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Abstract. We provide sufficient conditions for instability of the subgradient method with con-
stant step size around a local minimum of a locally Lipschitz semialgebraic function. They are
satisfied by several spurious local minima arising in robust principal component analysis and neural
networks.
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1. Introduction. The subgradient method with constant step size for minimiz-
ing a locally Lipschitz function f :\BbbR n \rightarrow \BbbR consists in choosing an initial point x0 \in \BbbR 

n

and generating a sequence of iterates according to the update rule xk+1 \in xk - \alpha \partial f(xk),
for all k \in \BbbN := \{ 0,1,2, . . .\} , where \alpha > 0 is the step size and \partial f is the Clarke sub-
differential [12, Chapter 2]. A notion of discrete Lyapunov stability [16] was recently
proposed to study the behavior of the subgradient method with constant size around
a local minimum of a locally Lipschitz semialgebraic function. Informally, a point is
stable if all of the iterates of the subgradient method remain in any neighborhood of
it, provided that the initial point is close enough to it and that the step size is small
enough.

It was shown that for a point to be stable, it is necessary for it to be a local
minimum [16, Theorem 1] and it suffices for it to be a strict local minimum [16,
Theorem 2]. If the function is additionally differentiable with a locally Lipschitz gra-
dient, then it suffices to be a local minimum [1, Proposition 3.3]. In this note, we
show that the existence of a Chetaev function [11] in a neighborhood of a nonstrict
local minimum satisfying certain geometric properties guarantees instability. Chetaev
functions are similar to Lyapunov functions, except that they increase along the dy-
namics rather than decrease. We check that the geometric properties, which involve
higher-order metric subregularity [22, 23, 34] and the Verdier condition [32], hold in
several applications of interest and exhibit corresponding Chetaev functions.

The Verdier condition was recently introduced to the field of optimization by
Bianchi, Hachem, and Schechtman [3] and Davis, Drusvyatskiy, and Jiang [13]. Those
works extend to the nonsmooth setting the pioneering work by Pemantle [26] on the
nonconvergence to strict saddle points of the perturbed gradient method with dimin-
ishing step size. Precisely, they consider the update rule xk+1 \in xk - \alpha k(\partial f(xk)+\epsilon k) for
all k \in \BbbN , where there exist 0< c1 < c2 and \gamma \in (1/2,1] such that c1/k

\gamma \leqslant \alpha k \leqslant c2/k
\gamma 

for all k \in \BbbN 
\ast := \{ 1,2,3, . . .\} . Also, the random variable \epsilon k is drawn uniformly from a

ball of radius r > 0 centered at the origin. They prove nonconvergence to active strict
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58 C\'EDRIC JOSZ AND LEXIAO LAI

saddles [13, Definition 2.3] satisfying the Verdier condition and an angle/proximal
aiming condition [3, Theorem 3], [13, Theorem 6.2].

As shown by Lee et al. [20, Theorem 4] (see also [25]), in the smooth setting and
with constant step size, adding random noise is actually not necessary to prevent
convergence to strict saddle points almost surely. More recently, it was observed
[18, Figure 3] that the gradient method with constant step size can escape spurious
local minima after adding uniform random noise. A similar observation on the benefits
of noise was made in [17] when training neural networks: large batch sizes tend
to converge to sharp local minima [17, Metric 2.1], while small batch sizes tend to
converge to flat local minima. Our work shows that critical points can be inherently
unstable due to the local geometry of the objective function, without adding any
noise.

2. Sufficient conditions for instability. Let \| \cdot \| be the induced norm of an
inner product \langle \cdot , \cdot \rangle on \BbbR 

n. Let B(a, r) and \r B(a, r) respectively denote the closed ball
and the open ball of center a \in \BbbR 

n and radius r > 0. We first recall the notion of
discrete Lyupanov stability [16, Definition 1].

Definition 2.1. We say that x\ast \in \BbbR 
n is a stable point of a locally Lipschitz

function f : \BbbR n \rightarrow \BbbR if for all \epsilon > 0, there exist \delta > 0 and \=\alpha > 0 such that for all

\alpha \in (0, \=\alpha ], the subgradient method with constant step size \alpha initialized in B(x\ast , \delta ) has
all its iterates in B(x\ast , \epsilon ).

According to the above definition, a point x\ast \in \BbbR 
n is unstable if there exists

\epsilon > 0 such that for all \delta > 0 and \=\alpha > 0, there exists \alpha \in (0, \=\alpha ] and an initial point
x0 \in B(x\ast , \delta ) such that at least one of the iterates of the subgradient method with
constant step size \alpha does not belong to B(x\ast , \epsilon ). The sufficient conditions proposed
in this note actually imply instability in a stronger sense.

Definition 2.2. We say that x\ast \in \BbbR 
n is a strongly unstable point of a locally

Lipschitz function f : \BbbR n \rightarrow \BbbR if there exists \epsilon > 0 such that for all but finitely many

constant step sizes \alpha > 0 and for almost every initial point in B(x\ast , \epsilon ), at least one of

the iterates of the subgradient method does not belong to B(x\ast , \epsilon ).

Recall that a point x\ast \in \BbbR 
n is a local minimum (respectively, strict local minimum)

of a function f : \BbbR n \rightarrow \BbbR if there exists a positive constant \epsilon such that f(x\ast ) \leqslant f(x)
for all x \in B(x\ast , \epsilon ) \setminus \{ x\ast \} (respectively, f(x\ast ) < f(x)). A local minimum x\ast \in \BbbR 

n is
spurious if f(x\ast ) > inf\{ f(x) : x \in \BbbR 

n\} . In order to describe the nature of the set of
critical points around a nonstrict local minimum, we recall the definition of a smooth
manifold.

