
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Research Paper

Neural PDE Solvers for Irregular Domains
Biswajit Khara a,1, Ethan Herron a,1, Aditya Balu a, Dhruv Gamdha a, Chih-Hsuan Yang a,
Kumar Saurabh a, Anushrut Jignasu a, Zhanhong Jiang a, Soumik Sarkar a, Chinmay Hegde b,
Baskar Ganapathysubramanian a,2, Adarsh Krishnamurthy a,∗

a Iowa State University, Ames, IA, United States of America
b New York University, New York, NY, United States of America

A R T I C L E I N F O

Keywords:

Neural PDE solvers
Immersed / carved-out geometries
Error analysis

A B S T R A C T

Neural network-based approaches for solving partial differential equations (PDEs) have recently received
special attention. However, most neural PDE solvers only apply to rectilinear domains and do not systematically
address the imposition of boundary conditions over irregular domain boundaries. In this paper, we present a
neural framework to solve partial differential equations over domains with irregularly shaped (non-rectilinear)
geometric boundaries. Given the shape of the domain as an input (represented as a binary mask), our network
is able to predict the solution field, and can generalize to novel (unseen) irregular domains; the key technical
ingredient to realizing this model is a physics-informed loss function that directly incorporates the interior-
exterior information of the geometry. We also perform a careful error analysis which reveals theoretical insights
into several sources of error incurred in the model-building process. Finally, we showcase various applications
in 2D and 3D, along with favorable comparisons with ground truth solutions.

1. Introduction

Motivation: Many natural and engineered systems are governed
by partial differential equations (PDEs) that describe how physical
quantities vary in space and time. Examples of such systems include
fluid dynamics, heat transfer, electromagnetism, and elasticity. Various
methods have been developed that discretize the physical domain and
the PDEs into a system of algebraic equations that computers can solve
to obtain numerical solutions for PDEs. Among these methods, the
finite difference (FDM), finite element (FEM), and spectral methods
are the most widely used and studied [1–3]. These methods rely on
choosing appropriate basis functions representing the solution over the
discretized domain with a certain degree of accuracy and efficiency.
However, a common challenge these methods face is handling com-
plex, irregular domains that often arise in practical applications. For
example, in computational fluid dynamics, one may need to simulate
the flow around a curved or twisted shape, such as an aerofoil or a
turbine blade. In biomedical engineering, one may need to model the
blood flow or the electrical activity in a patient-specific organ, such
as the heart or the brain. These domains are difficult to discretize
using standard techniques, such as structured grids or simple geometric
elements. Moreover, the boundary conditions imposed on the domain

∗ Corresponding author.
E-mail addresses: baskarg@iastate.edu (B. Ganapathysubramanian), adarsh@iastate.edu (A. Krishnamurthy).

1 Equal contribution.
2 Co-corresponding author.

boundaries may be complicated, which requires special treatment in
the discretization process. As a result, mesh generation and adaptivity,
which are the tasks of creating and refining the discretization of the
domain, are often the most time-consuming and labor-intensive steps in
solving PDEs on complex domains. This problem has been recognized
as one of the major bottlenecks in advancing the state-of-the-art in
computational science and engineering, as stated in the NASA CFD
2030 [4] vision document.

Motivated by these challenges, this paper addresses the following
problem: designing a neural PDE solver to produce field solutions
across arbitrary geometries. Our approach is rooted in the immersed
boundary method (IBM) [5], a well-established computational mechan-
ics technique for solving PDEs on complex domains. The basic idea
of IBM is to embed the irregular domain in a larger regular domain,
usually a square (2D) or cube (3D), and impose the boundary conditions
on the embedded boundary using a penalty method [6]. We adopt
this basic idea with a key difference in this work: we approximate
the arbitrary geometry by its axis-aligned approximant. This pixelated
geometry is well suited for representation using cartesian meshes. Addi-
tionally, while conventional IBM applies Dirichlet boundary conditions
(DBC) weakly on the exact boundary, this representation allows strong
enforcement of DBC on the pixelated boundary. Another upshot is that

https://doi.org/10.1016/j.cad.2024.103709
Received 13 April 2023; Received in revised form 16 February 2024; Accepted 7 April 2024

B. Khara et al.

Notations used in the paper

PDE partial differential equation

FEM finite element method

NN neural network

IBN irregular boundary network

q random variable / parameter

𝛺𝐵 background domain

𝛺𝑜 object domain

𝛺 computational domain (where the PDE is
defined)

𝜃 network parameters

𝜒 occupancy / indicator function with respect
to the computational domain 𝛺

ℎ size of an element in a uniform mesh

𝑢 unknown solution of the PDE

𝑢ℎ an ℎ in the superscript is used to define a
discrete counterpart of a continuous 𝑢

𝐺𝑖𝑏𝑛 the neural network as a function

the PDE can be discretized using standard methods on the regular

domain while still accounting for the effects of the irregular boundary3.

We extend this powerful idea to neural PDE solvers, a class of methods

that use neural networks to approximate the solution of PDEs [8,9].

Combining the above idea of an approximate geometry ‘‘immersed’’

in a regular background mesh, we propose a neural network archi-

tecture that can produce accurate and smooth solutions for a variety

of geometries and also allows the natural incorporation of different

boundary conditions (see Fig. 1). Our approach also allows us to

compute a priori error estimates using a combination of techniques from

neural network generalization theory [10] and finite element analy-

sis [11]. This allows us to assess the quality and reliability of our solu-

tions and compare them with other methods. Our main contributions

are as follows:

1. Framework: We present a PDE-based loss function that learns ro-

bust and watertight boundary conditions imposed by complex ge-

ometries. Using this loss function, we train a deep neural network—

Irregular Boundary Network (IBN)—that uses the geometric in-

formation as input and predicts a field solution that satisfies the

governing PDE over the arbitrary domain. We show that a single

trained IBN can produce solutions to a PDE across different arbitrary

shapes.
2. Error Analysis: We provide an analysis of convergence and gener-

alization error bounds of the proposed PDE-based loss function with

the immersed approach.
3. Applications: Finally, we use this parametric PDE-based loss func-

tion to learn solutions of PDEs over irregular geometries. We illus-

trate the approach on two PDEs—Poisson’s and Navier–Stokes—and

a host of irregular geometries in both 2D and 3D.

Consequently, IBN opens up fast design exploration and topology

optimization for various societally critical applications.

3 Studies have shown that with moderate levels of discretization, the solu-
tion of elliptic PDEs on pixelated meshes converges rapidly to the solution on
a body fitted mesh. Furthermore, recent mathematical advances—specifically
the Shifted Boundary Method (SBM) [7]—make extending the mathematical
formulation to account for the smooth geometry on a pixelated domain
relatively straightforward. We defer this development to future work.

2. Related works

Neural PDE Solvers: Since neural networks are powerful nonlinear
function approximators, there has been a growing interest in using neu-
ral networks to solve PDEs [8,12–24]. Unlike numerical methods, many
of these methods do not require a mesh. But a common challenge most
neural PDE solvers face is the efficient imposition of boundary condi-
tions, especially on non-cartesian boundaries [25]. Furthermore, neural
network function spaces are non-trivial to characterize. This makes
obtaining regularity estimates for collocation-based neural solvers very
difficult [26].

Immersed/Carved out Approach: Classical numerical methods
such as finite difference (FDM) or finite element methods (FEM) gen-
erally employ a grid or mesh to discretize the domain geometry and
function space. Solving PDEs defined on complex geometries requires
a mesh to be generated before the analysis. This step, commonly known
as the ‘‘mesh generation’’ step, is non-trivial and often expensive. One
way to overcome this challenge is the immersed method [5,6,27,28].
The computational grid is simplified in immersed methods by consider-
ing a rectilinear axis-aligned grid that encloses the irregular geometry
(within which we seek a PDE solution). The irregularly-shaped geom-
etry is then ‘‘immersed’’ in this background mesh (see Fig. 2). Thus,
a part of the background mesh forms the actual computational mesh;
the rest of the mesh is considered exterior and thus not used in the
computation of the PDE solution. In recent years, immersed methods
have been favored for massive parallel implementations since all com-
putations are performed on regular grids [29–32]. This fact translates
to tensor-based operations in convolutional neural networks, which
are unsuitable for complex geometrical contours. A key ingredient is
the careful design of the loss function, along with a mechanism to
determine the interior/exterior (in-out) of the computational domain.

A related but slightly different method is the ‘‘carving out’’ ap-
proach [33,34]. In this method, the arbitrary geometry is still ‘‘im-
mersed’’ inside the background mesh, but now the geometry is ap-
proximated using structured grids, and then the boundary conditions
are applied exactly on this approximate geometry. The main difference
with the classical immersed method is that the classical immersed
method applies weak boundary conditions on the exact boundary,
whereas the carving out method applies strong boundary conditions on
an approximate geometry. The ‘‘carving out’’ approach is the closest in
spirit to the method we present in this paper.

Neural methods for arbitrary geometries: Several methods have
been proposed for solving PDEs on arbitrary domains using neural
networks. PhyGeoNet [35] is a neural method that attempts to map
the real geometry to an axis-aligned reference mesh and applies regular
convolutional techniques to calculate derivatives and eventually solve
PDEs. This is a grid-based method. On the other hand, there are
collocation-based methods, where distance fields have been used to
properly adjust the contribution of the domain and boundary integrals
in the loss function [26,36,37]. Another technique uses two different
neural networks, one for satisfying the PDE inside the domain, and
another to satisfy the boundary conditions on an irregular bound-
ary [37,38], sometimes combining the distance functions. There are
also neural methods inspired by the boundary element methods [39–
41]. In [41], the unknown parameters of the domain are eliminated,
and the neural network is parameterized for only the values at the
boundary. If the PDE is solved on a manifold, then it is possible that
points that are close in the Euclidean space may or may not be close
on the manifold. To deal with such applications in neural methods, the
eigenvalues of the Laplace–Beltrami operator over the manifold have
been considered as inputs to the neural network, as opposed to the
Euclidean coordinates [42].

