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ABSTRACT

Learning to differentiate model distributions from observed
data is a fundamental problem in statistics and machine learn-
ing, and high-dimensional data remains a challenging setting
for such problems. Metrics that quantify the disparity in prob-
ability distributions, such as the Stein discrepancy, play an
important role in high-dimensional statistical testing. This
paper presents a method based on neural network Stein crit-
ics to distinguish between data sampled from an unknown
probability distribution and a nominal model distribution with
a novel staging of the weight of regularization. The benefit
of using staged L2 regularization in training such critics is
demonstrated on evaluating generative models of image data.

Index Terms— Stein Discrepancy, Goodness-of-fit Test,
Generative Models

1. INTRODUCTION

Minimizing the discrepancy between target and model proba-
bility distributions can be used to construct probability density
models given observed data. Generally, generative models
require discriminative critics to distinguish between data and a
distribution [1]. A wide array of integral probability metrics
quantify distances on probability distributions [2], including
the Stein discrepancy [3]. Computing the Stein discrepancy
only requires knowledge of the score function of the model
distribution, avoiding the need to integrate normalizing con-
stants. This makes the Stein discrepancy useful for evaluating
generative models such as energy-based models. Although reg-
ularized Stein discrepancy has been considered in prior work,
the impact of regularization strength parameters on neural net-
work optimization and training performance was overlooked
in previous studies.
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is also partially supported by NSF DMS-1818945, NIH R01GM131642 and
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The concept of goodness-of-fit (GoF) is closely related to
estimating such discrepancies. Integral probability metrics are
widely used for such problems. Particularly, Stein discrepancy
methods have been developed for GoF testing, including kernel
methods [4–6] and, more recently, deep neural network-aided
techniques [7].

Energy-based models (EBMs) are a particularly useful sub-
set of generative models, and can be described by an energy
function describing a probability density up to a normalizing
constant [8]. While such models provide flexibility in rep-
resenting a probability density, the normalizing constant is
required to compute the likelihood of data given the model.
The Stein discrepancy provides a metric for evaluating EBMs
without knowledge of this normalization constant [7]. In Sec-
tion 3.3, we outline our approach for evaluating generative
EBM models using neural Stein critics.

We present a novel staging of regularization for learning
the Stein discrepancy in training neural network Stein critics.
We consider the L2-regularization of the neural Stein critic,
which has been adopted in past studies [7, 9]. However, our
method focuses on the role of the regularization strength in L2

neural Stein methods, exploiting its impact on neural network
optimization, which was overlooked in previous studies. Such
trained neural Stein critics provide model comparison capa-
bilities to assess the accuracy of a model’s approximation of
the true distribution, allowing for identification of locations of
distribution departure in observed data. This naturally leads
to applications for GoF testing and evaluation of generative
models. The contributions of the current work are as follows:

1. We introduce a staging of the regularization weight in
training neural Stein critics, annealing from strong to
weak regularization throughout training.

2. We propose a generic scheme (log-linear staging) which
obtains GoF tests of improved power compared to using
fixed regularization weight in training.

3. The ability to localize discrepancy between distributions
is highlighted in experiments distinguishing generative
models of image data.
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2. BACKGROUND

Consider probability densities on X ⊆ Rd. Given such a
density q, for a sufficiently regular vector field f : X →
Rd, the Stein operator Tq [10, 11] applied to f is defined as
Tqf(x) := sq(x) · f(x) + ∇ · f(x), where sq := ∇q/q =
∇ log q is the score function of q. Given another probability
density p on X and sufficiently regular, bounded function class
F , the Stein discrepancy [3] measuring the difference between
p and q is defined as

SDF (p, q) := sup
f∈F

SD[f ], SD[f ] := Ex∼pTqf(x). (1)

We call f the “critic” and SD[f ] the Stein discrepancy evaluated
at the critic f . Under mild boundary and regularity conditions
on f and when p = q, Stein’s identity states that SD[f ] = 0.
The other direction, namely that zero Stein discrepancy implies
p = q, is also established under certain conditions [12].