Definition 2.3. A subset S of \BbbR n is a Cp manifold with positive p \in \BbbN of di-

mension m \in \BbbN at x \in S if there exist an open neighborhood U of x in \BbbR 
n and a p

times continuously differentiable function \varphi : U \rightarrow \BbbR 
n - m such that S \cap U = \varphi  - 1(0)

and \varphi \prime (x) is surjective.

We will use the following notions related to a Cp manifold S at a point x. Accord-
ing to [28, Example 6.8], the tangent cone TS(x) [28, 6.1 Definition] and the normal
cone NS(x) [28, 6.3 Definition] at a point x in S are respectively the kernel of \varphi \prime (x)
and the range of \varphi \prime (x)\ast where \varphi \prime (x) is the Jacobian of the function \varphi in Definition 2.3
at x and \varphi \prime (x)\ast is its adjoint.

In order to describe the variation of the objective function around a nonstrict lo-
cal minimum, we borrow the notion of metric \theta -subregularity of a set-valued mapping
[22, 23, 34]. It is a generalization of metric subregularity [31, Equation (4)], [2, Defini-
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INSTABILITY OF THE SUBGRADIENT METHOD 59

tion 2.3], [14, Definition 3.1] that has been used to study the Mordukhovich subdiffer-
ential [23, Theorem 3.4]. Given x\in \BbbR 

n and S \subset \BbbR 
n, let d(x,S) := inf\{ \| x - y\| : y \in S\} 

and PS(x) := argmin\{ y \in S : \| x - y\| \} . Also, given a set-valued mapping F :\BbbR n \rightrightarrows \BbbR 
m,

let graph F := \{ (x, y)\in \BbbR 
n \times \BbbR 

m : F (x)\ni y\} .
Definition 2.4 (see [22, Definition 3.1]). A mapping F :\BbbR n \rightrightarrows \BbbR 

m is metrically

\theta -subregular at (\=x, \=y) \in graph F with \theta \in \BbbR if there exist c > 0 and a neighborhood U
of \=x such that d(x,F - 1(\=y))\leqslant cd(\=y,F (x))\theta for all x\in U .

We introduce two final definitions in order to further describe the variation of the
objective function around a nonstrict local minimum.

Definition 2.5 (see [6, Definition 3.30]). Let f : \BbbR n \rightarrow \BbbR be a locally Lipschitz

function and S \subset \BbbR 
n be a C1 manifold at x. We say that f is C1 on S at x if there

exists a neighborhood U of x and a continuously differentiable function \=f :U \rightarrow \BbbR such

that f(y) = \=f(y) for all y \in S \cap U .

According to [6, Definition 3.58, Proposition 3.61], the Riemannian gradient
\nabla Sf(x) of f on S at x is given by \nabla Sf(x) := PTS(x)(\nabla \=f(x)).

Definition 2.6 (see [3, Definition 5(iii)]). Let f : \BbbR n \rightarrow \BbbR be a locally Lipschitz

function and let S \subset \BbbR 
n be a C1 manifold at a point x\ast \in \BbbR 

n. Assume that f is C1 on

S at x\ast . We say that f satisfies the Verdier condition at x\ast along S if there exist a

neighborhood U of x\ast and c > 0 such that for all y \in S \cap U , x\in U \setminus S, and v \in \partial f(x),
we have \| PTS(y)(v) - \nabla Sf(y)\| \leqslant c\| x - y\| .

The Verdier condition [32, equation (1.4)] was introduced in 1976 to study the
relationship between submanifolds arising in the Whitney stratification [33]. It was
later shown that a finite family of definable sets always admits a Verdier stratification
[19, 1.3 Theorem], that is, for which the Verdier condition holds at every point on each
stratum. Bianchi, Hachem, and Schechtman [3] and Davis, Drusvyatskiy, and Jiang
[13] recently used this condition to guarantee that a perturbed subgradient method on
tilted functions with diminishing step size does not converge to active saddle points
almost surely.

In the context of optimization, the Verdier condition poses a Lipschitz-like condi-
tion on the projection of the subgradients and the Riemannian gradient of the objec-
tive function along a C1 manifold. Such a condition is reasonable since the domain of
a continuous semialgebraic function always admits a Verdier stratification such that
the function satisfies the Verdier condition at every point along each stratum [3, The-
orem 1], [13, Theorem 3.29]. However, the manifold induced by the critical points
around a nonstrict local minimum may not be contained in any strata, in which case
the Verdier condition need not hold. It is for this reason that the Verdier condition
appears as an assumption in Theorem 2.9 below. We illustrate the Verdier condition
with the following two examples, where \| \cdot \| is induced by the Euclidean inner product.
They are illustrated in Figures 1(a) and 1(b), respectively.

Example 2.7. Let f : \BbbR 2 \rightarrow \BbbR be the function defined by f(x1, x2) := | x1x2  - 1| .
It satisfies the Verdier condition at x\ast := (1,1) along its set of critical points S :=
\{ (x1, x2)\in \BbbR 

2 : x1x2 = 1\} \cup \{ (0,0)\} . Consider the neighborhood U :=B(x\ast ,0.5) of x\ast .
For all (y1, y2)\in S\cup U , we have that TS(y1, y2) = \{ (x1, x2)\in \BbbR 

2 : y2x1+y1x2 = 0\} and
\nabla Sf(y1, y2) = (0,0). For all (x1, x2)\in U \setminus S, we have that \partial f(x1, x2) = \{ (sign(x1x2  - 
1)x2, sign(x1x2 - 1)x1)\} , where sign(t) = 1 if t > 0 and sign(t) = - 1 if t < 0. Thus, for
all (y1, y2)\in S \cap U , (x1, x2)\in U \setminus S, and v \in \partial f(x1, x2), we have
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60 C\'EDRIC JOSZ AND LEXIAO LAI

(a) Verdier condition verified at (1, 1) along
manifold of critical points.

(b) Verdier condition violated at (0, 0) along
manifold of critical points.

Fig. 1. Verdier stratification of the domain of two continuous semialgebraic functions.

