideration and will be
made more concrete in later sections. There are several ben-
efits in developing a finite element method (FEM)-based
neural architecture. FEM-based numerical methods are often
backed by a well-developed and elegant theory that con-
nects the discretization of the domain (in terms of element/
cell dimension, /) and the properties of the basis functions
used to approximate the field (in terms of polynomial order,
a) with the quality of the ensuing numerical solution to the
PDE.

In particular, numerical stability arguments and a priori
error estimates allow users to reason about the accuracy,
robustness, and convergence [23, 24]. Such theoretical argu-
ments rely on the spatial discretization of the domain and
properties of the basis functions in finite elements.! ReLU
activation functions are continuous piecewise functions and,
therefore, have been the subject of study in relation to finite
element basis functions [28]. FEM has been used in con-
junction with neural networks for solving both forward and
inverse problems, primarily with the help of mesh-based
discretizations [29-32]. These methods construct the neural
network in such a way that imitates the action of the stift-
ness matrix on the gradient of the unknowns, i.e., the neural
architecture is designed to mimic FEM. Our present work
differs from these works, because we do not introduce the
structure of FEM in the network architecture. However, our

! In contrast, state-of-art neural methods allow us to use basis func-
tions beyond polynomials or Fourier bases and approximate much
more complicated mappings. Although such methods can be analyzed
theoretically, the estimates are often impractical [25-27] This is a
very active area of research, and we expect tighter estimates in the
future.
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method does share some similarities with these methods in
mapping material properties to solution and using an energy-
based loss function [31, 32].

Among the more recent works, VarNet [33] introduces a
neural method that uses the weak form of the PDE and uses
randomly sampled training points for training the model; it
also uses separate test functions for the weak form. A similar
method is found in graph convolutional network (GCN) [34],
which also utilizes the weak formulation and separate test
function space as compared to the solution space. How-
ever, GCN imposes the boundary conditions exactly. FEA-
Net [35], on the other hand, is a data-based method that
does use FEM approximations but not the PDE itself. In
comparison, our method is data-free (i.e., we do not require
{input, solution} pair to solve the PDE). However, we share
a similarity with FEA-Net in calculating the derivatives of
the solution function over the domain using convolution ker-
nels (as described in Sect. 4.3).

Loss functions: Having decided on borrowing the dis-
cretization scheme from FEM, multiple avenues exist to
define the loss function. First, we need to define the spatial
derivatives at each quadrature point. In FEM, this is done
by directly differentiating the basis functions. Pointwise pre-
diction methods perform this by differentiating the neural
network with respect to the input variable. The differen-
tiation process in the numerical method is straightforward
and interpretable, while that is not necessarily the case in
pointwise neural methods. Once the spatial derivatives are
defined via the basis functions, we can either compare the
weak form against the predefined basis functions from the
test function space and perform a residual minimization
or use an energy minimization approach. There have been
some efforts in introducing weak formulation in physics-
based neural solvers such as [6, 33-35], but most of them
are still collocation-based, and satisfy the Dirichlet boundary
conditions approximately. In the present work, we choose
the Rayleigh—Ritz (RR) method [36, 37]. The RR method
states that the solution to a PDE must be the stationary point
of some functional (i.e., “energy”) under certain conditions.
We note that the RR method has been used in a neural net-
work for solving PDEs before [13, 38—43]. However, the
approach used in these methods closely matches the point-
wise prediction approach outlined in Fig. 1a, in contrast to
our proposed approach.

Boundary conditions: The imposition of boundary
conditions can also be challenging in neural methods.
Very few neural methods satisfy/apply the boundary con-
ditions exactly [34, 44-47], with most methods relying on
approximate approaches [1, 7, 48] usually by including
an additional loss function corresponding to the imposed
boundary conditions. It has been shown by Van der Meer
et al. [49] and Wang et al. [50] that these losses have to
be carefully weighed, making this a non-trivial exercise in

hyperparameter tuning. This hyperparameter sensitivity
underlines the difficulty of applying the boundary condi-
tions in a neural network-based method (or simply a neural
method). Also, note that the method by Yu et al. [38] (using
RR method) is unable to apply the Dirichlet boundary con-
ditions precisely and consequently makes use of a penalty-
based approach for imposing a Dirichlet boundary condition,
which we avoid altogether.

Parametric PDEs: Going beyond a single PDE, there is
growing interest in neural approaches that solve paramet-
ric PDEs (i.e., PDEs defined by a family of parametrized
boundary conditions or coefficient fields). Most neural PDE
methods have been limited to solving for a single instance
of the PDE than a class of parametric solutions. Extend-
ing an instance PDE solver into a parametric PDE solver
can greatly augment rapid design exploration, as alluded
to in SimNet [51] and Wang and Perdikaris [52], where the
authors build a conventional implicit neural solver for para-
metric PDEs.

In this paper, we build upon recent efforts that train net-
works to predict the full-field solution [15, 20, 53] on para-
metric PDEs. Our contributions are as follows:

1. We present an algorithm that bridges traditional numeri-
cal and neural methods. The neural network is designed
to map inputs to the discretized field solution u. How-
ever, the neural network is not responsible for ensur-
ing the spatial differentiability of the solution. Rather,
the discrete field solution relies on traditional numeri-
cal methods (and associated numerical differentiation
and quadrature) to construct the loss function. Such an
approach allows the natural incorporation of different
boundary conditions and allows a priori error estimates.

2. We define the loss functions based on the Rayleigh—
Ritz method coupled with the approximation scheme
provided by a continuous Galerkin FEM. By defining
such loss functions, we utilize function spaces with
appropriate differentiability. This also accounts for the
“local” nature of the solution, resulting in computation-
ally efficient loss evaluations.

3. We prove error convergence (similar to conventional
mesh convergence) for a particular class of PDEs.

4. We demonstrate NeuFENet’s performance on linear
Poisson equation in 2D and 3D with both Dirichlet and
Neumann boundary conditions. Further, we test the par-
ametric capability of this method on Poisson’s equation
by considering a case involving stochastic diffusivity,
which requires access to a parametric PDE solver.

The rest of the paper is arranged as follows: the definitions
and terminologies regarding the parametric Poisson’s equa-
tion are introduced in Sect. 2 and the mathematical formula-
tions are described in detail in Sect. 3. The implementation
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aspects of NeuFENet are described in Sect. 4. Section 5 pre-
sents a theoretical analysis of the errors, and finally, compu-
tational results are presented in Sect. 6.