All the works mentioned above are collocation based methods (with
the exception of PhyGeoNet [35]), and they attempt to solve a single
instance of a PDE. A common issue with such methods is that it
is non-trivial to apply the boundary conditions exactly. Except for

B. Khara et al.

Fig. 1. An overview of the IBN framework. The framework accepts a point cloud describing the complex geometry or a Binary representation of the complex geometry denoting
its in-outs. If a point cloud is provided, the differentiable winding number computation is used to compute the in-out of the complex geometry. The neural PDE solver maps the
Binary representation of the complex geometry to the corresponding PDE field solution.

Fig. 2. (a) Schematic of a typical domain for the background mesh 𝛺𝐵 (with boundary 𝛤𝐵), (b) an embedded/immersed object 𝛺𝑜(𝑞) (with boundary 𝛤𝑜(𝑞)), (c) the
computational domain 𝛺(𝑞), (d) A ‘‘body-fitted’’ mesh that discretely conforms to the object, and (e) an object embedded/immersed in a background mesh. This paper focuses on
embedded/immersed type meshes with different object geometries.

some limited cases [9], it is generally difficult to construct a solution
ansatz that satisfies the boundary conditions. Therefore, most of these
methods attempt to satisfy the boundary conditions weakly through a
penalty method or by another neural network [8,43]. Moreover, the
loss function in the optimization problem is a combination of both
the interior PDE loss, and the loss incurred on the boundaries. But
these two quantities can be of different orders of magnitude and may
have different convergence behavior; thus it is important to combine
them with suitable weights, which is generally a hyperparameter that
is open to adjustment [44–46]. Our method on the other hand, is
a grid-based method; therefore, the exact imposition of the Dirichlet
boundary conditions is straightforward. And as a consequence, no
hyperparameter needs to be adjusted.

PhyGeoNet [35] falls under the grid based methods, and it attempts
to solve both non-parametric and parametric problems. This makes
PhyGeoNet the closest in spirit to our present work. The primary
idea in PhyGeoNet is to transform domains with curved geometries
to axis-aligned domains and solve the PDE using convolutional neural
networks. It is thus applicable to geometries that are homeomorphic
to hyperrectangles. For example, in 2D, PhyGeoNet can solve PDEs on
domains that have four 𝐶0-continuous boundaries. As such, it faces
the limitation that a complex shape which is not homeomorphic to a
hyperrectangle, cannot be solved by PhyGeoNet. Our present method
excels in this respect since we do not assume any special property of
the geometry, instead, we make an approximation in representing the
boundary. This also obviates any necessity of transformation between
different domains.

3. Mathematical preliminaries

3.1. Partial differential equations

Consider a probability space (𝑄,𝐹 , 𝜓), where 𝑄 is the sample/event
space, 𝐹 is the 𝜎-algebra of the subsets of 𝑄, and 𝜓 is a probability
measure. Consider also the domain 𝛺𝐵 ⊂ R

𝑑 (𝑑 ∈ {2, 3}) with a recti-
linear boundary 𝛤𝐵 . Without loss of generality, the 𝑑-dimensional unit
interval [0, 1]𝑑 can be considered an example of 𝛺𝐵 . Finally consider

a subdomain 𝛺𝑜(𝑞) ⊂ 𝛺𝐵 with an irregular boundary 𝛤𝑜(𝑞), where
𝑞 ∈ 𝑄. This means that the object and its boundary 𝛤𝑜 depend on
the random variable 𝑞. Define 𝛺(𝑞) = 𝛺𝐵∖𝛺𝑜(𝑞) (see Fig. 2(a)–2(c) for
an illustration in 2D Euclidean space). In this paper, we will primarily
focus on a family of equations where the object-boundary 𝛤𝑜(𝑞) varies
according to some given probability distribution. Then we consider an
abstract PDE (Eq. (1a)) with boundary conditions (Eq. (1b)–(1c)) given
by:

 [𝑢(𝑥; 𝑞)] = 𝑓 (𝑥) in 𝛺(𝑞), (1a)

𝑢(𝑥, 𝑞) = 0, on 𝛤𝐵, (1b)

𝛼𝑢 + 𝛽(∇𝑢 ⋅ 𝑛̂) = 𝑔(𝑥), on 𝛤𝑜(𝑞). (1c)

Here, 𝑢 ∶ 𝛺(𝑞) → R is unknown,  is a differential operator (possibly
nonlinear) and 𝑓 (𝑥), 𝑔(𝑥) are known functions of the domain variable
𝑥. Eq. (1b) describes a Dirichlet boundary condition on the exterior
rectilinear boundary of 𝛺𝐵 . Eq. (1c) prescribes the conditions on the
(irregular) object boundary 𝛤𝑜 which depends on the random parameter
𝑞. We assume that the boundary 𝛤 (𝑞) is Lipschitz continuous with
respect to 𝑥. The constants 𝛼, 𝛽 ∈ 𝑅, and 𝑔 ∈ 𝐿2(𝛤 (𝑞)). Specific
boundary conditions can be written by taking specific combinations of
𝛼 and 𝛽 (see Section 3.1.1 for detail). In this paper, we look at two
concrete examples of Eq. (1): Poisson’s and Navier–Stokes equations.

3.1.1. Poisson’s equation

Poisson’s equation is frequently used to model steady-state mass/heat
diffusion, electrostatics, surface reconstruction, etc. Poisson’s equation
is frequently posed in parametric geometries, and can be stated using
the notation developed in Section 3.1 as below:

−𝜈𝛥𝑢(𝑥, 𝑞) = 𝑓 (𝑥) in 𝛺(𝑞), (2a)

𝑢(𝑥, 𝑞) = 0, on 𝛤𝐵, (2b)

𝛼𝑢 + 𝛽(∇𝑢 ⋅ 𝑛̂) = 𝑔(𝑥) on 𝛤𝑜(𝑞), (2c)

where 𝑢 is a scalar function that, depending on the underlying physics,
may represent the mass density, temperature, electric potential, or

B. Khara et al.

the surface indicator function, respectively. The variable 𝜈 > 0 is
the diffusivity of the material in the domain, and is assumed to be
constant in this work. Finally, different boundary conditions (Dirichlet,
Neumann, Robin) are produced by varying 𝛼 and 𝛽, e.g., (𝛼, 𝛽) = (1, 0)
denotes Dirichlet boundary condition, whereas (𝛼, 𝛽) = (0, 1) represents
Neumann condition.

3.1.2. Navier–Stokes equations

The Navier–Stokes equations are widely used to model fluid flow.
The steady incompressible Navier–Stokes equations are given by:

𝑢 ⋅ ∇𝑢 − 𝜈𝛥𝑢 + ∇𝑝 = 𝑓 in 𝛺 (3a)

𝑢 = 𝑔 on 𝛤 (3b)

where 𝑢 ∶ 𝛺 → R
𝑑 is a vector valued function that represents the

velocity field, and 𝑝 ∶ 𝛺 → R is a scalar representing the pressure
in the fluid. The coefficient 𝜈 is the viscosity of the fluid. Note that 𝑔
can be a function of the spatial location.

3.2. Finite element discretization

Eqs. (2) and (3) provide the continuous form of the respective
equations. This means that whenever applicable, these equations apply
to every point in the continuous medium or material. In engineering
applications, however, the problem is usually reduced to obtaining a
numerical solution on a finite number of points (as opposed to infinite
number of points). This process is known as ‘‘discretization’’, and in this
work, we rely on FEM for this process.

Essentially, we use FEM to discretize the domain spaces (𝛺𝐵 or 𝛺)
and the functions defined on them (such as 𝑢). Letℎ be a discretization
of 𝛺𝐵 into 𝑛𝑒𝑙 finite elements and 𝑁 nodes. The 𝑖th element is 𝐾𝑖

and ∪𝑛𝑒𝑙
𝐾𝑖 = 𝛺𝐵 . The nodes are represented by their coordinates

𝐗 = {𝑋𝑖}𝑁𝑖=1.
Following standard FEM analysis, we define a function space

𝑉 =
{
𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣|𝛤𝐵 = 0, 𝑣|𝛤𝑜(𝑞) = 𝑔

}
. (4)

The associated norm is given as

‖𝑣‖𝑉 = E𝑞∼𝑄

[
∫𝛺

𝜈(𝑥) ||∇𝑣(𝑥, 𝑞)||2 𝑑𝑥]1∕2 . (5)

Then we can define the discrete function space

𝑉 ℎ =
{
𝑣ℎ ∈ 𝑉 ∶ 𝑣ℎ|𝐾 ∈ 𝑃𝑜𝑙𝑦𝑚(𝐾), 𝐾 ∈ ℎ

}
, (6)

where 𝑉 ℎ ⊂ 𝑉 , and 𝑃𝑜𝑙𝑦𝑚(𝐾) denotes the set of polynomial functions
of degree 𝑚 defined on 𝐾. Since the background mesh is regular, ℎ is
composed of a rectilinear axis-aligned grid with𝑁 nodes. Now, suppose
{𝑖(𝑥)}𝑁𝑖=1 is a suitable basis that span 𝑉 ℎ. Any function 𝑢ℎ ∈ 𝑉 ℎ can
be written as

𝑢ℎ(𝑥) =
𝑁∑
𝑖=1

𝑖(𝑥)𝑈𝑖, (7)

where 𝑈𝑖 are the solution values at the nodal points in the mesh
ℎ. Also, define 𝐔 = {𝑈𝑖}𝑁𝑖=1. In the sequel, when we refer to the
discrete approximation of the solution, we mean either 𝑢ℎ (the func-
tional representation) or the discrete set of nodal values 𝐔 or {𝑈𝑖} (the
vector representation). The two will be used interchangeably under the
assumption that the basis functions (𝑥) are known.
3.3. Immersed object

In this paper, we formulate our neural PDE solver based on an
immersed FEM discretization [5,6,27,28]. In terms of the notations de-
veloped above, we discretize 𝛺𝐵 using an axis-aligned grid (Fig. 2(d)–
2(e)), and we call this a ‘‘background mesh’’. To incorporate the ef-
fect of 𝛺𝑜, the boundary curve 𝛤𝑜 is considered ‘‘immersed’’ in this
background mesh. However, instead of weakly enforcing the Dirichlet

boundary conditions on exact 𝛤𝑜 (which is the norm in the classical
immersed methods), we apply the boundary conditions strongly on 𝛤𝑜

which is a discrete approximation of 𝛤𝑜 (see Section 4.2.2 for details).
This formulation can be naturally extended to accommodate several
flavors of immersed formulations popular in literature (see also Sec-
tion 8), including immersogeometric methods [47,48], as well as the
more recent shifted boundary methods [7].