2.1. L2 Stein critic

For v,w : X → Rd, define the L2 inner-product of vector
fields on (X , p(x)dx) as ⟨v,w⟩p :=

∫
X v(x) · w(x)p(x)dx

with L2 norm defined as ∥v∥2p := ⟨v,v⟩p. We denote all
critics f : X → Rd such that ∥f∥2p < ∞ the space of L2(p) :=
L2(X , p(x)dx).

The Stein discrepancy over L2 critics which vanish at the
boundary of X is defined, for some r > 0, as

SDr(p, q) = sup
∥f∥p≤r

SD[f ], (2)

where SD[f ] is defined as in (1). Define

f∗ := sq − sp. (3)

The supremum of (2) is achieved at f = (r/∥f∗∥p)f∗ under
the assumption that the score functions are in L2(p) and van-
ish at the boundary of X , implying that if ∥f∗∥p = 0, then
SDr(p, q) = 0. There exists a closed-form solution of the
Stein discrepancy under these assumptions:

SD[f ] = Ex∼pTqf(x) = ⟨f∗, f⟩p, (4)

see [4, Lemma 2.3] and the proof of [13, Lemma II.1].

2.2. Goodness-of-Fit (GoF) tests

To assess whether samples X = {xi} drawn from an unknown
distribution p come from some model distribution q, define the
null hypothesis as H0 : p = q and the alternative as H1 : p ̸=
q. A GoF test is conducted using a test statistic T̂ = T̂ (X).
After specifying a “test threshold” tthresh, H0 is rejected if
T̂ > tthresh. The selection of tthresh controls the Type-I error,
defined as Pr[T̂ > tthresh] under H0. The goal is to guarantee
that Pr[T̂ > tthresh] ≤ α, which is called the “significance

level”. The Type-II error is defined as Pr[T̂ ≤ tthresh] under
H1. Finally, the “test power” is defined as one minus the
Type-II error. See Section 3.2 for details of the test statistic
computed using a neural Stein critic.

3. NEURAL L2 STEIN CRITIC

Replacing the L2-norm constraint in (2) to be a regularization
term leads to the following minimization:

Lλ[f ] := −SD[f ]+
λ

2
∥f∥2p =

1

2λ
(∥λf − f∗∥2p−∥f∗∥2p), (5)

where λ > 0 is the penalty weight of the L2 regularization.
The final expression is by (4). Thus, (5) immediately gives
that Lλ[f ] is minimized at

f∗λ :=
f∗

λ
=

1

λ
(sq − sp), (6)

see Theorem 4.1 of [9]. The expression (6) reveals that λ only
acts to scale the optimal critic, indicating that the choice of λ
may play a role only in the optimization of neural Stein critics.
See Section 3.1 for details as to how this can be incorporated
in the training of neural Stein critics.

Following [7,9], we parameterize the critic by a neural net-
work mapping f(x, θ) parameterized by θ, assuming f(·, θ) ∈
L2(p) for any θ being considered. We denote this f(·, θ) the
“neural Stein critic”. The population loss of θ follows from (5)
as Lλ(θ) = Lλ[f(·, θ)]. The neural Stein critic is trained by
minimizing the empirical version of Lλ(θ) given ntr training
samples: L̂λ(θ) :=

1
ntr

∑ntr

i=1(−Tqf(xi, θ) +
λ
2 ∥f(xi, θ)∥2).

Suppose a neural Stein critic trained by minimizing L̂λ(θ)
approximates the minimizer of Lλ, namely the “optimal critic”
f∗λ , then both f(·, θ) and SD[f(·, θ)] would scale like 1/λ.
We call f∗ defined in (3) the “scaleless optimal critic func-
tion”. The expression (6) also suggests that, if the neural Stein
critic successfully approximates the optimal, we would expect
λf(·, θ) ≈ f∗, which is theoretically supported in [13]. We
thus call λf(·, θ) the “scaleless neural Stein critic”.

