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Abstract. We provide sufficient conditions for instability of the subgradient method with con-
stant step size around a local minimum of a locally Lipschitz semialgebraic function. They are
satisfied by several spurious local minima arising in robust principal component analysis and neural
networks.
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1. Introduction. The subgradient method with constant step size for minimiz-
ing a locally Lipschitz function f: R™ — R consists in choosing an initial point 2y € R™
and generating a sequence of iterates according to the update rule xp11 € zpy—adf (xy),
for all k € N:={0,1,2,...}, where o > 0 is the step size and df is the Clarke sub-
differential [12, Chapter 2]. A notion of discrete Lyapunov stability [16] was recently
proposed to study the behavior of the subgradient method with constant size around
a local minimum of a locally Lipschitz semialgebraic function. Informally, a point is
stable if all of the iterates of the subgradient method remain in any neighborhood of
it, provided that the initial point is close enough to it and that the step size is small
enough.

It was shown that for a point to be stable, it is necessary for it to be a local
minimum [16, Theorem 1] and it suffices for it to be a strict local minimum [16,
Theorem 2]. If the function is additionally differentiable with a locally Lipschitz gra-
dient, then it suffices to be a local minimum [1, Proposition 3.3]. In this note, we
show that the existence of a Chetaev function [11] in a neighborhood of a nonstrict
local minimum satisfying certain geometric properties guarantees instability. Chetaev
functions are similar to Lyapunov functions, except that they increase along the dy-
namics rather than decrease. We check that the geometric properties, which involve
higher-order metric subregularity [22, 23, 34] and the Verdier condition [32], hold in
several applications of interest and exhibit corresponding Chetaev functions.

The Verdier condition was recently introduced to the field of optimization by
Bianchi, Hachem, and Schechtman [3] and Davis, Drusvyatskiy, and Jiang [13]. Those
works extend to the nonsmooth setting the pioneering work by Pemantle [26] on the
nonconvergence to strict saddle points of the perturbed gradient method with dimin-
ishing step size. Precisely, they consider the update rule xx11 € v —ay(9f (xx)+e€x) for
all k € N, where there exist 0 < ¢; < ¢g and v € (1/2,1] such that ¢1/kY < ap < co/kY
for all ke N*:={1,2,3,...}. Also, the random variable ¢, is drawn uniformly from a
ball of radius r > 0 centered at the origin. They prove nonconvergence to active strict
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saddles [13, Definition 2.3] satisfying the Verdier condition and an angle/proximal
aiming condition [3, Theorem 3], [13, Theorem 6.2].

As shown by Lee et al. [20, Theorem 4] (see also [25]), in the smooth setting and
with constant step size, adding random noise is actually not necessary to prevent
convergence to strict saddle points almost surely. More recently, it was observed
[18, Figure 3] that the gradient method with constant step size can escape spurious
local minima after adding uniform random noise. A similar observation on the benefits
of noise was made in [17] when training neural networks: large batch sizes tend
to converge to sharp local minima [17, Metric 2.1], while small batch sizes tend to
converge to flat local minima. Our work shows that critical points can be inherently
unstable due to the local geometry of the objective function, without adding any
noise.

2. Sufficient conditions for instability. Let || - | be the induced norm of an
inner product (-,-) on R™. Let B(a,r) and B(a,r) respectively denote the closed ball
and the open ball of center @ € R™ and radius » > 0. We first recall the notion of
discrete Lyupanov stability [16, Definition 1].

DEFINITION 2.1. We say that z* € R™ is a stable point of a locally Lipschitz
function f : R™ — R if for all ¢ > 0, there exist 6 > 0 and & > 0 such that for all
a € (0,a], the subgradient method with constant step size o initialized in B(x*,d) has
all its iterates in B(x*,€).

According to the above definition, a point x* € R™ is unstable if there exists
€ > 0 such that for all § > 0 and @ > 0, there exists a € (0,a] and an initial point
xo € B(z*,0) such that at least one of the iterates of the subgradient method with
constant step size a does not belong to B(z*,€). The sufficient conditions proposed
in this note actually imply instability in a stronger sense.

DEFINITION 2.2. We say that x* € R™ is a strongly unstable point of a locally
Lipschitz function f:R™ — R if there exists € > 0 such that for all but finitely many
constant step sizes a >0 and for almost every initial point in B(z*,€), at least one of
the iterates of the subgradient method does not belong to B(z*,€).

Recall that a point 2* € R™ is a local minimum (respectively, strict local minimum)
of a function f:R™ — R if there exists a positive constant € such that f(z*) < f(x)
for all x € B(xz*,¢€) \ {z*} (vespectively, f(z*) < f(z)). A local minimum z* € R™ is
spurious if f(z*) > inf{f(z) : € R"}. In order to describe the nature of the set of
critical points around a nonstrict local minimum, we recall the definition of a smooth
manifold.