3.3.1. Occupancy function

The occupancy function (or indicator function) 𝜒 is a simple func-
tion defined as 𝜒 ∶ 𝛺𝐵 → {0, 1}, such that

𝜒(𝑥; 𝑞) =

{
1, 𝑥 ∈ 𝛺(𝑞)
0, 𝑥 ∈ 𝛺𝐵∖𝛺(𝑞).

(8)

We denote the discrete counterpart of 𝜒 by 𝜒ℎ (functional representa-
tion, similar to 𝑢ℎ) and 𝝌 (vector representation, similar to 𝐔).

4. Our approach: Irregular boundary network (IBN)

The method we present, named the irregular boundary network (IBN)
produces a (field) solution to a given PDE while adhering to the
boundary conditions imposed by a family of complex geometries.

4.1. Description of the mapping

If we fix 𝛺𝐵, 𝑓 , 𝑔 and (𝛼, 𝛽), then Eq. (1) is a family of equations
parameterized by 𝑞. So, it is natural to seek an operator that maps the
occupancy function 𝜒ℎ(𝑞) to the solution 𝑢ℎ ∈ 𝑉 ℎ. So, conceptually, we
look for an operator  such that

 [𝜒ℎ(𝑥, 𝑞)] = 𝑢ℎ(𝑥, 𝑞). (9)

Our goal in this paper is to find a neural approximation 𝐺𝑖𝑏𝑛 to  .
As discussed in Section 3.3.1, the object can be discretely represented
by 𝜒ℎ (or the vector representation 𝝌); and the solution by 𝑢ℎ (or the
vector representation 𝐔) (see Section 3.2, and also Eq. (7)). So, the IBN
operator map can be written as

𝐔(𝑞) = 𝐺𝑖𝑏𝑛(𝝌(𝑞); 𝜃), (10)

where 𝜃 is a set of tunable network weights. In other words, 𝐺𝑖𝑏𝑛 rep-
resents an (approximate) operator that ‘‘learns’’ the complex relation
between the distribution of object shapes (given by 𝛺𝑜(𝑞)) and their
respective solutions 𝑢ℎ(𝑥, 𝑞).

If 𝑁 is the number of points used to discretize the background
mesh, then 𝝌 ∈ R

𝑁 and 𝐔 ∈ R
𝑁×𝑛𝑑𝑜𝑓 . So, numerically, we have

𝐺𝑖𝑏𝑛(𝜒 ; 𝜃) ∶ R
𝑁×R|𝜃| → R

𝑁×𝑛𝑑𝑜𝑓 , where 𝑛𝑑𝑜𝑓 is the number of unknowns
in the PDE (e.g., 𝑛𝑑𝑜𝑓 = 1 for Poisson’s equation, and 𝑛𝑑𝑜𝑓 = (𝑑 + 1) for
Navier–Stokes equations). The network architecture used to encode the
geometry information and predict the corresponding field solution is a
standard UNet [49].

4.2. Training loss calculation

A key novelty of our method lies in formulating an appropriate
loss function based on the PDE in the computational domain (𝛺),
while enforcing the Dirichlet boundary conditions exactly on the ir-
regular geometries. But before presenting the loss function (defined
in Section 4.2.4), we need to discuss the key ingredients, namely, the
computation of 𝜒ℎ, the application of boundary conditions and the
calculation of the PDE residual.

B. Khara et al.

Fig. 3. Steps to generate the interior and exterior of the computational domain 𝛺(𝑞) with respect to 𝛺𝐵 and 𝛺𝑜(𝑞): (a) The background domain 𝛺𝐵 (and the mesh ℎ), and the
object boundary 𝛤𝑜(𝑞) represented by a pointcloud {𝑃 } (red), (b) the object domain 𝛺𝑜(𝑞) and the object boundary 𝛤𝑜(𝑞) represented by {𝑃 }, (c) 𝜒ℎ is calculated for all points in
ℎ with respect to the input {𝑃 } using Eqs. (11) and (12). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

4.2.1. Calculation of the occupancy function using generalized winding

number

To determine if a point 𝑥 in 𝛺𝐵 falls inside or outside of 𝛤𝑜, we
compute the winding number corresponding to 𝑥. The general form
of the winding number counts the number of loops of the boundary
around any point 𝑥 and is calculated as the surface integral of the
differential solid angle (∫

𝛤𝑜
𝑑𝑆(𝑥)) [50]. The winding number 𝜔 as point

𝑥 is defined as:

𝜔(𝑥) =
𝑛∑

𝑖=1
𝑎𝑖

(𝑝𝑖 − 𝑥) ⋅ 𝑛̂
𝑖

4𝜋‖𝑝
𝑖
− 𝑥‖3 (11)

where 𝑎𝑖 is the Voronoi area of a given point and 𝑛𝑖 is the normal for
a given point 𝑝𝑖 ∈ {𝑃 } (recall that 𝛺𝑜 is represented by {𝑃 }) [50]. The
discrete occupancy function 𝜒ℎ can now be obtained from 𝜔 using

𝜒ℎ = 1 − 𝜔. (12)

4.2.2. Imposition of boundary conditions on an immersed object

The occupancy function computed in Eq. (12) determines the inte-
rior and exterior of the computational domain 𝛺. The discrete occu-
pancy function 𝜒ℎ also results in an approximation 𝛤𝑜 of the boundary
𝛤𝑜 (and also an approximation 𝛺̃𝑜 of 𝛺𝑜) represented by the pointcloud
{𝑃 } (see Fig. 3(c)). A Dirichlet condition on 𝛤𝑜 can now be applied on
𝛤𝑜 strongly. For example, in Fig. 3(c), a Dirichlet condition is applied to
all the points in the white region. This method differs slightly from the
classical immersed methods where the boundary conditions are applied
approximately near the boundary curve, but the boundary curve 𝛤𝑜

itself is generally not approximated discretely [5,6,27,28]. A similar
approach can be taken in case of homogeneous Neumann condition
that represents a zero-flux across a boundary. To mimic the zero-flux
condition, the diffusivity parameter (i.e., 𝜈) can be assigned zero on the
exterior (i.e., inside 𝛺𝑜).

4.2.3. PDE residual

Here we discuss the calculation of the PDE residual for a particular
realization of 𝑞 = 𝑞∗. This residual will be used to calculate the
final loss function over multiple realization from the training set (see
Section 4.2.4). When 𝑞 is fixed, the loss function is simply derived
from the PDE using Galerkin formulation. For the abstract PDE in
Eq. (1) (we assume that Neumann conditions are all homogeneous),
the corresponding Galerkin formulation is to find 𝑢ℎ ∈ 𝑉 ℎ such that(
𝑣ℎ, [ (𝑢ℎ) − 𝑓]

)
𝛺(𝑞∗)

= 0, ∀𝑣ℎ ∈ 𝑉 ℎ. (13)

𝑉 ℎ is defined in Section 3.2. In general, if a unique 𝑢ℎ exists, then
for any other function 𝑤ℎ ∈ 𝑉 ℎ (𝑤ℎ ≠ 𝑢ℎ) will make the right hand side
of Eq. (13) nonzero. We call this the residual of Eq. (13), i.e.,

𝑅 =
(
𝑣ℎ, [ (𝑤ℎ) − 𝑓]

)
𝛺(𝑞∗)

(14)

where, 𝑤ℎ ∈ 𝑉 ℎ. Minimizing this residual would provide us with a
unique solution.

Unfortunately, we cannot perform integrations over 𝛺(𝑞∗) in a
straightforward manner, but we can do so on 𝛺𝐵 . On the other hand,
𝛺𝐵 also contains 𝛺𝑜(𝑞∗) but we do not want to perform integrations
on 𝛺𝑜(𝑞∗). We resolve this via the discrete occupancy function 𝜒ℎ(𝑞∗),
which helps us perform integrations on 𝛺𝐵 while at the same time
enforcing no contribution to 𝑅 from 𝛺𝑜(𝑞∗).

Using 𝝌 , the discrete representation of the residual defined in
Eq. (14) is written as:

𝑅ℎ =
A©∑

𝜒𝐾 (𝑞∗)>0

(
𝑣ℎ, [ (𝑤ℎ) − 𝑓]

)
𝐾
, (15)

where ◦𝐴 signifies that the summation is to be understood in the sense
of the so-called ‘‘assembly’’ process in FEM [1]. The set {𝜒𝐾 = 0} is used
to apply the boundary condition on 𝛤𝑜(𝑞∗). This computation is carried
out on the background mesh 𝛺𝐵 which is a regular (or structured) grid,
therefore it can be vectorized (see Section 5).

4.2.4. Optimization problem

Eq. (15) calculates the residual for one realization of 𝑞. The total loss
function over all realizations from 𝑄 is formulated as

 = E𝑞∼𝑄[𝑅ℎ(𝑞)]2. (16)

In practical scenarios, we cannot evaluate the expectation in Eq. (16)
because we may not have access to every possible event in 𝑄. A
more plausible scenario is to have a finite number of samples from 𝑄

available to us. In that case, we can replace the expectation in Eq. (16)
by a sum over a finite number of samples drawn from 𝑄.

