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Abstract

The paper discusses algorithmic priority inversion in mis-
sion-critical machine inference pipelines used in modern neu-
ral-network-based perception subsystems and describes a 
solution to mitigate its effect. In general, priority inver-
sion occurs in computing systems when computations 
that are “less important” are performed together with or 
ahead of those that are “more important.” Significant prior-
ity inversion occurs in existing machine inference pipelines 
when they do not differentiate between critical and less criti-
cal data. We describe a framework to resolve this problem 
and demonstrate that it improves a perception system’s 
ability to react to critical inputs, while at the same time 
reducing platform cost.

1. INTRODUCTION
Algorithmic priority inversion plagues modern mission-critical 
machine inference pipelines such as those implementing 
perception modules in autonomous drones and self-driving 
cars. We describe an initial solution for removing such pri-
ority inversion from neural-network-based perception sys-
tems. This research was originally published in RTSS 2020.17 
While it is evaluated in the context of autonomous driving 
only, the design principles described below are expected to 
remain applicable in other contexts.

The application of artificial intelligence (AI) has revolu-
tionized cyber-physical systems but has posed novel chal-
lenges in aligning computational resource consumption 
with mission-specific priority. Perception is one of the key 
components that enable system autonomy. It is also a major 
efficiency bottleneck that accounts for a considerable frac-
tion of resource consumption.3,12 In general, priority inver-
sion occurs in computing systems when computations 
that are less critical (or that have longer deadlines) are 
performed together with or ahead of those that are more 
critical (or that have shorter deadlines). Current neural-
network-based machine intelligence software suffers from 
a significant form of priority inversion on the path from 
perception to decision-making, because it processes input 
data sequentially in arrival order as opposed to processing 
important parts of a scene first. By resolving this problem, 
we significantly improve the system’s responsiveness to 

The original version of the article, “On Removing Priority 
Inversion from Mission-Critical Machine Inference 
Pipelines” was published in the Proceedings of the IEEE 
2020 Real-Time Systems Symposium.

critical inputs at a lower platform cost. The work applies to 
intelligent systems that perceive their environment in real-
time (using neural networks), such as self-driving vehicles,1 
autonomous delivery drones,5 military defense systems,2 
and socially-assistive robotics.8

To understand the present gap, observe that current deep 
perception networks perform many layers of manipulation 
of large multidimensional matrices (called tensors). The 
underlying neural network libraries (e.g., TensorFlow) are 
reminiscent of what used to be called the cyclic executive4 
in early operating system literature. Cyclic executives, in 
contrast to priority-based scheduling,11 processed all pieces 
of incoming data at the same priority and fidelity (e.g., as 
nested loops). Given incoming data frames (e.g., multicolor 
images or 3D LiDAR point clouds), modern neural net-
work algorithms process all data rows and columns at the 
same priority and fidelity. Importance cues drive attention 
weights in AI computations, but not actual computational 
resource assignments.

This flat processing is in sharp contrast to the way humans 
process information. Human cognitive perception systems 
are good at partitioning the perceived scene into semantically 
meaningful partial regions in real-time, before allocating dif-
ferent degrees of attention (i.e., processing fidelity) and pri-
oritizing the processing of important parts, to better utilize 
the limited cognitive resources. Given a complex scene, such 
as a freeway with multiple nearby vehicles, human drivers are 
good at understanding what to focus on to plan a valid path 
forward. In fact, human cognitive capacity is not sufficient 
to simultaneously absorb everything in their field of view. 
For example, if faced with an iMax screen partitioned into 
a dozen subdivisions, each playing an independent movie, 
humans would be fundamentally incapable of giving all such 
simultaneously playing movies sufficient attention. This 
suggests that GPUs that can, in fact, keep up with process-
ing all pixels of the input scene are fundamentally and need-
lessly over-provisioned. They could be substantially smaller 
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•	 Deduplication: This module drops redundant regions 
(i.e., ones that refer to the same physical objects) across 
successive arriving frames.

•	 “Anytime” neural network: This neural network imple-
ments an imprecise computation model that allows 
execution to be preempted while yielding partial utility 
from the partially completed computation. The approach 
allows newly arriving critical data to preempt the 
processing of less critical data from older frames.

