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ABSTRACT

To mitigate the devastating impacts of hurricanes on people’s lives, communities, and societal infrastructures, disaster management would benefit
considerably from a detailed understanding of evacuation, including the socio-demographics of the populations that evacuate, or remain, down to
disaggregated geographic levels such as local neighborhoods. A detailed household evacuation prediction model for local neighborhoods requires
both a robust household evacuation decision model and individual household data for small geographic units. This paper utilizes a recently pub-
lished statistical meta-analysis for the first requirement and then conducts a rigorous population synthesis procedure for the second. Our model
produces predicted non-evacuation rates for all US Census block groups for the Tampa-St. Petersburg-Clearwater Metropolitan Statistical Area for a
Hurricane Irma-like storm along with their socio-demographic and hurricane impact risk profiles. Our model predictions indicate that non-
evacuation rates are likely to vary considerably, even across neighboring block groups, driven by the variability in evacuation risk profiles. Our
results also demonstrate how different predictors may come to the fore in influencing non-evacuation in different block groups, and that predictors
which may have an outsize impact on individual household evacuation decisions, such as Race, are not necessarily associated with the greatest
differentials in non-evacuation rates when we aggregate households to block group level and above. Our research is intended to provide a
framework for the design of hurricane evacuation prediction tools that could be used in disaster management.

1. Background

Hurricane disaster management is critical to reduce fatalities and injuries, restore utilities, manage traffic, and provide humani-
tarian assistance to those immediately impacted. From 1980 to 2021, hurricanes were responsible for approximately 6700 deaths in
the United States. Recently, Hurricane Ian, which impacted Florida in September 2022, caused a high number (119) of deaths [1] with
most deaths being older adults [2]. Hurricane Katrina in 2005 resulted in 1833 deaths and a study revealed that older adults and those
of Black race were disproportionally the victims [3]. To prepare and implement a comprehensive plan for pre- and post-storm disaster
management, disaster managers would benefit from a detailed understanding of evacuation, including the socio-demographics of the
populations that evacuate, or remain, and preferably down to disaggregated geographic levels such as local neighborhoods. With such
information, disaster managers would be able to design and implement effective policies and plans for such things as hurricane
evacuation warning dissemination, traffic management, shelter location and management, and placement of emergency services and
utility crews.

In current practice in the USA to predict evacuation, disaster managers typically use a so-called participation rate approach to
determine the raw numbers of households evacuating from different geographic areas. In Florida, the Florida Division of Emergency
Management has developed the Statewide Regional Evacuation Study Program [4]. This program helps bodies such as regional

* Corresponding author. Lowry Hall, Clemson, SC 29634, United States.
E-mail address: shtanim@gmail.com (S.H. Tanim).

https://doi.org/10.1016/j.ijdrr.2023.104117
Received 12 April 2023; Received in revised form 30 October 2023; Accepted 31 October 2023

Available online 7 November 2023
2212-4209/© 2023 Published by Elsevier Ltd.


mailto:shtanim@gmail.com
www.sciencedirect.com/science/journal/22124209
https://www.elsevier.com/locate/ijdrr
https://doi.org/10.1016/j.ijdrr.2023.104117
https://doi.org/10.1016/j.ijdrr.2023.104117
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijdrr.2023.104117&domain=pdf
https://doi.org/10.1016/j.ijdrr.2023.104117

S.H. Tanim et al. International Journal of Disaster Risk Reduction 99 (2023) 104117

planning councils (e.g., Tampa Bay Regional Planning Council) to produce predicted evacuation numbers for their transportation
analysis, with the primary aim being to simulate evacuation traffic. The program subdivides each county in Florida into Traffic
Evacuation Zones (TEZs) and has household counts for both mobile homes, and non-mobile homes for each TEZ. Hillsborough County
in Florida, for example, is subdivided into 505 TEZs. The evacuation rates for each TEZ zone are determined by what official evac-
uation zone each TEZ is within. Evacuation zones are County-designated geographically defined areas that are used for the issuance of
evacuation orders. All TEZs in the same evacuation zone receive the same evacuation rates. The Statewide Regional Evacuation Study
Program provides five levels of evacuation rates from which an analyst chooses. Within each level, there is a different rate for mobile
homes and for non-mobile homes for each official evacuation zone. Although the large number of TEZs zones may provide high spatial
resolution for generating traffic counts of evacuating households, it is unrealistic to assume the same evacuation rates for each TEZ
within an evacuation zone. In addition, the participation rate approach is only focused on numbers of households evacuating and
provides no information on the socio-demographic profiles of households who evacuate or remain.

Ideally, we need hurricane evacuation prediction models that provide detailed local neighborhood predictions of not just numbers
of households evacuating/remaining but also their different socio-demographic profiles. There is little academic research into such
detailed evacuation prediction modeling. Only one study is known to the authors that attempted such a prediction. Xu et al. [5]
predicted hurricane evacuation for 1000 households per census tract for various locations in North Carolina. More generally, studies
explore evacuation predictors to simply better understand the factors that influence evacuation and to what extent (e.g. Ref. [6]). Xu
et al. [5] based their model of the household evacuation decision on a random telephone survey of 405 households located in North
Carolina. The survey used a hypothetical hurricane situation, asking if the household would evacuate if under either a mandatory or
voluntary evacuation order. From the survey they fitted ordered probit models for each type of evacuation order, and their survey
identified these predictors with their effect sizes: distance from coast, mobile home occupancy, single family home type, gender, race,
education, occupation status, age, presence of children, and income. For the locations they were to predict evacuation for, the authors
needed to generate individual household level data for census tracts since such data is not typically available. The US Census is
prohibited by law from disclosing individual household data in order to safeguard personal information [7]. To generate individual
household data, the authors used population synthesis, a process of generating ‘synthetic’ individual household data with a range of
socio-demographic variables, using statistical methods based on available Census data. Given their household evacuation decision
models and 1000 synthesized households per census tract, they then predicted evacuation for Beaufort County, NC for Hurricane Irene
(2011), the Outer Banks area, NC for Hurricane Isabel (2003), and the surge zone area of SE North Carolina for Hurricane Floyd (1999).

Although the work of [5] is promising for local neighborhood level prediction of evacuation, it also has a number of shortcomings.
First, their household evacuation decision model is based on one survey. Hurricane evacuation surveys are known to produce
considerable heterogeneity in the range of predictors considered and their effect sizes, so reliance on one survey is problematic.
Second, for their population synthesis, they did not use any established method for this procedure but rather, for each household, they
simply looked at the distribution of each variable in that census tract and then randomly generated a value from each of these dis-
tributions, independent of the values on the others, so that no dependencies between variables were considered. Third, Xu et al. [5],
only used 10 predictors in their household evacuation decision model and only one of those, distance to the coast, is related to storm
impact rather than socio-demographics, although they did model separately for mandatory and voluntary evacuation orders. They also
did not consider storm related risk perceptions and their effects on the evacuation decision [8]. Realistic household evacuation models
should consider other storm-related predictors such as surge and flood zones. Finally, the geographic level of analysis chosen for
prediction was the census tract, whereas population synthesis methods can be used for even more disaggregated areas such as census
block groups.