2 Mathematical preliminaries

Consider a bounded open (spatial) domain D € R",n > 2
with a Lipschitz continuous boundary I' = dD. We will
denote the domain variable as x, where the boldface
denotes a vector or tuple of real numbers. In R”, we have
X = (X[, X, ... ,X,); but for 2D and 3D domains, we will fre-
quently use the notation x = (x,y) and x = (x, y, ), respec-
tively. Consider also a probability space (2, F, P), where Q
is the sample space, F is the o-algebra of the subsets of Q
and P, a probability measure. We consider an abstract PDE
on the functionu : DX Q — R as

Mus(x,w)] =f(x), xX€D, w€Q (12)

Blul = g(x), xeT. (1b)

Here, N is a differential operator (possibly nonlinear) oper-
ating on a function u. The differential equation depends on
the input-data (e.g., material property) s which in turn is
a function of the domain variable x and parameter @ € Q.
Thus, A is essentially a family of PDE’s parameterized by
w.? B is a boundary operator on u. In general, there can be
multiple boundary operators for different part of the bound-
ary I

Given a PDE along with some boundary conditions, such
as the one presented in Eq. 1, the goal is to find a solu-
tion u that satisfies Eq. 1 as accurately as possible. Previous
works such as [1, 7, 45] seek to find a pointwise mapping
u : D — R. Here (see next section), by coupling deep neural
networks with numerical methods, we explore other map-
pings to retrieve a discrete field solution.

In this work, we focus on the Poisson’s equation consider-
ing both Dirichlet and Neumann boundary conditions, along
with a heterogeneous and stochastic diffusivity

-V . (v(x,w)Vu) = f(x) in D 2)
along with the boundary conditions

u=gonly 3)

2 While a probability-based definition of e is not needed for defining
a parameteric PDE, we choose this definition for two reasons. First,
such a formulation allows easy extension to the stochastic PDE case.
Second, such a formulation will allow using expectation-based argu-
ments in the analysis of convergence.
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% =honly, 4)
where v is the permeability (or diffusivity) which depends
on both x and the random variable w; and f1is the forcing. In
relation to Eq. 1, v plays the role of the data 5. I';, and Iy, are
the boundaries of the domain D where Dirichlet and Neu-
mann conditions are specified respectively. We will assume
thatoD =T =T, UTly.

2.1 Poisson’s equation in heterogeneous media

We are mostly interested in the problem of a steady state
mass (or heat) transfer through an inhomogeneous medium
(material). This essentially means that the material has dif-
ferent properties at different points. The only material prop-
erty appearing in the Poisson’s equation (Eq. 2) is v(x), and
thus, the inhomogeneity can be modeled by a spatially vary-
ing v, i.e., v = v(X). The equation and the BC’s are given by

—V . (#X)Vu) =0in D (52)
u0,y) =1 (5b)
u(l,y) =0 (5¢)
P

()—Z(x, 0)=0 (5d)
P

a—z(x, 1) =0, (5¢)

where D is a hypercube domain in R", n = 2, 3. The dif-
fusivity/permeability ¥ is heterogeneous with respect to x
and is also parameterized by w € Q. The specific form of ¥
is given in Eq. 51.

3 Formulations

3.1 Neural approximation of the solution

Instead of seeking a mapping between the domain and
an interval on the real line (Fig. 1a), we seek a mapping
between the input s and the full-field solution u in the dis-
crete spaces (Fig. 1b). S¢ denotes the discrete representation
of the known quantity s. S¢ could be either available only
at discrete points (perhaps from some experimental data)
or, in many cases, s might be known in a functional form,
and thus, S¢ will be simply the values of s evaluated on the
discrete points. Therefore, if we denote a NeuFENet (see



Engineering with Computers

5 .| Loss function
] R = || N(USS) |
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Fig.2 NeuFENet flowchart. The approximation is discussed in
Sect. 3.1, the loss function is discussed in Sect. 3.2, and the training
algorithm is discussed in Sect. 3.3

Fig. 1b) network by G,,, then G, takes as input a discrete
or functional representation of s and outputs a discrete solu-
tion field UJ as

U? = G,,(5%9). (6)

where 0 denotes the network parameters. The mathematical
formulations presented in this section only assume a suitable
neural network that provides the mapping mentioned above
between S and U?. The network architecture is discussed in
Sect. 4.1. A full flowchart of the method is shown in Fig. 2.

An untrained network, as expected, will produce a map-
ping that does not satisfy the discrete PDE and will pos-
sess a large error. We aim to bring this error down to an
acceptable level, thereby reaching a solution that is “close
enough” to the exact solution. As explained below, we do
this by designing the loss function based on major ideas
from the classical numerical methods.

3.2 Loss functions inspired by variational methods

The design of the loss function, along with the choice of
the neural mapping, forms the central part of our approach.
The finite element-based loss function is inspired by the
Galerkin formulation of an elliptic PDE as well as the
Rayleigh—Ritz method. In this case, we actually construct
a function of certain regularity in the domain variable x, as
opposed to just assuming a function of certain differenti-
ability at the collocation points.

Suppose H'(D) = W'2(D) denotes the Sobolev space of
functions whose first derivatives are square integrable. Define
the space V as

V={veH' D) : v0,y)=1,v1,y)=0,|vll, < oo}, (7)

where ||v||, is defined as
[vily = / v(X)lelzdx. 8)
D

Then, the Galerkin formulation for the Poisson’s equation
presented in Eq. 5 is to find u € V, such that

B(u,w) =L(w) Yw eV, ©)]
where
B(u,w) = / v(Vw - Vu)dx (10a)
D
Lw) = /wfdx. (10b)
D

Equation 9 actually represents a number of equations each
for a different test function w taken from the space V. Thus, if
V is discretized such that it can be represented by a finite basis,
then the Galerkin formulation (Eq. 9) yields a finite system of
algebraic equations.

From the theory of variational calculus [36, 56], it is also
known that Eq. 9 is the Euler—Lagrange equation of the fol-
lowing functional J(u) ofu € V:

Jw) = %B(u, u) — L(u). ar)

Therefore, the solution u can also be written as the mini-
mizer of the cost function J

u ar%en‘}m J(u). (12)
In NeuFENet, we make use of this functional J, but instead of
minimizing it against the solution u, we minimize it against
the network parameters 6. Since V is an infinite dimensional
space, we need to discretize it to a finite subspace where we
can evaluate J. For this, let K" be a discretization of D into
n,, finite elements K; such thatu, K; = D. Then, the discrete
function space V" is defined as

Vi={V eV v eP,K), KeK"}, (13)

where P,,(K) denotes the set of polynomial functions of
degree m define on K. Let the dimension of V" be N, which
essentially means that the number of unknowns in the
domain is also N. Suppose {qbl-(x)}i.\;l is a suitable basis that
span V", Then, any function #” € V" can be written as
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N
W'(x) =) $,(x)U,, (14)
i=1

where U, are the function values at the nodal points in the
mesh K". Then, Eq. 12 can be rewritten for u' as

ul" = arg min J(u"). (15)

uhevh

This minimization of the energy functional in a finite-
dimensional space is commonly known as the Rayleigh—Ritz
method. However, in the presence of a neural network, we
minimize J with respect to the network parameter 6 instead
of u”. For this, we need to first explicitly state the 8 depend-
ence of #". This can be done by a slight modification to
Eq. 14 as below

N
W'(x:0) = ) (U0, (16)
i=1

along with a generalization of the function space V" as

VI ={w@) € V" : v(x=0,y;0) = 1,v(x = 1,:0) = 0}.
17

h

Then, we can finally write down the NeuFENet solution U,

in two steps

0* = arg min J(u"(x;0))

o (18a)

uy, = u"(x;0%), (18b)
where ull, € V;‘/.