•	 Batching and utility maximization: This module sits 
between the data slicing and deduplication modules 
on one end and the neural network on the other. With 
data regions broken by priority, it decides which 
regions to pass to the neural network for processing. 
Since multiple regions may be queued for processing, 
it also decides how best to benefit from batching (that 
improves processing efficiency).

We refer to the subsystem shown in Figure 1 as the observer. 
The goal is to allow the observer to respond to more urgent 
stimuli ahead of less urgent ones. To make the observer 
concrete, we consider a video processing pipeline, where 
the input video frames get broken into regions of different 
criticality according to the distance information obtained 
from a ranging sensor (i.e., LiDAR). Different deadline-
driven priorities are then assigned to the processing of these 
regions. We adopt an imprecise computation model for neu-
ral networks21 to achieve a hierarchy of different processing 
fidelities. We further introduce a utility-optimizing schedul-
ing algorithm for the resulting real-time workload to meet 
deadlines while maximizing a notion of global utility (to 
the mission). We implement the architecture on an NVIDIA 
Jetson Xavier platform and do a performance evaluation on 
the platform using real video traces collected from autono-
mous vehicles. The results show that the new algorithms sig-
nificantly improve the average quality of machine inference, 
while nearly eliminating deadline misses, compared to a set 
of state-of-the-art baselines executed on the same hardware 
under the same frame rate.

For completeness, below we first describe all compo-
nents of the observer, respectively. We then detail the batch-
ing and utility maximization algorithm used.

if endowed with a human-like capacity to focus on part of 
the scene only. The lack of prioritized allocation of process-
ing resources to different parts of an input data stream (e.g., 
from a camera) is an instance of algorithmic priority inver-
sion. As exemplified above, it results in significant resource 
waste, processing less important stimuli together with more 
important ones. To avoid wasting resources, the architecture 
described in this paper allows machine perception pipelines 
to partition the scene into regions of different criticality, pri-
oritize the processing of important parts ahead of others, 
and provide higher processing fidelity on critical regions.

2. SYSTEM ARCHITECTURE
Consider a simple pipeline composed of a camera that 
observes its physical environment, a neural network that 
processes the sampled frames, and a control unit that must 
react in real-time. Figure 1 contrasts the traditional design 
of such a machine inference pipeline to the proposed archi-
tecture. In the traditional design, the captured input data 
frames are processed sequentially by the neural network 
without preemption in execution.

Unfortunately, the multi-dimensional data frames cap-
tured by modern sensors (e.g., colored camera images 
and 3D LiDAR point clouds) carry information of different 
degrees of criticality in every frame.a Data of different criti-
cality may require a different processing latency. For exam-
ple, processing parts of the image that represent faraway 
objects does not need to happen every frame, whereas pro-
cessing nearby objects, such as a vehicle in front, needs to 
be done immediately because of their impact on immediate 
path planning. To accommodate these differences in input 
data criticality, our machine perception pipeline breaks the 
input frame processing into four steps:

•	 Data slicing and priority allocation: This module 
breaks up newly arriving frames into smaller regions of 
different degrees of criticality based on simple heuris-
tics (i.e., distance-based criticality).

a	 By different degrees of criticality, we are referring to different levels of 
importance within the mission-critical sub-system. For example, far-
away objects are less relevant to path planning than nearby objects.
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2.1. Data slicing and priority allocation
This module breaks up input data frames into regions that 
require different degrees of attention. Objects with a smaller 
time-to-collision18 should receive attention more urgently 
and be processed at a higher fidelity. We further assume 
that the observer is equipped with a ranging sensor. For 
example, in autonomous driving systems, a LiDAR sensor 
measures distances between the vehicle and other objects. 
LiDAR point cloud-based object localization techniques 
have been proposed6 that provide a fast (i.e., over 200Hz) 
and accurate ranging and object localization capability. The 
computed object locations can then be projected onto the 
image obtained from the camera, allowing the extraction of 
regions (subareas of the image) that represent these local-
ized objects, sorted by distance from the observer. For sim-
plicity, we restrict those subareas to rectangular regions or 
bounding boxes. We define the priority (of bounding boxes) 
by time-to-collision, given the trajectory of the observer and 
the location of the object. Computing the time-to-collision 
is a well-studied topic and is not our contribution.18

