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Abstract

The paper discusses algorithmic priority inversion in mis-
sion-critical machine inference pipelines used in modern neu-
ral-network-based perception subsystems and describes a
solution to mitigate its effect. In general, priority inver-
sion occurs in computing systems when computations
that are “less important” are performed together with or
ahead of those that are “more important.” Significant prior-
ity inversion occurs in existing machine inference pipelines
when they do not differentiate between critical and less criti-
cal data. We describe a framework to resolve this problem
and demonstrate that it improves a perception system’s
ability to react to critical inputs, while at the same time
reducing platform cost.

1. INTRODUCTION

Algorithmic priority inversion plagues modern mission-critical
machine inference pipelines such as those implementing
perception modules in autonomous drones and self-driving
cars. We describe an initial solution for removing such pri-
ority inversion from neural-network-based perception sys-
tems. This research was originally published in RTSS 2020."
While it is evaluated in the context of autonomous driving
only, the design principles described below are expected to
remain applicable in other contexts.

The application of artificial intelligence (AI) has revolu-
tionized cyber-physical systems but has posed novel chal-
lenges in aligning computational resource consumption
with mission-specific priority. Perception is one of the key
components that enable system autonomy. It is also a major
efficiency bottleneck that accounts for a considerable frac-
tion of resource consumption.*'* In general, priority inver-
sion occurs in computing systems when computations
that are less critical (or that have longer deadlines) are
performed together with or ahead of those that are more
critical (or that have shorter deadlines). Current neural-
network-based machine intelligence software suffers from
a significant form of priority inversion on the path from
perception to decision-making, because it processes input
data sequentially in arrival order as opposed to processing
important parts of a scene first. By resolving this problem,
we significantly improve the system’s responsiveness to
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critical inputs at a lower platform cost. The work applies to
intelligent systems that perceive their environment in real-
time (using neural networks), such as self-driving vehicles,*
autonomous delivery drones,” military defense systems,*
and socially-assistive robotics.?

To understand the present gap, observe that current deep
perception networks perform many layers of manipulation
of large multidimensional matrices (called tensors). The
underlying neural network libraries (e.g., TensorFlow) are
reminiscent of what used to be called the cyclic executive
in early operating system literature. Cyclic executives, in
contrast to priority-based scheduling,™ processed all pieces
of incoming data at the same priority and fidelity (e.g., as
nested loops). Given incoming data frames (e.g., multicolor
images or 3D LiDAR point clouds), modern neural net-
work algorithms process all data rows and columns at the
same priority and fidelity. Importance cues drive attention
weights in AI computations, but not actual computational
resource assignments.

This flat processing is in sharp contrast to the way ~Aumans
process information. Human cognitive perception systems
are good at partitioning the perceived scene into semantically
meaningful partial regions in real-time, before allocating dif-
ferent degrees of attention (i.e., processing fidelity) and pri-
oritizing the processing of important parts, to better utilize
the limited cognitive resources. Given a complex scene, such
as a freeway with multiple nearby vehicles, human drivers are
good at understanding what to focus on to plan a valid path
forward. In fact, human cognitive capacity is not sufficient
to simultaneously absorb everything in their field of view.
For example, if faced with an iMax screen partitioned into
a dozen subdivisions, each playing an independent movie,
humans would be fundamentally incapable of giving all such
simultaneously playing movies sufficient attention. This
suggests that GPUs that can, in fact, keep up with process-
ing all pixels of the input scene are fundamentally and need-
lessly over-provisioned. They could be substantially smaller

The original version of the article, “On Removing Priority
Inversion from Mission-Critical Machine Inference
Pipelines” was published in the Proceedings of the IEEE
2020 Real-Time Systems Symposium.
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if endowed with a human-like capacity to focus on part of
the scene only. The lack of prioritized allocation of process-
ing resources to different parts of an input data stream (e.g.,
from a camera) is an instance of algorithmic priority inver-
sion. As exemplified above, it results in significant resource
waste, processing less important stimuli together with more
important ones. To avoid wasting resources, the architecture
described in this paper allows machine perception pipelines
to partition the scene into regions of different criticality, pri-
oritize the processing of important parts ahead of others,
and provide higher processing fidelity on critical regions.