DEFINITION 2.3. A subset S of R™ is a CP manifold with positive p € N of di-
mension m € N at x € S if there exist an open neighborhood U of x in R™ and a p
times continuously differentiable function ¢ : U — R™"™™ such that SNU = ¢~1(0)
and ' (x) is surjective.

We will use the following notions related to a C? manifold S at a point x. Accord-
ing to [28, Example 6.8], the tangent cone Ts(z) [28, 6.1 Definition] and the normal
cone Ng(z) [28, 6.3 Definition] at a point = in S are respectively the kernel of ¢'(z)
and the range of ¢’ (x)* where ¢'(x) is the Jacobian of the function ¢ in Definition 2.3
at x and ¢'(z)* is its adjoint.

In order to describe the variation of the objective function around a nonstrict lo-
cal minimum, we borrow the notion of metric #-subregularity of a set-valued mapping
[22, 23, 34]. Tt is a generalization of metric subregularity [31, Equation (4)], [2, Defini-
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tion 2.3], [14, Definition 3.1] that has been used to study the Mordukhovich subdiffer-
ential [23, Theorem 3.4]. Given z € R™ and S CR", let d(x,S) :=inf{|lz —y|:y € S}
and Pg(z):=argmin{y € S: |[x—y||}. Also, given a set-valued mapping F : R™ = R™,
let graph F:={(z,y) e R" x R™: F(z) > y}.

DEFINITION 2.4 (see [22, Definition 3.1]). A mapping F :R™ = R™ is metrically
0-subregular at (Z,7y) € graph F with 6 € R if there exist ¢ >0 and a neighborhood U
of & such that d(z, F~*(3)) < cd(y, F(x))? for allz€U.

We introduce two final definitions in order to further describe the variation of the
objective function around a nonstrict local minimum.

DEFINITION 2.5 (see [6, Definition 3.30]). Let f: R™ — R be a locally Lipschitz
function and S C R™ be a C' manifold at x. We say that f is C' on S at x if there

exists a neighborhood U of x and a continuously differentiable function f:U =R such
that f(y) = f(y) for allye SNU.

According to [6, Definition 3.58, Proposition 3.61], the Riemannian gradient
Vsf(xz) of fon S at x is given by Vg f(x) := Pr)(Vf(x)).

DEFINITION 2.6 (see [3, Definition 5(iii)]). Let f:R™ — R be a locally Lipschitz
function and let S CR™ be a C* manifold at a point x* € R™. Assume that f is C* on
S at x*. We say that f satisfies the Verdier condition at x* along S if there exist a
neighborhood U of * and ¢ >0 such that for ally € SNU, €U\ S, and v € df(x),
we have || Pry () () — Vs £ ()| < clle |

The Verdier condition [32, equation (1.4)] was introduced in 1976 to study the
relationship between submanifolds arising in the Whitney stratification [33]. It was
later shown that a finite family of definable sets always admits a Verdier stratification
[19, 1.3 Theorem], that is, for which the Verdier condition holds at every point on each
stratum. Bianchi, Hachem, and Schechtman [3] and Davis, Drusvyatskiy, and Jiang
[13] recently used this condition to guarantee that a perturbed subgradient method on
tilted functions with diminishing step size does not converge to active saddle points
almost surely.

In the context of optimization, the Verdier condition poses a Lipschitz-like condi-
tion on the projection of the subgradients and the Riemannian gradient of the objec-
tive function along a C'' manifold. Such a condition is reasonable since the domain of
a continuous semialgebraic function always admits a Verdier stratification such that
the function satisfies the Verdier condition at every point along each stratum [3, The-
orem 1], [13, Theorem 3.29]. However, the manifold induced by the critical points
around a nonstrict local minimum may not be contained in any strata, in which case
the Verdier condition need not hold. It is for this reason that the Verdier condition
appears as an assumption in Theorem 2.9 below. We illustrate the Verdier condition
with the following two examples, where ||| is induced by the Euclidean inner product.
They are illustrated in Figures 1(a) and 1(b), respectively.