This paper proposes an approach to local neighborhood prediction of hurricane evacuation that overcomes all these shortcomings.
It should be emphasized that this paper is meant to be illustrative of the types of spatially and socio-demographically disaggregated
predicted rates of evacuation made possible by the use of a synthetically generated population at the fine geographic scale of block
groups. It is illustrative in the sense that an actual real-world implementation of the approach would require an analyst to a) select a
household-level evacuation prediction model and to b) evaluate the characteristics and risks of an impending hurricane that is
appropriate to their situation. In our narrative below, these aspects are decided somewhat arbitrarily since they are not central to
illustrating the approach.

Also, when discussing household-level prediction models the discussion will initially focus, in the Methods section, on evacuation,
as opposed to its reverse, non-evacuation. This reflects the fact that research on such prediction models, largely dominated by transport
engineers, has tended to focus on evacuation rates and evacuation predictors. However, in our results section, the reader will notice
that we adopt the reverse term and discuss non-evacuation rates. This is quite a deliberate decision on our part and based on our
conviction that the greatest hardship and loss of life is suffered by those who do not evacuate rather than those that do. Anyone
witnessing the scenes in New Orleans after Hurricane Katrina or the scenes in Ft. Myers Beach following Hurricane Ian can likely attest
to our conviction. We seek to change the narrative and emphasis in “evacuation” accordingly to provide the greatest assistance to those
in disaster management assisting those in greatest need.

2. Methods
There are four connected methodological components for this study:

i A model to predict the probability of any household evacuating based on the socio-demographics of the household and its
geographic location relative to hurricane-related risk factors;
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ii The choice of a hurricane scenario;
iii The creation of a population of ‘synthetic households’ within small geographic areas across a large metropolitan region;
iv Prediction, summarization, and mapping of evacuation rates based on the predicted probabilities of households’ evacuating.

We address each of these components, in turn, below.

2.1. A model for household evacuation prediction

Virtually all published studies of household evacuation prediction have been based on surveys of one, or more, hypothetical or real
hurricanes and have used logistic regression models to estimate the probabilities of households evacuating. As noted above, a disaster
management analyst could select any one, or a combination, of such studies and use their estimated effect sizes in a predictive model,
presumably making their selection of studies appropriate to their own situation. Since our paper here is illustrative, we decided to use
the estimated effect sizes from a recently published statistical meta-analysis. Tanim et al. [9] conducted a statistical meta-analysis of 33
evacuation decision models to investigate the consistency of hurricane evacuation decision predictors, uncover potential sampling
errors contributing to predictor heterogeneity, and extract more information regarding effect sizes from hurricane evacuation models
rather than relying solely on binary significance data. This statistical meta-analysis estimated mean effect sizes (expressed as
odds-ratios) for 23 predictors associated with hurricane evacuation decisions. Of these 23 predictors, 7 (length of residence, hurricane
experience, mandatory work, evacuation plan, window protection, pet ownership, and disabled person in household) reflected survey
questions used in contributing studies and they have no correspondent data available in the US Census. Since our method of creating
‘synthetic households’ is based on the use of US Census data, these predictors could not be included in our model. Of the remaining 16
predictors, 13 were socio-demographic in nature and had correspondent data in the US Census, while 3 (mandatory evacuation order
issued, perceived risk of flood, and perceived risk of surge) were directly related to any hurricane being modeled. Just to note, the
distinction between the perceived risk of flood and the perceived risk of surge reflects how individuals evaluate the likelihood and
potential impact of inland flooding, attributed to hydrology and hydraulics, as opposed to coastal inundation resulting from surges due
to hurricane. In this paper, the odds-ratios derived from Ref. [9]; illustrated in Fig. 1, were adopted and used to derive household
evacuation probabilities for our synthesized population via a predictive logit equation. It should be noted that although the [9]
research used studies based on surveys for both real and hypothetical hurricanes, the odds-ratios used here reflect those for all studies
based on real hurricanes, since they provide the most robust estimates.

2.2. The hurricane scenario

For the 3 predictors directly related to the hurricane being modeled, we need to use a hurricane scenario for illustration. We could
have used a hypothetical hurricane given the illustrative nature of our paper, but to add some realism we decided to used Hurricane
Irma, a hurricane that traversed our study area — the Tampa-St. Petersburg-Clearwater Metropolitan Statistical Area in 2017. Hurricane
Irma was a major hurricane that threatened the Tampa Bay area in early September 2017. The National Hurricane Center (NHC)
forecast for Hurricane Irma shifted westward over time, with the threat and forecast confidence increasing for the Tampa Bay area.
Hurricane Irma was a major hurricane upon landfall, and a relatively rare event with most of the state within the cone of uncertainty at
some point during its movement. As such, it triggered one of the largest evacuations in US history with fuel shortages a key concern
[10]. All of these factors no doubt influenced evacuation decisions in the Tampa Bay area. Fig. 2 shows the location and forecast track
of Hurricane Irma at 8am on Saturday, September 9th, 2017, when evacuation orders were issued for the study area. Given this, we
should emphasize that we are not advancing this paper as an accurate evacuation model for Hurricane Irma given the unusual cir-
cumstances regarding Hurricane Irma noted here, and other limitations we will note later. In that sense, it may be better to refer to our
hurricane scenario as Hurricane Irma-like.
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Fig. 1. Mean Effect Sizes (ORs) of Predictors used in our model (from [9]).
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Fig. 2. Location and predicted track of Hurricane Irma at 8am on Saturday, September 9th, 2017 [11].
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To determine the geographic locations under mandatory evacuation orders for our Hurricane Irma-like scenario, we used the
different County declarations of such orders as issued on September 9th, 2017 for Hurricane Irma itself (see Appendix, Figure Al).
These locations are illustrated in Fig. 3. The many small inland area locations in both Pinellas and Hernando counties reflect those
counties issuance of mandatory evacuation orders for all mobile homes/parks. As such, our model classified any mobile home residing
household for these two counties as being under a mandatory evacuation order.

The two predictors of perceived surge risk and perceived flood risk present a challenge in the sense that we have no access to such
perceptions in the way that surveys reporting on these measures did. It is also true that risk perception partly assumes a resident is
aware of any flood or surge risk zone in which they may be located. Despite these limitations, these predictors are important when it
comes to evacuation decisions and while acknowledging the distinction between perceived and actual risk, we can only measure the
latter. As such, we determined the location of each block group within high risk surge zones or high risk flood zones, as defined by the
Florida Department of Emergency Management [12]. The Florida Department of Emergency Management generates the flood map
using FEMA flood maps, which employ hydrology and hydraulics to assess flood risk, while the surge risk map is generated using the
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Fig. 5. PUMA’s (blue) and block groups (black) of Pasco County, Florida. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article)
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Statewide Regional Evacuation Studies of Florida to estimate surge levels corresponding to different hurricane categories. Fig. 4a
shows the high risk surge zones for a Category 3 hurricane and Fig. 4b shows the zones deemed to be at high risk of flood.

For all of these hurricane-related predictors (mandatory evacuation order, surge risk, flood risk) we calculated what proportion of
the geographic area of a block group was inside any of the zones indicated in Figs. 3-4 (a, b) and randomly assigned that proportion of
households in the block group to the relevant designation.