2.2. Deduplication
The deduplication module eliminates redundant bounding 
boxes. Since the same objects generally persist across many 
frames, the same bounding boxes will be identified in mul-
tiple frames. The set of bounding boxes pertaining to the 
same object in different frames is called a tubelet. Since the 
best information is usually the most recent, only the most 
recent bounding box in a tubelet needs to be acted on. The 
deduplication module identifies boxes with large overlaps as 
redundant and stores the most recent box only. For efficiency 
reasons described later, we quantize the used bounding box 
sizes. The deduplication module uses the same box size for 
the same object throughout the entire tubelet. Note that, in a 
traditional neural network processing pipeline, each frame is 
processed in its entirety before the next one arrives. Thus, no 
deduplication module is used. The option to add this time-sav-
ing module to our architecture arises because our pipeline can 
postpone the processing of some objects until a later time. By 
that time, updated images of the same object may arrive. This 
enables savings by looking at the latest image only when the 
neural network eventually gets around to processing the object.

2.3. The anytime neural network
A perfect anytime algorithm is one that can be terminated at 
any point, yielding utility that monotonically increases with 

the amount of processing performed. We approximate the 
optimal model with an imprecise computation model,14–16 
where the processing consists of two parts: a mandatory part 
and multiple optional parts. The optional parts, or a portion 
thereof, can be skipped to conserve resources. When at least 
one optional part is skipped, the task is said to produce an 
imprecise result. Deep neural networks (e.g., image recog-
nition models10) are a concatenation of a large number of 
layers that can be divided into several stages, as we show 
in Figure 2. Ordinarily, an output layer is used at the end to 
convert features computed by earlier layers into the output 
value (e.g., an object classification). Prior work has shown, 
however, that other output layers can be forked off of inter-
mediate stages producing meaningful albeit imprecise out-
puts based on features computed up to that point.20 Figure 3 
shows the accuracy of ResNet-based classification applied to 
the ImageNet7 dataset at the intermediate stages of neural 
network processing. The quality of outputs increases when 
the network executes more optional parts. We set the utility 
proportionally to predictive confidence in result; a low confi-
dence output is less useful than a high confidence output. 
The proportionality factor itself can be set depending on 
task criticality, such that uncertainty in the output of more 
critical tasks is penalized more.

2.4. Batching and utility maximization
This module decides the schedule of processing of all regions 
identified by the data slicing and prioritization module and 
that passes de-duplication. The data slicing module computes 
bounding boxes for objects detected, which constitute regions 
that require attention, each assigned a degree of criticality. The 
deduplication module groups boxes related to the same object 
into a tubelet. Only the latest box in the tubelet is kept. Each 
physical object gives rise to a separate neural network task to 
be scheduled. The input of that task is the bounding box for 
the corresponding object (cropped from the full scene).

3. THE SCHEDULING PROBLEM
In this section, we describe our task execution model, for-
mulate the studied scheduling problem, and derive a near-
optimal solution.

3.1. The execution model
As alluded to earlier, the scheduled tasks in our system consti-
tute the execution of multi-layer deep neural networks (e.g., 
ResNet,10 as shown in Figure 2), each processing a different 
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input data region (i.e., a bounding box). As shown in Figure 
2, tasks are broken into stages, where each stage includes 
multiple neural network layers. The unit of scheduling is a 
single stage, whose execution is non-preemptive, but tasks 
can be preempted on stage boundaries. A task arrives when a 
new object is detected by the ranging sensor (e.g., LiDAR) giv-
ing rise to a corresponding new bounding box in the camera 
scene. Let the arrival time of task ti be denoted by ai. A dead-
line di > ai, is assigned by the data slicing and priority assign-
ment module denoting the time by which the task must be 
processed (e.g., the corresponding object classified). The 
data slicing and priority assignment module are invoked at 
frame arrival time. Therefore, both ai and di are a multiple 
of frame inter-arrival time, H. No task can be executed after 
its deadline. Future object sizes, arrival times, and dead-
lines are unknown, which makes the scheduling problem an 
online decision problem. A combination of two aspects makes 
this real-time scheduling problem interesting: batching and 
imprecise computations. We describe these aspects below.