3.1. Staged-λ regularization in training

A generic choice for staging the weight of regularization is
to decrease λ by a multiplicative factor β ∈ (0, 1) every Bw

number of batches, beginning with λinit and finishing with
λterm. The discrete-time staging is defined as:

Λ (Bi;λinit, λterm, β) = max
{
λinit · βi, λterm

}
,

where Bi = i · Bw for i ∈ N. That is, λ will be set to Λ(Bi)
when i increments of Bw number of batches have occurred.

The staging of λ in training is supported by the analysis
of [13]. Using large λ early in training of the neural Stein critic
can be approximately related to Neural Tangent Kernel (NTK)
optimization [14], rapidly reaching its best approximation in
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Fig. 1: In (A), P̂ (8) is visualized through training for each regularization strategy applied to the MNIST mixture dataset. To
compute P̂ , the model is applied to a validation dataset of 1,000 samples. For each regularization strategy, 10 models are trained
for 25 epochs; the mean and standard deviation are visualized over these 10 models. In (B), a distribution of null statistics (7) are
plotted alongside a statistic calculated over an nGoF = 100 sample testing set from p, computed using a staged-regularization
critic. Visualized in (C), the SD[λf(·, θ)] is computed through training using the same validation datasets.

Fig. 2: Embedding via t-SNE of w(·, θ) scaled by λ using a staged-regularization neural Stein critic applied to a validation
dataset of 6,000 samples from p. In (A), the black points represent validation samples coming from the RBM while the red points
represent true digits 1 from MNIST. In (B), the points with high critic witness value are more darkly colored. In (C), the 12
images with the highest critic witness value are shown. Similarly, (D) shows the 12 images with the lowest critic witness value.

∼ 1/λ time, see [13, Theorem IV.6]. However, the proper λ
may be much smaller. Therefore, a staging of λ aims to fully
exploit the kernel learning (large λ) in the early training phase
and annealing to small λ in the later phase of training, going
beyond the NTK regime. The log-linear staging outlined in
this section is just one method to achieve this.

3.2. Goodness-of-Fit testing

Assume we are given data samples xi ∼ p and that we can
sample from the model q and access sq . We first train a neural
Stein critic f(x, θ) from a training split of sampled {xtr

i }
ntr
i=1

followed by computing the following test statistic on the test
split {xi}nGoF

i=1 :

T̂ =
1

nGoF

nGoF∑
i=1

Tqf(xi, θ), (7)

which can be viewed as a sample-average estimator of
SD[f(·, θ)] as defined in (1).

3.3. Evaluation of EBM generative models

Trained Stein critics can reveal where p and q locally differ
on their support. In the case of EBMs, the model probability
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density is q(x) = exp(−Eϕ(x))/Z given normalizing con-
stant Z and real-valued energy function Eϕ(x) (parameterized
by ϕ, e.g., a neural network). The score function of q, there-
fore, is the gradient of the energy function, sq = −∇Eϕ(x),
which can be straightforward to compute. For example, the
energy function for Gaussian-Bernoulli Restricted Boltzmann
Machines (RBMs) [7], a specific type of EBM, is defined
as E(x, h|B, b, c) = − 1

2x
TBh − bTx − cTh + 1

2∥x∥
2 for la-

tent Bernoulli variable h. The score function is thus sq(x) =
b− x+B · tanh(BTx+ c). In Section 4, we evaluate RBMs
using neural Stein critic functions.

4. EXPERIMENT

We compare fixed and staged regularization strategies to
train critics that differentiate a data distribution p and a
model distribution q. The data are sampled from the MNIST
handwritten digits dataset [15]. The model q is a Gaussian-
Bernoulli RBM following the approach of [7]. The data
distribution p is a mixture model composed of 97% the RBM
and 3% true digits “1” from MNIST. Codes to reproduce the
results in this section can be found at the following repos-
itory: https://github.com/mrepasky3/Staged_
L2_Neural_Stein_Critics.

