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Multiscale Complex Network Analysis of
Commuting Efficiency: Urban Connectivity,
Hierarchy, and Labor Market
Yue Jing and Yujie Hu

Department of Geography, University of Florida, USA

This study employs the 2012 to 2016 commuting flows of Florida to reexamine excess commuting (EC)
through multiscale complex network analysis. The results reveal significant discrepancies in urban
connectivity, hierarchy, and labor market geography between the actual (ACN) and optimal commuting
networks (OCN). Compared to ACN, OCN illustrates an overly simplified and isolated polycentric
commuting system. This is evident through reduced overall network connectivity, a restructured centrality
distribution pattern, and fragmented community divisions. Consequently, these results underscore the
importance of delving into the economic implications of commuting within the conventional EC framework.
Key Words: commuting network, complex network analysis, excess commuting, labor markets, spatial network.

The work commute plays a vital role in shaping
the spatial interaction between housing and
labor markets, leading to significant economic

implications (Hincks and Wong 2010). It is also
closely associated with adverse environmental
effects, however. Commuting contributes substan-
tially to traffic congestion and air pollution, thereby
posing significant challenges to urban sustainability
(Horner 2004). Moreover, long commutes are associ-
ated with adverse health outcomes, negatively affect-
ing individual well-being (Clark et al. 2020). Over
the past fifteen years, the average one-way commute
in the United States has steadily risen, peaking at
27.6minutes in 2019 (Burd, Burrows, and McKenzie
2021). As commute times continue to increase,
these issues are becoming more pressing, demanding
policymakers’ attention.

One unique perspective to tackle these issues is to
explore the concept of excess commuting (EC; Hu
and Li 2021), which examines the potential for
reducing a city’s overall commuting distance without
changing its urban form. Using a set of global meas-
ures, EC quantifies commuting efficiency by compar-
ing the actual commute distance Cobs with minimum
commute distance Cmin. The mainstream approach
to deriving Cmin uses a linear programming (LP)

model specified to minimize the total commuting
cost by assuming that people can freely switch their
jobs or residences in the city (Horner 2004). A
smaller Cmin implies a theoretically more balanced
land-use pattern with a greater mixture of jobs and
housing (Giuliano and Small 1993). Therefore, Cmin

and EC serve as essential tools for evaluating land-
use policies, including those related to jobs–housing
balance and housing (Ma and Banister 2006). The
versatile nature of EC allows for its integration with
other dimensions (O’Kelly and Lee 2005), such as
socioeconomic attributes and travel behaviors, pro-
viding valuable insights into addressing socioeco-
nomic inequalities.

There are some issues with existing EC studies,
however, which could lead to less meaningful meas-
urements of EC and thus largely undermine the
role of EC in informing spatial policymaking. First,
most studies (e.g., Kanaroglou, Higgins, and
Chowdhury 2015) focus on producing a set of
global statistics that represent a city’s overall com-
muting efficiency, whereas a few exceptions
(Niedzielski 2006; !Sleszy!nski et al. 2023) report
spatially disaggregated measures at smaller zones.
These global statistics, though, are unable to cap-
ture the internal variations of commuting
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efficiency, which refer to the spatial differences in
commuting efficiency within a specific region or
area. Second, traditional methods predominantly
assess commuting efficiency through a singular focus
on travel cost minimization. This approach, how-
ever, overlooks the structural properties of the
underlying commuting network, such as the con-
nectivity between centers, center hierarchies, and
spatial extent of local labor market areas (LMAs).
Incorporating this knowledge is essential for gaining
a deeper understanding of the regional economic
system’s structure and developing spatially targeted
policies. Third, existing studies often consider the
minimum commute obtained through cost minimi-
zation as the “gold-standard” commuting scenario
(or jobs–housing relationship) a city can achieve
(Schleith et al. 2019). Its accuracy in representing
the best possible scenario is largely unknown, how-
ever. Essentially, the minimum commute serves as a
theoretical baseline for a city’s commute and jobs–
housing relationship, but it might deviate signifi-
cantly from reality and be impractical to pursue.
Furthermore, the measurement of the minimum
commute is influenced by the scale of analysis
(Horner and Murray 2002), and its value might not
be accurately represented by calculations at a single
scale. Finally, most existing studies have a limited
spatial scope, focusing on the analysis of only one
or a few cities. This practice will introduce edge
effects whereby the increasingly prevalent cross-city
commutes are ignored.

The primary goal of this study is to introduce a
novel methodology to measure EC and understand
commuting efficiency by addressing the previously
mentioned issues. Given the networked structure of
commuting data, the actual and minimum commut-
ing scenarios are both converted into a network
with zone (e.g., census tract) centroids as its nodes
and commuter connections between zones as its
edges. Next, using complex network concepts and
metrics, structural properties of both actual and min-
imum commuting networks are examined at multiple
scales to more fully identify differences between the
two networks and reveal commuting efficiency pat-
terns. The multiscale structural analysis also evalu-
ates the accuracy of the minimum commute. The
proposed methodology is applied to a commuting
data set from the most recent 2012 to 2016 Census
Transportation Planning Products (CTPP) for
Florida.