There is another aspect of our predictive logit equation of a household’s probability of evacuation that depends on the hurricane
being modeled, and it involves the intercept term of the equation. Since all our predictors are either binary or ordinal factors, the
intercept term can be interpreted as the estimate of the probability of evacuation for a household in the predictor categories that would
yield the lowest evacuation probability. In that sense, it is a base evacuation probability. In using our modeling framework in a real-
world situation, this base evacuation probability would be determined based on an analyst’s experience and knowledge of evacuations
for similar storms in the past. In our demonstration research here, we decided to calibrate this intercept term by setting it at different
values, running our equation, and then comparing the predicted evacuation rates that emerged to independent evacuation surveys for
Hurricane Irma. In a practical application of our modeling framework a disaster or emergency management analyst could adopt a
similar procedure to estimate the base probability — in other words, given chosen effect sizes for chosen predictors, and given an overall
estimation of the evacuation rate for the hurricane threat, calibrate the base probability thru iteration.

2.3. Population synthesis for census block groups

Our predictive logit equation to predict hurricane evacuation probabilities is household-based, and our goal is to summarize these
probabilities at the fine geographic scale of census block groups. However, to avoid the potential identification of households, the US
Census Bureau only releases detailed data on a relatively small sample (5 %) of individual households dispersed across large
geographic areas. This data is the Public Use Microdata Sample (PUMS), a subsample of the US Census Bureau American Community
Survey, and the geographic areas it is released for are known as PUMA’s (Public Use Microdata Areas). Meanwhile, at the census block
group level, the Census Bureau releases summary counts of discrete household socio-demographic variables and population counts for
other socio-demographic variables. To illustrate the geographic scale relationship of PUMA’s to census block groups, Fig. 5 shows the
four PUMA’s and numerous census block groups designated for Pasco County, FL., one of the 4 counties in our study area.

The process of generating ‘synthetic’ individual households with a range of socio-demographic variables for small geographic
areas, based on using detailed individual household data for larger geographic areas, combined with summary count data for the socio-
demographic variables for the small geographic areas, is known as population synthesis. The goal is to generate ‘synthetic’ households

Step 1: Create multiway table

Homeownership | Total | BG Count
HH size Yes No
3 3 1 4 30
2 2 6 8 40
3+ 2 1 3 30
Total Z 8
BG Count 60 40
Step 2: Column adjustment
Homeownership Total | BG Count
HH size Yes No
1 (3*60/7)=25.71 (1*40/8)=5.00 | 30.71 30
2 (2*60/7)=17.14 (6*40/8)=30.00 | 47.14 40
3+ (2*60/7)=17.14 (1*40/8)=5.00 | 22.14 30
Total 60.00 40.00
BG Count 60 40
Step 3: Row adjustment
Homeownership Total | BG Count
HH size Yes No
1 (25.71*30/30.71)=25.12 (5*30/30.71)=4.88 | 30.00 30
P (17.14%40/47.14)=14.55 | (30.00*40/47.14)=25.45 | 40.00 40
3+ (17.14*30/22.14)=23.23 |  (5.00%30/22.14)=6.77 | 30.00 30
Total 62.89 37.11
BG Count 60 40
Step 4: After several iterations
Homeownership | Total | BG Count
HH size Yes No
1 23.60 6.40 | 30.00 30
2 15.20 24.80 | 40.00 40
3+ 21.30 8.70 | 30.00 30
Total 60.00 40.00
BG Count 60 40

Fig. 6. Simplified example of the IPF procedure (from [15])
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for these small geographic areas that imitate the actual population of households living there.

The method of population synthesis we followed uses weighted bootstrap sampling of the detailed individual household data
records at the PUMA level to populate 100 % of the households of the census block groups, but where different sampling weights are
used for each block group depending on how their summary count data relate to the PUMA level data. It is the derivation of these
weights that is the core aspect of the population synthesis method. The method of population synthesis we followed is actually a
sequence of 2 methods: Iterative Proportional Fitting or IPF [13], and then Iterative Proportional Updating or IPU [14].

2.3.1. Iterative Proportional Fitting (IPF)

To illustrate the IPF procedure, we will use a simple example, taken from Ref. [15]; of 100 households for a block group, 15
households for PUMS data, and 2 variables: homeownership (yes/no), household size (1/2/3+). The IPF procedure would then
proceed as follows (see Fig. 6):

Step 1. Create the 2-way distribution of household counts for variables from the PUMS data, along with row/column category sums
of same, and then include row/column category counts for the block group households.

Step 2. (column adjustment): Each cell is proportionally adjusted so that their column sums equal the column category count of block
group households.

Step 3. (row adjustment): Each cell is further proportionally adjusted so that their row sums now equal the row category count of
block group households.

Step 4. Steps 2 and 3 are then iteratively repeated until both the column sums and the row sums of the cells equal the respective
column and row category counts of block group households (or converge within some specified tolerance).

In this example, and after IPF, each cell represents the number of households with a particular combination of categories from the
two variables for that block group. In reality, naturally, households are characterized by many more than two variables, but the above
method generalizes to any number of variables, with the adjustments iteratively proceeding variable by variable until all cells in the
multiway table sum to the respective row/column variable category counts of the block group households. The multi-way cell counts
across all the variables then constitute the synthetic population of households for a block group. Many studies that have used pop-
ulation synthesis have used the IPF procedure exclusively (see Ref. [13]).

However, the IPF procedure has two significant limitations. The IPF procedure can be used on either household count variables or
population level count variables separately, but it cannot simultaneously match both the household and population level variable
counts [16,17]. Secondly, the IPF procedure suffers from an error when any variable category has a non-zero value in the block group
count data but has no representation in the PUMS data — known as the zero-cell problem. For example, block group data may record a
small number of mobile home households in the block group, but the 5 % sample of the PUMS data may not include any such
households in its PUMA. To overcome these limitations of IPF, Ye et al. [14]proposed the Iterative Proportional Updating (IPU)
procedure.

2.3.2. Iterative Proportional Updating (IPU)

Whereas IPF generates synthesized households based on the cell counts in multi-way tables of sets of either household or population
level variables, IPU creates synthesized households by direct sampling from the PUMS data itself.

The IPU procedure builds upon two separate IPF procedures, one for household level variables and one for population level var-
iables. In this study we used 7 household level variables with 20 categories across those variables (plus an 8th variable, Elderly present,
derived post-synthesis based on Age), as well as 5 population level variables with 18 categories across those variables (see Table 1). To

Table 1
Variable definitions

Variable Definition

Household level variables

Children present 1 = Having a child, 2 = Not having any child
Mobile home 1 = Lives in a mobile home, 2 = Otherwise
Income 1 = Less than $10000, 2 = $10000 to $29999, 3 = $30000 to $59999, 4 = $60000 to $99999, 5 = $100,000 or more
Car ownership 1 = Owned a car, 2 = Otherwise
Marital status 1 = Married family, 2 = Otherwise
Household size 1 =1 person, 2 = 2 person, 3 = 3 person, 4 = 4 person, 5 = 5 or more
Homeownership 1 = Homeowners, 2 = Not homeowners
Elderly present 1 = Yes, 2 =No
Population level variables
Age 1=under5,2=>5t017,3 =18 to 24, 4 = 25 to 44, 5 = 45 to 64,
6 = 65 above
Female 1 = Male, 2 = Female
Race 1 = Non-Hispanic White, 2 = Non-Hispanic African American,
Ethnicity 1 = Non-Hispanic, 2 = Hispanic,
Education 1 = Below High school, 2 = High school,