\| PTS(y1,y2)(v) - \nabla Sf(y1, y2)\| =
| x1y2  - x2y1| 
\sqrt{} 

y21 + y22

=
| (x1  - y1)y2  - (x2  - y2)y1| 

\sqrt{} 

y21 + y22

\leqslant 
\sqrt{} 

(x1  - y1)2 + (x2  - y2)2

= \| (x1, x2) - (y1, y2)\| 
by the Cauchy--Schwarz inequality.

Example 2.8. Let f : \BbbR 2 \rightarrow \BbbR be the function defined by f(x1, x2) := max\{  - x2
1 +

2x2, | x2| \} , which is a slight modification of [13, Example 3.1]. It does not satisfy the
Verdier condition at x\ast := (0,0) along its set of critical points S := \BbbR \times \{ 0\} . Indeed,
consider the sequences yk := (1/k,0) \in S, xk := (1/k,1/k2) /\in S, and vk := ( - 2/k,2)
defined for all k \in \BbbN 

\ast . They satisfy yk \rightarrow x\ast , xk \rightarrow x\ast , and vk \in \partial f(xk), yet

\| PTS(yk)(v
k) - \nabla Sf(y

k)\| 
\| xk  - yk\| =

\| ( - 2/k,0) - (0,0)\| 
\| (1/k,1/k2) - (1/k,0)\| =

2/k

1/k2
\rightarrow \infty .

We are now ready to state our main result.

Theorem 2.9. Let f :\BbbR n \rightarrow \BbbR be a locally Lipschitz semialgebraic function whose

set of critical points we denote by S. Assume that S is a C2 manifold at some x\ast \in S
of dimension less than n. Assume that there exist \theta 1 \geqslant 0, a neighborhood U of x\ast ,

and a continuous function C : \BbbR n \rightarrow \BbbR such that for all \alpha > 0, there exist c1 > 0
such that for any sequence x0, x1, . . .\in U \setminus S generated by the subgradient method with

constant step size \alpha , we have C(xk+1) - C(xk)\geqslant c1d(xk, S)
\theta 1 for all k \in \BbbN . The point

x\ast is strongly unstable if (1) \theta 1 = 0 or (2) \partial f is metrically \theta 2-subregular at (x\ast ,0)
with \theta 2 > 1 and f satisfies the Verdier condition at x\ast along S.

Proof. We begin with an outline of the proof. In order to establish instability,
we reason by contradiction and assume that the iterates of the subgradient method
remain in a neighborhood of a fixed critical point. We show that this implies that
the function C becomes unbounded along the iterates, which is impossible since this
function is continuous. The key to showing unboundedness is to prove divergence of
a series whose terms depend on the distance of the iterates to the manifold of critical

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INSTABILITY OF THE SUBGRADIENT METHOD 61

points. For the proof to work, this distance should be positive for all iterates. We
hence begin the proof by ensuring that this holds almost surely. After treating an
easy case, the majority of the proof is devoted to showing that the distance to the set
of critical points does not converge to zero.

We seek to show that there exists \epsilon > 0 such that for all but finitely many constant
step sizes \alpha > 0, there exists a null subset I\alpha \subset \BbbR 

n such that for every initial point
x0 \in B(x\ast , \epsilon ) \setminus I\alpha , at least one of the iterates of the subgradient method does not
belong to B(x\ast , \epsilon ). Since S is a C2 manifold at x\ast of dimension less than n, we
have that S \cap U is a semialgebraic null set after possibly reducing U . By the cell
decomposition theorem [30, (2.11), p. 52] and [5, Claim 3], there exist \alpha 1, . . . , \alpha m > 0
such that for all constant step sizes \alpha \in (0,\infty )\setminus \{ \alpha 1, . . . , am\} , there exists a null subset
I\alpha \subset \BbbR 

n such that, for every initial point x0 \in \BbbR 
n\setminus I\alpha , none of the iterates x0, x1, x2, . . .

of the subgradient method belong to the semialgebraic null set S \cap U .
Case 1: Assume that \theta 1 = 0. Let \epsilon > 0 such that B(x\ast , \epsilon ) \subset U . Let \alpha \in 

(0,\infty ) \setminus \{ \alpha 1, . . . , am\} and consider a sequence of iterates x0, x1, x2, . . . \in \BbbR 
n of the

subgradient method with constant step size \alpha such that x0 \in B(x\ast , \epsilon )\setminus I\alpha . We reason
by contradiction and assume that xk \in B(x\ast , \epsilon ) for all k \in \BbbN . Thus xk /\in S for all
k \in \BbbN . We have C(xk+1) - C(xk)\geqslant c1d(xk, S)

\theta 1 and

(2.1) C(xK) - C(x0) =
K - 1
\sum 

k=0

C(xk+1) - C(xk)\geqslant 
K - 1
\sum 

k=0

c1d(xk, S)
\theta 1 =

K - 1
\sum 

k=0

c1,

which converges to +\infty as K converges to +\infty . Since C is continuous and xK \in 
B(x\ast , \epsilon ), this yields a contradiction.

Case 2: Assume that \theta 1 > 0. We proceed in four steps. We begin by choos-
ing \epsilon > 0 sufficiently small so that the objective function admits favorable geomet-
ric properties in B(x\ast ,2\epsilon ) (Step 1). We then use these properties, including metric
\theta 2-subregularity, to show that d(xk+1, S)\geqslant d(xk, S) whenever d(xk, S) is small enough
(Step 2). This prevents d(xk, S) from converging to zero. Similar to (2.1), this leads
to a divergent series

\sum 

\infty 

k=0 c1d(xk, S)
\theta 1 and hence to a contradiction. A computation

reveals that proving the inequality on the distances reduces to showing that a certain
ratio is bounded (Step 3), at which point we invoke the Verdier condition. This in
turn requires showing that the projection is preserved when taking a step of a slight
modification of the subgradient method (Step 4).