Example 2.7. Let f:R? — R be the function defined by f(x1,22) := |x122 — 1].
It satisfies the Verdier condition at z* := (1,1) along its set of critical points S :=
{(x1,22) ER? : x129 =1} U {(0,0)}. Consider the neighborhood U := B(z*,0.5) of z*.
For all (y1,y2) € SUU, we have that Ts(y1,y2) = {(21,72) € R? : yoxy +y129 = 0} and
Vsf(y1,y2) =(0,0). For all (x1,22) € U\ S, we have that 0f(z1,z2) = {(sign(zi12z2 —
1)xo,sign(z122 — 1)x1) }, where sign(t) =1 if ¢t > 0 and sign(¢t) = —1 if t <0. Thus, for
all (y1,y2) € SNU, (x1,22) €U\ S, and v € 9f(x1,22), we have
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f(@1,22) = [21222 — 1 fm1,22) = max{—a} + 2x, |22}

Y T

(a) Verdier condition verified at (1,1) along (b) Verdier condition violated at (0,0) along
manifold of critical points. manifold of critical points.

F1c. 1. Verdier stratification of the domain of two continuous semialgebraic functions.

IPraon (@) — VS o, 0)| = 22222200
Vit u3
_ [(x1 —y1)y2 — (T2 — y2)u1|
Vi3
<V (w1 — 1) + (22 — 12)?
=||(z1,22) — (y1,y2)]l

by the Cauchy—Schwarz inequality.

Ezample 2.8. Let f:R? — R be the function defined by f(z1,72) := max{—ax? +
2x9,|z2|}, which is a slight modification of [13, Example 3.1]. It does not satisfy the
Verdier condition at z* := (0,0) along its set of critical points S :=R x {0}. Indeed,
consider the sequences y* := (1/k,0) € S, z* := (1/k,1/k?) ¢ S, and v* := (-2/k,2)
defined for all & € N*. They satisfy y* — z*, ¥ — 2*, and v* € 9f (), yet

[ Prg ) (v%) = Vs f (") [(=2/k,0) = (0,0) _ 2/k

2% — ] Tk = (R 0) 1k

We are now ready to state our main result.

THEOREM 2.9. Let f:R™ — R be a locally Lipschitz semialgebraic function whose
set of critical points we denote by S. Assume that S is a C? manifold at some x* € S
of dimension less than n. Assume that there exist 61 > 0, a neighborhood U of x*,
and a continuous function C : R™ — R such that for all a > 0, there exist ¢ > 0
such that for any sequence xg,x1,... € U\ S generated by the subgradient method with
constant step size o, we have C(zy1) — C(zx) = crd(zg, S)? for all k € N. The point
x* is strongly unstable if (1) 61 =0 or (2) Of is metrically O2-subregular at (z*,0)
with 62 > 1 and f satisfies the Verdier condition at x* along S.

Proof. We begin with an outline of the proof. In order to establish instability,
we reason by contradiction and assume that the iterates of the subgradient method
remain in a neighborhood of a fixed critical point. We show that this implies that
the function C' becomes unbounded along the iterates, which is impossible since this
function is continuous. The key to showing unboundedness is to prove divergence of
a series whose terms depend on the distance of the iterates to the manifold of critical
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points. For the proof to work, this distance should be positive for all iterates. We
hence begin the proof by ensuring that this holds almost surely. After treating an
easy case, the majority of the proof is devoted to showing that the distance to the set
of critical points does not converge to zero.

We seek to show that there exists € > 0 such that for all but finitely many constant
step sizes a > 0, there exists a null subset I, C R™ such that for every initial point
xog € B(z*,€) \ I, at least one of the iterates of the subgradient method does not
belong to B(z*,€). Since S is a C? manifold at z* of dimension less than n, we
have that SN U is a semialgebraic null set after possibly reducing U. By the cell
decomposition theorem [30, (2.11), p. 52] and [5, Claim 3], there exist aq,...,Qy >0
such that for all constant step sizes a € (0,00)\{a, ..., an}, there exists a null subset
I, C R™ such that, for every initial point xg € R™\ I, none of the iterates zg, 1,2, . ..
of the subgradient method belong to the semialgebraic null set SNU.

Case 1: Assume that 61 = 0. Let € > 0 such that B(z*,e) C U. Let a €
(0,00) \ {a1,...,am} and consider a sequence of iterates xo,z1,22,... € R™ of the
subgradient method with constant step size « such that zo € B(z*,€)\ I,. We reason
by contradiction and assume that xp € B(z*,¢€) for all k € N. Thus z; ¢ S for all
k€N. We have C(x41) — C(x) = c1d(zy,S)% and

—~

K-1 K—-1 K-1
(2.1) Clzx) = Clzo) =D Clarpr) — Clax) = D crd(ar, §) = e,
k=0 k=0 k=0

which converges to 400 as K converges to +o0o. Since C is continuous and zx €
B(x*,€), this yields a contradiction.