3 = College attend and associate degree, 4 = Bachelor degree,
5 = Master or more, 99 = none
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Table 2

Simplified example of the IPU procedure (from [14,15])
ID Htl Ht2 Ptl Pt2 Pt3 Wt0 Wwtl wt2 Wwt4 Wwt4 Wt5 Wt100
1 1 0 1 1 1 1 11.67 11.67 9.51 8.05 12.37 1.36
2 1 0 1 0 1 1 11.67 11.67 9.51 9.51 14.61 25.66
3 1 0 2 1 0 1 11.67 11.67 9.51 8.05 8.05 7.98
4 0 1 1 0 2 1 1 13.00 10.59 10.59 16.28 27.79
5 0 1 0 2 1 1 1 13.00 13.00 11.00 16.91 18.45
6 0 1 1 1 0 1 1 13.00 10.59 8.97 8.97 8.64
7 0 1 2 1 2 1 1 13.00 10.59 8.97 13.78 1.47
8 0 1 1 1 0 1 1 13.00 10.59 8.97 8.97 8.64
Sum 3 5 9 7 7 35/ 65/ 91/ 65/ 104/
Constraints 35 65 91 65 104 3 5 111.70 76.80 67.67
WSumO 3.00 5.00 9.00 7.00 7.00 = = = = =
Delta0 0.91 0.92 0.901 0.89 0.93 11.67 13.00 0.81 0.85 1.54
WSuml 35.00 5.00 51.67 28.33 28.33
WSum2 35.00 65.00 111.67 88.33 88.33
WSum3 28.52 55.38 91.00 76.80 74.39
WSum4 25.60 48.50 80.11 65.00 67.68
WSum5 35.02 64.90 104.84 85.94 104.00
Delta5 0.0006 0.0015 0.1520 0.3221 1.37E-16
W.Sum 100 35 64.99 90.99 64.99 103.99
Deltal00 0 0.002 0.000194 0.000353 0.000353

Note. ID = Household ID, Ht = Household type, Pt = Population type, Wt = Weight, Constraints = Cell values from IPF, W.Sum = Weighted sum, Delta = |Weighted Sum
— Constraints|/Constraints.

undertake IPU, the PUMS data are summarized in a frequency matrix where each row represents a household, and each column
represents a particular combination of categories for household type, or a particular combination of categories for population types.

Since we have 7 household level variables with 20 categories, there would be 800 (=2 x 2 x5 x 2 x 2 x 5 x 2) columns, each
representing a different household type. Similarly, since we have 5 population level variables with 18 categories, there would be 288
(=6 x 2x 2 x 2x 6) total columns, each representing a different population type. A particular PUMS household would be represented
by a “1” in the column representing its type, with “0” in every other household column. For the population level columns, the values
would indicate how many members of the household matched the different population types. Recall, that an IPF procedure produces
cell counts of the number of households, or population numbers, in different combinations of variable categories, and these counts are
represented in IPU as “constraints.” To illustrate the IPU procedure we report an example from Ref. [14] for 1 block group, using just 2
household types, 3 population types, and 8 PUMS households (see Table 2). The goal is to produce a weight for each PUMS household
(column Wt100) representing its probability of selection when performing a weighted bootstrap sampling of PUMS households to
populate a block group. These weights will sum to 100 over all the PUMS households, so dividing each weight by 100 produces each
probability.

At initialization, each PUMS household (row) is assigned a weight of 1 (column Wt0), and each value in any household/population
type column is multiplied by its corresponding row weight (all equal to 1 initially), and then column-summed to produce the row
WSumO. At this point, the values in WSumO are synonymous with the raw column sums for each household/population type column.
The quantity delta represents the deviation between a column’s constraint value (from IPF) and its weighted column sum, and is
calculated as:

(constraint — weighted column sum)

constraint

The initial values of delta when all PUMS households have the same initial weight of 1 are shown as the row Delta0 in Table 2.

To update the row weights, the IPU procedure follows a repetitive process column by column. Following the illustration, any non-
zero values in the first column (Ht1) have their row weights updated by multiplying the existing row weights (all equal to 1 initially) by
the ratio of the current weighted column sum to the column constraint value. In the case of the first column (Ht1) this means the first 3
rows have their weights updated (producing column Wt1) by multiplying their initial weights of 1 by 11.67 (35/3). With these updated
row weights in place, new weighted column sums are produced by multiplying each value in any column by its corresponding row

Table 3
Comparison of two survey-based estimates of evacuation rates for urricane Irma versus predicted rates from our model using different base rates
Mandatory Order No Mandatory Order
Mason-Dixon 57 % 19 %
Wong 69.50 % 46.40 %
Model
1 % base rate 48.71 % 9.03 %
3 % base rate 72.26 % 22.46 %
5 % base rate 81.00 % 32.01 %
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weight and summing (row WSum1). This same process now repeats column by column, as shown in Table 2. One pass through all the
household/population type columns represent an iteration, and an updated value of delta is calculated after each iteration. Table 2
reports values of delta after 1 iteration (as Delta5 since we have 5 columns) and after 20 sets of iterations (Deltal00). As the values of
delta approach zero we have convergence of the column weighted sums and the constraints. When the values of delta are sufficiently
small the IPU procedure terminates (here at 20 iterations), and we have the set of PUMS household weights needed (Wt100) for the
bootstrap sampling procedure to take place for 1 block group.

Notwithstanding the simplicity of this illustration, recall that this procedure was actually conducted for 1088 columns, for any-
where from 2579 to 4547 households per PUMA, and for each of 2017 individual block groups. We utilized the software package
PopGen [18], an open-source software for population synthesis developed by the Mobility Analytics Research Group at Arizona State
University (see Refs. [14,15,19,20]. The block group count data were collected from the American Community Survey (2013-2017)
Summary File section of the US Census [21], and the PUMS data were collected from the Public Use Microdata Sample section of the US
Census [22].

2.4. Prediction and mapping of evacuation rates

Given a population of ‘synthetic’ households with the socio-demographic predictors used in this study, and with the addition of
storm-related variables (evacuation order, flood risk, surge risk) to these households as described above, the prediction of household
hurricane evacuation probabilities for our Hurricane Irma-like scenario proceeded using the effects sizes from Ref. [9] in a logit
predictive model calibrated with an appropriate base probability (intercept term). The household evacuation probabilities were then
summed (by block group) to produce an evacuation rate for each block group, and then mapped. We could also sum the household
evacuation probabilities by binary categories of predictor to show differences in evacuation rates by predictor category. Note that for
mapping purposes a block group was designated to be in a mandatory evacuation order zone if the majority of its area fell in such a
zone.