Suppose we have a set of 𝑛𝑡 samples 𝑞𝑖 ∈ 𝑄𝑡 ⊂ 𝑄, 𝑖 = 1,… , 𝑛𝑡. Define
the ‘‘training sample set’’

𝑡 =
{
𝛺𝑜 ∶ 𝛺𝑜 = 𝛺𝑜(𝑞), 𝑞 ∈ 𝑄𝑡

}
. (17)

Then the loss function can be evaluated over the set 𝑡 as

 (𝜃) = 1
𝑛𝑡

∑
𝛺𝑜∈𝑡

‖‖‖𝑅ℎ
𝛺𝑜

(𝜃)‖‖‖22 = 1
𝑛𝑡

𝑛𝑡∑
𝑖=1

‖‖‖𝑅ℎ(𝑞𝑖; 𝜃)
‖‖‖22 . (18)

B. Khara et al.

Table 1

Comparison between IBN and other major methods. Notation: 𝑥 = coordinate variable, 𝑢 = solution function, 𝑞 = random variable, 𝑠(𝑞) =
stochastic input data (material property/object geometry etc.). Small letters (𝑥, 𝑢, 𝑞, 𝑠) denote continuous variables whereas capital letters stand
for the discrete counterpart.

Non-parametric Parametric

PINN DeepONet FNO IBN

Mapping 𝑥 ↦ 𝑢 (𝑥, 𝑠(𝑞)) ↦ 𝑢 𝐒 ↦ 𝐔 𝐒 ↦ 𝐔

Spatial derivatives Automatic diff. through NN NA NA FEM-based

Training type PDE-driven (data-free) Data-driven Data-driven PDE-driven (data-free)

Loss function PDE residual MSE loss MSE loss (weighted) PDE residual

Training Dataset Input: 𝑋, target: 𝑛𝑜𝑛𝑒 (𝐒,𝐔) pair
Input: 𝐒, target: 𝐔

(𝐒,𝐔) pair
Input: 𝐒, target: 𝐔

Input: 𝐒, target: 𝑛𝑜𝑛𝑒

Then we can finally define the minimization problem as

𝜃∗ = argmin
𝜃∈𝛩

 (𝜃). (19)

which can be approximately solved using the stochastic gradient de-
scent method.

Note that the computation of the loss function Eq. (18) requires two
different numerical integration. One is the spatial quadrature rule used
for the evaluation of each 𝑅ℎ(𝑞𝑖; 𝜃); and the second is the quadrature
for integration over the probability space (which is represented as a
summation in Eq. (18)).

4.3. Discussion on the method

We provide here a discussion reflecting on the choice of the map-
ping type and loss function in IBN, placing it in relation with other well
known state-of-the-arts methods. A summary is presented in Table 1.

4.3.1. Mapping type

It is evident that the choice of mapping (𝐺𝑖𝑏𝑛 defined in Eq. (10),
see also Eq. (9)) has the following traits:

• 𝐺𝑖𝑏𝑛 is an operator.
• 𝐺𝑖𝑏𝑛 maps (a distribution of) input data

4 (𝛺𝑜(𝑞)) to the (distribu-
tion of) solutions (𝑢ℎ).

• Both the input and output are spatially discrete functions (i.e.,
there is an underlying spatial grid/mesh).

• 𝐺𝑖𝑏𝑛 is designed to work for a problem of stochastic nature.

These characteristics conceptually place IBN in close proximity to
FNO (and its variants) and PhyGeoNet. IBN also shares the operator
nature of DeepONet; however, they differ in one respect, which is that
DeepONet aims to create a map between discrete input functions and
continuous output function (as opposed to discrete output function in
case of IBN).

On the other hand, IBN differs from methods such as PINNs, which
are designed for a single instance of a PDE, i.e., such methods need to be
retrained for every realization of 𝑞. A second major difference is that
PINN-like methods aim to provide the function mapping 𝑥 ↦ 𝑢ℎ, whereas
IBN provides a much more complex map of 𝜒ℎ(𝑞) ↦ 𝑢ℎ (subject to an
underlying grid).

4.3.2. Loss function

The loss function (Eq. (18)) has the following traits:

•  is based on the PDE (i.e., the governing physical law)
•  uses a finite number of samples of 𝛺𝑜(𝑞), 𝑞 ∈ 𝑄𝑡.
•  does not use any ground-truth data (e.g., a ‘‘true’’ value for 𝑢ℎ)

4 Here ‘‘input data’’ means the data specified for the PDE (such as material
property, initial/boundary conditions etc.) and not the training/testing data.

These properties make IBN a ‘‘data-free physics-based operator’’. It is
‘‘data-free’’ in the sense that the calculation of  does not make use of
any ground-truth data. The loss function does use samples taken from
𝑡 for the purpose of integration over the training set, but does not
require any ‘‘true’’ value of the corresponding solutions. Therefore, the
training is data-free (or ‘‘output data-free’’) and is completely governed
by the PDE residual.

Thus, conceptually, the IBN loss function is inspired by PINN-type
loss functions, but adapted for operator learning. And as a result,
it shares similarities with most such ‘‘data-free’’/physics-based neural
methods. On the other hand, IBN differs from data-driven methods such
as FNO, DeepONet (when they are not augmented with physics based
loss functions).

5. Implementation details

5.1. Network architecture

The neural network architecture 𝐺 is a standard UNet architecture.
The UNet is composed of convolution and transpose convolution opera-
tions with specifically placed skip connections to facilitate optimization
and expressivity. In total, the neural networks used contained 4.2
million parameters for both 2D and 3D cases. All cases were optimized
with the Adam optimizer and a learning rate of 3e−4. An in-depth
analysis of network architectures and other hyperparameters tuning
was left for future work.

5.2. Boundary conditions

Using 𝜒ℎ, we can accurately apply the boundary conditions to
arbitrary complex domains. The nodes assigned 𝜒 = 0 are understood
to be inside the object (outside the computational domain) and 𝜒 = 1
vice versa. If a DBC is imposed on 𝛤𝑜, then the values of the solution
field are enforced to match the DBC in 𝛺𝑜. If a zero-NBC is applied
on 𝛤𝑜, then the values of 𝜈 field is enforced to be zero on 𝛺𝑜 (also
see Sections 4.2.2 and 7.2.3). Nodes assigned 𝜒 = 1 are understood to
belong to the computational domain and are used for the PDE residual
calculations (Eq. (15)). This is accomplished with a torch.where()
function. The outer boundaries (i.e., 𝛤𝐵) are similarly assigned their
respective Dirichlet boundary conditions.

5.3. Differentiation and integration

The computation of the loss function  in Eq. (18) requires an inte-
gration of the term 𝑣ℎ[ (𝑤ℎ)−𝑓] over 𝛺. And the evaluation of (𝑤ℎ),
in turn, requires some differentiation (recall that  (⋅) is a differential
operator; also compare Eqs. (2) and (3)). But, this differentiation is
not to be confused with the differentiation through the neural network
(i.e., with respect to 𝜃). Rather, these are spatial derivatives, and their
calculation is done using the basis functions {𝑖(𝑥)}𝑁𝑖=1 and therefore,
the neural network is not responsible for these computations.

Finally, the integration is performed numerically using Gaussian
quadratures. For a given mesh ℎ, the basis functions {𝑖}, as well

B. Khara et al.

as the quadrature points, are known and are completely deterministic.
This allows us to define the spatial gradients of the predicted field so-
lution by simply evaluating each element with the first or second-order
derivative of the basis function originally used to evaluate the predicted
field solution. Since we use the FEM, we perform the integration in each
discrete element and then perform a summation over the finite set of
elements to obtain the total integral.

5.4. Differentiable winding number computation

The winding number for a given point cloud  at a given query
point 𝑥 is computed using Eq. (11). In order to evaluate the winding
number at all the nodal locations, we perform all the pairwise distance
computations between every nodal location and every point in the point
cloud and perform a sum reduction of the pairwise distances as per the
above equation. Using pytorch, we can achieve this with a simple
broadcasting operation. This way, all the operations are accelerated
using the GPUs.

6. Error analysis

In this section, we summarize theoretical results for the convergence
behavior and the generalization error for IBN. The analysis presented
below pertains to a single test inference, i.e., the total error incurred on
a single test input 𝜒ℎ(𝑞), where 𝑞 may or may not belong to 𝑄.

For a given object geometry 𝛺𝑜(𝑞) (boundary 𝛤𝑜(𝑞)), we denote 𝑢 as
the original optimum solution to the PDE and 𝑢ℎ be the optimal solution
at discretization level ℎ; these are functions evaluated at any point
𝑥 ∈ 𝛺. From classical FEM analysis, we will bound the discretization
error ‖𝑢ℎ−𝑢‖ as a function of ℎ. Now, the field predicted by the network
𝐺𝑖𝑏𝑛({𝑃 }, 𝜃) is typically an inaccurate version of 𝑢ℎ, and we can express
the error 𝑒𝐺 as follows:

‖𝑒𝑘
𝐺
‖ = ‖𝑢𝜃𝑘 − 𝑢‖ = ‖𝑢𝜃𝑘 − 𝑢𝜃∗ + 𝑢𝜃∗ − 𝑢ℎ + 𝑢ℎ − 𝑢‖ (20)

where, 𝑢𝜃𝑘 is the field solutions corresponding to the network parame-
ters 𝜃𝑘 at the 𝑘th iteration of the optimization and 𝑢𝜃∗ is the theoretical
optimum (i.e., a limit point) of 𝑢𝜃𝑘 . Note that the exact solution 𝑢 is only
defined inside the computational domain 𝛺, and is undefined inside the
object 𝛺𝑜. Therefore, we redefine 𝑢 by continuously extending it to 𝛺𝑜

as

𝑢
def
= 𝛺𝜒𝑢 +𝛺𝑜𝜒

𝑁𝐷∑
𝑖=1

𝑖(𝑥)𝑔𝑖, (21)

where 𝛺𝜒 and 𝛺𝑜𝜒 are the indicator functions for 𝛺 and 𝛺𝑜, and 𝑁𝐷

is the number of nodes in 𝛺𝑜 where the Dirichlet condition of 𝑢 = 𝑔 is
applied.