2. SYSTEM ARCHITECTURE

Consider a simple pipeline composed of a camera that
observes its physical environment, a neural network that
processes the sampled frames, and a control unit that must
react in real-time. Figure 1 contrasts the traditional design
of such a machine inference pipeline to the proposed archi-
tecture. In the traditional design, the captured input data
frames are processed sequentially by the neural network
without preemption in execution.

Unfortunately, the multi-dimensional data frames cap-
tured by modern sensors (e.g., colored camera images
and 3D LiDAR point clouds) carry information of different
degrees of criticality in every frame.* Data of different criti-
cality may require a different processing latency. For exam-
ple, processing parts of the image that represent faraway
objects does not need to happen every frame, whereas pro-
cessing nearby objects, such as a vehicle in front, needs to
be done immediately because of their impact on immediate
path planning. To accommodate these differences in input
data criticality, our machine perception pipeline breaks the
input frame processing into four steps:

« Data slicing and priority allocation: This module
breaks up newly arriving frames into smaller regions of
different degrees of criticality based on simple heuris-
tics (i.e., distance-based criticality).

a By different degrees of criticality, we are referring to different levels of
importance within the mission-critical sub-system. For example, far-
away objects are less relevant to path planning than nearby objects.

+ Deduplication: This module drops redundant regions
(i.e., ones that refer to the same physical objects) across
successive arriving frames.

+ “Anytime” neural network: This neural network imple-
ments an imprecise computation model that allows
execution to be preempted while yielding partial utility
from the partially completed computation. The approach
allows newly arriving critical data to preempt the
processing of less critical data from older frames.

+ Batching and utility maximization: This module sits
between the data slicing and deduplication modules
on one end and the neural network on the other. With
data regions broken by priority, it decides which
regions to pass to the neural network for processing.
Since multiple regions may be queued for processing,
it also decides how best to benefit from batching (that
improves processing efficiency).

We refer to the subsystem shown in Figure 1 as the observer.
The goal is to allow the observer to respond to more urgent
stimuli ahead of less urgent ones. To make the observer
concrete, we consider a video processing pipeline, where
the input video frames get broken into regions of different
criticality according to the distance information obtained
from a ranging sensor (i.e., LiDAR). Different deadline-
driven priorities are then assigned to the processing of these
regions. We adopt an imprecise computation model for neu-
ral networks* to achieve a hierarchy of different processing
fidelities. We further introduce a utility-optimizing schedul-
ing algorithm for the resulting real-time workload to meet
deadlines while maximizing a notion of global utility (to
the mission). We implement the architecture on an NVIDIA
Jetson Xavier platform and do a performance evaluation on
the platform using real video traces collected from autono-
mous vehicles. The results show that the new algorithms sig-
nificantly improve the average quality of machine inference,
while nearly eliminating deadline misses, compared to a set
of state-of-the-art baselines executed on the same hardware
under the same frame rate.

For completeness, below we first describe all compo-
nents of the observer, respectively. We then detail the batch-
ing and utility maximization algorithm used.

Figure 1. Real-time machine inference pipeline architecture.
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2.1. Data slicing and priority allocation

This module breaks up input data frames into regions that
require different degrees of attention. Objectswith a smaller
time-to-collision'® should receive attention more urgently
and be processed at a higher fidelity. We further assume
that the observer is equipped with a ranging sensor. For
example, in autonomous driving systems, a LiDAR sensor
measures distances between the vehicle and other objects.
LiDAR point cloud-based object localization techniques
have been proposed® that provide a fast (i.e., over 200Hz)
and accurate ranging and object localization capability. The
computed object locations can then be projected onto the
image obtained from the camera, allowing the extraction of
regions (subareas of the image) that represent these local-
ized objects, sorted by distance from the observer. For sim-
plicity, we restrict those subareas to rectangular regions or
bounding boxes. We define the priority (of bounding boxes)
by time-to-collision, given the trajectory of the observer and
the location of the object. Computing the time-to-collision
is awell-studied topic and is not our contribution.®