Case 2: Assume that 61 > 0. We proceed in four steps. We begin by choos-
ing € > 0 sufficiently small so that the objective function admits favorable geomet-
ric properties in B(z*,2¢) (Step 1). We then use these properties, including metric
fs-subregularity, to show that d(zxt1,S) > d(zk, S) whenever d(zy, S) is small enough
(Step 2). This prevents d(xg,S) from converging to zero. Similar to (2.1), this leads
to a divergent series Yo c1d(zy, S)?* and hence to a contradiction. A computation
reveals that proving the inequality on the distances reduces to showing that a certain
ratio is bounded (Step 3), at which point we invoke the Verdier condition. This in
turn requires showing that the projection is preserved when taking a step of a slight
modification of the subgradient method (Step 4).

Step 1. We begin by choosing € > 0 such that the projection Ps onto S is Lipschitz
continuous and identifies on B(z*,2¢) with the preimage of a mapping related to the
normal cone Ng(z), among other properties.

Since S is a C? manifold at z*, S N U is strongly amenable [28, 10.23 Definition
(b)] after possibly reducing U. It follows that SNU is prox-regular [28, 13.31 Exercise,
13.32 Proposition] and locally closed [28, p. 28]. Therefore, there exists a closed
neighborhood V' C U of z* such that S NV is closed and prox-regular at z*. By
[27, Theorem 1.3(j)], there exists € > 0 such that the projection Psny onto SNV is
single-valued and Lipschitz continuous with some constant L > 0 on B(z*,2¢). After
possibly reducing € > 0, we have Pgny () = Ps(z) for all z € B(a*,2¢). (Indeed,
if B(z*,5¢) C V, then || — y|| > 3e for all y € S\ V while ||z — 2*|| < 2¢.) Again
by [27, Theorem 1.3(j)], there exists ¢ > 0 such that Ps(z) = (I + N§)~!(z) for all
x € B(z*,2¢), where N§ is a set-valued mapping defined from R™ to the subsets of
R"™ by

22) Ni(o={ NE@NBO.Y itres

After possibly reducing €, we may assume that (2+ L)e < c.
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Ny + xy,

——/(“\\\ SNU

Fic. 2. Hlustration of d(zg41,S) = d(zk, S) for d(xk, S) sufficiently small.

In the following, we further reduce ¢ whenever necessary. Since Jf is metrically
fz-subregular at (z*,0), there exists co > 0 such that d(z,S) < c2d(0,0f(x))% for
all x € B(z*,¢). Since f satisfies the Verdier condition at z* along S, there exists
¢3 > 0 such that for all y € B(z*,2¢) N S, x € B(x*,2¢) \ S, and v € 9f(x), we have
| Prg ) ()|l < esllz—y||. Indeed, Vs f(y) =0 for all y € B(z*,2¢)NS because f agrees
with a constant function along S around z* by the semialgebraic Morse-Sard theorem
[4, Corollary 9].

Step 2. Having chosen € >0, let a € (0,00) \ {a1, ..., am}. Consider a sequence of
iterates xg,r1,Ta,... of the subgradient method with constant step size a such that
xo € B(z*,€)\ I,. As in the case when 6, =0, we reason by contradiction and assume
that xp € B(z*,¢€) for all k € N. Thus z, ¢ S for all kK € N. Also, for all K € N, we
have C(zx) — C(z0) = Yory c1d(xx, S)? . In order to show that Y r " c1d(xy, S)*
diverges, it suffices to show that d(z,S) does not converge to zero. To this end,
we next show that d(zyy1,S5) > d(xg,S) whenever d(zy,S) > 0 is sufficiently small
(it is nonzero because xy, ¢ S).

Since (zx)ken is generated by the subgradient method with constant step size «,
for all k € N there exists vy € 0f () such that xxr1 = 2 — avg. As illustrated in
Figure 2, we have

(2.3a) d(@r+1,5) = [|eks1 — Ps(@ps) ||
(2.3b) =l — Ps(zrs1) — avy|
(2-3¢) 2 allvgl| = ||z — Ps(zg11)|
(2.3d) > acy ' %d(xy, )V — |ay, — Ps(zpe)||

~1/6, a1 Nk — Ps(@p) ||
(2.3¢) =d(zy, S) (ac2 1 d(zy, S)1 /%21 — d(:rk,S)Jr
(2.3f) > d(x, 9)

provided that d(zy,S) sufficiently small and that ||z — Ps(xg+1)||/d(xk,S) is upper
bounded on B(z*,e) \ S if d(zg,S) sufficiently small. Indeed, in (2.3a) Ps(zk+1)

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/02/24 to 160.39.60.118 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

INSTABILITY OF THE SUBGRADIENT METHOD 63

is a singleton because zp11 € B(z*,€). (2.3b)—(2.3¢c) are deduced from the update
rule and the triangular inequality. (2.3d) follows from the metric s-subregularity
of Of at z* for 0. In the second factor of (2.3¢), the first term c; /2 d(zy, 5)1/%2~1
diverges as d(wg,S) nears zero because 1/0; —1 < 0. Hence, if the second term
lxx — Ps(xg+1)]l/d(zk, S) is bounded, then the lower bound (2.3f) holds.