The discussion leading to Eq. 18 is based on a non-paramet-
ric diffusivity, i.e., V = v(x). Extension of this formulation to
the parametric PDE case is straightforward. Specifically, for
a parameterized w, i.e., V = v(X, w), the function space Vg’/ is
modified as

V;’ = {v L v(x, a);H)llVg <00, Vx=0,y,w;0) =1,

(19)
vix=1,y,w0) =0, }
where || - ||Vg is the energy norm
||v||2vgh =E,.0 [/D v(x,w;6)|Vv|2dx]. (20)

With this choice of function space, the NeuFENet loss func-
tion can be written as

@ Springer

L(0) = E o/ (u"(x, 0:0)). (1)

The right-hand side of Eq. 21 involves two integrations: one
over the spatial domain D and the other an expectation over
Q. The integration over D is evaluated numerically using
Gaussian quadratures rules. And the expectation over Q is
evaluated approximately by a summation over a finite num-
ber of samples, that is

NT
i®) = 1% 3 J(s(@p il (x, ,):6). 22)
s =1

The loss function L(0) is now just a function of § and we can
minimize it with respect to 0

0* = arg min L(6)

=) (23a)

ul, = ul'(x, 0;0%).

ho= (23b)

Remark 1 To simplify notations when we analyze errors in
Sect. 5, we make a distinction between two representations
of 0*: one of them is the theoretical minimum (denoted by
6 in Sect. 5) and the other is the actual set of parameters
(denoted by 6 in Sect. 5) obtained by optimizing Eq. 23a
with an optimization algorithm. This terminology then
spawns two variants for ”Z*: ug and u,, respectively.

3.3 Training algorithm for NeuFENet

We provide two versions of the training algorithm. (i) an algo-
rithm for computing the solution for an instance of a PDE and
(ii) an algorithm for approximating the solution for a paramet-
ric PDE. The model architecture and the loss function remain
the same for both. For the instance version, we use a simple
approach as explained in Algorithm 1. While sampling from a
distribution of coefficients/forcing field for a parametric PDE,
we employ the mini-batch-based optimization approach as
explained in Algorithm 2. The sampling of the known quanti-
ties can be performed using any random or gseudo-random
sequence (see Sect. 6.3 for an example). For training the neural
network, we predict the solution field using sampled inputs and
compute the loss using the loss function derived above. We
employ gradient descent-based optimizers such as Adam [57]
to perform the numerical optimization.
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Algorithm 1 Algorithm for instance PDE solver

Require: S%, o, TOL and max_epoch
1: Initialize G,,,
2: for epoch + 1 tomax_epoch do
3: Ued — G,LTL(Sd)

4: Apply Dirichlet boundary conditions to U, g
5: loss = L(S4,U§)

6: 0 < optimizer(0, o, Vg (loss))

7: if loss < TOL then

8: break

9: end if

10: end for

> « = learning rate

Algorithm 2 Algorithm for parametric PDE solver

Require: {S¢}N: a, TOL and max_epoch
1: Initialize Gy,
2: for epoch + 1 tomax_epoch do
3: for mb + 1 tomax_mini_ batches do

4 Sample (S%),,;, from the set { S} N+,

S (Ug)mb A Gnn ((Sd)mb)

6: Apply Dirichlet boundary conditions on (Ug)ns
7. 1055 = L((S§)mbs (Ug)mb)

8: 0 « optimizer(0, a, Vo(lossmp))

9: end for

10: end for

> a = learning rate

4 Implementations

4.1 Model architecture for NeuFENet

Due to the structured grid representation of &% and similarly
structured representation of U d deep convolutional neural net-
works are a natural choice of network architecture. The spatial
localization of convolutional neural networks helps learn the
local interaction between the discrete points. Since the net-
work takes an input of a discrete grid representation (similar
to an image, possibly with multiple channels) and predicts an
output of the solution field of a discrete grid representation
(similar to an image, possibly with multiple channels), this is
considered to be similar to an image segmentation or image-
to-image translation task in computer vision. U-Nets [58,
59] have been known to be effective for applications such as
semantic segmentation and image reconstruction. Due to its
success in diverse applications, we choose U-Net architecture
for NeuFENet. The architecture of the network is shown in
Fig. 5. First, a block of convolution and instance normalization

is applied. Then, the output is saved for later use via skip-
connection. This intermediate output is then down-sampled
at a lower resolution for a subsequent block of convolution,
instance normalization layers. This process is repeated two
times. Now, the upsampling starts where the saved outputs
of similar dimensions are concatenated with the output of
upsampling for creating the skip connections, followed by a
convolution layer. LeakyReLU activation was used for all the
intermediate layers, with Sigmoid activation for the final layer.

4.2 Applying boundary conditions

In NeuFENet, the Dirichlet boundary conditions are applied
exactly. The output Ug does not contain the boundary condi-
tions. Thus, a small post-processing step is done to the net-
work output to force the Dirichlet boundary conditions onto
the respective boundaries. This can be done in a differentiable
manner in modern machine learning software libraries such
as PyTorch [60]. This exact imposition of Dirichlet boundary
conditions allows the training process to be much smoother
and interpretable, because there is no penalty term involved
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Fig.3 (Left) A single 2D element in FEM, with black dots denoting
“nodes” and red dots denoting 2 X 2 Gauss quadrature points. (Right)
A finite element mesh, with 4 X 3 linear elements and 5 X 4 nodes.
Each of these elements contains Gauss points for integration to be
performed within that element. Within each element, the “first” quad-
rature point (marked “1” on left) is marked green, and others red

ayp ag as a4

by by b3 by N1 No —
Cl1 C2 |C3 (4 * N N B
dy dy ds dy | S
€1 €2 €3 €4
. Kori  (Uder)u

Fig.4 Quadrature quantity evaluation in FEM context. (Ug )y is the
matrix view of the nodal values.K;p, is kernel containing the basis
function values at “gauss point - 1" (top left corner). This convolution
results in the function values evaluated at the Gauss point “1” of each
element (marked green). (UZGPI)M is the matrix of this result. Func-
tion values (or their derivatives) evaluated at Gauss points can then be
used in any integral evaluation. For example,

JudD = 1| ey | Zi, Wi(UDgpy | where L1 is the transforma-
tion Jacobian for integration and w are the quadrature weights

Coefficient /
forcing field

= Solution field
- -
-

== Conv 3x3, RelLU, BN
UpSampling, Conv 3x3,
RelU, BN

== Conv 3x3, Sigmoid

i I
i-l-

U-Net

Fig. 5 UNet architecture used for training NeuFENet

in the loss function. Thus, the loss function retains its con-
vex nature with respect to the solution u". On the other hand,
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Neumann conditions are included in the variational form of the
PDE right at the continuous level. Especially, zero-Neumann
conditions are exactly satisfied at the discrete level without
requiring us to do anything (“do-nothing” conditions).