2.2. Deduplication

The deduplication module eliminates redundant bounding
boxes. Since the same objects generally persist across many
frames, the same bounding boxes will be identified in mul-
tiple frames. The set of bounding boxes pertaining to the
same object in different frames is called a tubelet. Since the
best information is usually the most recent, only the most
recent bounding box in a tubelet needs to be acted on. The
deduplication module identifies boxes with large overlaps as
redundant and stores the most recent box only. For efficiency
reasons described later, we quantize the used bounding box
sizes. The deduplication module uses the same box size for
the same object throughout the entire tubelet. Note that, in a
traditional neural network processing pipeline, each frame is
processed in its entirety before the next one arrives. Thus, no
deduplication module is used. The option to add this time-sav-
ing module to our architecture arises because our pipeline can
postpone the processing of some objects until a later time. By
that time, updated images of the same object may arrive. This
enables savings by looking at the latest image only when the
neural network eventually gets around to processing the object.

2.3. The anytime neural network
A perfect anytime algorithm is one that can be terminated at
any point, yielding utility that monotonically increases with

the amount of processing performed. We approximate the
optimal model with an imprecise computation model,"* ¢
where the processing consists of two parts: a mandatory part
and multiple optional parts. The optional parts, or a portion
thereof, can be skipped to conserve resources. When at least
one optional part is skipped, the task is said to produce an
imprecise result. Deep neural networks (e.g., image recog-
nition models’®) are a concatenation of a large number of
layers that can be divided into several stages, as we show
in Figure 2. Ordinarily, an output layer is used at the end to
convert features computed by earlier layers into the output
value (e.g., an object classification). Prior work has shown,
however, that other output layers can be forked off of inter-
mediate stages producing meaningful albeit imprecise out-
puts based on features computed up to that point.?° Figure 3
shows the accuracy of ResNet-based classification applied to
the ImageNet’ dataset at the intermediate stages of neural
network processing. The quality of outputs increases when
the network executes more optional parts. We set the utility
proportionally to predictive confidence in result; a low confi-
dence output is less useful than a high confidence output.
The proportionality factor itself can be set depending on
task criticality, such that uncertainty in the output of more
critical tasks is penalized more.

2.4. Batching and utility maximization

This module decides the schedule of processing of all regions
identified by the data slicing and prioritization module and
that passes de-duplication. The data slicing module computes
bounding boxes for objects detected, which constitute regions
thatrequire attention, each assigned a degree of criticality. The
deduplication module groups boxes related to the same object
into a tubelet. Only the latest box in the tubelet is kept. Each
physical object gives rise to a separate neural network task to
be scheduled. The input of that task is the bounding box for
the corresponding object (cropped from the full scene).

3. THE SCHEDULING PROBLEM

In this section, we describe our task execution model, for-
mulate the studied scheduling problem, and derive a near-
optimal solution.

3.1. The execution model

Asalluded to earlier, the scheduled tasks in our system consti-
tute the execution of multi-layer deep neural networks (e.g.,
ResNet,' as shown in Figure 2), each processing a different

Figure 2. ResNet™ architecture with multiple exits. On the left, we show the design of the basic bottleneck block of ResNet. c is the feature
dimension. The classifier has a pooling layer and a fully connected layer.
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Figure 3. ResNet stage accuracy change on ImageNet’ dataset.
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input data region (i.e., a bounding box). As shown in Figure
2, tasks are broken into stages, where each stage includes
multiple neural network layers. The unit of scheduling is a
single stage, whose execution is non-preemptive, but tasks
can be preempted on stage boundaries. A task arrives when a
new object is detected by the ranging sensor (e.g., LIDAR) giv-
ing rise to a corresponding new bounding box in the camera
scene. Let the arrival time of task 7, be denoted by a,. A dead-
line d; > a,, is assigned by the data slicing and priority assign-
ment module denoting the time by which the task must be
processed (e.g., the corresponding object classified). The
data slicing and priority assignment module are invoked at
frame arrival time. Therefore, both g, and d, are a multiple
of frame inter-arrival time, H. No task can be executed after
its deadline. Future object sizes, arrival times, and dead-
lines are unknown, which makes the scheduling problem an
online decision problem. A combination of two aspects makes
this real-time scheduling problem interesting: batching and
imprecise computations. We describe these aspects below.