Step 3. We next focus on proving that ||z —Ps(zx+1)|/d(xk,S) is bounded. Since
x € B(x*,e)\ S, Ps(zk) € B(z*,2¢)NS, and vy, € Of (xx), by the Verdier condition we
have || Prg(ps(ay)) (k)| < e3llzx — Ps(zy)|| for all £ € N. For notational convenience,
let Ty, := Ts(Ps(zk)) and Ny := Ng(Pg(zy)) respectively be the tangent and normal
cones of S at Pg(zy). Also, let vl := Pr, (vg) and viy := Py, (vy) respectively be the
projections of vy, on T} and Nj. With these notations, we have ||v] || < cs||zr—Ps(zi)||
for all kK € N. Observe that

|2k — Ps(rt1)ll _ |2k — Ps(@n) || + | Ps(zx) — Ps(wg11)|

2.4 <
(2.42) d(zr,S) d(zr,S)

| Ps () — Ps (x4l
2.4b =1+
(2.45) ok — Psan)]

| Ps(xr — avy ) — Ps(zy, — avg) ||
2.4c =1+
(2.40) T — Ps(an)|
(2.4d) <1+ LQM

|2k — Ps ()|l

(2.4e) <1+ Lacs

provided that d(zy,S) sufficiently small. Indeed, (2.4a) follows from the triangular
inequality. (2.4b) holds because d(xy,S) = ||z — Ps(x)||- (2.4c) holds because of the
update rule z41 = 7} — avy and the fact that Ps(xy) = Ps(zy — vl ), which is the
object of the next step. (2.4d) holds because Pg is L-Lipschitz continuous in B(x*, 2¢).
Finally, (2.4e) follows from the Verdier condition and the fact that v, =vl + vi.

Step 4. It remains to prove that Ps(zy) = Ps(z — aviy) when d(zy, S) is suffi-
ciently small. We may thus assume that d(zg,S) < €¢/(acs), which guarantees that
Tk — av,iv € B(x*,2¢). Indeed,

(2.5a) lzr — vy — 2| < flax — ave — 2| + a|v |

(2.5b) < e+ acs||lzy — Ps(zp)]|

(2.5¢) < e+ acgd(xy, S)

(2.5d) < 2e.

Recall that Ps(z) = (I + N§)~!(x) for all x € B(z*,2¢). We have

(2.6a) Ps(xp, — avi ) = (I + NS~ Hap, — avi)

(2.6b) :(I—l—Ng)_l(Ps(xk) + oy — Ps(a) —av}y)
(2.6¢) = Ps(zg).

Indeed, (2.6¢) is equivalent to Ps(zy) + xx — Ps(z) — aviy € (I + NE)(Ps(x)),
that is to say, zy — Ps(zy) — avly € N&(Ps(xg)). Since Ps(zy) € S, by definition
of N§ in (2.2), N§(Ps(x)) = Ni N B(0,¢). To see why xj — Pg(xy) — avy € Ny,
observe that Ps(zy) = Ps(zy — P(xy) + P(ax)) = (I + NS) ™ Ha, — P(zy) + P(ay)).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/02/24 to 160.39.60.118 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

64 CEDRIC JOSZ AND LEXIAO LAI

Thus zy, — P(zk) + P(zk) € (I + N§)(Ps(x)) = Ps(x) + NS(Ps(zx)), that is to say,
xp—P(xy) € Ny. Since Ny, is a linear subspace, it follows that zy, — Ps(xx) —avl € Nj.
Finally,

< lar = avg’ — 2*|| + [|2* — Ps ()|
<26+ ||Ps(z7) = Ps(z)]|
<
<

<2+ Lle<e. U

In the next section, Theorem 2.9 will be used to prove instability of spurious local
minima in two practical problems; see Propositions 3.1 and 3.2. Recall that Lyapunov
functions are used in the theory of ordinary differential equations (or inclusions) to
prove the stability of an equilibrium point [21]. For example, a locally Lipschitz
semialgebraic objective function f is a Lyapunov function for the continuous-time
subgradient dynamics 2’ € —9f(z) around a strict local minimum z* [29, Theorem
5.16, 1]. Indeed, f is positive around z* and f oz is decreasing along any trajectory
x. The objective function is, however, not monotonic along discrete-time dynamics,
in which case it ceases to be a Lyapunov function.