Batching. Stages of the neural network, in our architecture, 
are executed on a low-end embedded GPU. While such GPUs 
feature parallel execution, most require that the same kernel 
be executed on all GPU cores. This means that we can pro-
cess different images concurrently on the GPU as long as we 
run the same kernel on all GPU cores. We call such concurrent 
execution, batching. Running the same kernel on all GPU 
cores means that we can only batch image processing tasks 
if both of the following apply: (i) they are executing the same 
neural network stage, and (ii) they run on the same size inputs. 
The latter condition is because the processing of different 
bounding box sizes requires instantiating different GPU ker-
nels. Batching is advantageous because it allows us to better 
utilize the parallel processing capacity of GPU. To increase 
batching opportunities, we limit the size of possible bound-
ing boxes to a finite set of options. For a given bounding box 
size k, at most B(k) tasks (processing inputs) can be batched 
together before overloading the GPU capacity. We call it the 
batching limit for the corresponding input size.

Imprecise computations. Let the number of neural network 
stages for task ti be Li (different input sizes may have differ-
ent numbers of stages). We call the first stage mandatory and 
call the remaining stages optional. Following a recently devel-
oped imprecise computation model for deep neural networks 
(DNN),21 tasks are written such that they can return an object 
classification result once the mandatory stage is executed. 
This result then improves with the execution of each optional 

stage. Earlier work presented an approach to estimate the 
expected confidence in the correctness of the results of 
future stages, ahead of executing these stages.22 This estima-
tion offers a basis for assessing the utility of future task stage 
execution. We denote the utility of task ti after executing j ≤ Li 
stages by Ri,j, where Ri,j is set proportionately to the predicted 
confidence in correctness at the conclusion of stage j. Note 
that, the expected utility can be different among tasks (depend-
ing in part on input size), but it is computable, non-decreas-
ing, and concave with respect to the network stage.22

We denote by  (t) the set of current tasks at time t. 
A task, ti, is called current at time t, if ai ≤ t < di, and the task 
has not yet completed its last stage, Li. For task ti of input size, 
k, the execution time of the j-th stage is denoted by , where b 
is the number of batched tasks during the stage execution.

3.2. Problem formulation
We next formulate a new scheduling problem, called 
BAtched Scheduling with Imprecise Computations (BASIC). 
The problem is simply to decide on the number of stages 
li £ Li to execute for each task ti and to schedule the batched 
execution of those task stages on the GPU such that the total 
utility, , of executed tasks is maximized, and batch-
ing constraints are met (i.e., all used GPU cores execute the 
same kernel at any given time, and that the batching limit is 
not exceeded). In summary:

The BASIC problem. With online task arrivals, the objective 
of the BASIC problem is to derive a schedule x to maximize the 
aggregate system utility. The schedule decides three outputs: 
task stage execution order on the GPU, number of stages to exe-
cute for each task, and task batching decisions. For each sched-
uling period t, we use xt(i, j) Î {0, 1} to denote whether the j-th 
stage of task ti is executed. Besides, we use P to denote a batch 
of tasks, where |P| denotes the number of tasks being batched. 
The mathematical formulation of the optimization problem is:

� (1)

� (2)

� (3)

� (4)

The following constraints should be satisfied: (1) Each neu-
ral network stage can only be executed once; (2) No task can be 
executed after its deadline; (3) The execution of different stages 
of the same task must satisfy their precedence constraints; and 
(4) Only tasks with the same (image size, network stage) can be 
batched, and the number of batched tasks can not exceed the 
batching constraint of their image size.

Only one batch (kernel) can be executed on the GPU 
at any time. However, multiple batches can be executed 

Stage-1 Stage-2 Stage-3 Stage-4

Network Stage

0

20

40

60

80

100

To
p-

1 
A

cc
ur

ac
y 

(%
)

(a) Top-1 Accuracy

Stage-1 Stage-2 Stage-3 Stage-4

Network Stage

0

20

40

60

80

100

To
p-

5 
A

cc
ur

ac
y 

(%
)

(b) Top-5 Accuracy

Figure 3. ResNet stage accuracy change on ImageNet7 dataset.



research highlights 

 

114    COMMUNICATIONS OF THE ACM   |   FEBRUARY 2024  |   VOL.  67  |   NO.  2

 

computational overhead. The second is a greedy algorithm 
that is computationally efficient but may not optimally 
solve the problem.