We introduce a validation metric to evaluate the fit of the
neural Stein critic f(·, θ) in this setting. First, denote the quan-
tity computed by applying the Stein operator with respect to
q on neural Stein critic f(·, θ) evaluated at a sample x ∈ X
as the “critic witness” of the sample x: w(x, θ) = Tqf(x, θ).
This represents the magnitude of the difference between dis-
tributions p and q at x ∈ X . Evaluating the critic witness
at nGoF samples xi ∼ q, under the central limit theorem as-
sumption, random variables w(xi, θ) have a (centered) normal
distribution with standard deviation σ(w)/

√
nGoF when nGoF

is large, where σ(w) is the standard deviation of w(xi, θ).
Note that the test statistic (7) is the mean of w(xi, θ) com-

puted over testing data xi ∼ p. To assess the GoF testing
power for the neural Stein critic f(·, θ), we compare the mean
and variance of w(·, θ) applied to a testing dataset sampled
from p and to a “null” dataset drawn from q, both of size nGoF:

P̂ =
w̄p

σ(wp) + σ(wq)
(8)

where w̄p and σ(wp) are the empirical mean and standard
deviation of w(xi, θ), respectively. This quantity reflects the
capability of the critic to differentiate between the distributions
in the GoF hypothesis testing setting described in Section
3.2. In addition to the P̂ metric from Equation (8), we may
also apply the Stein discrepancy evaluated at the scaleless
neural Stein critic, i.e., the SD[λf(·, θ)] (1), to the holdout
dataset from the data distribution as an evaluation metric for
the models as described in Section 3.3.

We train 2-layer (512 hidden units) networks with Swish
activation [16]. The critics observe 2,000 training samples

from p, training on mini-batches of size 100 with a learning
rate 10−3 using the default PyTorch Adam optimzer. Each
model is trained for 25 epochs. We consider fixed λ ∈ {1×
10−3, 1 × 10−2, 1 × 10−1, 1 × 100, 2 × 100} and a Λ(5 ×
10−1, 1 × 10−3, 0.90) staging scheme with Bw = 20. We
fit 10 critics per regularization strategy. For each critic, we
compute the validation SD and the power metric (8) throughout
training using nGoF = 1, 000 samples from p and the same
number of “null” samples from q.

The power approximation using Equation (8) is plotted in
Figure 1(A) for each regularization strategy. Staging provides a
more rapid increase in the validation metric in the early training
period than fixed-λ strategies while yielding a final model of
comparable performance. In Figure 1(B), we observe that the
test statistic (7) exhibits clear separation from its bootstrapped
null distribution (estimated using 500 samples from q). This
holds for staged- and fixed-λ regularization strategies. Finally,
SD[λf(·, θ)] applied to the holdout dataset from p is visualized
throughout training for each model in Figure 1(C). Again,
the staged approach performs comparably to the best fixed-λ
regularization strategies.

We also examine the interpretability of the critic as a diag-
nostic tool for anomalous observations. By Equation (3), the
scaleless optimal critic captures the difference in the score of
the model and data distributions. Therefore, a trained neural
Stein critic can indicate which samples in a validation dataset
represent the largest departure from the distribution q. We
isolate such samples by identifying samples with high critic
witness value w(·, θ).

Using a staged regularization model, we visualize the critic
witness applied to a validation set of 6,000 samples from p by
reducing the images to a two-dimensional embedding via t-
SNE [17]. In Figure 2(A), the embedding of the validation data
is visualized, where the true MNIST points are highlighted in
red. In Figure 2(B), the true MNIST digits have a larger critic
witness value than RBM samples. Visualizing the images
which have highest critic witness value in Figure 2(C) and
those which have the lowest critic witness value in Figure 2(D),
we find that this approach correctly identifies true digits one
from MNIST as anomalous while accepting those generated
by the RBM as normal.

5. CONCLUSION

We outline a novel staged regularization method for learning
neural Stein critics by starting with strong L2 regularization
and progressively decreasing the regularization weight over the
course of training. Critics trained using staged regularization
yield more rapid approximations of the target than those using
fixed regularization and can, for example, detect distribution
differences between authentic and synthetic MNIST data. Fur-
ther applications can be conducted on other modern generative
modeling approaches, such as the Gaussian-Bernoulli RBM,
including normalizing flow architectures.
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