We analyze the quadratic form of ‖𝑒𝑘
𝐺
‖, i.e., ‖𝑒𝑘

𝐺
‖2; in the stochastic

setting, the relevant quantity is the second moment, i.e., E[‖𝑒𝑘
𝐺
‖2]. By

applying the fundamental inequality ‖𝑎+𝑏+𝑐‖2 ≤ 3(‖𝑎‖2 +‖𝑏‖2 +‖𝑐‖2),
we can obtain

‖𝑒𝑘
𝐺
‖2 ≤ 3(‖𝑢𝜃𝑘 − 𝑢𝜃∗‖2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Optimization error

+ ‖𝑢𝜃∗ − 𝑢ℎ‖2
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Modeling error

+ ‖𝑢ℎ − 𝑢‖2
⏟⏞⏞⏟⏞⏞⏟

Discretization error

). (22)

Thus the generalization error is bounded above by three different
terms, namely, the optimization error, modeling error, and discretization
error.

The discretization error is the error incurred due to the spatial dis-
cretization scheme, in this case the mesh size ℎ. The modeling error is
the error incurred due to the choice of neural network architecture. This
is completely dependent on the approximation properties of the neural
network. Both these errors remains static through out the optimization
process. Finally, the optimization error is the error introduced by the
optimization algorithm.

Among these three components, the discretization error is the most
straight-forward to characterize. The following lemma follows standard
results found in the finite element method literature.

Lemma 1. Assume that the basis functions 𝑖(𝑥) (see Eq. (7)) are chosen
such that they are at least continuously differentiable locally over a mesh.

Then

‖𝑢ℎ − 𝑢‖2 ≤ 𝐶ℎ2𝛼, (23)

where 𝐶 > 0 and 𝛼 is the order of continuous derivative. Typically, 𝛼 ≥ 1.

The modeling error does not have a straight-forward relationship
with the network architecture. But using approximation results for the
Barron spaces [51], we can write

‖𝑢𝜃∗ − 𝑢ℎ‖ < 𝜖, (24)

where it is assumed that the underlying neural network 𝐺𝑖𝑏𝑛 can be
represented by a two-layer neural network 𝐺𝑚

𝐵
with 𝑚 neurons and

ReLU activation function. As 𝑚 → ∞, we have 𝜖 → 0.
Next, we analyze the optimization error. We begin with the follow-

ing assumption.

Assumption 2. There exists a constant 𝐿 > 0 such that for all
𝑥, 𝑦 ∈ R

𝑑 , ‖𝑈𝑖(𝑥) − 𝑈𝑖(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖, for all 𝑖 ∈ {1, 2,… , 𝑁}.

Assumption 2 implies that the prediction function provided by IBN
is Lipschitz continuous [52], which signifies the robustness of the
predictions obtained from deep neural networks under perturbations
of the network parameters. This is a standard assumption made during
the analysis of neural network generalization.

Assumption 2 allow us to establish the relationship between ‖𝑢𝜃𝑘 −
𝑢𝜃∗‖ and ‖𝜃𝑘 − 𝜃∗‖. Using Eq. (7), we can write:
𝑢𝜃𝑘 ∶= 𝑢ℎ(𝐱; 𝜃𝑘) =

𝑁∑
𝑖=1

𝑖(𝐱)𝑈𝑖(𝜃𝑘), (25a)

𝑢𝜃∗ ∶= 𝑢ℎ(𝐱; 𝜃∗) =
𝑁∑
𝑖=1

𝑖(𝐱)𝑈𝑖(𝜃∗) (25b)

Subtracting one from the other, we have

‖𝑢𝜃𝑘 − 𝑢𝜃∗‖ = ‖ 𝑁∑
𝑖=1

𝑖(𝐱)𝑈𝑖(𝜃𝑘) −
𝑁∑
𝑖=1

𝑖(𝐱)𝑈𝑖(𝜃∗)‖
≤

𝑁∑
𝑖=1

‖𝑖(𝐱)‖ ‖𝑈𝑖(𝜃𝑘) − 𝑈𝑖(𝜃∗)‖
≤ 𝐿

𝑁∑
𝑖=1

‖𝑖(𝐱)‖ ‖𝜃𝑘 − 𝜃∗‖.
(26)

where the first inequality is obtained using both the triangle inequality
and the Cauchy–Schwarz inequality, whereas the second inequality is
obtained using Assumption 2.

Notice that the loss function in Eq. (18) is strongly convex. To
characterize the first main result, we present two well-known lemmas
as follows.

Lemma 3. If a continuously differentiable function 𝑓 ∶ R
𝑑 → R is

𝜇-strongly convex, for all 𝑥, 𝑦 ∈ R
𝑑 , then

⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦), 𝑥 − 𝑦⟩ ≥ 𝜇‖𝑥 − 𝑦‖2. (27)

Lemma 4. If a continuously differentiable function 𝑓 ∶ R
𝑑 → R is

𝜇-strongly convex and 𝛽-smooth, for all 𝑥, 𝑦 ∈ R
𝑑 , then

⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦), 𝑥 − 𝑦⟩ ≥ 𝜇𝛽

𝜇 + 𝛽
‖𝑥 − 𝑦‖2 + 1

𝜇 + 𝛽
‖∇𝑓 (𝑥) − ∇𝑓 (𝑦)‖2. (28)

With these two lemma in hand, we are now ready to present a key
auxiliary lemma.

Lemma 5. Suppose that  is 𝜇-strongly convex and 𝛽-smooth. By applying

the gradient descent algorithm with a constant step size 𝜂𝑘 = 𝜂 = 2
𝜇+𝛽 , the

iterates {𝜃𝑘} satisfy the following relationship

‖𝜃𝐾 − 𝜃∗‖2 ≤ (
1 − 2

𝜅 + 1

)2𝐾‖𝜃0 − 𝜃∗‖2, (29)

B. Khara et al.

Fig. 4. Contours of 𝑢ℎ, 𝑢 and 𝑢ℎ − 𝑢 with linear basis (𝛼 = 1) for the Poisson’s equation solved on a circular disk of radius 𝑅 = 0.25.

Table 2

A summary of all the datasets used in this work.

Dataset name Dimension Type Example images Used in Used for

A 2D various objects
(unknown parameterization)

Fig. 6 Case-1, 2 Training

B 2D NACA airfoils,
(parameterized)

Fig. 7, 8 Case-1, 2 Testing

C 2D NURBS curves
(parameterized)

Fig. 7, 8 Case-1, 2 Testing

D 3D arbitrary images
(unknown parameterization)

Fig. 11 Case-3 Training,
Testing

where 𝜅 = 𝛽

𝜇
≥ 1 and 𝐾 is the number of epochs.

Proof. Based on the gradient descent update, we have

‖𝜃𝑘 − 𝜃∗‖2
= ‖𝜃𝑘−1 − 𝜂∇ (𝜃𝑘−1) − 𝜃∗‖2
= ‖𝜃𝑘−1 − 𝜃∗‖2 − 2𝜂⟨∇ (𝜃𝑘−1), 𝜃𝑘−1 − 𝜃∗⟩ + 𝜂2‖∇ (𝜃𝑘−1)‖2
≤
(
1 − 2 𝜇𝛽𝜂

𝜇 + 𝛽

)‖𝜃𝑘−1 − 𝜃∗‖2 +(
𝜂2 − 2𝛾

𝜇 + 𝛽

)‖∇ (𝜃𝑘−1)‖2
=
(
1 − 2

𝜅 + 1

)2‖𝜃𝑘−1 − 𝜃∗‖2
≤
(
1 − 2

𝜅 + 1

)2𝑘‖𝜃0 − 𝜃∗‖2.

(30)

The first inequality follows from the substitution of the step size and
Lemma 4. While the third equality is due to 𝜂2 − 2𝛾

𝜇+𝛽 = 0. The desirable
result is obtained by changing 𝑘 to 𝐾. □

Theorem 6. Suppose that  is 𝜇-strongly convex and 𝛽-smooth. Let

Assumption 2 hold. By applying the gradient descent algorithm with a

constant step size 𝜂𝑘 = 𝜂 = 2
𝜇+𝛽 , the generalization error ‖𝑒𝐾𝐺‖2 satisfies

the following relationship after 𝐾 epochs,

‖𝑒𝐾
𝐺
‖2 ≤ 𝐶1𝜖

2 + 𝐶2ℎ
2𝛼 + 𝐶3

(
𝜅 − 1
𝜅 + 1

)2𝐾‖𝜃0 − 𝜃∗‖2, (31)

where 𝐶3 = 3𝐿2𝑁2̂2; 𝑁 is defined in Assumption 2, 𝜇 is the strong

convexity constant, 𝛽 is the smoothness constant, 𝐿 is the Lipschitz con-

tinuity constant, ̂ is the upper bound of the basis function 𝑖(𝑥), 𝜅 = 𝛽

𝜇
is

the condition number, and 𝜃0 and 𝜃∗ are respectively the initialization and

optimum of 𝜃.

Proof. The desired result can be obtained by combining results from
Eqs. (26), (29), and (23). □

Theorem 6 implies that the generalization error of IBN is upper
bounded by two terms, with the first term related to the optimization
error and the second term the static error due to the discretization.
Additionally, in an asymptotic manner, we have that

lim
𝐾→∞

‖𝑒𝐾
𝐺
‖2 ≤ 3𝐶ℎ2𝛼, (32)

Table 3

Comparison of L2 norm of errors incurred by the IBN method and PINN, respectively,
when compared with a baseline numerical solver. The errors and training times are
listed for a select number of cases where the object is an airfoil. The first column
denotes the name of the airfoil in the NACA [53] (or equivalent) specification.