Local dynamic programming scheduling. Since we only 
consider batching together on the GPU tasks that execute 
the same kernel (i.e., same stage on the same size input), we 
need to partition the scheduling interval, H, into sub-intervals 
where the above constraint is met. The challenge is to find 
optimal partitioning. This question is broken into three steps:

•	 Step 1: Given an amount of time, Tj,k £ H, what is the 
maximum utility attainable by scheduling the same 
stage, j, of tasks that process an input of size k? The 
answer here simply depends on the maximum number 
of tasks that we can batch during Tj,k without violating 
the batching limit. If the time allows for more than one 
batch, dynamic programming is used to optimally size 
the batches. Let the maximum attainable utility thus 
found be denoted by .

•	 Step 2: Given an amount of time, Tk £ H, what is the 
maximum utility attainable by scheduling (any number 
of stages of) tasks that process an input of size k? Let us 
call this maximum utility . Dynamic programming is 
used to find the best way to break interval Tk into non-
overlapping intervals Tj,k, for which the total sum of 
utilities, , is maximum.

•	 Step 3: Given the scheduling interval, H, what is the 
maximum utility attainable by scheduling tasks of dif-
ferent input sizes? Let us call this maximum utility U *. 
Dynamic programming is used to find the best way to 
break interval H into non-overlapping intervals Tk, for 
which the total sum of utilities, , is maximum.

The resulting utility, U*, as well as the corresponding break-
down of the scheduling interval constitute the optimal solution. 
In essence, the solution breaks down the overall utility maximi-
zation problem into a utility maximization problem over time 
sub-intervals, where tasks process only a given input size. These 
sub-intervals are in turn broken into sub-intervals that process 
the same stage (and input size). The intuition is that the sub-
intervals in question do not overlap. We pose an order preserving 
assumption on task marginal utilities with the same image size.

Assumption 1 (Order Preserving Assumption). For 
two tasks  and  with the same size, if for one neural 
network stage j, we have , then it also 
holds .

Thus, the choice of the best subset of tasks to execute 
remains the same regardless of which stage is considered. 
Below, we describe the algorithm in more detail.

Step 1: For each object size k and stage j, we can use a dynamic 
programming algorithm to decide the maximum number of 
tasks M that can execute stage j in time 0 < Tj,k £ H. Observe that 
this computation can be done offline. The details are shown in 
Algorithm 1. With the optimal number, M, computed for each, 
Tj,k,  is simply the sum of utilities of the M highest-utility 
tasks that are ready to execute stage j on an input of size k.

sequentially in one scheduling period, as long as the sum of 
their execution times does not exceed the period length, H.

3.3. An online scheduling framework
We derive an optimal dynamic programming-based solu-
tion for the BASIC scheduling problem and express its com-
petitive ratio relative to a clairvoyant scheduler (that has full 
knowledge of all future task arrivals). We then derive a more 
efficient greedy algorithm that approximates the dynamic 
programming schedule. We define the clairvoyant scheduling 
problem as follows:

Definition 1 (Clairvoyant Scheduling Problem). 
Given information about all future tasks, the clairvoyant sched-
uling problem seeks to maximize the aggregate utility obtained 
from (stages of) tasks that are completed before their deadlines. 
The maximum aggregate utility is OPT.

With no future information, an online scheduling algorithm 
that achieves a competitive ratio of c (i.e., a utility ³ × OPT) is 
called c-competitive. A lower bound on the competitive ratio 
for online scheduling algorithms was shown to be 1.618.9

Our scheduler is invoked upon frame arrivals, which 
is once every H unit of time. We thus call H the scheduling 
period. We assume that all task stage execution times are 
multiples of some basic time unit d, thereby allowing us to 
express H by an integer value. We further call the problem of 
scheduling current tasks within the period between succes-
sive frame arrivals, the local scheduling problem:

Definition 2 (Local Basic Problem). Given the set of 
current tasks, (t), within the scheduling period, t, the local 
BASIC problem seeks to maximize the total utility gained within 
this scheduling period only.