In contrast to Lyapunov functions, Chetaev functions are used to prove instability
[11]. By [8, Theorem 2.14], an equilibrium point of an ordinary differential equation is
unstable if there exists a continuous function with positive values in any neighborhood
of the equilibrium where it is equal to zero, and it is increasing along any trajectory
(see also [29, Theorems 5.29 and 5.30]). Chetaev functions have gained renewed
interest recently in the context of obstacle avoidance in control, where one seeks
to render the obstacles unstable by feedback [9, section III, B] [7, section IV, B].
The function C' : R™ — R in Theorem 2.9 plays the role of a Chetaev function in a
neighborhood of the point z*. So long as the iterates xj stay near x* and avoid the
critical points, the Chetaev function values C(zy) increase. If the increase is lower
bounded by a positive constant at every iteration (i.e., when 6; = 0), then we may
readily conclude. Otherwise, the local geometry of the objective function comes into
play.

The fact that the exponent in the metric subregularity of the subdifferential is
greater than one prevents the objective function from having a locally Lipschitz gra-
dient if it is differentiable. The Verdier condition characterizes how fast subgradients
become normal to the set of critical points in the vicinity of x*. Together, these two
conditions ensure that the iterates of the subgradient method do not converge to the
set of critical points around x*. Then the values C(zy) converge to plus infinity if
the iterates remain near x*, resulting in instability. In contrast, Bianchi, Hachem,
and Schechtman [3, Proposition 4] and Davis, Drusvyatskiy, and Jiang [13, Propo-
sition 5.2] use the Verdier condition to ensure that the projection of the iterates on
an active manifold containing a saddle point correspond to an inexact Riemannian
gradient method with an implicit retraction. This technique is thus not suitable for
proving instability of local minima.

In order to avoid assuming that the inequality C(zx4+1) — C(zx) = crd(zk, S)
holds for all £ € N in Theorem 2.9, one may require the Chetaev function to be convex
and (s,s") < —d(x,8)% for all z € U\ S,s € 9C(z), and s’ € df(x). Indeed, we then
have C(zg41) — C(xk) = (Sk, Thr1 — Tk) = (S, —as}) = ad(z,5)%, where s; € OC(zy,)
and s) € Of(xr). These slightly stronger conditions hold in the first example in the
next section.

01
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3. Applications. In this section, we apply Theorem 2.9 to two examples using
the Euclidean inner product. We first show that instability occurs in an example of
a ReLU neural network with ¢; loss, namely (11, 2,23) € R3 — |23 max{xs,0} — 1| +
|xs max{x; + x2,0}|. Indeed, it is the loss function when one secks to fit the ReLU
neural network (a1, as) € R? — x3max{xia; +2a2,0} over two data points (0,1) and
(1,1) with corresponding labels 1 and 0. Figure 3(a) reveals that the iterates of the
subgradient method move away from a fixed spurious local minimum despite being
initialized nearby. Five trials are displayed, each corresponding to a uniform choice
of constant step size in [0.05,0.15] and a random initial point within 1073 relative
distance of the local minimum. Figure 3(b) shows the corresponding values of an
associated Chetaev function C' : R® — R defined by C(x1,22,73) :== 1 — x1. The
fact that this function must increase indefinitely if the iterates remain near the local
minimum is at the root of the instability (see Proposition 3.1). Figure 3(c¢) shows that
the objective function values eventually stabilize around the global minimum value.

PROPOSITION 3.1. The point (1,1,0) is a strongly unstable spurious local mini-
mum of the function defined from R3 to R by f(x1,2,73) := |v3max{ws,0} — 1| +
|zs max{x; + x2,0}|.

Proof. There exists a neighborhood U of (1,1,0) such that for all (z1,x2,23) € U,

we have 21 > 1/2, 29 > 1/2, and z925 < 1. Thus inside U we have f(x1,x2,23) =
|z3ze — 1| + |z3(x1 + 22)| = 1 — @3z + |x3]|(x1 + 22) = 1 + z2(|23] — 23) + 21|23 =

10! .
£ 02.5-] | —
£ 100 %
£ Z 2.0
£10m 3
g £ 157
2102 : 1.0
3 glo
=
€103 £0.5-]
@ O
[a]
10 0.0
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(a) (b)
1.50-
$1.25
g
= 1.00
]
50.75—
20.50-
kA
-8 0.25
0.00—
0 100 200 300 400 500
Iteration
(c)