3. Results
3.1. Model calibration

As outlined above, our logit predictive model required calibration through estimation of its intercept term, or base rate. In a real-
world implementation, given a synthetic population of households, a household evacuation probability model, and a predicted overall

== No Households
Mandatory Order
10 - 25 (n=72)
25 - 30 (n= 108)
30 - 35 (n= 107)
W35 - 47 (n=17)

No Order
10 - 65 (n= 124)
65 - 80 (n= 596) 0 5] 10
< = L I—|
W80 - 85 (n= 510) Miles

55 - 90 (n= 56)

Fig. 7. Percentage of households not-evacuating by block groups for locations both under and not under mandatory evacuation orders: Hillsborough and Pine-
llas Counties
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evacuation rate, estimation of the base probability can proceed in an iterative fashion. Therefore, estimation of the base probability
does assume an analyst can estimate a reasonable overall evacuation rate based on their expert knowledge of previous hurricane
evacuation scenarios. Again, emphasizing that this paper is meant to be illustrative of the methodological approach, we chose to
estimate our base probability in the manner described above by using data from two survey-based estimates conducted in the after-
math of Hurricane Irma. The Mason-Dixon telephone survey [23] had 625 respondents state-wide in Florida. A second online survey by
Ref. [24] had 645 responses. Table 3 below reports the evacuation rates in Florida from the two surveys along with our predicted
evacuation rates using different base rates of 1 %, 3 %, and 5 %.

In comparing our model predictions to the survey rates in Table 3, we decided to use a base rate of 3 % for the results presented in
the remainder of this Results section. The 3 % base rate gives good agreement as regards mandatory evacuation order rates, notably as
compared to that of [24]. On the non-mandatory evacuation rate side, our base rate of 3 % gives good agreement with the Mason-Dixon
survey [23] but less so with Ref. [24]. However, another hurricane evacuation rate study [4] suggests that the Ref. [24] value may be
too high for non-mandatory evacuation locations. Despite the imprecision of our calibration that the foregoing discussion may suggest,
any such imprecision is not particularly pertinent to the illustrative nature of this paper. Moreover, even an imprecise estimate of such
a base rate in a real-world scenario would not negate the benefits that our approach yields in terms of knowledge of the spatial and
socio-demographic variabilities in evacuation.

We attempted to explore existing studies that contained data related to the evacuation patterns during Hurricane Irma. Regrettably,
our search yielded no studies providing information on evacuation percentages categorized by order type specific to Hurricane Irma.
However, we did come across several noteworthy studies such as [25,26]; and [27]; which offered valuable insights into the overall
evacuation dynamics during Hurricane Irma.

In their study [25], utilized Twitter data to determine an overall evacuation rate of 28.4 % for Hillsborough County, a figure
strikingly similar to our own finding of 29.09 % for the same region. Similarly [26], employed GPS survey data and reported an overall
evacuation rate of 37 % for Florida, which closely aligns with our estimate of 34.72 % for the Tampa Bay Area. In contrast [27],
reconstructed evacuation traffic data and found that the Tampa area had a notably higher overall evacuation rate of 52 %, which
diverges significantly from our estimations and the data provided by Ref. [24] and the Mason-Dixon survey mentioned earlier.
Moreover, it is worth noting that while these studies offer valuable insights into overall evacuation rates, none of them provided data
that allows a direct comparison of our results in terms of evacuation order type, finer geographical granularity, or predictors.

3.2. Predicted non-evacuation rates for Hillsborough County and Pinellas County census block groups

The presentation of the modeling results for census block groups (hereafter block groups) switches the focus to rates of non-
evacuation since, as discussed in our introduction, this is the most important aspect for disaster management in the immediate
aftermath of a hurricane. We also confine our discussion for block groups to the two (of four) most populous counties of Hillsborough
and Pinellas in the MSA. These results are clearly after the event predictions and only applicable to Hurricane Irma, so they really serve

b

A
£

Fig. 8. Locations of the four census block groups summarized in Table 4
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Table 4
Rates of non-evacuation and socio-demographic profiles for the four selected block groups shown in Fig. 8.
Block group 1 2 3 4
Non-Evacuation Rate (as %) 34.75 32.02 21.10 18.62
Increases Predictors OR
Non-evacuation % Black 0.62 0.00 0.00 4.60 10.46
% Homeowner 0.72 87.60 74.59 16.76 1.11
% Married 0.77 73.39 47.51 35.73 13.24
% Older 0.78 39.53 68.51 8.35 1.56
% Low education 0.79 23.51 25.69 14.43 14.24
% Elderly present 0.88 44.44 70.99 8.93 2.00
Reduces % Hispanic 1.08 0.26 4.14 10.68 10.79
Non-evacuation % Small HH 1.16 75.45 100.00 81.29 86.87
% Low income 1.17 9.30 37.85 10.74 24.25
% Children present 1.19 16.02 0.00 17.15 11.23
% Car ownership 1.24 94.57 95.03 98.77 97.89
% Female 1.35 30.23 25.97 58.58 49.61

as a demonstration of the variability and granularity of the kinds of predictions that our approach can produce.

Fig. 7 presents a map of our predicted rates of non-evacuation for the block groups of Hillsborough and Pinellas counties. For
mandatory evacuation order locations our predictions for non-evacuation range from a low of 10 % to a high of 42.4 %. There is no
particular geographic pattern evident for mandatory evacuation order locations, and the block groups with non-evacuation rates above
35 % are located downtown in the city of St. Petersburg, in the west Tampa area around the airport, and then some locations in the
hinterland of the coasts, particularly to the north-west of upper Tampa Bay. The block group located under a mandatory evacuation
order with the highest rate of non-evacuation (42.4 %) is in south St. Petersburg.

For locations that are not under mandatory evacuation orders our predictions of rates of non-evacuation range from a low of 10.5 %
to a high of 88.2 %. There is a more discernible geographic pattern for locations not under mandatory evacuation orders with high rate
clusters of non-evacuation evident in the inner-urban, lower socio-economic neighborhoods of Tampa and St. Petersburg. Meanwhile
there are regions, such as mid Pinellas County, that have low rates of non-evacuation, and often containing specific block groups that
have very low rates of non-evacuation similar to those found in locations under mandatory evacuation order. These regions and
specific block groups are typically associated with high levels of mobile home occupancy.

To demonstrate how the socio-demographic hurricane evacuation risk profiles (minus mobile home occupancy) can vary across
block groups and impact the predicted rates of non-evacuation at the local block group level, we created a sub-group of block groups
with the following characteristics: a) in mandatory evacuation order locations, b) possess highest flood risk, c) possess highest surge
risk, and d) have no mobile home occupancy. Within this sub-group we then selected the 2 block groups with the highest predicted
rates of non-evacuation (34.75 %, 32.02 %) and the 2 block groups with the lowest predicted rates of non-evacuation (21.1 %, 18.62).
Fig. 8 shows the geographic locations of these 4 block groups and Table 4 summarizes their socio-demographic profiles.

It is noteworthy that the 2 block groups with the highest predicted rates of non-evacuation in Table 4 have 0 % Black households,
and yet this is the predictor that most increases non-evacuation at the household decision level. Conversely, the 2 block groups with the
lowest rates of non-evacuation in Table 4 have 4.6 % and 10.46 % Black households. More generally, both block groups with the
highest predicted rates of non-evacuation have higher levels for all the other factors that increase non-evacuation (homeownership,
marriage, older, low education, and presence of the elderly) at the household decision level. For the predictors that might reduce non-
evacuation rates, both of the block groups with the highest predicted rates of non-evacuation have somewhat lower levels for 2 of the
predictors (Hispanic, female) but the picture is more mixed for the remaining 3 predictors (small households, low income households,
presence of children).

Fig. 9 illustrates the distributions of block groups for rates of non-evacuation for binary classifications of households using the 6
socio-demographic predictors that tend to increase the rate of non-evacuation at the household decision level. The binary distributions
are most distinct for homeownership and age (younger/older) and fairly distinct for married households and households with an
elderly person present. The distributions have more overlap for race (Black/non-Black) and for education.