Geometry ||𝑢𝑃𝐼𝑁𝑁 − 𝑢𝐹𝐸𝑀 || ||𝑢𝐼𝐵𝑁 − 𝑢𝐹𝐸𝑀 || Training time
PINN (s)

Training time
IBN (s)

2032C 0.1638 0.0158 3667.83 329.35
A18 0.1745 0.0156 3893.29 286.41
NACA 0012 0.1483 0.0158 3890.78 245.64
NACA 0010 0.1536 0.0157 2031.78 279.98
NACA 0021 0.1471 0.0160 3666.13 244.36

which suggests that the generalization error will ultimately be domi-
nated by the discretization error determined by the resolution ℎ and
the order of the FEM basis function 𝛼 (here 𝛼 = 1), both of which
rely on the definition of basis functions {𝑖(𝑥)}𝑁𝑖=1. If ℎ is chosen such
that ℎ = (1√

𝐾𝑁
) (justified by [54]), the following corollary can be

obtained:

Corollary 7. Suppose that ℎ = (1√
𝐾𝑁

). Given all conditions and

parameters from Theorem 6, the generalization error achieves an overall
sublinear convergence rate

‖𝑒𝐾
𝐺
‖2 ≤ 

(
𝑁2𝜌𝐾1 + 1

(𝑁𝐾)𝛼

)
. (33)

where 𝜌1 is a constant smaller than 1.

In summary, our upper bound on the generalization error can be
separated into two terms, both of which converge to zero as the number
of training epochs 𝐾 become large—provided the discretization is also
chosen inversely with 𝐾. Qualitatively, the above bound provides an
initial estimate to set the discretization of the mesh, ℎ, based on avail-
able computation time (measured in the number of epochs 𝐾) and the
desired error level 𝑒𝐺. From a practical perspective, the bound allows
the estimation of resource requirements for a desired discretization and
error level.

7. Experimental results

In this section, we provide results from IBN. We highlight the single
instance field solutions for Poisson’s and Navier–Stokes equations and

B. Khara et al.

Fig. 5. Error convergence with linear basis functions for the Poisson’s equation solved
on a circular disk.

Fig. 6. IBN trained on dataset ‘A’. The left shows the heat source in white, the
middle shows the IBN-predicted temperature distribution, and the right shows the fully
converged numerical solution.

parametric field solutions to Poisson’s equation for multiple families of
shapes. As previously mentioned, the IBN framework can map geometry
representation to the field solution of a given PDE. While the geometry
representation could be an unstructured point cloud or other structured
representations such as NURBS control points, the PDE field solution
is represented as a uniform grid. We use a single Nvidia Titan RTX
GPU in all the experiments shown below. Additionally, we provide
experimental results which support our error analysis outlined in the
previous section.

7.1. Dataset

As discussed in Section 4.2.4, in actual computation task, we typ-
ically have access to 𝑡 that contains a collection of different object
shapes. Note that unlike typical (supervised) machine learning methods

Fig. 7. Selected test examples (Case-1): IBN is trained on dataset A, and tested on
(a) Dataset B and (b) Dataset C. Each set comprises of three columns: left columns
shows the heat source in white, the middle shows the IBN-predicted solution, and the
right column shows errors with respect to a solution obtained from the classical finite
element method.

Fig. 8. Selected test examples (Case-2): IBN is trained on dataset A, and tested on
(a) Dataset B and (b) Dataset C. Each set comprises of three columns: left columns
shows the heat source in white, the middle shows the IBN-predicted solution, and the
right column shows errors with respect to a solution obtained from the classical finite
element method.

our datasets contain only the input shapes, and do not contain the

resulting field solution (i.e ground truth values for training). In the

sequel, we illustrate our approach with results over 2D and 3D object

geometries. These datasets are discussed below.

In 2D, we consider three different families of complex geometries:

the training dataset (A) consists of 1464 irregularly shaped objects with

an (unknown) underlying parameterization (Fig. 6). We use the trained

model on two test datasets: one of them (B) consists of a parametrizable

family of 100 NACA airfoils [53] (Fig. 7, 8), and the other (C) consists

of 100 objects parameterized by NURBS curves (Fig. 7, 8). The proposed

IBN is trained with the training dataset (A) and tested on datasets (B)

and (C). In 3D, we utilize another dataset that is comprised of topology

B. Khara et al.

Fig. 9. Geometric model with the domain (left) and the field solution to Poisson’s equation using the IBN framework (right) for the Engine and the Humvee models.

optimized structural shapes (size 1283); we denote this set as Dataset ‘D’
(see Fig. 11). A summary of all these datasets is given in Table 2.

7.2. Solution to Poisson’s equation in 2D and 3D

We perform a convergence analysis and comparisons of the 2D
Poisson’s equation first. We then demonstrate our method with results
for Poisson’s equation in 2D and 3D. Collectively, there are three
different groups of results; the 2D parametric case, the 3D parametric
case, and the final group is two different single-instance solutions over
extremely complex geometries in mega-voxel domains.

7.2.1. Convergence analysis

To check the accuracy of our method, we solve Poisson’s equation
Eq. (2) on a circular disk of radius 𝑅 = 0.25 immersed in a unit square.
The forcing function 𝑓 = 1 on the disk and the boundary condition is
specified as 𝑢 = 0 at the perimeter of the disk. Therefore, 𝛺𝑜 = {𝑟 < 𝑅}
and 𝛤𝑜 = {𝑟 = 𝑅}. The exact solution to this problem is given by
𝑢(𝑟) = 1

4

(
𝑅2 − 𝑟2

)
, where 𝑟 =

√
𝑥2 + 𝑦2 is the radial position of a point

on the disk.
We discretize the unit square domain using an 𝑁 ×𝑁 grid, and the

object boundary 𝛤𝑜 is represented using a point cloud. We optimize
the loss function mentioned in Section 4 to obtain the solution. Fig. 4
shows the contours of the discrete solution 𝑢ℎ, the exact solution 𝑢 and
the error 𝑒 = ‖𝑢ℎ − 𝑢‖, for 𝑁 = 128. Fig. 5 shows the 𝐿2-norm of the
error with mesh size ℎ in a log–log plot. We see first-order convergence
with increasing resolution, which matches established theory from IBM
analysis ([55] (Lemma 37.2) and [56]).

7.2.2. Comparisons

We compare IBN to standard FE-based result for Poisson’s equation
in 2D and compare it with one of the state-of-the-art neural meth-
ods, PINNs [8] or Physics Informed Neural Networks. Table 3 shows
comparison of IBN to numerical solution obtained using traditional
approaches [29–32] on five common airfoil shapes taken from the 2D
test set ‘B’. Similarly, we show these comparisons for PINNs as well.
Our approach is consistently more accurate than PINNs in predicting
field solutions. Also, the training time for PINNs is much higher than
the training time for IBN, with our approach almost 10× faster. Since
PINNs can deal with only one geometry at a time, we show similar
training behavior, but our approach can generalize to more than one
geometry.

7.2.3. 2D results of parametric shapes

We train IBN over the training dataset (A) and evaluate the trained
model on the unseen test datasets (B) and (C), respectively.

Case 1—Dirichlet Boundary Condition on the object: The boundary condi-
tions in this case are given by:

𝑢 = 1 on 𝛤𝑜, (34a)

Fig. 10. (Left) the ‘‘Stanford bunny’’ [57] placed within the background domain, (right)
a non-parametric Poisson equation is solved on the bunny using IBN. The forcing
𝑓 = 500, and the boundary condition is given by 𝑢 = 0 on the surface of the bunny.
This is an example where the solution is sought inside the object rather than outside.

𝑢 = 0 on 𝛤𝐵, (34b)

where 𝛤𝐵 = {𝑥 = 0} ∪ {𝑥 = 1} ∪ {𝑦 = 0} ∪ {𝑦 = 1}. This case mimics
a scenario where the object (𝛺𝑜) acts as a source (of heat or mass);
and the Poisson problem describes the steady-state diffusion of heat
or mass from the source to the outer boundary. As mentioned above,
this problem is trained on dataset A, and the trained model is then
tested on 100 samples from datasets B and C each. Fig. 7(a)–7(b) show
some anecdotal examples from datasets B and C. The query results are
compared against classical finite element methods, and the errors are
reported in Table 4 (denoted as ‘Case-1’).

Case 2—Neumann Boundary Condition on the object: The boundary con-
ditions in this case are given by:

𝜈∇𝑢 ⋅ 𝑛̂ = 0 on 𝛤𝑜, (35a)

𝑢 = 1 on {𝑥 = 0} ∪ {𝑦 = 1} (35b)

𝑢 = 0 on {𝑥 = 1} ∪ {𝑦 = 0}. (35c)

This case mimics a scenario where the left and top (outer) boundary
act as the source, whereas the right and bottom boundaries act as
sink. The object 𝛤𝑜 acts as an insulator. Thus, in steady state, a flux is
established between the source and the sink and the Poisson problem
describes the steady-state diffusion of heat or mass from the source to
the outer boundary. To apply the zero-Neumann condition, we assign
a zero-diffusivity to the object, i.e., we set 𝜈 = 0 in 𝛺𝑜. This ensures
that the solution does not flow to the object, thereby ensuring the zero-
flux condition. We note here that the non-zero flux condition is more
involved and is not treated in this work.

Once again, this problem is optimized on the training dataset A, and
tested on datasets B and C. Some anecdotal examples are presented in
Fig. 8(a)–8(b). The query results are compared against classical finite
element methods, and the errors are reported in Table 4 (denoted as
‘Case-2’).

B. Khara et al.

Fig. 11. A family of 3D shapes and their corresponding field solutions. The predicted solutions match the conventionally computed fields.

Fig. 12. Immersed method with object mask applied to solve the Navier–Stokes equation for a steady flow past a NACA 0012 aerofoil. (left) domain/boundary mask (middle left)
𝑥 velocity, (middle right) 𝑦 velocity, and (right) pressure.

Table 4

Mean of errors calculated on the test datasets B, C, and D.

E(𝜂)

Dataset-B Dataset-C Dataset-D

Case-1 4.38×10−2 3.14×10−2 –
Case-2 8.13×10−2 3.23×10−2 –
Case-3 – – 9.28×10−2

Note: 𝜂 = ‖𝑢𝐼𝐵𝑁−𝑢𝐹𝐸𝑀 ‖‖𝑢𝐹𝐸𝑀 ‖ .