Step 1. We begin by choosing \epsilon > 0 such that the projection PS onto S is Lipschitz
continuous and identifies on B(x\ast ,2\epsilon ) with the preimage of a mapping related to the
normal cone NS(x), among other properties.

Since S is a C2 manifold at x\ast , S \cap U is strongly amenable [28, 10.23 Definition
(b)] after possibly reducing U . It follows that S\cap U is prox-regular [28, 13.31 Exercise,
13.32 Proposition] and locally closed [28, p. 28]. Therefore, there exists a closed
neighborhood V \subset U of x\ast such that S \cap V is closed and prox-regular at x\ast . By
[27, Theorem 1.3(j)], there exists \epsilon > 0 such that the projection PS\cap V onto S \cap V is
single-valued and Lipschitz continuous with some constant L> 0 on B(x\ast ,2\epsilon ). After
possibly reducing \epsilon > 0, we have PS\cap V (x) = PS(x) for all x \in B(x\ast ,2\epsilon ). (Indeed,
if B(x\ast ,5\epsilon ) \subset V , then \| x  - y\| \geqslant 3\epsilon for all y \in S \setminus V while \| x  - x\ast \| \leqslant 2\epsilon .) Again
by [27, Theorem 1.3(j)], there exists c > 0 such that PS(x) = (I +N c

S)
 - 1(x) for all

x \in B(x\ast ,2\epsilon ), where N c
S is a set-valued mapping defined from \BbbR 

n to the subsets of
\BbbR 

n by

(2.2) N c
S(x) :=

\biggl\{ 

NS(x)\cap \r B(0, c) if x\in S,
\emptyset else.

After possibly reducing \epsilon , we may assume that (2 +L)\epsilon < c.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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62 C\'EDRIC JOSZ AND LEXIAO LAI

S

S ∩ U

U

x∗

PS(xk+1)

PS(xk)

Nk + xk

Tk + xk

vk
xk

xk+1

Fig. 2. Illustration of d(xk+1, S)\geqslant d(xk, S) for d(xk, S) sufficiently small.

In the following, we further reduce \epsilon whenever necessary. Since \partial f is metrically
\theta 2-subregular at (x\ast ,0), there exists c2 > 0 such that d(x,S) \leqslant c2d(0, \partial f(x))

\theta 2 for
all x \in B(x\ast , \epsilon ). Since f satisfies the Verdier condition at x\ast along S, there exists
c3 > 0 such that for all y \in B(x\ast ,2\epsilon ) \cap S, x \in B(x\ast ,2\epsilon ) \setminus S, and v \in \partial f(x), we have
\| PTS(y)(v)\| \leqslant c3\| x - y\| . Indeed, \nabla Sf(y) = 0 for all y \in B(x\ast ,2\epsilon )\cap S because f agrees
with a constant function along S around x\ast by the semialgebraic Morse--Sard theorem
[4, Corollary 9].

Step 2. Having chosen \epsilon > 0, let \alpha \in (0,\infty )\setminus \{ \alpha 1, . . . , am\} . Consider a sequence of
iterates x0, x1, x2, . . . of the subgradient method with constant step size \alpha such that
x0 \in B(x\ast , \epsilon )\setminus I\alpha . As in the case when \theta 1 = 0, we reason by contradiction and assume
that xk \in B(x\ast , \epsilon ) for all k \in \BbbN . Thus xk /\in S for all k \in \BbbN . Also, for all K \in \BbbN , we
have C(xK) - C(x0)\geqslant 

\sum K - 1
k=0 c1d(xk, S)

\theta 1 . In order to show that
\sum K - 1

k=0 c1d(xk, S)
\theta 1

diverges, it suffices to show that d(xk, S) does not converge to zero. To this end,
we next show that d(xk+1, S) \geqslant d(xk, S) whenever d(xk, S) > 0 is sufficiently small
(it is nonzero because xk /\in S).

Since (xk)k\in \BbbN is generated by the subgradient method with constant step size \alpha ,
for all k \in \BbbN there exists vk \in \partial f(xk) such that xk+1 = xk  - \alpha vk. As illustrated in
Figure 2, we have

d(xk+1, S) = \| xk+1  - PS(xk+1)\| (2.3a)

= \| xk  - PS(xk+1) - \alpha vk\| (2.3b)

\geqslant \alpha \| vk\|  - \| xk  - PS(xk+1)\| (2.3c)

\geqslant \alpha c
 - 1/\theta 2
2 d(xk, S)

1/\theta 2  - \| xk  - PS(xk+1)\| (2.3d)

= d(xk, S)

\biggl( 

\alpha c
 - 1/\theta 2
2 d(xk, S)

1/\theta 2 - 1  - \| xk  - PS(xk+1)\| 
d(xk, S)

\biggr) 

(2.3e)

\geqslant d(xk, S)(2.3f)

provided that d(xk, S) sufficiently small and that \| xk  - PS(xk+1)\| /d(xk, S) is upper
bounded on B(x\ast , \epsilon ) \setminus S if d(xk, S) sufficiently small. Indeed, in (2.3a) PS(xk+1)
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INSTABILITY OF THE SUBGRADIENT METHOD 63

is a singleton because xk+1 \in B(x\ast , \epsilon ). (2.3b)--(2.3c) are deduced from the update
rule and the triangular inequality. (2.3d) follows from the metric \theta 2-subregularity

of \partial f at x\ast for 0. In the second factor of (2.3e), the first term c
 - 1/\theta 2
2 d(xk, S)

1/\theta 2 - 1

diverges as d(xk, S) nears zero because 1/\theta 2  - 1 < 0. Hence, if the second term
\| xk  - PS(xk+1)\| /d(xk, S) is bounded, then the lower bound (2.3f) holds.