Fic. 3. Subgradient method randomly initialized near a spurious local minimum of a ReLU
neural network with €1 loss (5 trials with different step sizes).
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f(1,1,0) > f(—1,1,1), with equality in the inequality if and only if 25 =0. It follows
that (1,1,0) is a spurious local minimum. We next show that it is strongly unstable
using Theorem 2.9. The function f is locally Lipschitz and semialgebraic. Let S
denote the set of critical points of f. By the definable Morse—Sard theorem [4, Corol-
lary 9] and by shrinking the neighborhood U if necessary, SNU = {(z1,z2,23) € U :
z3 = 0} is a C? manifold of dimension 2 at (1,1,0). Let §; :=1 and C : R® - R
be the continuous function defined by C(z1,x2,23) :==1— 21. Let o > 0 and con-
sider a sequence (%, 7%, 2%) ey generated by the subgradient method with constant
step size o such that (z¥ 25 25) € U\ S for all k € N. Letting ¢; := a, we have
C(ah T ah+ bty — Ok 2k ak) = ab — 2hT = alak| = crd((2h, 2k, 2%), )% for all
k €N. Letting 6, := 1, and ¢y := 1, we have d((z1,22,73),5) < c2d(0,0f(z1,12,73))%
for all (z1,z2,23) €U, so Of is metrically f5-subregular at ((1,1,0),(0,0,0)). Finally,
letting c3 := /5, for all (z1,20,23) € U\'S, (y1,92,y3) € SNU, and (vy,v2,v3) €
Of (1, 22,3)), we have || Prq(y, s ) (01,02, 03) = Vs f (Y1, 92, y3) | = [|(v1,v2, 0)[| =
|z3|% + (|z3] — 23)% < 522 < | (71,72, 23) — (y1,2,0)|>. Thus f satisfies the Verdier
condition at (1,1,0) along S. O

Second, we show that instability occurs in an example of robust principal com-
ponent analysis with real-world data. The objective function f:R™*" x R"*" - R is
defined by f(X,Y):= || XYT — M||; [15, equation (4)], where || - || is the entrywise
{1-norm of a matrix and M € R™*™ is a data matrix. The goal is to decompose
M as a low rank matrix plus a sparse matrix. Figure 4(a) reveals that the iter-
ates of the subgradient method move away from a fixed spurious local minimum
(X*,Y*) e R™*" x R™*" despite being initialized nearby ((m,n,r) = (62400,3417,10)
in the experiment). Five trials are displayed, each corresponding to a uniform choice
of constant step size in [0.0000025,0.0000075] and a random initial point within
1073 relative distance of the local minimum. Figure 4(b) shows the correspond-
ing values of an associated Chetaev function C' : R™*" x R"*" — R defined by
C(X,Y) = || X*|% — |[Y*|% + ||[Y]|% — || X||% where || - || is the Frobenius norm.
The function increases as long as the iterates remain near the local minimum, but
ceases to do so once the iterates are far enough. This is sufficient to prove instability
(see Proposition 3.2). Figure 4(c) shows that the objective function values eventually
drop below the spurious critical value and stabilize around a new value.

The data used in Figure 4 is used in [24, Figure 3] to illustrate nonconvez alternat-
ing projections based robust PCA [24, Algorithm 1] and comes from the same dataset
as the one used to illustrate principal component pursuit [10, equation (1.1)]. The ap-
plication in those works consists of detecting moving objects in a surveillance video.
Spurious local minima exist because the data matrix has zero rows, which corresponds
to pixels that are composed of at most two of the three primary colors (red, green, and
blue) throughout the video. It is crucial that the iterates of the subgradient method
do not remain near a spurious local minimum like the one in Figure 4. Otherwise, no
moving object would be detected. In contrast, at the lower value obtained in Figure
4(c), all moving objects are detected. This can be seen in Figure 5 and at https://
www.youtube.com/playlist?list=PLIR8kg8LvAmuPPZPD4CxjoqcYskoUzjzN.

PROPOSITION 3.2. The function f defined from R™*" x R"*" to R by f(X,Y) :=
| XYT — M|y admits strongly unstable spurious local minima if M € R™*"\ {0} and
M contains at least r zero rows or r zero columns.

Proof. Without loss of generality, we assume that the first 7 rows of M are equal
to zero. Let M be the matrix containing the m — r remaining rows, one of which
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Fic. 4. Subgradient method randomly initialized near a spurious local minimum of robust prin-
cipal component analysis (5 trials with different step sizes).

(a) Original frame. (b) Moving objects. (c) Background.

Fic. 5. Output after 500 iterations of the subgradient method with step size a = 0.000005 when
initialized within 10™3 of a spurious local minimum in relative distance.

is nonzero. We seek to show that (X*,Y*) € R™*" x R"*" is a strongly unstable
spurious local minimum of f(X,Y) := | XY” — M||;, where the first 7 rows of X*
form an invertible matrix X* € R™" the remaining rows are zero, and Y* = 0. Given
(H,K) € R™*" x R"*" let H be the first r rows of H and let H be the remaining
m — r rows. For all (H, K) sufficiently small, we have
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(3.1a) f(X*+HY* +K)=|(X*+H)K" - M|

(3.1b) = (X" + H)KT |1+ |HKT — M|y

(3.1¢) > | X KTy — | HET ||+ | M|~ [HKT |
(3.1d) = | X KT |l — [|HET |+ (| M)

(3.1¢) > Kl — [HET ||+ [|M]

(3.1f) 2 ¢/2|| K|y + | M]]y

(3.1g) 2| M|y = f(X™,Y7) > f(X,Y).