Batching. Stages of the neural network, in our architecture,
are executed on a low-end embedded GPU. While such GPUs
feature parallel execution, most require that the same kernel
be executed on all GPU cores. This means that we can pro-
cess different images concurrently on the GPU as long as we
run the same kernel on all GPU cores. We call such concurrent
execution, batching. Running the same kernel on all GPU
cores means that we can only batch image processing tasks
if both of the following apply: (i) they are executing the same
neural network stage, and (ii) they run on the same size inputs.
The latter condition is because the processing of different
bounding box sizes requires instantiating different GPU ker-
nels. Batching is advantageous because it allows us to better
utilize the parallel processing capacity of GPU. To increase
batching opportunities, we limit the size of possible bound-
ing boxes to a finite set of options. For a given bounding box
size k, at most B® tasks (processing inputs) can be batched
together before overloading the GPU capacity. We call it the
batching limit for the corresponding input size.

Imprecise computations. Let the number of neural network
stages for task 7, be L, (different input sizes may have differ-
ent numbers of stages). We call the first stage mandatory and
call the remaining stages optional. Following a recently devel-
oped imprecise computation model for deep neural networks
(DNN),** tasks are written such that they can return an object
classification result once the mandatory stage is executed.
This result then improves with the execution of each optional

stage. Earlier work presented an approach to estimate the
expected confidence in the correctness of the results of
future stages, ahead of executing these stages.? This estima-
tion offers a basis for assessing the utility of future task stage
execution. We denote the utility of task 7, after executingj < L,
stages by R, , where R, is set proportionately to the predicted
confidence in correctness at the conclusion of stage j. Note
that, the expected utility can be different among tasks (depend-
ing in part on input size), but it is computable, non-decreas-
ing, and concave with respect to the network stage.*

We denote by 7(¢) the set of current tasks at time ¢.
A task, 7, is called current at time ¢, if a, < t < d,, and the task
has notyet completed its last stage, L. For task 7, of input size,
k, the execution time of the j-th stage is denoted by eﬁfg , where b
is the number of batched tasks during the stage execution.

3.2. Problem formulation

We next formulate a new scheduling problem, called
BAtched Scheduling with Imprecise Computations (BASIC).
The problem is simply to decide on the number of stages
[, <L, to execute for each task 7,and to schedule the batched
execution of those task stages on the GPU such that the total
utility, Zi R, of executed tasks is maximized, and batch-
ing constraints are met (i.e., all used GPU cores execute the
same kernel at any given time, and that the batching limit is
not exceeded). In summary:

The BASIC problem. With online task arrivals, the objective
of the BASIC problem is to derive a schedule x to maximize the
aggregate system utility. The schedule decides three outputs:
task stage execution order on the GPU, number of stages to exe-
cute for each task, and task batching decisions. For each sched-
uling period t, we use x (i, ) € {0, 1} to denote whether the j-th
stage of task T, is executed. Besides, we use P to denote a batch
of tasks, where |P| denotes the number of tasks being batched.
The mathematical formulation of the optimization problem is:

BASIC: max) ¥ x,G, /)R~ R, )
Xt [

i

T
st x,(i,7)€{0,1}, D x,(i,/)<1, Vi,j (1)
t=1
x,(i,))=0, Vi¢|a, d,), Vi, j (2)
t—1
> ox,,j—1)—x,,/)>0,
=1
t Vi, j>1,t>1 (3)

s,=s,=k, =1, |P|<b,
VieP,i'eP, JkeS (4)

The following constraints should be satisfied: (1) Each neu-
ral network stage can only be executed once; (2) No task can be
executed after its deadline; (3) The execution of different stages
of the same task must satisfy their precedence constraints; and
(4) Only tasks with the same (image size, network stage) can be
batched, and the number of batched tasks can not exceed the
batching constraint of their image size.

Only one batch (kernel) can be executed on the GPU
at any time. However, multiple batches can be executed
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sequentially in one scheduling period, as long as the sum of
their execution times does not exceed the period length, H.