4.3 Calculation of derivatives and integration

The full domain integration (i.e., f D) is nothing but the
simple sum of the integration over the individual elements
(ie., Zi\;’l [ D,). This integration over an individual element
is, in turn, the simple weighted sum of the integrand evalu-
ated at the Gauss quadrature points. This evaluation at a
single Gauss point can be represented as convolution. Thus,
if there are 4 Gauss points in each element, then 4 convolu-
tion operations will evaluate the integrand at those points for
each element. After that, we only need to sum across Gauss
points first, followed by a sum across elements. See Figs. 3
and 4 for visualized representation of this process.

Remark 2 Since the result of the integration process is a
scalar loss value, there is no requirement to compute, store,
or assemble a matrix.

5 Error analysis
5.1 Error analysis for the instance case

We provide estimates on the errors incurred by NeuFENet
in approximating the solution. Suppose the exact solution
of Eq. 5 is u and the solution obtained at the end of the
training process is given by u, (see Remark 1). Let us define
ug as the best possible function in V. Note that this func-
tion may or may not be able to match ", but it represents
the best possible function that the neural network function
class can produce. Note also that u; might be different than
uy, especially if the optimization algorithm cannot reach the
optimum 6. We try to bound the error u, — u by first break-
ing down the total error into errors from different sources.
Theorem 2 is our main result for the single instance PDE
version, while Theorem 3 is our main result for the para-
metric PDE version.

Lemma 1 Let u, be the solution of Eq. 11 when it
is optimized by Algorithm 1. Then, the optimiza-

tion error |legllyn = \/2IE |, where ey = uy —uz and
E; = J(uy) — J(up).
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Proof

1
Jtg) = / VIV, —fue]dx
L

1
S—

[1

A
J

1
= J(ug) + 5 llegl

-%V|Vu§ +Vep|? — flus + eg)] dx (using e, = uy — uz)
—v|Vug|2 + %leeel2 +vVuy - Ve, — f(ug + ee)]dx (24)

Evi e —fug]dx+1/v|w€|2dx+/ [VWe, - Vitg — feg) dx

where in the final step, we have used the definitions of J and
|leglly» along with the fact that

I [vVeg - Vug —fee]dx =0, since ¢, € V" (see Egs. 9
and 10). Therefore, we have

legll? = 2[J(ug) — J(up)] = 2&, = 201&1I,. (25)

since &; = J(up) — J(ugz) > 0. O

We next describe a theorem that provides an estimate on
the network capacity.

Theorem 1 Fix p € Q and consider a PDE as defined in
Eq. 1 over a compact domain D which is uniformly discre-
tized with resolution h. Let u, be the true solution evaluated
at the grid points. Consider the hypothesis class

k

H:= {u® pe ZaﬁReLU((w;',p> +b§),i= 1,...,n.}
I=1

(26)

defined as the set of all two-layer neural networks with k
hidden neurons equipped with ReLU activation. Then, as
long as k = Q(1/h), there exists a network in H for which
Erry, = 0.

Proof The proof follows a recent result by Bubeck et al. [61].
Let the output resolution of the network be n. For a fixed p,
consider the (linear) vector space spanned by all possible
(perhaps uncountably many) basis functions of the form

f() =dReLU({W,-) +b,),

where a, b, w are arbitrary real-valued weights. Since
i =1,...,n, the span of this space is no more than n-dimen-
sional and isomorphic to R for some m < n. Therefore,
there is a set of no more than » basis functions (i.e., n neu-
rons) that can be used to represent u; any fixed p. Assuming
the dimension of p is small, we have n < 1/h. Therefore,
k = Q(1/h) neurons are sufficient to reproduce u;. O

Notice that the above theorem shows that there exist
NeuFENet architectures that exactly drive the modeling
error down to zero. However, the proof is non-construc-
tive, and there is no obvious algorithm to find the basis
functions that reproduce the solution at the evaluation
points. Theorem 1 essentially allows us to choose the neu-
ral network parameter family ®, such that the modeling
error e, is low. Since we are free to choose the network
architecture, we can always assume ( and a posteriori con-
firm) that

llewll = llug — u"|| < e, €>0. 27)

Remark 3 NeuFENet is designed to be agnostic to a neural
network. Therefore, either a fully connected neural network
or a convolutional neural network can be used for the net-
work approximation. Since a convolutional neural network
can be interpreted as a special case of a fully connected net-
work with sparse weights [62], the above estimate still holds.

For the third source of error, i.e., the error due to dis-
cretization using finite element method can be estimated
from standard finite element analysis literature. We start
with the following assumption:

Assumption 1 Assume that the spatial domain D is discre-
tized by a mesh K" that consists of hyperrectangular ele-
ments. Each element K € K" has a bounded radius, i.e.,
0 < hyiy < 7(K) < by < 00. We define the mesh length
h= min{r(K)}?;’l

max

Lemma 2 The exact solution to Eq. 9, u € H*(D).

Proof In Eq. 9, the diffusivity v(x;w) € C(D) for any fixed
o € Q. Furthermore, the forcing function f = 0 € L*(D).
Using results from regularity theory (such as [36], Sec. 6.3
Theorem 1), we conclude u € H*(D). O

Lemma 3 Let Assumption 1 hold. Further assume that
the basis functions ¢,(X) in Eq. 14 are chosen, such that
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¢;(x) € C*(K) (a > 1) locally within each element K € Kt
Then

" = ull 2y < Coh™*, (28)

where C; = Cy(D, |u|y) is a constant.

Proof We refer to standard texts such as Oden and Reddy
[63](Sec. 8.6, Theorem 8.5) or Brenner and Scott [23](Sec.
5.7) for the proof. O

Finally we can write down the estimate for the generaliza-
tion error in NeuFENet in the form of the following theorem.

Theorem 2 Consider any NeuFENet architecture produc-
ing fields with grid spacing h. Let H denote the hypothesis
class of all networks obeying that architecture. Suppose
that ©® € 'H is a NeuFENet trained using the loss function J
defined in Eq. 12. Then, its generalization error obeys

leglly, < Ertg + Erry, + O(h‘)“rl ), (29)

where Errg is a term that only depends on the NeuFENet
optimization procedure and Err,, only depends on the choice
of hypothesis class 'H. The a in the third term is the local
degree of the basis functions as in Lemma 3.

Proof The result is simply an application of the triangle
inequality. Dropping the subscript V,

h h
llegll = llug — ug + ug —u" +u" — u||
h h
< llug — ugll + llug — w’|| + [lu” — ul|

= llegll + llexll + llepll
= Errg + Erry, + O(h*™).