Step 3. We next focus on proving that \| xk - PS(xk+1)\| /d(xk, S) is bounded. Since
xk \in B(x\ast , \epsilon )\setminus S, PS(xk)\in B(x\ast ,2\epsilon )\cap S, and vk \in \partial f(xk), by the Verdier condition we
have \| PTS(PS(xk))(vk)\| \leqslant c3\| xk  - PS(xk)\| for all k \in \BbbN . For notational convenience,
let Tk := TS(PS(xk)) and Nk :=NS(PS(xk)) respectively be the tangent and normal
cones of S at PS(xk). Also, let vTk := PTk

(vk) and vNk := PNk
(vk) respectively be the

projections of vk on Tk andNk. With these notations, we have \| vTk \| \leqslant c3\| xk - PS(xk)\| 
for all k \in \BbbN . Observe that

\| xk  - PS(xk+1)\| 
d(xk, S)

\leqslant 
\| xk  - PS(xk)\| + \| PS(xk) - PS(xk+1)\| 

d(xk, S)
(2.4a)

= 1+
\| PS(xk) - PS(xk+1)\| 

\| xk  - PS(xk)\| 
(2.4b)

= 1+
\| PS(xk  - \alpha vNk ) - PS(xk  - \alpha vk)\| 

\| xk  - PS(xk)\| 
(2.4c)

\leqslant 1 +L\alpha 
\| vNk  - vk\| 

\| xk  - PS(xk)\| 
(2.4d)

\leqslant 1 +L\alpha c3(2.4e)

provided that d(xk, S) sufficiently small. Indeed, (2.4a) follows from the triangular
inequality. (2.4b) holds because d(xk, S) = \| xk - PS(xk)\| . (2.4c) holds because of the
update rule xk+1 = xk  - \alpha vk and the fact that PS(xk) = PS(xk  - \alpha vNk ), which is the
object of the next step. (2.4d) holds because PS is L-Lipschitz continuous in B(x\ast ,2\epsilon ).
Finally, (2.4e) follows from the Verdier condition and the fact that vk = vTk + vNk .

Step 4. It remains to prove that PS(xk) = PS(xk  - \alpha vNk ) when d(xk, S) is suffi-
ciently small. We may thus assume that d(xk, S) \leqslant \epsilon /(\alpha c3), which guarantees that
xk  - \alpha vNk \in B(x\ast ,2\epsilon ). Indeed,

\| xk  - \alpha vNk  - x\ast \| \leqslant \| xk  - \alpha vk  - x\ast \| + \alpha \| vTk \| (2.5a)

\leqslant \epsilon + \alpha c3\| xk  - PS(xk)\| (2.5b)

\leqslant \epsilon + \alpha c3d(xk, S)(2.5c)

\leqslant 2\epsilon .(2.5d)

Recall that PS(x) = (I +N c
S)

 - 1(x) for all x\in B(x\ast ,2\epsilon ). We have

PS(xk  - \alpha vNk ) = (I +N c
S)

 - 1(xk  - \alpha vNk )(2.6a)

= (I +N c
S)

 - 1
\Bigl( 

PS(xk) + xk  - PS(xk) - \alpha vNk

\Bigr) 

(2.6b)

= PS(xk).(2.6c)

Indeed, (2.6c) is equivalent to PS(xk) + xk  - PS(xk)  - \alpha vNk \in (I + N c
S)(PS(xk)),

that is to say, xk  - PS(xk)  - \alpha vNk \in N c
S(PS(xk)). Since PS(xk) \in S, by definition

of N c
S in (2.2), N c

S(PS(xk)) = Nk \cap \r B(0, c). To see why xk  - PS(xk)  - \alpha vNk \in Nk,
observe that PS(xk) = PS(xk  - P (xk) + P (xk)) = (I +N c

S)
 - 1(xk  - P (xk) + P (xk)).
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64 C\'EDRIC JOSZ AND LEXIAO LAI

Thus xk  - P (xk) +P (xk)\in (I +N c
S)(PS(xk)) = PS(xk) +N c

S(PS(xk)), that is to say,
xk - P (xk)\in Nk. Since Nk is a linear subspace, it follows that xk - PS(xk) - \alpha vNk \in Nk.
Finally,

\| xk  - PS(xk) - \alpha vNk \| \leqslant \| xk  - \alpha vNk  - x\ast \| + \| x\ast  - PS(xk)\| 
\leqslant 2\epsilon + \| PS(x

\ast ) - PS(xk)\| 
\leqslant 2\epsilon +L\| x\ast  - xk\| 
\leqslant (2 +L)\epsilon < c.

In the next section, Theorem 2.9 will be used to prove instability of spurious local
minima in two practical problems; see Propositions 3.1 and 3.2. Recall that Lyapunov
functions are used in the theory of ordinary differential equations (or inclusions) to
prove the stability of an equilibrium point [21]. For example, a locally Lipschitz
semialgebraic objective function f is a Lyapunov function for the continuous-time
subgradient dynamics x\prime \in  - \partial f(x) around a strict local minimum x\ast [29, Theorem
5.16, 1]. Indeed, f is positive around x\ast and f \circ x is decreasing along any trajectory
x. The objective function is, however, not monotonic along discrete-time dynamics,
in which case it ceases to be a Lyapunov function.

In contrast to Lyapunov functions, Chetaev functions are used to prove instability
[11]. By [8, Theorem 2.14], an equilibrium point of an ordinary differential equation is
unstable if there exists a continuous function with positive values in any neighborhood
of the equilibrium where it is equal to zero, and it is increasing along any trajectory
(see also [29, Theorems 5.29 and 5.30]). Chetaev functions have gained renewed
interest recently in the context of obstacle avoidance in control, where one seeks
to render the obstacles unstable by feedback [9, section III, B] [7, section IV, B].
The function C : \BbbR n \rightarrow \BbbR in Theorem 2.9 plays the role of a Chetaev function in a
neighborhood of the point x\ast . So long as the iterates xk stay near x\ast and avoid the
critical points, the Chetaev function values C(xk) increase. If the increase is lower
bounded by a positive constant at every iteration (i.e., when \theta 1 = 0), then we may
readily conclude. Otherwise, the local geometry of the objective function comes into
play.