3.3. An online scheduling framework

We derive an optimal dynamic programming-based solu-
tion for the BASIC scheduling problem and express its com-
petitive ratio relative to a clairvoyant scheduler (that has full
knowledge of all future task arrivals). We then derive a more
efficient greedy algorithm that approximates the dynamic
programming schedule. We define the clairvoyant scheduling
problem as follows:

DEFINITION 1 (CLAIRVOYANT SCHEDULING PROBLEM).
Given information about all future tasks, the clairvoyant sched-
uling problem seeks to maximize the aggregate utility obtained
from (stages of) tasks that are completed before their deadlines.
The maximum aggregate utility is OPT.

With no future information, an online scheduling algorithm
that achieves a competitive ratio of ¢ (i.e., a utility > % OPT)is
called c-competitive. A lower bound on the competitive ratio
for online scheduling algorithms was shown to be 1.618.°

Our scheduler is invoked upon frame arrivals, which
is once every H unit of time. We thus call H the scheduling
period. We assume that all task stage execution times are
multiples of some basic time unit 4, thereby allowing us to
express H by an integer value. We further call the problem of
scheduling current tasks within the period between succes-
sive frame arrivals, the local scheduling problem:

DEFINITION 2 (LOCAL BASIC PROBLEM). Given the set of
current tasks, I(t), within the scheduling period, t, the local
BASIC problem seeks to maximize the total utility gained within
this scheduling period only.

We proceed to show that an online scheduling algorithm
that optimally solves the local scheduling problem within
each period will have a good competitive ratio. Let L be the
maximum number of stages in any task, and let B be the
maximum batching size:

THEOREM 1. If during each scheduling period, the local
BASIC problem for that period is solved optimally, then the
resulting online scheduling algorithm is min{2 + L, 2B + 1}-
competitive with respect to a clairvoyant algorithm.

When no imprecise computation is considered, the compet-
itive ratio is further reduced to:

COROLLARY 1. If each task is only one stage long, and if the
online scheduling algorithm solved the local BASIC problem in each
scheduling period optimally, then the online scheduling algorithm
is 3-competitive with respect to a clairvoyant algorithm.

3.4. Local scheduling algorithms

In this section, we propose two algorithms to solve the local
BASIC problem. The first is a dynamic programming-based
algorithm that optimally solves it but may have a higher
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computational overhead. The second is a greedy algorithm
that is computationally efficient but may not optimally
solve the problem.

Local dynamic programming scheduling. Since we only
consider batching together on the GPU tasks that execute
the same kernel (i.e., same stage on the same size input), we
need to partition the scheduling interval, H, into sub-intervals
where the above constraint is met. The challenge is to find
optimal partitioning. This question is broken into three steps:

* Step 1: Given an amount of time, T, < H, what is the
maximum utility attainable by scheduhng the same
stage, j, of tasks that process an input of size k? The
answer here simply depends on the maximum number
of tasks that we can batch during T, without violating
the batching limit. If the time allows for more than one
batch, dynamic programming is used to optimally size
the batches. Let the maximum attainable utility thus
found be denoted by U,.

* Step 2: Given an amount of time, T, < H, what is the
maximum utility attainable by scheduling (any number
of stages of) tasks that process an input of size k? Let us
call this maximum utility U;. Dynamic programming is
used to find the best way to break interval 7, into non-
overlapping intervals T, for which the total sum of
utilities, U, is maximum.

+ Step 3: Given the scheduling interval, H, what is the
maximum utility attainable by scheduling tasks of dif-
ferent input sizes? Let us call this maximum utility U".
Dynamic programming is used to find the best way to
break interval H into non-overlapping intervals T, for
which the total sum of utilities, U, is maximum.

The resulting utility, U", as well as the corresponding break-
down of the scheduling interval constitute the optimal solution.
In essence, the solution breaks down the overall utility maximi-
zation problem into a utility maximization problem over time
sub-intervals, where tasks process only a given input size. These
sub-intervals are in turn broken into sub-intervals that process
the same stage (and input size). The intuition is that the sub-
intervals in question do not overlap. We pose an order preserving
assumption on task marginal utilities with the same image size.