(30)

Using Lemma 1, the optimization error Errg is nothing but

V201E ;- O

5.2 Extending the error analysis for the parametric
version

The above theorem is for a single parameter choice p € Q.
An identical argument can be extended to the loss con-
structed by sampling a finite number (say m) of parameters
from a distribution over Q. We obtain the following corol-
lary from Theorem 1:

Lemma4 (Barron [64]) Consider a finite-sample version of

the loss L constructed by taking the average over m param-
eter choices sampled from Q. Consider the hypothesis class
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k
H:= {u@) pe ZaEReLU«w;,p) +b§),i =1,... ,n}
=1
€29
defined as the set of all two-layer neural networks with k
hidden neurons equipped with ReLU activation. Then, as

long as k = Q(m/h), there exists a network in H for which
Erry, = 0.

This lemma shows that a wide two-layer network exists
that can reproduce any (finite) set of field solutions to a PDE
system as long as the width scales linearly in the cardinality
of the set. Getting bounds independent of the cardinality is
an interesting open question. We have the following result
for the optimization error:

Lemma5 Letu, be the solution of the optimization problem
in Eq. 23 when it is optimized by Algorithm 2. Then, the

optimization err0r||e9||vg = /2||&; |, where ey = uy — ug,
& = L6) - L@).

Proof Starting with the definition of L from Eq. 22 and
denoting v; = v(X, ;) and uy ; = u(x, @;;0)

N,
. 1 &
i) = N ;J(vi, g.))

N,
1 1 32
= 7 & (S0 + ey ) 32
— i@+ Lier
= LO) + 5 lleglly,
N,
where we have used ||e9||2vg = Ellegllys = NL Yo gl
Denoting &; = L(6) — L(6) > 0, we have the result. O

With this, an analog of Theorem 2 can be stated for the
parametric training with finite data as below.

Theorem 3 Consider any NeuFENetarchitecture produc-
ing fields with grid spacing h. Let H denote the hypothesis
class of all networks obeying that architecture. Suppose
that ® € 'H is a NeuFENet trained using the loss function
L defined in Eq. 22. Then, its generalization error obeys:

llellyr < Errg + Erry, + O(A**'), (33)
where Errg is a term that only depends on the NeuFENet
optimization procedure; Erry, only depends on the choice
of hypothesis class H and a is the local degree of the basis
function as in Lemma 3.

Proof The result is simply an application of the triangle
inequality. Dropping the subscript V,
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f i 1.0
16 0.8
12 0.6
8 0.4
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0 0.0

Fig.6 Solution to Eq. 35 with the forcing term as shown in Eq. 36
on a 256 x 256 grid. (Left) the discrete forcing F¢, (middle-left) the
solution U? obtained from a NeuFENet with a U-net architecture,
(middle-right) the exact solution u,, = sin(zx)sin(xy) evaluated

h h
||eG||Vg = lug —ug+us—u' +u —u||Vg

u Ug—u
1.0 i
0.8 0.0001
0.6 0.0000
0.4 -0.0001
0.2 -0.0002
0.0

on the mesh denoted Um,
right: f, u Uy and (u
lueg — ul| —24><10 S

(right) the error (U — U%). From left to
w,. ). Note: [lupl = 0.499979, |[ul = 0.5,

= 272 sin(zx) sin(xy).

[ =X =f(xy)

The exact solution to Eq. 35 with the forcing function in
Eq. 36 is given by u,,(x,y) = sin(zx) sin(zy). For solving
this problem, we seek to train a NeuFENet that can predict
the solution u given the forcing f. At the discrete level, the

(36)

h h
< lug — “é”vg + llug —u “Vg + [lu" = ”“Vg (34)
< ||39||vg + ||eH||vg + ”eh”vg-

The third norm can be estimated as

N

s

h
leullyy = " = ullys = /E,-gllid'(@) — u@)Il} =

L
— 2 Ml —ully, <
N2

N,
|
v Z IVill2, IV = w2,

i M,ﬂz

Kek"

\17

1
|v||Lz(D)< > IV —u>llm>> v .

M.z

Vi, ,< > Ml

Kek!

—U; )”LZ(K)>

S =1

2|~

Ny
/i
Z ”V “LZ(D)”(M; )”LZ(D)

A\

N,
1 @
N, Z} Cyih@*h < C A,

where C, = Ce<f2N&,D, C?,A,B). Here, C! is the discrete

inverse Poincaré constant, such that||Vul| 2, < Cﬁ’ el 2k

for all KeK'; A =max{llville(D)}ﬁi1 and
N

B = max{luilHZ(D)}i:Sl. [

6 Results

6.1 Error convergence for a Poisson problem

At the outset, we would like to validate the error bounds
stated in Sect. 5. To this end, we solve the following non-
parametric Poisson’s equation:

—Au=f inD c R? (35a)
u=0 onaD, (35b)
where D = [0, 1]?is a two-dimensional square domain. The

forcing is chosen as

F T I - .

102 | | —@— NeuFENet (No network) B

F| —m— NeuFENet (With network)

1 f-| —e— Conventional FEM 1

10" E| ——PINN <

| —— DRM 1

10° E ]

8 F |
S 107! E .
= E ]
‘ 2 ]
s 10 g g
1073 E y

i 2 |

-4 A ]

10 g 1 |
1075 E y

E | | | | | | B

Fig.7 Convergence of the error in L? norm for the Poisson’s equation
with analytical solution u = sin (zx) sin (zy)
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network takes input F¢ and outputs U¢. The loss function
Eq. 11 takes the concrete form

J(u) = % / |Vu|?dx — / ufdx. (37)

Figure 6 shows the contours of the network input F¢, output
U, the exact solution evaluated on the mesh K" (a 256 x 256
grid) and the error (U — U,).

To study convergence behavior, we repeat this procedure
with varying mesh length £, starting from h = % and gradu-

ally decreasing A till 4 = ﬁ. The calculated errors for each
resolution are reported in Fig. 7.

Theorem 2 estimates the total error by the contributions
from three individual sources of errors, namely, the error due
to finite element discretization (e;,), the error due to network
approximation capacity (ey), and the error due to the opti-
mization process (ep). Of these three errors, e, maintains a
particular relation to the discretization parameter 4 (i.e., the
mesh size). The other two errors do not hold a straightfor-
ward relation with the mesh size or the network parameters.
Thus, we put the estimate in Eq. 29 to test by keeping both
e, and e, sufficiently low, so that the dominating error is the
discretization error e,

We illustrate this by running two sets of NeuFENet
simulations.

e The first set is where we completely remove the neural
network and optimize the loss directly with respect to the
function u", that is

ho_ : h

u aru{hger‘r/lsn J(u"), (38)
which is nothing but classic Rayleigh—Ritz optimization.
The absence of a neural network eliminates the error e,,.
Therefore, the total error is a combination of only e, and
ey The total errors from this algorithm are plotted against
the mesh size 4 in Fig. 7 under the legend “NeuFENet
(No network)”. We see that the error plot has a slope of 2.