We proceed to show that an online scheduling algorithm 
that optimally solves the local scheduling problem within 
each period will have a good competitive ratio. Let L be the 
maximum number of stages in any task, and let B be the 
maximum batching size:

Theorem 1. If during each scheduling period, the local 
BASIC problem for that period is solved optimally, then the 
resulting online scheduling algorithm is min{2 + L, 2B + 1}- 
competitive with respect to a clairvoyant algorithm.

When no imprecise computation is considered, the compet-
itive ratio is further reduced to:

Corollary 1. If each task is only one stage long, and if the 
online scheduling algorithm solved the local BASIC problem in each 
scheduling period optimally, then the online scheduling algorithm 
is 3-competitive with respect to a clairvoyant algorithm.

3.4. Local scheduling algorithms
In this section, we propose two algorithms to solve the local 
BASIC problem. The first is a dynamic programming-based 
algorithm that optimally solves it but may have a higher 
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Algorithm 3: Local DP Scheduling Algorithm

Input: �Available task set   (k)(t) for each size, maximum 
tasks M, optimal batch sequence P, period H.

Output: Local task schedule xt

  1   for k = 1, …, K do
  2      , :=Algorithm 2(M, P,   (k)(t), H).
  3   end
  4  UOPT(k, h) := , "k, h;
  5   POPT(k, h) := , "k, h;
  6   for k = 2, …, K do
  7      for h = 1, …, H do
  8      

  9          ;
10          ;

11    end
12   end
13   return The schedule xt according to POPT(K, T).

Algorithm 4: Local Greedy Scheduling Algorithm

Input: �Available task set    (t), the batch limit B(k) for  
each image index k.

Output: Local task schedule xt

  1   while until the end of the period do
  2    for k = 1, …, K do
  3        k(t) := set of available tasks of size k.
  4        if |k(t)| ≤ B(k) then
  5           Uk(t) := total utility of tasks in k(t).
  6           
  7        end
  8        else
  9           � := B(k) tasks with the maximum utility in  

  k(t), Uk(t) := total utility of tasks in .
10        end
11    end
12    Execute the tasks in  with the maximum Uk(t).
13  end
14  return xt

Step 3: Similar to Step 2, we perform a standard dynamic 
programming procedure to decide the optimal time parti-
tioning among tasks processing different input sizes. The 
details of this procedure, along with the integrated local 
dynamic programming scheduling algorithm are presented 
in Algorithm 3.

The optimality of Algorithm 3 follows from the optimality of 
dynamic programming. Hence, the overall competitive ratio 
is 3 for single-stage task scheduling and min{L+2, 2B+1} 
for multi-stage task scheduling, according to Corollary 1 
and Theorem 1, respectively. However, this algorithm may 
have a high computational overhead since Algorithms 2 and 
3 which need to be executed each scheduling period, are 
O(KLH3). Next, we present a simpler local greedy algorithm, 
which has better time efficiency.

Local Greedy scheduling. The greedy online scheduling 

Step 2: We solve this problem by two-dimensional dynamic 
programming, considering the considered network stages 
and the time, respectively. The recursive (induction) step 
takes the output of Step 1 as input to calculate the optimal 
utility from assigning some fraction of Tk to the first j − 1 stage 
and the remainder to stage j, and computes the best possible 
sum of the two, for each Tk. Once all stages are considered, the 
result is the optimal utility, , from running tasks of input 
size k for a period Tk. The details are explained in Algorithm 2.

Algorithm 1: Batching

Input: �Image size index k, stage j, execution time eb, 
batching constraint B, period H.

Output: �Maximum achievable tasks M(h), and optimal 
batch sequence P(h), "h £ H.

  1   M(h) = 0,  P(h) = , "0 £ h £ H;
  2   for b = 1, …, B do
  3     if b > M(eb) then
  4         M(eb) := b, P(eb) := {(k, j, b)};
  5     end
  6   end
  7   for h = 2, …, H do
  8     h¢ = arg max0£h¢£hM(h¢) + M(h − h¢);
  9     M(h) := M(h¢) + M(h − h¢);
10     P(h) := P(h¢) È P(h − h¢);
11   end
12   return M, P.