ASSUMPTION 1 (ORDER PRESERVING ASSUMPTION). For
two tasks T, and T, with the same size, if for one neural
network stagej, we have R, ,—R, ., 2R, .—R then it also

T ,j-1 =
holds R ja =R ;2R ju =Ry ;.

1,,j-19

Thus, the choice of the best subset of tasks to execute
remains the same regardless of which stage is considered.
Below, we describe the algorithm in more detail.

Step 1: For each object size k and stage j, we can use a dynamic
programming algorithm to decide the maximum number of
tasks M that can execute stage j in time 0 < T, < H. Observe that
this computation can be done offline. The detaﬂs are shown in
Algorithm 1. With the optimal number, M, computed for each,
T, , Uj, is simply the sum of utilities of the M highest-utility
tasks that are ready to execute stage j on an input of size k.



Step 2: We solve this problem by two-dimensional dynamic
programming, considering the considered network stages
and the time, respectively. The recursive (induction) step
takes the output of Step 1 as input to calculate the optimal
utility from assigning some fraction of 7, to the first j - 1 stage
and the remainder to stage j, and computes the best possible
sum of the two, for each T,. Once all stages are considered, the
result is the optimal utility, U;, from running tasks of input
size k for a period T,. The details are explained in Algorithm 2.

Algorithm 1: Batching

Input: Image size index k, stage j, execution time e,
batching constraint B, period H.
Output: Maximum achievable tasks M(4), and optimal
batch sequence P(h), Vh < H.

1 M(h)=0, P(h)= 0,Y0 < h <H,
2 forb=1,...,Bdo
3 if b > M(e,) then
4 M(e,):=b, P(e,) :={(k, ], b)};
5 end
6 end
7 forh=2,..,Hdo
8 h'=argmax,_, M)+ M(h - h");
9 M(h) :=M(h')+ M(h - h');
10 P(h):=P(hYUP(h-h;
11 end
12 return M, P.

Algorithm 2: Stage Assignment

Input: Maximum tasks M, optimal batch sequence P,
available task set 7 for each stage j, stage count
L, period H.
Output: Maximum achievable utilities U ,,, and optimal
batch sequence P, , Vh < H.
10,,(~j,h=0,P,(jh)=10,Yh;
2 Transitted object buffer 7(j, h) = 0, V], ;
3 forj=1,...,Ldo

4 fori=1,...,Hdo
5 ifj =1 then
6 n:=min(M(j, h), |Tj|);
7 7T(j, h) := n tasks with max utility in ’Tj;
8 U,,,(Jj, h) = total utility of 7( j, h);
9 Py, (J, h) = P(j, B
10 end
11 else
12 =
argmax ,_, U, (j-1,1)+ U(j,h-n),
where U (j, h - h') := max utility achievable
with 7, U 7(j - 1, ) intime h - 1’;
13 T(j, h) == executed tasks in U (j, h - h');
14 U, (JiB):=U,, (j-1,h)+ U (j, h-h";
15 P, (j k=P, (j-1,k)UP(j, h)
16 end
17 end
18 end
19 returnU__ (L, h),P . (L, h), Vh.

OPT' OPT'

Algorithm 3: Local DP Scheduling Algorithm

Input: Available task set 7%®(¢) for each size, maximum
tasks M, optimal batch sequence P, period H.
Output: Local task schedule x,
fork=1,..,Kdo
U(()]QT, P(((ng) :=Algorithm 2(M, P, 7®(¢), H).
end
Uppilk, B) = Uy (), VK, B

OPT

Pt ) Py (1), i
fork=2,...,Kdo

forh=1,...,Hdo

h =

arg max;, Uppr (k—1, n+ Ug;)T (h— h/);
9 Uopr(ky 1) :=U g (k =1, h/)+U{()’;,)T(h7h/);

10 Pk, h):=P,, (k—1, " )UPY (h—1");
11 | end
12 end
13 return The schedule x, according to P

RN WN =

(K, 7).