3.2.1. Predicted non-evacuation rates and race

To investigate the interpretations above further, and to illustrate how our approach can investigate how evacuation rates vary
within categories of a predictor, Figs. 10 and 11 present maps of the distribution of our predicted non-evacuation rates by block groups
for Black households and non-Black households respectively. In each case, we restrict the block groups used to those with at least 50
households for their category. As expected overall, the rates of non-evacuation for Black households are higher than for non-Black
households, as indicated by the greater prominence of the darker hues in Fig. 10 relative to Fig. 11. In fact, in no single block
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Fig. 10. Percentage of Black households not-evacuating by block groups for locations both under and not under mandatory evacuation orders: Hillsborough and
Pinellas Counties
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Fig. 11. Percentage of non-Black households not-evacuating by block groups for locations both under and not under mandatory evacuation orders: Hillsborough and
Pinellas Counties

group was the rate of non-evacuation for Black households predicted to be lower than that for non-Black households. In terms of spatial
patterns of non-evacuation in each case, the map for Black households does seem to indicate some clustering of high rates of non-
evacuation (under a mandatory evacuation order or not) in the inner-urban areas of Tampa and St. Petersburg. The two maps also
indicate that some specific block groups may exhibit marked differences in non-evacuation rates for their Black and non-Black
households. To investigate this further, Fig. 12 presents a map of the difference in non-evacuation rates for Black and non-Black
households by block groups.

It is notable that of the 550 block groups mapped in Fig. 12, 16 % (88) have a predicted non-evacuation rate for Black households
that is more than 10 % higher than for non-Black households, with 7 % of block groups having more than a 15 % difference. In terms of
the spatial distribution of Fig. 12, the greatest differences (>15 %) seem to occur in more suburban locations such as mid-Pinellas
County, east of Tampa in the Brandon area, and also in more rural parts of Hillsborough County.

To gain some insight into how the socio-demographic profiles of these block groups are driving the differences in non-evacuation
between Black and non-Black households, we selected 2 block groups in locations under mandatory evacuation orders that had similar
levels of % Black households but which had very different values when it came to the difference in the non-evacuation rate between
Black and non-Black households (see locations A and B in Fig. 13). Similarly, we chose 2 block groups in locations not under mandatory
evacuation orders and with similar levels of % Black households, but, again, with very different values when it came to the difference in
the non-evacuation rate between Black and non-Black households (see locations C and D in Fig. 13).

Table 5 presents the socio-demographic profiles for these 4 block groups. To understand the differences in the Black/non-Black
household evacuation rates we need to consider the relative percentages of the predictors across Black/non-Black households and
whether each predictor is one which tends to increase non-evacuation or reduce non-evacuation. Block group A has a relatively small
difference (5.01 %), and this appears to be partly the result of non-Black households having significantly higher rates of homeown-
ership and marriage, both predictors which tend to increase non-evacuation. The small difference is also partly the result of Black
households having higher levels of low income, female, and children present households, all predictors which tend to reduce non-
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Fig. 12. Difference in the predicted percentages of non-evacuation for Black households and non-Black households by block group: Hillsborough and Pine-
1las Counties.

evacuation. The only predictors for block group A that would tend to increase the difference would be low education and car
ownership.

A somewhat similar story applies to block group C, the other one of our 4 block groups with a small difference between non-
evacuation rates for Black/non-Black households (3.31 %). For block group C, non-Black households have significantly higher rates
of homeownership, marriage, and, also, older households and households with an elderly person present. These are all predictors that
tend to increase rates of non-evacuation. The small difference for block group C also partly results from Black households having higher
levels of low income and female households, both predictors which tend to reduce non-evacuation, although the influence of these
predictors is probably not as strong as it was for block group A.

Turning to block group B in Table 5, Black and non-Black households have more similar levels of homeownership than we observed
for block groups A and C and this tends to increase the difference in non-evacuation rates relative to other block groups where Black
homeownership rates are lower. Block group B also has a noticeable difference in % Hispanic with non-Black households having a %
Hispanic level that is twice that for Black households. Since % Hispanic reduces non-evacuation, this difference contributes towards
the large difference in non-evacuation rates we see for block group B. Block group B also shows a similarity between Black and non-
Black in % Low Income, unlike block groups A and C where the rates of % Low Income were much higher for Black households. Since
higher levels of % Low Income would reduce non-evacuation this also contributes to the larger difference in non-evacuation rates we
see for block group B. Finally, and likely the greatest contributor to the large differential in non-evacuation rates for block group B is
the substantial difference in rates of mobile home occupation for Black and non-Black households (60.79 % versus 18.18 %).

Finally, for block group D in Table 5 we have a very large difference in the non-evacuation rates for Black and non-Black households
(46.01 %). As with block group B, this is largely driven by the substantial difference in rates of mobile home occupation for Black and
non-Black households (63.78 % versus 4.55 %). However, it is also noteworthy that non-Black households also have higher levels of %
small households and % low income, both predictors which work to reduce non-evacuation rates.

3.3. Aggregating model results for larger geographic units

Although the main innovation in our approach is to be able to predict evacuation rates for small geographic units, in our case block
groups, it is straightforward to then aggregate these small units into larger geographic units as required. For example, Tables A1 and A2
in the appendix provide predictions for non-evacuation at the County level for the four counties of the Tampa-St. Petersburg-Clear-
water MSA, along with their predictor risk profiles.

Fig. 14 summarizes how non-evacuation rates vary by different binary classifications of the evacuation predictors for all households
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Fig. 13. Locations of the four census block groups summarized in Table 5.

Table 5
Comparative socio-demographic profiles for black and non-black households for the four selected block groups shown in Fig. 13
Block group A B C D
% Difference in not evacuating 5.01 19.17 3.31 46.01
Predictors OR Mandatory Order No Mandatory Order
% Black 0.62 25.16 25.84 20.41 19.64
Increases Non Black Black Non Black Black Non Black Black Non Black Black
Non-evacuation % Homeowner 0.72 43.98 13.58 38.81 33.52 62.21 37.37 56.89 45.45
% Married 0.77 28.63 2.47 47.72 34.09 53.44 34.21 23.11 20.91
% Older 0.78 27.39 27.16 16.24 17.61 28.07 18.95 33.33 26.36
% Low education 0.79 37.76 56.79 82.18 86.36 29.01 37.37 67.56 57.27
% Elderly presence 0.88 29.05 27.16 19.60 21.59 32.79 22.63 38.22 27.27
Reduces % Hispanic 1.08 7.05 7.41 63.76 30.68 26.59 20.53 2.67 0.00
Non-evacuation % Small HH 1.16 60.17 58.02 65.15 70.45 63.29 66.84 75.33 62.73
% Low income 1.17 35.27 81.48 63.17 59.09 15.38 35.26 70.89 60.00
% Children present 1.19 39.83 51.85 25.54 23.86 28.88 30.53 10.44 12.73
% Car ownership 1.24 92.12 70.37 96.63 91.48 96.36 85.79 75.11 73.64
% Female 1.35 53.94 70.37 41.58 40.91 47.64 52.63 58.89 77.27
% Mobile Home 6.47 0.00 0.00 60.79 18.18 0.00 0.00 63.78 4.55