Algorithm 2: Stage Assignment

Input: �Maximum tasks M, optimal batch sequence P, 
available task set j for each stage j, stage count 
L, period H.

Output: �Maximum achievable utilities UOPT, and optimal 
batch sequence POPT, "h £ H.

  1  UOPT( j, h) = 0, POPT(  j, h) = , "j, h;
  2  Transitted object buffer  ( j, h) = , "j, h;
  3  for j = 1, …, L do
  4      for h = 1, …, H do
  5        if j = 1 then
  6           n := min(M(  j, h), | j|);
  7            (  j, h) := n tasks with max utility in  j;
  8           UOPT(  j, h) := total utility of  (  j, h);
  9           POPT(  j, h) := P(  j, h);
10        end
11        else
12           h�¢:=  

arg max h¢≤h UOPT (  j − 1, h¢) + (  j, h − h¢),
                   where (  j, h − h¢) := max utility achievable
                   with   j È  (  j − 1, h¢) in time h − h¢;
13             (  j, h) := executed tasks in (  j, h − h¢);
14           UOPT(  j, h) := UOPT(  j − 1, h¢) + (  j, h − h¢);
15           POPT(  j, h) := POPT(  j − 1, h¢) È P(  j, h);
16        end
17    end
18  end
19  return UOPT(L, h), POPT(L, h), "h.
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not allow preemption. It is included to understand the 
impact of allowing preemption on stage boundaries 
compared to not allowing it.

•	 FIFO: It runs the task with the earliest arrival time first. All 
stages are performed as long as the deadline is not violated.

•	 RR: Round-robin scheduling algorithm. Runs one stage 
of each task in a round-robin fashion.

4.3. Slicing and batching
We compare the inference time for full frames and batched 
partial frames with/out deduplication. In full-frame process-
ing, we directly run the neural network on image-captured 
full images, whose size is 1920 × 1280. In batched partial 
frames, we do the slicing into bounding boxes within one 
frame first, then perform the deduplication (if applicable), 
and finally, batch execution of objects with the same size. 
Each frame is evaluated independently. No imprecise com-
putation is considered. Our results show that the average 
latency for full frames is 350ms, while the average latency 
for (the sum of) batched partial frames is 105ms without 
deduplication, and 83ms with deduplication. Besides, the 
cumulative distributions of frame latencies for the three 
methods are shown in Figure 4. Data slicing, batching, 
and deduplication steps, although induce extra process-
ing delays, can effectively reduce the end-to-end latency. 
However, neither approach is fast enough compared to 
100ms sampling period, so that the imprecise computation 
model and prioritization are needed.

4.4. Scheduling policy comparisons
Next, we evaluate the scheduling algorithms in terms of 
achieved classification accuracy and deadline miss rate. The 
scheduling results are presented in Figure 5. The two proposed 
algorithms, OnlineDP and Greedy, clearly outperform all the 

algorithm solves the local BASIC scheduling problem fol-
lowing a simple greedy selection rule: Execute the (eligible) 
batch with the maximum utility next. The pseudo-code of the 
greedy scheduling algorithm is shown in Algorithm 4. The 
greedy scheduling algorithm is simple to implement and has 
a very low computational overhead. We show that it achieves a 
comparable performance to the optimal algorithm in practice.

4. EVALUATION
In this section, we verify the effectiveness and efficiency of 
our proposed scheduling framework by comparing it with 
several state-of-the-art baselines on a large-scale self-driving 
dataset, Waymo Open Dataset.

4.1. Experimental setup
Hardware platform. All experiments are conducted on an 
NVIDIA Jetson AGX Xavier SoC, which is specifically designed 
for automotive platforms. It’s equipped with an 8-core Carmel 
Arm v8.2 64-bit CPU, a 512-core Volta GPU, and 32GB memory. 
Its mode is set as MAXN with maximum CPU/GPU/memory 
frequency budget, and all CPU cores are online.

Dataset. Our experiment is performed on the Waymo 
Open Dataset,19 which is a large-scale autonomous driving 
dataset collected by Waymo self-driving cars in diverse geog-
raphies and conditions. It includes driving video segments 
of the 20s each, collected by LiDARs and cameras at 10Hz. 
Only the front camera data is used in our experiment.