e The second set uses a neural network. Thus, the optimiza-
tion statement is the same as presented in Eq. 18. There-
fore, as discussed in Theorem 2, the total error combines
all three errors indicated in Eq. 29. To keep e, negligible,
we need to be aware that the spatial degrees of freedom
(i.e., the number of bases in V") are inversely propor-
tional to 4% (for a 2D domain). Thus, as we decrease A,
the “size" of V" increases. Therefore, the function space
Vg must also get bigger; in particular, it should be big
enough to satisfy Vé’ D V. One way to accommodate this
is to use a high-capacity network to solve the equation at
all A-levels. However, the UNet architecture described in
Sect. 4.1 does not allow very high depth when the input/
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output size is low. Thus, we must gradually enhance the
network capacity at different 4 levels by increasing the
network depth. Using this strategy, we solve Eq. 35 at
various h-levels and plot the errors in Fig. 7. The slope
of 2 of the error curve confirms that both e;, ~ 0 and
ey ~ 0. Interestingly, if we do not keep e;, negligible by
increasing the depth of the network for smaller /4, both e,
and e, can dominate (see Appendix 2). This suggests that
a gradual increase in network complexity is warranted as
the discretization becomes finer. This is made computa-
tionally efficient using multi-grid-like approaches [65].

Figure 7 also shows a plot of errors obtained from solving
the same problem using three other methods for reference,
namely, (i) conventional FEM, (ii) physics-informed neural
networks (PINN), and (iii) the deep Ritz method (DRM). The
conventional FEM solution was obtained using a GMRES
solver with a 1073 tolerance. A multilayer perceptron was
used with 8 hidden layers, each with 100 neurons with tanh
activation function for both the PINN and DRM solutions.
The learning rate was kept at 1073 for PINN, and 10~ for
DRM. In both PINN and DRM, the boundary conditions are
applied approximately by minimizing the errors incurred on
the boundary. This necessitates weighing the loss values in
the interior (PDE) and at the boundary differently, i.e., the
loss function has the form £ = ¢(Rppp) + Aw(Rpe), where
R stands for residual, and ¢ and y are functions that depend
on the flavor of the method. In PINN, ¢ =y = || - |15 [1,
66]; in DRM, ¢ takes the energy form of the residual, and
v=]" ||§ [38, 39]. In Fig. 7, PINN errors are comparable
to that obtained from NeuFENet. On the other hand, DRM
exhibits much higher errors compared to NeuFENet.

The high errors in DRM is not surprising, and can be
understood as follows. If we take our model equations (Eq. 2
and Eq. 3) (and assume I'j, = I'), then the DRM loss can be
written as

(u — g)dr,

Logy = / [1v(VW V) — wf]dx +2
pl2 I,

(39)
where 0 < A € R. The Euler-Lagrange equations for this

loss function, however, turn out to be [40]:

=V-vwWu=fin Q, (40)

n-vVu+2Au=g on I’ 41)

Because of this inconsistency, the exact solutions of Egs. 2
and 3 do not satisfy Eq. 39. This leads to larger errors in
DRM in Fig. 7. In NeuFENet, the boundary conditions are
applied exactly; thus, it is a consistent method and obviates
the need for a penalty parameter A.
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(a) Solution to Equation 35 and 36:
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(b) Solution to Equation 42:

(top) NeuFENet, ||ug —ul| 2 = 2.4x107° and ||ug —u| poo = 2.7x107*, (top) NeuFENet, |ug—u|| 2 = 1.5x10™* and ||ug —u||poo = 3.1x107%,
(bottom) PINN, ||ug —ul| .2 = 3.6 x 10~ and ||ug —u|| oo = 3.1 x 102 (bottom) PINN, ||[ug —u|| ;2 = 5.6 x 10~ and ||ug —u||poc = 5.5x 1073

Fig.8 Typical comparison between a NeuFENet solution and a PINN solution for two different boundary conditions

v Ug 1.0

0.8
0.6

o

0.4
-2 0.2
0.0

S |

1.0 Ug—u
0.8 0.005
0.6

0.000
0.4
0.2 -0.005
0.0

Fig.9 (Left) contours of In(v) corresponding to a = (-0.24,-0.17,0.13,0.07,—0.07,0.14), (middle-left) NeuFENet prediction (u,), (middle-
right) reference numerical solution using FEM (u"), (right) contours of (ug — u'

6.2 Exact imposition of Dirichlet boundary
conditions

As mentioned in Sect. 4.2, Dirichlet boundary conditions can
be applied exactly (subject to discretization) in NeuFENet.
The exact imposition of boundary conditions is almost uni-
versal across numerical methods unless there is an explicit
need to apply it weakly (or in an integral sense). Yet, this
is not very common in neural methods. Most of the current
neural methods apply only approximately the Dirichlet (as
well as other) boundary conditions. We illustrate this with
two simple examples below, the first with a homogeneous
BC and the other with a non-homogeneous one.

e Homogeneous BC: We take the same equation and
boundary conditions described in Sect. 6.1 (see Eq. 35
and Eq. 36). The boundary condition, in this case, is
homogeneous throughout the entire boundary. We solve
this problem using NeuFENet and also with a physics-
informed neural network (PINN, [1]). In the case of Neu-
FENet, the FEM mesh K" for NeuFENet is a 255 X 255
mesh of bilinear quadrilateral elements (i.e., 256 X 256
nodes), which is solved by optimizing Eq. 37 using Adam
optimizer. The PINN solution is obtained by performing

residual optimization using 65536(= 256 X 256) points
randomly selected from D = [0, 1]?. The contours of the
solutions and their difference from the analytical solution
are shown in Fig. 8(a).

e Non-homogeneous BC: Consider the following equation:

—Au=0 in[0,1]? (42a)
u=sin(zy) onx=0 (42b)
u =0 other boundaries. (42¢c)

The analytical solution to Eq. 42 is given by
u(x,y) = exp(—zx) sin(zy). We solve this set of equa-
tions with NeuFENet using a 32 X 32 bilinear quadrilat-
eral mesh and PINN using 1024(= 32 X 32) randomly
selected points. The contours are shown in Fig. 8b.

In both experiments, we notice that a non-exact application
of boundary conditions can affect the ability of the network
to approximate the solution in the interior, thus rendering a
higher level of errors overall.
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Fig. 10 Line cuts for the contours presented in Fig 9. (Top row) x-parallel line cuts at y = 0.2, 0.5, 0.8. (Bottom row) y-parallel line cuts at x =

0.2,0.5,0.8

6.3 Poisson’s equation with parametric log
permeability

Our second illustration is the solution of the PDE defined
in Sect. 2.1 (Eq. 5), which is frequently used for simulating
practical problems such as heat or mass transfer through
an inhomogeneous media. We solve this problem in both
2D and 3D domains, i.e., D = [0, 1]? as well as D = [0, 1]°;
v is now a function of x = (x,y) and is also parametric, as
mentioned in Eq. 51.