in mandatory evacuation order locations across the whole MSA, along with our predicted mean mandatory non-evacuation rate
calculated as the sum of all household non-evacuation probabilities divided by the number of households for our entire study area. The
differences in rates for a predictor have therefore taken into account the influences of all the other predictors (compound socio-demographic
profile) across all the households. The predictors in Fig. 14 are organized into those whose independent impact on the household
evacuation decision reduces non-evacuation (left side of dashed line) and those whose impact increases non-evacuation (right side of
dashed line). They are then ordered from high-to-low for the predictors that reduce non-evacuation and low-to-high for those that
increase non-evacuation. This figure again illustrates, now at the MSA level, that although a predictor may have a greater independent
impact on the household evacuation decision than others, when the overall composite risk profiles of households are considered over all
households, the net effect may lead to greater differentials for other predictors when summarizing the numbers of households not
evacuating. For example, the predictor Black has the largest independent effect on increasing a household’s decision to not evacuate,
and yet it is not associated with the highest evacuation differential in Fig. 14, where other predictors exhibit greater differentials
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Fig. 14. Non-evacuation rates by different binary classifications of the evacuation predictors for households under a mandatory evacuation order

Table 6
Predictor ranking based on a) independent effect size and b) differential in percentage not evacuating for locations under mandatory evacuation orders: Hillsborough
and Pinellas Counties

Predictors OR Rank of OR % Difference Rank on model result
Increases Black 0.62 1 7.42 4
Non-evacuation Homeowner 0.72 2 8.59 3
Married 0.77 3 9.85 2
Older 0.78 4 12.09 1
Low education 0.79 5 0.47 6
Elderly present 0.88 6 5.66 5
Reduces Hispanic 1.08 9 2.53 6
Non-evacuation Small HH 1.16 8 2.67 5
Low income 1.17 7 7.85 2
Children present 1.19 6 1.42 8
Car ownership 1.24 5 -1.79 9
Female 1.35 4 7.07 3
Flood risk 1.44 3 3.28 4
Surge risk 1.67 2 1.98 7
Mobile home 6.47 1 20.61 1

(older/younger, homeowner/non-homeowner, married/non-married). A similar figure to Fig. 14 is provided in the appendix for lo-
cations not under mandatory evacuation orders (Figure A2).

Table 6 provides greater detail with respect to Fig. 14 and shows how the rank of independent effect of a predictor (based on its
model odds-ratio) compares to the rank of the differential in percentages of households not evacuating summarized by each predictor.
For predictors that reduce non-evacuation at the household decision level, mobile home occupancy clearly has both the greatest in-
dependent impact on the household decision to evacuate and the largest differential in the percentages of households evacuating. The
next largest differential is associated with % low income even though the independent effect of being low income on reducing a
household probability of non-evacuation is only ranked 7th (of 9). An interesting predictor is car ownership which ranks 5th in terms of
independent effect size on reducing a household probability of non-evacuation and yet more car owning households are predicted to
remain than non-car owning households. For predictors that increase non-evacuation at the household decision, we have already noted
the difference in ranking for the Black predictor relative to those of older, homeowner, and married. A similar table to Table 6 is provided
in the appendix for locations not under mandatory evacuation orders (Table A3).

4. Conclusions

In our opinion, the disaster management and response for hurricanes would benefit from access to spatially localized prediction of
evacuation rates by socio-economic-demographic profiles. Such detailed prediction requires an evacuation decision model for
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households and a method to generate a synthetic, yet realistic, population of households for local neighborhoods. This paper has
addressed these issues by (i) utilizing the results of a statistical meta-analysis of 33 survey-based household evacuation decision models
[9], and (ii) utilizing a well proven approach, Iterative Proportional Updating (IPU), to population synthesis. Using our approach,
disaster management planners could better plan for, and implement, procedures and policies that could mitigate many of the adverse
impacts of hurricanes.

This paper was able to produce detailed predictions of how many, and what types of households, evacuate, or remain, at the
disaggregated geographic scale of census block groups for a particular hurricane scenario (Hurricane Irma-like). Our results indicate
that it is the composite demographic profiles of the households, acting thru our household evacuation decision model, that largely
dictate a very heterogeneous spatial pattern of evacuation. Also, some predictors which may have an outsize independent effect on the
household evacuation decision model do not always translate to those predictors which may exhibit the largest differentials in rates of
non-evacuation. This is due to the composite effect of certain predictors occurring simultaneously in many households. For example, as
we have seen above, although the predictor Black has the largest independent effect on increasing non-evacuation, the differentials in
non-evacuation rates are higher for the predictors of older, married, and homeownership at the regional scale (Tampa-St. Petersburg-
Clearwater MSA). This same phenomenon can also be witnessed in individual block groups, although, as our results indicate, the key
aspect is that every block group’s risk profile is different, so that in other block groups the non-evacuation differential may indeed be
driven by a dominant independent predictor (e.g., Black households). It should also be pointed out that one predictor, household
mobile home occupation, appears to be remain dominant throughout, both in terms of independent effect on the household decision
model and in evacuation rate differentials.

Since our results demonstrate considerable spatial heterogeneity in evacuation rates at the local neighborhood scale, the key for
future disaster management practices will be the ability to apply our framework to particular hurricanes in different locations. A
natural outgrowth of this research, therefore, would be to develop a software application that can regularly update the generation of
synthetic populations based on latest US Census data, as well as periodically update the statistical meta-analysis results as more
hurricane evacuation studies and models are published. Clearly every hurricane is different (track, intensity etc.), as is every locale in
terms of unique risks [28] and vulnerabilities [29]. As such, disaster management will always be dependent on the experience and
judgement of human managers, but our framework does offer a key component, the base evacuation rate within the logistic regression
model, to be able to reflect such judgement calls. It should also be noted that although our approach and framework has been
developed in the US context, it could be readily adapted to other national contexts with similar structures as to their national census
data, and such other national contexts could draw upon their own set of evacuation studies to determine effect sizes.

Finally, despite extensive research on various aspects of hurricane evacuation, most notably in the social sciences and trans-
portation science, those responsible for planning, and mitigating, the immediate impacts of hurricanes are left wanting in terms of
detailed knowledge of how many households, and of what types, are likely evacuating from local neighborhoods. The methods and
results of this paper would allow for disaster managers to much better plan and implement strategies and resources that could both
enhance evacuation rates, as well as deliver humanitarian and other assistance [29,30] in an efficient and timely manner to those who
remain.

4.1. Limitations

A key aspect of any prediction model is validation. This paper has focused on the development of the framework for a predictive
model of local neighborhood hurricane evacuation rates but does not present any validation of its results. Although it is certainly
possible to imagine a feasible approach to validation, such as post-hurricane evacuation surveys in a range of targeted census block
groups, that would require not inconsiderable funding and is left for future work.

In terms of our framework itself, other key limitations must be acknowledged. The household evacuation decision model we used is
based on the work of [9] and so the limitations they noted there apply here. Key among them is the dependence on the survey designs
and modeling approaches of the numerous studies which contributed to their statistical meta-analysis. Virtually all these studies used
logistic regression models for their analysis and only considered linear independent predictors, with no accounting for non-linear
relationships or interactions between predictors. A recommendation for future hurricane evacuation survey models would be to
investigate, and report, a wider range of modeling approaches, including the use of modern statistical machine learning methods.