The fact that the exponent in the metric subregularity of the subdifferential is
greater than one prevents the objective function from having a locally Lipschitz gra-
dient if it is differentiable. The Verdier condition characterizes how fast subgradients
become normal to the set of critical points in the vicinity of x\ast . Together, these two
conditions ensure that the iterates of the subgradient method do not converge to the
set of critical points around x\ast . Then the values C(xk) converge to plus infinity if
the iterates remain near x\ast , resulting in instability. In contrast, Bianchi, Hachem,
and Schechtman [3, Proposition 4] and Davis, Drusvyatskiy, and Jiang [13, Propo-
sition 5.2] use the Verdier condition to ensure that the projection of the iterates on
an active manifold containing a saddle point correspond to an inexact Riemannian
gradient method with an implicit retraction. This technique is thus not suitable for
proving instability of local minima.

In order to avoid assuming that the inequality C(xk+1)  - C(xk) \geqslant c1d(xk, S)
\theta 1

holds for all k \in \BbbN in Theorem 2.9, one may require the Chetaev function to be convex
and \langle s, s\prime \rangle \leqslant  - d(x,S)\theta 1 for all x \in U \setminus S, s \in \partial C(x), and s\prime \in \partial f(x). Indeed, we then
have C(xk+1) - C(xk)\geqslant \langle sk, xk+1 - xk\rangle = \langle sk, - \alpha s\prime k\rangle \geqslant \alpha d(x,S)\theta 1 , where sk \in \partial C(xk)
and s\prime k \in \partial f(xk). These slightly stronger conditions hold in the first example in the
next section.
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INSTABILITY OF THE SUBGRADIENT METHOD 65

3. Applications. In this section, we apply Theorem 2.9 to two examples using
the Euclidean inner product. We first show that instability occurs in an example of
a ReLU neural network with \ell 1 loss, namely (x1, x2, x3)\in \BbbR 

3 \mapsto \rightarrow | x3max\{ x2,0\}  - 1| +
| x3max\{ x1 + x2,0\} | . Indeed, it is the loss function when one seeks to fit the ReLU
neural network (a1, a2)\in \BbbR 

2 \mapsto \rightarrow x3max\{ x1a1+x2a2,0\} over two data points (0,1) and
(1,1) with corresponding labels 1 and 0. Figure 3(a) reveals that the iterates of the
subgradient method move away from a fixed spurious local minimum despite being
initialized nearby. Five trials are displayed, each corresponding to a uniform choice
of constant step size in [0.05,0.15] and a random initial point within 10 - 3 relative
distance of the local minimum. Figure 3(b) shows the corresponding values of an
associated Chetaev function C : \BbbR 3 \rightarrow \BbbR defined by C(x1, x2, x3) := 1  - x1. The
fact that this function must increase indefinitely if the iterates remain near the local
minimum is at the root of the instability (see Proposition 3.1). Figure 3(c) shows that
the objective function values eventually stabilize around the global minimum value.

Proposition 3.1. The point (1,1,0) is a strongly unstable spurious local mini-

mum of the function defined from \BbbR 
3 to \BbbR by f(x1, x2, x3) := | x3max\{ x2,0\}  - 1| +

| x3max\{ x1 + x2,0\} | .
Proof. There exists a neighborhood U of (1,1,0) such that for all (x1, x2, x3)\in U ,

we have x1 \geqslant 1/2, x2 \geqslant 1/2, and x2x3 < 1. Thus inside U we have f(x1, x2, x3) =
| x3x2  - 1| + | x3(x1 + x2)| = 1  - x3x2 + | x3| (x1 + x2) = 1 + x2(| x3|  - x3) + x1| x3| \geqslant 

(a) (b)

(c)

Fig. 3. Subgradient method randomly initialized near a spurious local minimum of a ReLU
neural network with \ell 1 loss (5 trials with different step sizes).
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66 C\'EDRIC JOSZ AND LEXIAO LAI

f(1,1,0)> f( - 1,1,1), with equality in the inequality if and only if x3 = 0. It follows
that (1,1,0) is a spurious local minimum. We next show that it is strongly unstable
using Theorem 2.9. The function f is locally Lipschitz and semialgebraic. Let S
denote the set of critical points of f . By the definable Morse--Sard theorem [4, Corol-
lary 9] and by shrinking the neighborhood U if necessary, S \cap U = \{ (x1, x2, x3) \in U :
x3 = 0\} is a C2 manifold of dimension 2 at (1,1,0). Let \theta 1 := 1 and C : \BbbR 3 \rightarrow \BbbR 

be the continuous function defined by C(x1, x2, x3) := 1  - x1. Let \alpha > 0 and con-
sider a sequence (xk

1 , x
k
2 , x

k
3)k\in \BbbN generated by the subgradient method with constant

step size \alpha such that (xk
1 , x

k
2 , x

k
3) \in U \setminus S for all k \in \BbbN . Letting c1 := \alpha , we have

C(xk+1
1 , xk+1

2 , xk+1
3 ) - C(xk

1 , x
k
2 , x

k
3) = xk

1  - xk+1
1 = \alpha | xk

3 | = c1d((x
k
1 , x

k
2 , x

k
3), S)

\theta 1 for all
k \in \BbbN . Letting \theta 2 := 1, and c2 := 1, we have d((x1, x2, x3), S)\leqslant c2d(0, \partial f(x1, x2, x3))

\theta 2

for all (x1, x2, x3)\in U , so \partial f is metrically \theta 2-subregular at ((1,1,0), (0,0,0)). Finally,
letting c3 :=

\surd 
5, for all (x1, x2, x3) \in U \setminus S, (y1, y2, y3) \in S \cap U , and (v1, v2, v3) \in 

\partial f((x1, x2, x3)), we have \| PTS(y1,y2,y3)(v1, v2, v3) - \nabla Sf(y1, y2, y3)\| 2 = \| (v1, v2,0)\| 2 =
| x3| 2 + (| x3|  - x3)

2 \leqslant 5x2
3 \leqslant c23\| (x1, x2, x3) - (y1, y2,0)\| 2. Thus f satisfies the Verdier

condition at (1,1,0) along S.