We seek a mapping of the form u = G,,(v), where
G,, denotes the neural network. Therefore, S¢ refers to
the discrete version of v. Following the principle of Kar-
hunen-Loeve expansion as described in Appendix 1, the
infinite-dimensional random space is truncated into a finite-
dimensional space. Thereafter, a finite set of samples is pre-
pared from this space for the training process. Suppose the
number of samples is N,. Then, the loss function takes the
concrete form

N

$ =1

N.\‘
=3 / 70| V()P dx, 43)
D

where, u; = G,,(v;, 8). Both Dirichlet and Neumann condi-
tions are present in this equation. In NeuFENet, the Dirichlet
conditions are applied exactly. The zero-Neumann condi-
tion is also applied exactly at the continuous level, since
the boundary integrals vanish at the continuous level (see
Eq. 10).
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By optimizing the loss (Eq. 43), we attempt to learn the
distribution of the stochastic solution, given that the coef-
ficients in the log permeability K-L sum come from a known
range of values that depends on the parameter space . We
truncate the K-L sum after 6 terms. These six coefficients
form a six-dimensional space from which the coefficient
tuples {al-}f=1 can be drawn. The NeuFENet is trained by
selecting a finite number (N,) of pseudo-random samples
from this 6-dimensional space, specifically a € [— \/5 , \/5]6
(see also Appendix 1). For the results shown below, we
have taken N; = 65536. We used the Adam optimization
algorithm, with a learning rate of 10~*. Once the network is
trained, we can perform inference by evaluating the solu-
tion for any diffusivity v taken from the sample space. To
illustrate the nature of the input (v or §%) and the solution
(u or U%), we present an anecdotal (i.e., a non-special and
random) set of §¢ and U¢ in Fig. 9. A reference solution
using a conventional FEM program is also presented therein.
Furthermore, sectional line cuts for these contours are shown
in Fig. 10. The line cuts display a close match between Neu-
FENet and the numerical solution.

6.3.1 Statistical distribution of solution

Since Eq. 5 is parametric, we can compare the quality of the
solution from NeuFENet with a reference numerical solu-
tion in a statistical manner. We choose some points on the
domain D (shown by black dots in Fig. 11a) and evaluate the
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Table 1 Inference times of NeuFENet compared with solve time of a
conventional FEM solver for the parametric problem

NeuFENet FEM (conventional)
642 476 x 107> 1x1072
1282 9.8 x 1073 3.6 x 1072
2562 2.74 x 107 21.0x 10°

The 642, 1282, and 2567 results are obtained by averaging over 500
inferences/solves. All timing values are in seconds

solution values at those query points for 16, 384 samples of
v, where the {ai}l(.’=1 tuples are taken from a smaller subset
of the full sample space, namely, a € [—i, i]ﬁ. Therefore,
at a particular query point, those 16, 384 solution values
approximately represent a distribution of the solution values
at that point. This sample of solution values at each query
point allows us to create histograms of the solution values
at each query point.

The histograms are shown in Fig. 11. We notice a
very close match between the histograms obtained from

NeuFENet and a conventional FEM solver. This once again
confirms that NeuFENet effectively provides the correct sta-
tistics of the parametric Poisson equation.

6.3.2 Comparisons with traditional FEM solver

Table 1 presents a comparison of the time taken for a sin-
gle NeuFENet inference against the solve time for a single
case using a conventional FEM solver. Note that the infer-
ence time does not include the “training time.” The number
of parameters present in the network is approximately 4.2
million. The NeuFENet model is queried on an NVIDIA
A100-SXM4-80GB GPU. For the conventional solver, the
reported timings are taken to be the lowest time obtained
when run on 1, 2, 4, and 8 processors on a AMD EPYC
7543 32-Core compute node. It can be noted from Table 1
that the respective timings differ from each other by a few
orders of magnitude.

This disparity in inference/solve times clearly demon-
strate the benefit of using a neural solver for parametric

1.71
I: 1.00
— 0.00

— -1.00

-2.00

-3.26

1.00
[0.80
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— 0.40
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Fig. 12 Contours of In(v(x,y,z)) and the solution u,(x,y,z) to the 3D Poisson’s problem (Eq. 44) on a 64 x 64 x 64 mesh (for

a=(-1,14,15,-13,-1.6,0.3))
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problems. Once the training is completed offline, inferences
become very cheap compared to the conventional solver.

6.4 3D Poisson’s equation

So far, we have focused on two-dimensional problems.
Although 2D problems are useful in demonstrating the key
features and properties of the NeuFENet method, a real test
of neural PDE solvers lies in their ability to solve three-
dimensional problems. NeuFENet can solve both 2D and
3D problems without much changes to the architecture. To
provide an example of this, we solve the 3D counterpart of
the PDE defined in Eq. 5, which is

-V - (@#x)Vu) =0in D = [0, 17°, (44a)
u(x=0,y,z) =1, (44b)
u(x=1,y,z) =0, (440)
n-Vu=0 onall other boundaries, (44d)

where fi denotes the outward normal to the boundary. Once
again, the functional form of v(x) is described in Appendix
1. The loss function is a direct analog of Eq. 43

J= / U(x)| Vu(x)|?dx, (45)
D

In Fig. 12, we show one randomly selected pair of v and
u for a 3D problem obtained using NeuFENet. We opti-
mize Eq. 45 for a randomly selected set of coefficients
a=(-1,14,15,-13,-1.6,0.3). The plots of v(x,y, z) and
uy(x,y, z) are shown in Fig. 12.

7 Conclusions and future directions

In this paper, we develop a neural method NeuFENet for
solving parametric PDEs where the discretization and the
loss functions are inspired by the continuous Galerkin (cG)
method and the Rayleigh—Ritz method, respectively. Due
to the choice of discretization scheme, NeuFENet inherits
the approximation properties of the cG method. This allows
us to (i) calculate spatial derivatives in the same way as in
finite element methods, (ii) perform spatial integration using
simple Gaussian quadrature schemes, (iii) apply Dirichlet
and (zero) Neumann boundary conditions exactly, and (iv)
derive a priori error estimates.

The optimization problem is defined in terms of an
energy functional derived from variational principles.
This is in contrast to residual-based minimization, the
more widely followed process across the current neural

methods. There are some exceptions (see, for instance, [13,
38, 39]) that apply energy-based loss functions but do not
apply the boundary conditions exactly, thereby incurring
large errors. We showed examples of Poisson’s equation
solved using NeuFENet. Since Poisson’s equation is a self-
adjoint equation, its energy functional is convex and thus
possesses a unique minima, which can be easily found by a
gradient-based optimization method. We further illustrate
that such a method can successfully solve stochastic PDEs
and determine its statistical properties.

NeuFENet offers direct control over the regularity of
the solution with respect to the spatial domain. For exam-
ple, in the examples presented in this paper, the solutions
belong to the H'(Q)-space. Also, the Dirichlet boundary
conditions are imposed exactly; thus, there is no need for a
boundary loss function common in collocation-based neu-
ral methods. This leads to another advantage: the absence
of any hyperparameter associated with the relative weight
of the “interior” and “boundary” loss values. The only
hyperparameter in this method is the learning rate for the
optimization process.