OPT

Algorithm 4: Local Greedy Scheduling Algorithm

Input: Available task set 7 (¢), the batch limit B® for
each image index k.
Output: Local task schedule x,
1 while until the end of the period do

2 |fork=1,..,Kdo

3 7,(t) := set of available tasks of size k.
4 if |7,(t)| <B"” then

5 U= total utility of tasks in 7,(¢).
6 T.(0)=T, (1)

7 end

8 else

9

7,(t):= BY tasks with the maximum utility in
T(t), U(¢) := total utility of tasks in 7, (¢)-

10 end

11 | end

12 | Execute the tasks in 7, (¢) with the maximum U(?).

13 end

14 return x,

Step 3: Similar to Step 2, we perform a standard dynamic
programming procedure to decide the optimal time parti-
tioning among tasks processing different input sizes. The
details of this procedure, along with the integrated local
dynamic programming scheduling algorithm are presented
in Algorithm 3.

The optimality of Algorithm 3 follows from the optimality of
dynamic programming. Hence, the overall competitive ratio
is 3 for single-stage task scheduling and min{L+2, 2B+1}
for multi-stage task scheduling, according to Corollary 1
and Theorem 1, respectively. However, this algorithm may
have a high computational overhead since Algorithms 2 and
3 which need to be executed each scheduling period, are
O(KLH?). Next, we present a simpler local greedy algorithm,
which has better time efficiency.

Local Greedy scheduling. The greedy online scheduling
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algorithm solves the local BASIC scheduling problem fol-
lowing a simple greedy selection rule: Execute the (eligible)
batch with the maximum utility next. The pseudo-code of the
greedy scheduling algorithm is shown in Algorithm 4. The
greedy scheduling algorithm is simple to implement and has
a very low computational overhead. We show that it achieves a
comparable performance to the optimal algorithm in practice.

4. EVALUATION

In this section, we verify the effectiveness and efficiency of
our proposed scheduling framework by comparing it with
several state-of-the-art baselines on a large-scale self-driving
dataset, Waymo Open Dataset.

4.1. Experimental setup

Hardware platform. All experiments are conducted on an
NVIDIA Jetson AGX Xavier SoC, which is specifically designed
for automotive platforms. It’s equipped with an 8-core Carmel
Armv8.2 64-bit CPU, a 512-core Volta GPU, and 32GB memory.
Its mode is set as MAXN with maximum CPU/GPU/memory
frequency budget, and all CPU cores are online.

Dataset. Our experiment is performed on the Waymo
Open Dataset,'® which is a large-scale autonomous driving
dataset collected by Waymo self-driving cars in diverse geog-
raphies and conditions. It includes driving video segments
of the 20s each, collected by LiDARs and cameras at 10Hz.
Only the front camera data is used in our experiment.

Neural network training. We use ResNet proposed by He
et al.*® for object classification. The network is trained on a
general-purpose object detection dataset, COCO.* It con-
tains 80 object classes that cover Waymo classes.

Scheduling load and evaluation metrics. We extract the
distance between objects and the autonomous vehicle (AV)
from the projected LiDAR point cloud. The deadlines of
object classification tasks are set as the time to collision (TTC)
with the AV. To simulate different loads for the scheduling
algorithms, we manually change the sampling period (i.e.,
frame rate) from 40ms to 160ms. We consider a task to miss
its deadline if the scheduler fails to run the mandatory part of
the task by the deadline. In the following evaluation, we pres-
entboth the normalized accuracy and deadline miss rate for dif-
ferent algorithms. The normalized accuracy is defined as the
ratio between achieved accuracy and the maximum accuracy
when all neural network stages are finished for every object.

4.2. Compared scheduling algorithms
The following scheduling algorithms are compared.

+ OnlineDP: the online scheduling algorithm we pro-
posed in Section 3. The local scheduling is conducted
by the hierarchical dynamic programming algorithm.

 Greedy: the online scheduling algorithm we proposed,
with the local scheduling conducted by the greedy
batching algorithm.

« Greedy-NoBatch: It always executes the object with
maximal marginal utility without batching.

+ EDF: It always chooses the task stage with the earliest
deadline (without considering task utility).