Second, we show that instability occurs in an example of robust principal com-
ponent analysis with real-world data. The objective function f :\BbbR m\times r \times \BbbR 

n\times r \rightarrow \BbbR is
defined by f(X,Y ) := \| XY T  - M\| 1 [15, equation (4)], where \| \cdot \| 1 is the entrywise
\ell 1-norm of a matrix and M \in \BbbR 

m\times n is a data matrix. The goal is to decompose
M as a low rank matrix plus a sparse matrix. Figure 4(a) reveals that the iter-
ates of the subgradient method move away from a fixed spurious local minimum
(X\ast , Y \ast )\in \BbbR 

m\times r\times \BbbR 
n\times r despite being initialized nearby ((m,n, r) = (62400,3417,10)

in the experiment). Five trials are displayed, each corresponding to a uniform choice
of constant step size in [0.0000025,0.0000075] and a random initial point within
10 - 3 relative distance of the local minimum. Figure 4(b) shows the correspond-
ing values of an associated Chetaev function C : \BbbR 

m\times r \times \BbbR 
n\times r \rightarrow \BbbR defined by

C(X,Y ) := \| X\ast \| 2F  - \| Y \ast \| 2F + \| Y \| 2F  - \| X\| 2F where \| \cdot \| F is the Frobenius norm.
The function increases as long as the iterates remain near the local minimum, but
ceases to do so once the iterates are far enough. This is sufficient to prove instability
(see Proposition 3.2). Figure 4(c) shows that the objective function values eventually
drop below the spurious critical value and stabilize around a new value.

The data used in Figure 4 is used in [24, Figure 3] to illustrate nonconvex alternat-
ing projections based robust PCA [24, Algorithm 1] and comes from the same dataset
as the one used to illustrate principal component pursuit [10, equation (1.1)]. The ap-
plication in those works consists of detecting moving objects in a surveillance video.
Spurious local minima exist because the data matrix has zero rows, which corresponds
to pixels that are composed of at most two of the three primary colors (red, green, and
blue) throughout the video. It is crucial that the iterates of the subgradient method
do not remain near a spurious local minimum like the one in Figure 4. Otherwise, no
moving object would be detected. In contrast, at the lower value obtained in Figure
4(c), all moving objects are detected. This can be seen in Figure 5 and at https://
www.youtube.com/playlist?list=PLIR8kg8LvAmuPPZPD4CxjoqcYskoUzjzN.

Proposition 3.2. The function f defined from \BbbR 
m\times r\times \BbbR 

n\times r to \BbbR by f(X,Y ) :=
\| XY T  - M\| 1 admits strongly unstable spurious local minima if M \in \BbbR 

m\times n \setminus \{ 0\} and

M contains at least r zero rows or r zero columns.

Proof. Without loss of generality, we assume that the first r rows of M are equal
to zero. Let \~M be the matrix containing the m  - r remaining rows, one of which
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INSTABILITY OF THE SUBGRADIENT METHOD 67

(a) (b)

(c)

Fig. 4. Subgradient method randomly initialized near a spurious local minimum of robust prin-
cipal component analysis (5 trials with different step sizes).

(a) Original frame. (b) Moving objects. (c) Background.

Fig. 5. Output after 500 iterations of the subgradient method with step size \alpha = 0.000005 when
initialized within 10 - 3 of a spurious local minimum in relative distance.

is nonzero. We seek to show that (X\ast , Y \ast ) \in \BbbR 
m\times r \times \BbbR 

n\times r is a strongly unstable
spurious local minimum of f(X,Y ) := \| XY T  - M\| 1, where the first r rows of X\ast 

form an invertible matrix \^X\ast \in \BbbR 
r\times r, the remaining rows are zero, and Y \ast = 0. Given

(H,K) \in \BbbR 
m\times r \times \BbbR 

n\times r, let \^H be the first r rows of H and let \~H be the remaining
m - r rows. For all (H,K) sufficiently small, we have

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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68 C\'EDRIC JOSZ AND LEXIAO LAI

f(X\ast +H,Y \ast +K) = \| (X\ast +H)KT  - M\| 1(3.1a)

= \| ( \^X\ast + \^H)KT \| 1 + \| \~HKT  - \~M\| 1(3.1b)

\geqslant \| \^X\ast KT \| 1  - \| \^HKT \| 1 + \| \~M\| 1  - \| \~HKT \| 1(3.1c)

= \| \^X\ast KT \| 1  - \| HKT \| 1 + \| M\| 1(3.1d)

\geqslant c\| K\| 1  - \| HKT \| 1 + \| M\| 1(3.1e)

\geqslant c/2\| K\| 1 + \| M\| 1(3.1f)

\geqslant \| M\| 1 = f(X\ast , Y \ast )> f( \=X, \=Y ).(3.1g)

Above, the first term in (3.1b) is the \ell 1-norm of the first r rows of (X\ast +H)KT  - M ,
while the second term in (3.1b) is the \ell 1-norm of the remaining rows. (3.1c) follows
from the triangular inequality. (3.1d) holds because the first r rows of HKT are
\^HKT , while the remaining rows are \~HKT . The existence of a positive constant c in
(3.1e) is due to the equivalence of norms (K \mapsto \rightarrow \| \^X\ast KT \| 1 is a norm because \^X\ast is
invertible). (3.1f) holds because we may take \| H\| \infty \leqslant c/(2m) where \| \cdot \| \infty is the dual
norm of \| \cdot \| 1. Then \| HKT \| 1 =