7.1 Limitations and future work

Finally, we also identify some limitations of our work and
opportunities for future work:

e Non-self-adjoint equations: Equation 21 is based on
the Rayleigh—Ritz method (Eq. 11, 12), which is a
well-known formalism for elliptic equations. It has the
interpretation of minimization of “energy.” However,
when it comes to non-parabolic and hyperbolic equa-
tions, such “energy” functionals are not readily avail-
able. In the absence of an “energy” functional for non-
self-adjoint equations, we need to resort to minimizing
norms of the residuals. This gives rise to an interesting
question as to what norm should be minimized and how
to treat the loss function, such that the optimization
problem is well conditioned and converges faster.

e [nheritance from the continuous Galerkin methods: The
NeuFENet method, as discussed in the current work,
relies on the continuous Galerkin formalism, which
is shown to exhibit spurious oscillations convection-
driven elliptic and parabolic equations. This issue can
be addressed by the Petrov—Galerkin family of meth-
ods [67], where the test and trial functions may be
taken from different spaces.

e Dependence on a mesh: NeuFENet is mesh based. For
the examples shown in this paper, we did not need to
store a mesh explicitly, because the meshes were struc-
tured and fully regular. However, for an arbitrary geom-
etry, such a mesh will need to be saved to memory,
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Fig. 13 Convergence of the error in L? norm for the Poisson equation
with analytical solution u = sin (zx) sin (zy)

which can be memory-intensive, especially for 3D or
higher dimensional problems. This issue of memory
intensiveness can be alleviated by considering distrib-
uted frameworks (such as Balu et al. [65]).

e [rregular geometry: The current paper focuses only
on axis-aligned meshes. However, this method can
be easily extended to handle irregular geometries. A
domain with an irregular boundary can be embedded
in a regular axis-aligned domain, and the calculations
can be carried out exactly as described in this paper. In
this case, additional information is required to describe
which nodes lie within the irregular boundary and
which lie outside.

Table 2 Norm of solution fields for a few randomly selected

We anticipate that such approaches that tightly integrate
neural architectures with well-developed scientific com-
puting approaches will successfully achieve our goal of a
(near) real-time neural PDE inference.

Appendix 1: Representation of random
diffusivity

With w taken from the sample space €, the diffusivity/permea-
bility v can be written as an exponential of a random quantity Z

v = exp (Z(x;w)). (46)

We assume that Z is square integrable, i.e.,
UE[IZ(X;a))|2] < 0. Then, we can write Z using the Kar-
hunen—Loeve expansion [68], as

Z(xi0) = Z() + ) \ b (), (47)
i=1

where Z(x) = E(Z(x, )), and y;(w) are independent random

variables with zero mean and unit variance. 4; and ¢;(x) are

the eigenvalues and eigenvectors corresponding to the Fred-

holm equation

/ C,(s, )p(s)ds = Ag(t), (48)
D

where C,(s, t) is the covariance kernel given by,
s —1t Sy — 1t Sz — 1t
cz(s,t)=gfexp<_[ 1=h S27h 5 3]) “9)
m Up) 3

where #; is the correlation length in the x; coordinate. This
particular form of the covariance kernel is separable in the
three coordinates, thus the eigenvalues and the eigenfunc-
tions of the multi-dimensional case can be obtained by
combining the eigenvalues and eigenfunctions of the one-
dimensional covariance kernel given by:

# a a as Ay as ag o1l 20y el 2 llug — Ml 2y Mo =Nz o)
e ll 2y

1 0.223 0.134 —0.141 —0.215 0.124 —0.201 37.397 37.377 0.150 0.0040

2 0.002 —0.050 0.014 0.183 0.147 —0.096 38.673 38.657 0.269 0.0069

3 0.182 —0.246 —0.087 —0.132 0.024 —0.052 37.446 37.464 0.237 0.0063

4 0.143 0.048 0.098 —0.090 —0.101 —0.071 37.929 37.972 0.234 0.0062

5 —0.133 —0.020 —0.110 0.194 0.093 0.022 37912 37.825 0.253 0.0067
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§s—t
Cy(s,0) = 6; exp <—T> (50)
where o, is the variance and # is the correlation length in
one-dimension.

Equation 46 can then be written as

m

(X;0) = exp (Z a; /Ixi/lyi¢,-(x)u/i(y)), 1)

i=1

where g, is an m-dimensional parameter, 4, and 4, are vec-
tors of real numbers arranged in the order of monotonically
decreasing values; and ¢ and y are functions of x and vy,
respectively. 4,; is calculated as

2no

X

) 2

xi
where w, is the solution to the system of transcendental
equations obtained after differentiating Eq. 48 with respect
to t. A, are calculated similarly. ¢,(x) are given by

L cos(ax) + sin(a;x), (53)

b = =
ix)_a

and y;,(y) are calculated similarly. We take m = 6 and assume
that each g, is uniformly distributed in[— \/5, \/5], and thus,
a € [—1/3, V/3]°. The input diffusivity v in all the examples
in Sects. 6.3 and 6.4 are calculated by choosing the 6-dimen-
sional coefficient a from [— \/5 \/5]6.

Appendix 2: Further discussion
on convergence studies

Discussion on the role of keeping e;, and e low

If we choose a fixed network architecture and use it to
solve Eq. 35 across different A-levels, then the errors do
not necessarily decrease with decreasing /4. As shown in
Fig. 13, the errors actually increase when i > 275, This
reason for this behavior is that, when & becomes low,
the number of discrete unknowns in the mesh (i.e., U;’s
in Eq. 14) increases. In fact, in this case, the number of
basis functions/unknowns, N is exactly equal to hiz As h
decreases, the size of the space V" increases. However,
since the network remains the same, the discrete func-
tion space V" does not remain a subspace of Vg’ anymore.
This network function class also needs to get bigger to
accommodate all the possible functions at the lower val-
ues of h. Figure 13 also shows the errors obtained when
the network is indeed enhanced to make Vg’ D V (thisis a
clone of the errors plotted in Fig. 7).

Appendix 3: Solutions to the parametric
Poisson’s equation

Randomly selected examples

See Figs. 14, 15.
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Fig. 14 Contours for the randomly selected examples presented in Table 2: (left) In(v), (mid-left) u,, (mid-right) u" and (right) (g — u)

@ Springer



Engineering with Computers

0.0

0.030

0.025

0.020

0.015

0.010

0.005

0.000

10
0.02
08
0.01
06 0.00
04 -0.01
02 -0.02
-0.03
0.0
0.025 . 0.006
L
0.020 ‘ 0.004
[
0.015 y ¥ 0.002
0.010 0.000
0005 -0.002
— —0.004
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(g — uh)

Mean and standard-deviation fields

See Table 3.

Table 3 Norm of the mean and standard-deviation fields

g ll 2y ||uh||L2(D) [leg — uh”LZ(D) Netg =t 2,
11l 20,
Mean 36.8186 37.1009 0.7919 0.0214
Std-dev 1.0933 1.0316 0.1407 0.1364
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