7.2.4. 3D results of non-parametric shapes

We demonstrate the capability of the IBN framework to scale to
mega-voxel domains (number of voxels = 2563) with single-instance
examples. We provide results for two different cases—an engine, and
a Humvee model, which are both publicly available (Fig. 9). This case
is a 3D analogue of ‘Case-1’ in 2D (discussed above), i.e., the object
acts as a constant source (𝑢 = 1 on 𝛤𝑜), the outer boundary as a sink
(𝑢 = 0 on 𝛤𝐵), and a heat flow occurs in 𝛺. On the other hand, Fig. 10
presents a similar case, except that the Poisson equation is solved inside
the object, i.e., the computational domain is now 𝛺𝑜 itself (𝑓 = 1 in
𝛺𝑜, and 𝑢 = 0 on 𝛤𝑜). This shows that IBN can be used to solve PDEs
both inside and outside the irregular object.

7.2.5. 3D results of parametric shapes

We will refer to this case as ‘Case-3’. This case is essentially a 3D
analogue of ‘Case-1’ (𝑢 = 1 on 𝛤𝑜, and 𝑢 = 0 on 𝛤𝐵). As outlined
Section 7.1, dataset ‘D’ is family of complex 3D shapes obtained through
topology optimization [58]. These shapes are defined as 1283 binary
voxel grids with unique structural characteristics. In Fig. 11, the mesh
representation of the heat source is shown next to the predicted field
solution of Poisson’s equation. The query results are compared against
classical finite element methods, and the errors are reported in Table 4.
In line with the 2D results presented, the IBN framework is capable of
scaling to larger and equally complex families of geometries.

7.3. Navier–Stokes equation

We also validate our framework against a canonical flow past an
airfoil using the steady Navier–Stokes equations (NSE) introduced in
Eq. (3a). The boundary conditions for this problem are:

𝑥 = 0 ∶ 𝑢𝑥 = 1 −
(
2𝑦
𝐻

− 1
)2

, 𝑢𝑦 = 0 (36a)

𝑦 = 0 ∶ 𝑢𝑥 = 0, 𝑢𝑦 = 0 (36b)

𝑦 = 𝐻 ∶ 𝑢𝑥 = 0, 𝑢𝑦 = 0 (36c)

(𝑥, 𝑦) ∈ 𝛤𝑜 ∶ 𝑢𝑥 = 0, 𝑢𝑦 = 0. (36d)

The flow field output from IBN shows the expected wake structure
(at Reynolds number 40), is symmetric about the mid-plane, shows the
stagnant pressure point on the upwind side of the immersed object, and
satisfies the imposed no-slip condition. Fig. 12 shows the 𝑥 velocity, 𝑦
velocity, and the pressure solution for the Navier Stokes equation using
IBN for an aerofoil.

8. Limitations and associated future work

We identify certain limitations of our current work that also suggests
possible avenues for future work.

The winding number computation has a large memory footprint
and is susceptible to noise in the point cloud data. We are currently
exploring algorithmic as well as mathematical approaches to overcome
this limitation. Another limitation is discretizing any arbitrary geom-
etry into its pixelated counterpart. This limitation is rather simple to
alleviate using additional terms to the loss function along the recently
developed shifted boundary method [7]. Our numerical exploration
indicates that the current loss function performs well—i.e., generalizes
well to unseen geometries—for self-adjoint operators (like Poisson)
as opposed to non-self-adjoin operators (like Navier–Stokes). We are
exploring several avenues to resolve this challenge, including designing
loss functions and co-designing architectures.

B. Khara et al.

Fig. 13. Failure cases where the solution is not generalized to multiple geometries,
especially in thin regions close to the edges of the domain.

Our numerical experiments in Section 7.2.3 show that IBN performs
better when a Dirichlet boundary condition is specified on the object
boundary 𝛤𝑜, and relatively worse when Neumann boundary conditions
are specified. Also, applying non-zero Neumann boundary conditions
on the irregular object, especially in a parametric setting, is non-trivial,
and we leave it for future work.

We also note that the unseen datasets B and C are anecdotal, and
the same network may perform poorly on some other test datasets.
Two issues come into play here: first, the neural mapping will depend
on how good the training dataset is, and second, the nature of the
problem may dictate the actual optimization process (e.g., Neumann
conditions on pixelated geometry may be susceptible to more errors).
We empirically demonstrate a failure case of IBN (Fig. 13), where the
network is trained on dataset B and tested on some unseen samples.
These unseen samples contain two disjoint objects (recall that the
training dataset only contains a single object). The inference results
exhibit a violation of the maximum principle [59], and thus, are
incorrect.

Finally, this work can be seen as a stepping stone toward a more
generalized and efficient neural solvers that can hopefully replace tra-
ditional solvers in future. Faster convergence of the training problem,
the interplay between the type of the equation and the related design
of neural networks, and the incorporation of more advanced ideas from
numerical analysis—these are some of the most fundamental problems
that still require a substantial attention in future.

9. Conclusions

We have developed a neural PDE solver (termed IBN) that can han-
dle irregularly shaped domains by building on well-established finite
element methods and ideas from the immersed boundary methods. IBN
can be described as an operator that can take the geometry indicator
function (for an irregular or complex domain) as input and predict field
solutions over that domain. In addition, IBN is a ‘‘data-free’’ (or ‘‘output
data-free’’); only input training examples are required in the training
process, but no target solution values are needed. We highlight two
specific PDE cases, Poisson’s and Navier–Stokes, which show promising
results. Alongside the empirical results, we have included theoretical

results for the error bounds of the optimization process of our finite
element-based loss function. Since IBN does not require data pairs for
training, it can benefit applications where generating target solutions
(i.e., data pairs) is expensive. In applications where a large num-
ber of expensive inferences are required, e.g., fast design exploration,
topology optimization, etc., IBN may provide an alternative.

CRediT authorship contribution statement

Biswajit Khara: Writing – original draft, Visualization, Validation,
Software, Formal analysis, Conceptualization. Ethan Herron: Writing
– original draft, Visualization, Software, Formal analysis, Data cura-
tion. Aditya Balu: Writing – review & editing, Supervision, Method-
ology, Conceptualization. Dhruv Gamdha: Visualization, Validation.
Chih-Hsuan Yang: Visualization, Software. Kumar Saurabh: Writ-
ing – review & editing, Software. Anushrut Jignasu: Visualization.
Zhanhong Jiang: Writing – original draft, Formal analysis. Soumik
Sarkar: Writing – review & editing, Supervision, Conceptualization.
Chinmay Hegde: Writing – review & editing, Supervision, Formal
analysis, Conceptualization. Baskar Ganapathysubramanian: Writing
– review & editing, Supervision, Project administration, Funding acqui-
sition, Conceptualization. Adarsh Krishnamurthy: Writing – review
& editing, Supervision, Project administration, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported in part by the National Science Foundation
under grants CCF-2005804, LEAP-HI-2053760, OAC-1750865, DMREF-
2323715/2323716, CPS-FRONTIER-1954556, and USDA-NIFA-2021-
67021-35329. We would like to thank NVIDIA Corp. for their donation
of GPUs for academic research.

Appendix A. Creation of dataset C

The third dataset (‘C’) is a composition of point clouds and cor-
responding normals, which outline Non-Uniform Rational B-Splines
(NURBS) curves to represent the boundaries of irregular domains.
NURBS curves are presented by a set of control points, with each
control point being described by cartesian coordinates, in this case only
(x,y). For this dataset, we selected points along the x-axis, which were
uniformly spaced from 0 to 1.

The corresponding coordinates along the y-axis were randomly
sampled from a uniform distribution with a minimum value of 0.2 and
a maximum value of 0.8. To attain the point cloud on the boundary
defined by the NURBS curve, we utilized NURBS-Python [60], a ge-
ometric modeling library. NURBS-Python provides a point cloud on
the boundary of the NURBS curve and the normals, unique vectors
for each point in the point cloud pointing in the orthogonal direction
with respect to the boundary. Additionally, the area for each point is
required for calculating the winding number. In this work, we assume
each point has a uniform area, which we maintain for each irregular
boundary in the entire dataset.

B. Khara et al.

Appendix B. Network architecture

The primary architecture of 𝐺𝑖𝑏𝑛 (see Eq. (10)) in this paper is
given by U-Net [49,61]. U-Nets have been known to be effective for
applications such as semantic segmentation and image reconstruction.
The architecture of the network is shown in Fig. B.14. First, a block
of convolution and instance normalization is applied. Then, the output
is saved for later use via skip connection. This intermediate output
is then down-sampled at a lower resolution for a subsequent block
of convolution, instance normalization layers. This process is repeated
two times. Now, the upsampling starts where the saved outputs of
similar dimensions are concatenated with the output of upsampling
for creating the skip connections, followed by a convolution layer.
LeakyReLU activation was used for all the intermediate layers, with
Sigmoid activation for the final layer. The exact architecture can be
found in the accompanying code, which is openly available on GitHub.
We would like to note that the IBNmethod is not specifically dependent
on the U-Net architecture, and there is scope for exploring other
architectures.

Fig. B.14. UNet architecture used for training IBN.

References

[1] Hughes TJ. The finite element method: linear static and dynamic finite element
analysis. Courier Corporation; 2012.

[2] LeVeque RJ. Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems. SIAM; 2007.

[3] Trefethen LN. Spectral methods in MATLAB. SIAM; 2000.
[4] Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, et al. CFD

vision 2030 study: A path to revolutionary computational aerosciences. In: 54th
AIAA aerospace sciences meeting. 2014, p. 12.