\sum m
i=1

\sum n
j=1 | \langle hi, kj\rangle | \leqslant 

\sum m
i=1

\sum n
j=1 \| hi\| \infty \| kj\| 1 \leqslant 

\sum m
i=1

\sum n
j=1 \| H\| \infty \| kj\| 1 \leqslant c/2

\sum n
j=1 \| kj\| 1 = c/2\| K\| 1 where hT

i and kTj respectively

denote the rows of H and K. Finally, we may choose ( \=X, \=Y ) in (3.1g) to be factors
of a rank-one matrix \=M \in \BbbR 

m\times n which has all zero entries, apart from one where
\=Mij =Mij \not = 0. Then f( \=X, \=Y ) = \| \=X \=Y T  - M\| 1 = \| \=M  - M\| 1 = \| M\| 1  - | Mij | < \| M\| 1.

We next show that (X\ast , Y \ast ) is strongly unstable using Theorem 2.9. The function
f is locally Lipschitz and semialgebraic. Let S denote the set of critical points of
f . By the definable Morse--Sard theorem [4, Corollary 9], there exists a bounded
neighborhood U of the local minimum (X\ast , Y \ast ) such that S \cap U = \{ (X,Y ) \in U :
f(X,Y ) = f(X\ast , Y \ast )\} = \{ (X,Y ) \in U : Y = Y \ast \} , where the second setwise equality
is due to (3.1f). As a result, S is a C2 manifold at (X\ast , Y \ast ). Let \theta 1 := 0 and
C : \BbbR m\times r \times \BbbR 

n\times r \rightarrow \BbbR be the continuous function defined by C(X,Y ) := \| X\ast \| 2F  - 
\| Y \ast \| 2F + \| Y \| 2F  - \| X\| 2F . Let \alpha > 0 and consider a sequence (Xk, Yk)k\in \BbbN generated by
the subgradient method with constant step size \alpha such that (Xk, Yk) \in U \setminus S for all
k \in \BbbN . Let sign(\cdot ) be the function defined by sign(t) = 1 if t > 0, sign(t) = - 1 if t < 0,
and sign(t) = [ - 1,1] if t = 0. When the input is a matrix, it is applied entrywise.
Letting

c1 := \alpha 2 inf
\bigl\{ 

\| \Lambda TX\| 2F  - \| \Lambda Y \| 2F : (X,Y )\in U \setminus S, \Lambda \in sign(XY T  - M)
\bigr\} 

,

we have

C(Xk+1, Yk+1) - C(Xk, Yk) = \| Yk+1\| 2F  - \| Xk+1\| 2F  - \| Yk\| 2F + \| Xk\| 2F
= trace(Y T

k+1Yk+1  - XT
k+1Xk+1  - Y T

k Yk +XT
k Xk)

= \alpha 2trace(XT
k \Lambda k\Lambda 

T
kXk  - Y T

k \Lambda T
k\Lambda kYk)

= \alpha 2(\| \Lambda T
kXk\| 2F  - \| \Lambda kYk\| 2F )\geqslant c1d((Xk, Yk), S)

\theta 1 ,

where \Lambda k \in sign(XkY
T
k  - M). It remains to show that c1 > 0. Given (\Lambda ,X,M) \in 

\BbbR 
m\times n\times \BbbR 

m\times r\times \BbbR 
m\times n, let (\^\Lambda , \^X, \^M) be the first r rows of (\Lambda ,X,M) and let (\~\Lambda , \~X, \~M)

be the remaining m - r rows. It suffices to show that

inf
\Bigl\{ 

\| \^\Lambda T \^X\| F : (X,Y )\in U \setminus S, \^\Lambda \in sign( \^XY T  - \^M)
\Bigr\} 

> 0

after possibly reducing the neighborhood U of (X\ast , Y \ast ). Indeed, for all (X,Y )\in U \setminus S
and \Lambda \in sign(XY T  - M), we then have \| \Lambda TX\| 2F  - \| \Lambda Y \| 2F = \| \^\Lambda T \^X + \~\Lambda T \~X\| 2F  - 
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\| \Lambda Y \| 2F \geqslant (\| \^\Lambda T \^X\| F  - \| \~\Lambda T \~X\| F )2  - \| \Lambda Y \| 2F \geqslant \| \^\Lambda T \^X\| 2F /2 since \~X\ast = 0 and Y \ast = 0.
We next reason by contradiction and assume that the infimum in (3) is equal to zero.
Let (Xi, Yi,\Lambda i)i\in \BbbN be a minimizing sequence. Since it is contained in the bounded
set U \times [ - 1,1]m\times n, there exists a subsequence (again denoted (Xi, Yi,\Lambda i)i\in \BbbN ) that
converges to some (X\circ , Y \circ ,\Lambda \circ ). Naturally we have (\^\Lambda \circ )T \^X\circ = 0. On the one hand,
since \^X\ast \in \BbbR 

r\times r is invertible, so is any matrix in its neighborhood \=U , in particular
\^X\circ , \^X0, \^X1, . . . after possibly reducing U . Hence \^\Lambda \circ = 0. On the other hand, since
(Xi, Yi) \in U \setminus S, S \cap U = \{ (X,Y ) \in U : Y = Y \ast = 0\} , and \^M = 0, we have Yi \not = 0 and
\^XiY

T
i  - \^M \not = 0 for all i \in \BbbN . Hence the matrix \^\Lambda i \in sign( \^XY T  - \^M) has at least one

entry equal to either 1 or  - 1. Thus \| \^\Lambda i\| \infty \geqslant 1 for all i \in \BbbN . Passing to the limit, we
obtain the contradiction 0 = \| \^\Lambda \circ \| \infty \geqslant 1.
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