+ Non-Preemptive EDF (NP-EDF): This algorithm does
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not allow preemption. It is included to understand the
impact of allowing preemption on stage boundaries
compared to not allowing it.
« FIFO: It runs the task with the earliest arrival time first. All
stages are performed as long as the deadline is not violated.
* RR:Round-robin scheduling algorithm. Runs one stage
of each task in a round-robin fashion.

4.3. Slicing and batching

We compare the inference time for full frames and batched
partial frames with/out deduplication. In full-frame process-
ing, we directly run the neural network on image-captured
full images, whose size is 1920 x 1280. In batched partial
Jframes, we do the slicing into bounding boxes within one
frame first, then perform the deduplication (if applicable),
and finally, batch execution of objects with the same size.
Each frame is evaluated independently. No imprecise com-
putation is considered. Our results show that the average
latency for full frames is 350ms, while the average latency
for (the sum of) batched partial frames is 105ms without
deduplication, and 83ms with deduplication. Besides, the
cumulative distributions of frame latencies for the three
methods are shown in Figure 4. Data slicing, batching,
and deduplication steps, although induce extra process-
ing delays, can effectively reduce the end-to-end latency.
However, neither approach is fast enough compared to
100ms sampling period, so that the imprecise computation
model and prioritization are needed.

4.4. Scheduling policy comparisons

Next, we evaluate the scheduling algorithms in terms of
achieved classification accuracy and deadline miss rate. The
scheduling results are presented in Figure 5. The two proposed
algorithms, OnlineDP and Greedy, clearly outperform all the

Figure 4. Cumulative distribution comparison of end-to-end latency.
The execution time for frame slicing, deduplication (if applicable),
batching, and neural network inference are all counted.
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Figure 5. Accuracy and deadline miss rate comparisons on all objects.
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baselines with a large margin in all metrics. The improvement
comes for two reasons: First, the integration of the imprecise
computation model into neural networks makes the sched-
uler more flexible. It makes the neural network partially pre-
emptive at the stage level, and gives the scheduler an extra
degree of freedom (namely, deciding how much of each task
to execute). Second, the involvement of batching simultane-
ously improves the model performance and alleviates dead-
line misses. The batching mechanism enables the GPU to
be utilized at its highest parallel capacity. The deadline miss
rates of both OnlineDP and Greedy are pretty close to 0 under
any task load. We find Greedy shows similar performance as
OnlineDP, though they possess different theoretical results.
One practical reason is that the utility prediction function can
not perfectly predict the utility for all future stages, where the
OnlineDP scheduling can be negatively impacted.

To evaluate scheduling performance in driving scenarios
involving the aforementioned important subcases, we compare
the metrics of different algorithms for the subset of “critical
objects.” Critical objects are defined as objects whose time-to-
collision (and hence processing deadline) fall within 1s from
when they first appear in the scene. Results are shown in Figure 6.
We notice that the accuracy and deadline miss rates of FIFO
and RR are much worse in this case (because severe priority
inversion occurs in these two algorithms). The deadline-driven
algorithms (NP-EDF and EDF) can effectively resolve this issue
because objects with earlier deadlines are always executed first.
However, their general performance is limited for a lack of
utility optimization. The utility-based scheduling algorithms
(Greedy, Greedy-NoBatch, and OnlineDP) are also effective in
removing priority inversion, while at the same time achieving
better confidence in results. These algorithms multiply aweight
factor a > 1 to increase the utility of handling critical objects so
that they are preferred by the algorithm over non-critical ones.

5. CONCLUSION

We presented a novel perception pipeline architecture and
scheduling algorithm that resolve algorithmic priority inver-
sion in mission-critical machine inference pipelines, preva-
lent in conventional FIFO-based AI workflows. To mitigate
the impact of priority inversion, the proposed online sched-
uling architecture rests on two key ideas: (1) Prioritize parts
of the incoming sensor data over others to enable a more
timely response to more critical stimuli, and (2) Explore
the maximum parallel capacity of the GPU by a novel task

Figure 6. Accuracy and deadline miss rate comparisons on critical objects.
Critical objects are defined as objects that have a deadline less than 1s.
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batching algorithm that improves both response speed and
quality. An extensive evaluation, performed on a real-world
driving dataset, validates the effectiveness of our framework.
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