Above, the first term in (3.1b) is the £;-norm of the first r rows of (X*+ H)KT — M,
while the second term in (3.1b) is the £;-norm of the remaining rows. (3.1c) follows
from the triangular inequality. (3.1d) holds because the first = rows of H KT a
HKT while the remaining rows are HK”. The existence of a positive constant ¢ in
(3. 1e) is due to the equivalence of norms (K — || X*KT||; is a norm because X* is
invertible). (3.1f) holds because we may take ||H ||« < ¢/(2m) where || || is the dual
norm of || - [1. Then [[HKT|y = 3770 370 [(ha k)l < 3572 3250 hallsollslln <
ST S H sl < ¢/2 3 Tl = ¢/2]1K] where AT and kT xespectively
denote the rows of H and K. Finally, we may choose (X,Y) in (3. lg) to be factors
of a rank-one matrix M € R™*" which has all zero entries, apart from one where
My = Mi; #0. Then f(X,¥) = | X¥7 — M|, = |M — M(; = | M|y — | M| < | M|l

We next show that (X*,Y™) is strongly unstable using Theorem 2.9. The function
f is locally Lipschitz and semialgebraic. Let S denote the set of critical points of
f. By the definable Morse-Sard theorem [4, Corollary 9], there exists a bounded
neighborhood U of the local minimum (X*,Y*) such that SNU = {(X,Y) € U :
fX)Y) = f(X*,Y")} ={(X,Y) € U:Y =Y*}, where the second setwise equality
is due to (3.1f). As a result, S is a C? manifold at (X*,Y*). Let 6; := 0 and
C : R™*" x R™" — R be the continuous function defined by C(X,Y) := || X*||% —
Y*[|2 +]|Y||% — || X||%. Let a >0 and consider a sequence (X, Yx)ren generated by
the subgradient method with constant step size « such that (Xj,Yy) € U\ S for all
k € N. Let sign(-) be the function defined by sign(t) =1 if ¢t > 0, sign(t) = -1 if ¢ <0,
and sign(t) = [—1,1] if ¢ = 0. When the input is a matrix, it is applied entrywise.
Letting

e i=a?inf {[ATX|% - [[AY |7 (X,Y) €U\ S, Aesign(XYT — M)},

we have

(X1, Yiern) — C(Xe, Yi) = Vi3 — X3 — Vil + 1 Xul12
=trace(Y 1 Vit1 — X X1 — Vil Vi + X7 Xy)
= o’*trace( X[ A AT X, — VIATALY:)
— (AT X2 = 1ARYelI3) > crd(Xe, Yi), )
where Ay, € sign(X;Y, Y — M). It remains to show that ¢; > 0. Given (A, X, M) €
A X, M)

R7™X1 5 RMXT 5 R™*7 et (A, X, M) be the first 7 rows of (A, X, M) and let
be the remaining m — r rows. It suffices to show that

inf{HATXHF H(X,Y)eU\ S, Aesign(Xy7T - M)} >0

after possibly reducing the neighborhood U of (X*,Y™). Indeed, for all (X,Y) €U\ S
and A € sign(XY7T — M), we then have |[ATX|% — [[AY[%Z = |[ATX + ATX|% -
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IAY I3 > (JATX [l — [AT )2 AV |3 > [ATX|3/2 since X* =0 and Y* =0,
We next reason by contradiction and assume that the infimum in (3) is equal to zero.
Let (X;,Y;,A;)ien be a minimizing sequence. Since it is contained in the bounded
set U x [—1,1]™*"  there exists a subsequence (again denoted (X;,Y;, A;);en) that
converges to some (X°,Y°, A°). Naturally we have (A°)7X° =0. On the one hand,
since X* € R™" is invertible, so is any matrix in its neighborhood U, in particular
X° Xy, X1,... after possibly reducing U. Hence A° = 0. On the other hand, since
(X:,Y))eU\S, SNU={(X,Y)eU:Y =Y*=0}, and M =0, we have ¥; # 0 and
X;Y;T — M #0 for all i € N. Hence the matrix A; € sign(XY7 — M) has at least one
entry equal to either 1 or —1. Thus ||As][os =1 for all i € N. Passing to the limit, we
obtain the contradiction 0= [|A°, > 1. d
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