[5] Peskin CS. The immersed boundary method. Acta Numer 2002;11:479–517.
[6] Mittal R, Iaccarino G. Immersed boundary methods. Annu Rev Fluid Mech

2005;37:239–61.
[7] Main A, Scovazzi G. The shifted boundary method for embedded do-

main computations. Part I: Poisson and Stokes problems. J Comput Phys

2018;372:972–95.
[8] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear

partial differential equations. J Comput Phys 2019;378:686–707.
[9] Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary

and partial differential equations. IEEE Trans Neural Netw 1998;9(5):987–1000.
[10] Bartlett PL, Foster DJ, Telgarsky MJ. Spectrally-normalized margin bounds for

neural networks. Adv Neural Inf Process Syst 2017;30.
[11] Babuška I, Rheinboldt WC. A-posteriori error estimates for the finite element

method. Internat J Numer Methods Engrg 1978;12(10):1597–615.
[12] Kharazmi E, Zhang Z, Karniadakis GE. hp-VPINNs: Variational physics-informed

neural networks with domain decomposition. Comput Methods Appl Mech Engrg

2021;374:113547.
[13] Sirignano J, Spiliopoulos K. DGM: A deep learning algorithm for solving partial

differential equations. J Comput Phys 2018;375:1339–64.
[14] Yang L, Zhang D, Karniadakis GE. Physics-informed generative adversar-

ial networks for stochastic differential equations. SIAM J Sci Comput

2020;42(1):A292–317.
[15] Pang G, Lu L, Karniadakis GE. fPINNs: Fractional physics-informed neural

networks. SIAM J Sci Comput 2019;41(4):A2603–26.
[16] Karumuri S, Tripathy R, Bilionis I, Panchal J. Simulator-free solution of high-

dimensional stochastic elliptic partial differential equations using deep neural

networks. J Comput Phys 2020;404:109120.
[17] Han J, Jentzen A, Weinan E. Solving high-dimensional partial differential

equations using deep learning. Proc Natl Acad Sci 2018;115(34):8505–10.

[18] Michoski C, Milosavljević M, Oliver T, Hatch DR. Solving differential equations

using deep neural networks. Neurocomputing 2020;399:193–212.

[19] Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K,

et al. An energy approach to the solution of partial differential equations in

computational mechanics via machine learning: Concepts, implementation and

applications. Comput Methods Appl Mech Engrg 2020;362:112790.

[20] Ramabathiran AA, Ramachandran P. SPINN: Sparse, physics-based, and partially

interpretable neural networks for PDEs. J Comput Phys 2021;445:110600.

[21] Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE. Learning nonlinear operators via

DeepONet based on the universal approximation theorem of operators. Nat Mach

Intell 2021;3(3):218–29.

[22] Botelho S, Joshi A, Khara B, Sarkar S, Hegde C, Adavani S, et al. Deep generative

models that solve PDEs: Distributed computing for training large data-free

models. In: 2020 IEEE/ACM workshop on machine learning in high performance

computing environments (MLHPC) and workshop on artificial intelligence and

machine learning for scientific applications (AI4S). IEEE Computer Society; 2020,

p. 50–63.

[23] Balu A, Botelho S, Khara B, Rao V, Sarkar S, Hegde C, et al. Distributed multigrid

neural solver on megavoxel domains. In: SC ’21: proceedings of the international

conference for high performance computing, networking, storage and analysis,

vol. 49. 2021, p. 1–12.

[24] Wandel N, Weinmann M, Neidlin M, Klein R. Spline-PINN: Approaching PDEs

without data using fast, physics-informed Hermite-spline CNNs. In: Proceedings

of the AAAI conference on artificial intelligence, vol. 36. 2022, p. 8529–38.

[25] Lagari PL, Tsoukalas LH, Safarkhani S, Lagaris IE. Systematic construction of

neural forms for solving partial differential equations inside rectangular domains,

subject to initial, boundary and interface conditions. Int J Artif Intell Tools

2020;29(05):2050009.

[26] Sukumar N, Srivastava A. Exact imposition of boundary conditions with distance

functions in physics-informed deep neural networks. Comput Methods Appl Mech

Engrg 2022;389:114333.

[27] Zhang L, Gerstenberger A, Wang X, Liu WK. Immersed finite element method.

Comput Methods Appl Mech Engrg 2004;193(21–22):2051–67.

[28] Xu F, Schillinger D, Kamensky D, Varduhn V, Wang C, Hsu M-C. The tetrahedral

finite cell method for fluids: Immersogeometric analysis of turbulent flow around

complex geometries. Comput & Fluids 2016;141:135–54.

[29] Saurabh K, Gao B, Fernando M, Xu S, Khanwale MA, Khara B, et al.

Industrial scale Large Eddy Simulations with adaptive octree meshes using

immersogeometric analysis. Comput Math Appl 2021;97:28–44.

[30] Bangerth W, Hartmann R, Kanschat G. deal. II—a general-purpose object-oriented

finite element library. ACM Trans Math Softw 2007;33(4):24–es.

[31] Griffith BE, Hornung RD, McQueen DM, Peskin CS. An adaptive, formally second

order accurate version of the immersed boundary method. J Comput Phys

2007;223(1):10–49.

[32] Egan R, Guittet A, Temprano-Coleto F, Isaac T, Peaudecerf FJ, Landel JR, et al.

Direct numerical simulation of incompressible flows on parallel octree grids. J

Comput Phys 2021;428:110084.

[33] Saurabh K, Ishii M, Fernando M, Gao B, Tan K, Hsu M-C, et al. Scalable adaptive

PDE solvers in arbitrary domains. In: Proceedings of the international conference

for high performance computing, networking, storage and analysis. 2021, p.

1–15.

[34] Tan K, Gao B, Yang C-H, Johnson EL, Hsu M-C, Passalacqua A, et al. A compu-

tational framework for transmission risk assessment of aerosolized particles in

classrooms. Eng Comput 2023;1–22.

[35] Gao H, Sun L, Wang J-X. PhyGeoNet: Physics-informed geometry-adaptive

convolutional neural networks for solving parameterized steady-state PDEs on

irregular domain. J Comput Phys 2021;428:110079.

[36] McFall KS, Mahan JR. Artificial neural network method for solution of boundary

value problems with exact satisfaction of arbitrary boundary conditions. IEEE

Trans Neural Netw 2009;20(8):1221–33.

[37] Sheng H, Yang C. PFNN: A penalty-free neural network method for solving a class

of second-order boundary-value problems on complex geometries. J Comput Phys

2021;428:110085.

[38] Berg J, Nyström K. A unified deep artificial neural network approach to partial

differential equations in complex geometries. Neurocomputing 2018;317:28–41.

[39] Han X, Yang Y, Liu Y. Determining the defect locations and sizes in elastic plates

by using the artificial neural network and boundary element method. Eng Anal

Bound Elem 2022;139:232–45.

[40] Sun J, Liu Y, Yao Z, Zheng X. A data-driven multi-flaw detection strat-

egy based on deep learning and boundary element method. Comput Mech

2023;71(3):517–42.

[41] Sun J, Liu Y, Wang Y, Yao Z, Zheng X. BINN: A deep learning approach

for computational mechanics problems based on boundary integral equations.

Comput Methods Appl Mech Engrg 2023;410:116012.

[42] Sahli Costabal F, Pezzuto S, Perdikaris P. 𝛥-PINNs: Physics-informed neural

networks on complex geometries. Eng Appl Artif Intell 2024;127:107324.

B. Khara et al.

[43] E. W, Yu B. The deep Ritz method: a deep learning-based numerical algorithm

for solving variational problems. Commun Math Stat 2018;6(1):1–12.

[44] Wang S, Teng Y, Perdikaris P. Understanding and mitigating gradient

flow pathologies in physics-informed neural networks. SIAM J Sci Comput

2021;43(5):A3055–81.

[45] Wang S, Yu X, Perdikaris P. When and why PINNs fail to train: A neural tangent

kernel perspective. J Comput Phys 2022;449:110768.

[46] Krishnapriyan A, Gholami A, Zhe S, Kirby R, Mahoney MW. Characterizing

possible failure modes in physics-informed neural networks. Adv Neural Inf

Process Syst 2021;34:26548–60.

[47] Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, et

al. An immersogeometric variational framework for fluid–structure interaction:

Application to bioprosthetic heart valves. Comput Methods Appl Mech Engrg

2015;284:1005–53.

[48] Hsu M-C, Wang C, Xu F, Herrema AJ, Krishnamurthy A. Direct immersogeometric

fluid flow analysis using B-rep CAD models. Comput Aided Geom Design

2016;43:143–58.

[49] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical

image segmentation. In: International conference on medical image computing

and computer-assisted intervention. Springer; 2015, p. 234–41.

[50] Barill G, Dickson NG, Schmidt R, Levin DI, Jacobson A. Fast winding numbers

for soups and clouds. ACM Trans Graph 2018;37(4):1–12.

[51] Barron AR. Universal approximation bounds for superpositions of a sigmoidal

function. IEEE Trans Inf Theory 1993;39(3):930–45.

[52] Virmaux A, Scaman K. Lipschitz regularity of deep neural networks: analysis and

efficient estimation. Adv Neural Inf Process Syst 2018;31.

[53] Allen B. NACA Airfoils. NASA; 2017, URL https://www.nasa.gov/image-feature/

langley/100/naca-airfoils.

[54] Larson MG, Bengzon F. The finite element method: theory, implementation, and

applications, vol. 10, Springer Science & Business Media; 2013.

[55] Ern A, Guermond J-L. Finite Elements II: Galerkin approximation, elliptic and

mixed PDEs, vol. 73, Springer Nature; 2021.

[56] Schillinger D, Harari I, Hsu M-C, Kamensky D, Stoter SK, Yu Y, et al. The non-

symmetric nitsche method for the parameter-free imposition of weak boundary

and coupling conditions in immersed finite elements. Comput Methods Appl

Mech Engrg 2016;309:625–52.

[57] Lindstrom P, Turk G. Fast and memory efficient polygonal simplification. In:

Proceedings visualization’98 (cat. no. 98CB36276). IEEE; 1998, p. 279–86.

[58] Rade J, Balu A, Herron E, Pathak J, Ranade R, Sarkar S, et al. Algorithmically-

consistent deep learning frameworks for structural topology optimization. Eng

Appl Artif Intell 2021;106:104483.

[59] Evans LC. Partial differential equations. Graduate studies in mathematics

1998;19(4):7.

[60] Bingol OR, Krishnamurthy A. NURBS-Python: An open-source object-oriented

NURBS modeling framework in Python. SoftwareX 2019;9:85–94.

[61] Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net:

learning dense volumetric segmentation from sparse annotation. In: International

conference on medical image computing and computer-assisted intervention.

Springer; 2016, p. 424–32.