Neural network training. We use ResNet proposed by He 
et al.10 for object classification. The network is trained on a 
general-purpose object detection dataset, COCO.13 It con-
tains 80 object classes that cover Waymo classes.

Scheduling load and evaluation metrics. We extract the 
distance between objects and the autonomous vehicle (AV) 
from the projected LiDAR point cloud. The deadlines of 
object classification tasks are set as the time to collision (TTC) 
with the AV. To simulate different loads for the scheduling 
algorithms, we manually change the sampling period (i.e., 
frame rate) from 40ms to 160ms. We consider a task to miss 
its deadline if the scheduler fails to run the mandatory part of 
the task by the deadline. In the following evaluation, we pres-
ent both the normalized accuracy and deadline miss rate for dif-
ferent algorithms. The normalized accuracy is defined as the 
ratio between achieved accuracy and the maximum accuracy 
when all neural network stages are finished for every object.

4.2. Compared scheduling algorithms
The following scheduling algorithms are compared.

•	 OnlineDP: the online scheduling algorithm we pro-
posed in Section 3. The local scheduling is conducted 
by the hierarchical dynamic programming algorithm.

•	 Greedy: the online scheduling algorithm we proposed, 
with the local scheduling conducted by the greedy 
batching algorithm.

•	 Greedy-NoBatch: It always executes the object with 
maximal marginal utility without batching.

•	 EDF: It always chooses the task stage with the earliest 
deadline (without considering task utility).

•	 Non-Preemptive EDF (NP-EDF): This algorithm does 
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Figure 4. Cumulative distribution comparison of end-to-end latency. 
The execution time for frame slicing, deduplication (if applicable), 
batching, and neural network inference are all counted.
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Figure 5. Accuracy and deadline miss rate comparisons on all objects.
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batching algorithm that improves both response speed and 
quality. An extensive evaluation, performed on a real-world 
driving dataset, validates the effectiveness of our framework.
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baselines with a large margin in all metrics. The improvement 
comes for two reasons: First, the integration of the imprecise 
computation model into neural networks makes the sched-
uler more flexible. It makes the neural network partially pre-
emptive at the stage level, and gives the scheduler an extra 
degree of freedom (namely, deciding how much of each task 
to execute). Second, the involvement of batching simultane-
ously improves the model performance and alleviates dead-
line misses. The batching mechanism enables the GPU to 
be utilized at its highest parallel capacity. The deadline miss 
rates of both OnlineDP and Greedy are pretty close to 0 under 
any task load. We find Greedy shows similar performance as 
OnlineDP, though they possess different theoretical results. 
One practical reason is that the utility prediction function can 
not perfectly predict the utility for all future stages, where the 
OnlineDP scheduling can be negatively impacted.

To evaluate scheduling performance in driving scenarios 
involving the aforementioned important subcases, we compare 
the metrics of different algorithms for the subset of “critical 
objects.” Critical objects are defined as objects whose time-to-
collision (and hence processing deadline) fall within 1s from 
when they first appear in the scene. Results are shown in Figure 6.  
We notice that the accuracy and deadline miss rates of FIFO 
and RR are much worse in this case (because severe priority 
inversion occurs in these two algorithms). The deadline-driven 
algorithms (NP-EDF and EDF) can effectively resolve this issue 
because objects with earlier deadlines are always executed first. 
However, their general performance is limited for a lack of 
utility optimization. The utility-based scheduling algorithms 
(Greedy, Greedy-NoBatch, and OnlineDP) are also effective in 
removing priority inversion, while at the same time achieving 
better confidence in results. These algorithms multiply a weight 
factor a > 1 to increase the utility of handling critical objects so 
that they are preferred by the algorithm over non-critical ones.

5. CONCLUSION
We presented a novel perception pipeline architecture and 
scheduling algorithm that resolve algorithmic priority inver-
sion in mission-critical machine inference pipelines, preva-
lent in conventional FIFO-based AI workflows. To mitigate 
the impact of priority inversion, the proposed online sched-
uling architecture rests on two key ideas: (1) Prioritize parts 
of the incoming sensor data over others to enable a more 
timely response to more critical stimuli, and (2) Explore 
the maximum parallel capacity of the GPU by a novel task 
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