More broadly, our approach to generating household level data relies on the use of US Census data and although this allows us to
generate data on many of the predictors used in hurricane evacuation models, it cannot be used to generate data on other possibly
important predictors. For instance, 7 predictors (length of residence, hurricane experience, mandatory work, evacuation plan, window
protection, pet ownership, and disabled person in household) found in Ref. [9] could not be incorporated in the model used here since
they are not data collected by the US Census. Just to note, Ref. [9] revealed varied influence of those predictors on evacuation de-
cisions. Longer length of residence, having an evacuation plan, window protections, and disabled household member’s presence
showed positive relationships with evacuation likelihood. In contrast, mandatory work obligations and pet ownership showed negative
effects. The effect of prior hurricane experience was generally negligible, though highly variable. Moreover, some other important
predictors such as social networks, information reliability, trust in the source of information, and others were not considered in the
Ref. [9] model we used here, partly because the meta-analysis from Ref. [9] established specific criteria for including predictors,
requiring that they be present in at least three different models.

As we have indicated, our use of the Ref. [9] model was largely simply illustrative of the use of a household level decision model.
We would advocate for emergency management agencies to develop their own household level evacuation decision models that might
use different effect sizes and different storm-related variables pertinent to their risk scenario. It is also possible to imagine incorpo-
rating estimates of other predictors not found in the US Census into such models by imputing data on other predictors into such
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household data (e.g., pet ownership, length of residence) from other data sources. That said, the great advantage of using US Census
data in the immediate term is the ability to predict household evacuation rates down to highly localized neighborhoods, and such
models, even without the benefit of additional predictors, likely explain a considerable proportion of the spatial variability in such
rates. The value of being able to predict the numbers, and types, of households evacuating from local neighborhoods is very
considerable, not only in better serving and protecting those households that remain, but also in managing, and servicing, the

households who evacuate.
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Data availability

I have used data derived from the US census

All residents west of U.S. 19, as well as mobile homes countywide need to

evacuate.

Hillsborough County, Fla. (Sept. 9, 2017) - Hillshorough County has issued
a mandatory evacuation for Evacuation Zone A starting at 8 a.m. today.

New Information as of 09/09/17:

A mandatory evacuation has been ordered for residents living west of Littl
Road, effective 1:00 p.m. today, Saturday, September 9, 2017.E A
mandatory evacuation has been ordered for those residents living to the
north and west of the following roadway boundary lines: north of 52 and
west of Hicks Road; north of Kitten Trail to the intersection of Dennis Rd;
west of Dennis Rd, following a northerly line to include properties west of
Gopher Hills and west of Thomas Boulevard north to County Line Road,
effective 1:00 p.m. today, Saturday, September 9, 2017. & A voluntary
evacuation has been ordered for the remainder of all evacuation zones,
effective 1:00 p.m. today, Saturday, September 9, 2017. B The hardened
shelters of Fivay High School, Schrader Elementary, and the Emergency
Operations Center will remain open and are not being evacuated.

Residents in Level B must begin evacuating immediately and secure safe
shelter promptly. Residents of Level A and all mobile homes must continue
their evacuations and secure safe shelter immediately, as well.

Fig. A.1. Detailed declaration of evacuation orders for Hernando, Hillsborough, Pasco, Pinellas Counties for Hurricane Irma
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Table A.1

Non-evacuation rates and evacuation predictor profiles for each of the Tampa-St. Petersburg-Clearwater MSA Counties for locations under a mandatory evacuation order

Hernando Pinellas Hillsborough Pasco

Non-Evacuation Rate (as %) 21.53 25.74 26.51 33.53
Increases Predictors OR
Non-evacuation % Black 0.62 1.46 5.34 8.17 2.55

% Homeowner 0.72 82.44 66.94 53.87 65.64
% Married 0.77 46.88 40.93 42.14 42.88
% Older 0.78 51.25 40.26 19.90 37.56
% Low education 0.79 57.88 38.03 35.38 59.05
% Elderly present 0.88 55.79 43.43 23.46 41.10
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Table A.1 (continued)

Hernando Pinellas Hillsborough Pasco
Non-Evacuation Rate (as %) 21.53 25.74 26.51 33.53
Reduces % Hispanic 1.08 4.34 5.41 23.05 9.06

Non-evacuation % Small households 1.16 82.02 81.70 66.81 72.17
% Low income 1.17 42.60 31.57 24.22 40.68

% Children present 1.19 10.86 13.55 24.37 19.84

% Car ownership 1.24 95.32 92.39 94.50 91.15

% Female 1.35 48.23 48.91 47.90 50.41

% Flood risk 1.44 32.36 69.49 81.67 42.47

% Surge risk 1.67 30.98 86.25 99.33 72.08

% Mobile homes 6.47 67.25 22.60 5.82 10.87

Table A.2
Non-evacuation rates and evacuation predictor profiles for each of the Tampa-St. Petersburg-Clearwater MSA Counties for locations not under a mandatory evacuation
order

Pasco Hillsborough Pinellas Hernando
Non-Evacuation Rate (as %) 74.6 76.81 78.81 83.25
Increases Predictors OR
Non-evacuation % Black 0.62 4.98 16.87 10.30 4.79
% Homeowner 0.72 77.76 58.42 63.35 76.68
% Married 0.77 55.24 44.12 40.27 51.51
% Older 0.78 33.23 20.92 29.82 37.48
% Low education 0.79 46.03 43.65 44.57 55.46
% Elderly present 0.88 37.48 24.71 33.18 42.49
Reduces % Hispanic 1.08 10.53 22.82 7.62 9.66
Non-evacuation % Small households 1.16 63.83 61.51 71.17 66.22
% Low income 1.17 25.54 29.25 31.65 32.21
% Children present 1.19 27.16 28.76 20.61 23.72
% Car ownership 1.24 96.12 92.71 90.85 95.61
% Female 1.35 47.45 49.73 51.19 49.75
% Flood risk 1.44 34.16 18.60 14.75 9.93
% Surge risk 1.67 0.62 16.08 31.59 2.07
% Mobile homes 6.47 19.36 6.56 0.00 0.00

0 for Mobile homes in Pinellas/Hernando because all mobile homes under mandatory order
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Fig. A.2. Non-evacuation rates by different binary classifications of the evacuation predictors for households not under a mandatory evacuation order
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Table A.3
Predictor panking based on a) independent effect size and b) differential in percentage not evacuating for locations not under a mandatory evacuation orders: Hills-
borough and Pinellas Counties

Predictors OR Rank of OR % Difference Rank on model result
Increases Black 0.62 1 6.09 4
Non-evacuation Homeowner 0.72 2 7.69 2
Married 0.77 3 7.48 3
Older 0.78 4 13.62 1
Low education 0.79 5 0.37 6
Elderly present 0.88 6 5.38 5
Reduces Hispanic 1.08 9 3.35 6
Non-evacuation Small HH 1.16 8 1.76 7
Low income 1.17 7 6.83 4
Children present 1.19 6 1.68 8
Car ownership 1.24 5 0.60 9
Female 1.35 4 5.97 5
Flood risk 1.44 3 6.93 3
Surge risk 1.67 2 8.71 2
Mobile home 6.47 1 36.50 1
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