The Excess Commuting Framework

The relationship between commuting and land
use has been a subject of enduring interest in urban
studies. A specific line of research focuses on the
jobs–housing balance, seeking to understand how
commuting patterns relate to the spatial distribution
of jobs and housing (Cervero 1989; Giuliano and
Small 1993). Within this framework, the concept of
EC was proposed by Hamilton and R€oell (1982) to
test the fit of the classic monocentric city model in
predicting commuting patterns. Unlike Hamilton’s
mathematical approach, White (1988) developed
the LP-based method using actual land-use geogra-
phy to measure EC (Cex), which has since become
the mainstream approach:

Cex ¼
Cobs − Cmin

Cobs
(1)

Cmin ¼ min
1
N

X

i

X

j

XijDij

 !
(2)

Subject to :
X

j

Xij ¼ Wi,
X

i

Xij ¼ Ej, Xij " 0

(3)

where Cmin is derived by reallocating zonal commut-
ing flows to reduce the system-wide commuting cost
while maintaining the total number of workers Wi

and jobs Ej in each zone. Xij denotes the number of
workers commuting from zones i to j, Dij is the travel
cost between zones i and j, and N represents the
total number of workers in the city. Cex is then
derived by comparing Cobs to Cmin, and a larger Cex

indicates less efficient commuting. Most traditional
analyses of EC only use these single numbers to
demonstrate a city’s commuting efficiency.

EC has been extensively used to inform land-use
policymaking. Different theoretical commuting
benchmarks and efficiency metrics provide comple-
mentary insights on policy effectiveness regarding
jobs–housing balance, decentralization, and urban
growth, especially through cross-sectional or longitu-
dinal comparative studies (Schleith et al. 2019). The
policy relevance of EC, however, could be compro-
mised due to the issues discussed previously.
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Methodology

Data and Commuting Distance Measurement

The study area is the state of Florida, comprising
such major cities as Miami, Tampa, Orlando, and
Jacksonville that serve as employment and residen-
tial centers (Figure 1). The primary data source is
tract-to-tract commuting flows from the 2012 to
2016 CTPP. Geographic information systems (GIS)
data for the tract boundary and road network are
downloaded from the U.S. Census Bureau. In total,
Florida has 4,245 tracts with 4,188 tracts having
recorded commuting flows.

This research exclusively examines automobile
commuting due to its predominant use in Florida,
with around 94.4 percent of workers relying on cars
for their daily commutes, as per the CTPP data.
Hence, the car travel distance is used as the measure
of commuting cost, which includes two components:
interzonal and intrazonal distances (Hu et al. 2020).
Interzonal distance is the shortest path distance
along the road network between tract centroids,
whereas intrazonal distance is the radius of a circle
that approximates the area of the tract (Jing and Hu
2022). To capture only daily commutes, extreme
commutes that are longer than 160 km (Nelson and
Rae 2016) are excluded. The remaining flows
account for 99 percent of the entire sample, and the
average commuting distance is 19 km.

Construction of Commuting Networks

Structurally, the tract-to-tract commuting flows
form a spatial network with its nodes representing resi-
dential and employment tract centroids and edges
being commuter connections between tracts.
Depending on the question at hand, different types of
networks can be constructed. The network can be
either undirected or directed. The former aggregates
opposing directions of commutes between nodes to
capture the total two-way commuting connections,
whereas the latter differentiates between inward and
outward commuting that relate to employment and
residential functions, respectively. Likewise, the net-
work can be either unweighted (edges are present
when there are commuter connections between two
nodes and absent if otherwise) or weighted (by the
number of commuters between two nodes). The former
can help reveal the topological structure of the net-
work, whereas the latter further uncover flow patterns.

To better understand the commuting network
structure, these different types of networks in terms
of edge direction and weight are considered in con-
structing two commuting networks: (1) an actual
commuting network (ACN) that corresponds to the
observed commuting flow patterns between tracts,
and (2) an optimal commuting network (OCN) that
denotes the minimum commuting flow patterns
solved by the LP model.

Figure 1. Spatial distributions of population and job densities in Florida.
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Complex Network Metrics

A set of complex network metrics are applied to
understand and compare structural properties
between ACN and OCN at three scales. Table 1
describes these metrics in more detail. In short, two
macroscale metrics—average path length and global
clustering coefficient (Albert and Barab!asi 2002)—
are employed to examine the overall connectivity
of commuting networks, or the degree to which all
pairs of nodes are interconnected. At the micro-
scale, node degree is used to reveal the structural
importance of each node for understanding the
hierarchy of nodes in the networks. Finally, at
the mesoscale, the modularity score based on the
Louvain community detection algorithm (Blondel
et al. 2008) is used to detect cohesive node groups
in the network, a neighborhood-level structural
property that metrics at the two other scales are
unable to capture (Newman 2006; Zhang et al.
2020). In the context of commuting networks, the
node grouping characterizes LMAs, the functional
regions with essential economic geography
implications.

To facilitate the comparison of results between
ACN and OCN at different scales, several similarity
indexes are calculated. The weighted Jaccard index
(WJI; Frigo et al. 2021) assesses the structural simi-
larity between two weighted networks at the
macroscale:

WJI X, Yð Þ ¼
Pn

i¼1 minðxi, yiÞPn
i¼1 maxðxi, yiÞ

(4)

where X and Y are two weighted networks, and xi
and yi represent the weights of common edge i
between X and Y. WJI is obtained by dividing the
sum of minimum weights of common edges by the
sum of maximum weights of common edges in both
networks. The index ranges from 0 to 1. A value
of 1 indicates that the two networks are identical
in terms of their edge weights, whereas a value
closer to 0 indicates lower similarity between the
networks.

For node hierarchy results (microscale analysis),
changes are captured using the coefficient of varia-
tion and Spearman’s rank correlation coefficient. For
LMAs (mesoscale analysis), the Fowlkes–Mallows
Index (FMI; Fowlkes and Mallows 1983) measures
the overall extent of agreement between two sets of
community detection results A and B:

FMI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP

TPþ FP

" #
& TP

TPþ FN

" #s

(5)

where TP is the number of node pairs that are pre-
sent in the same community in both A and B; FP is
the number of node pairs that are present in the
same community in A but not in B; FN is the num-
ber of node pairs that are present in the same com-
munity in B but not in A. The FMI ranges from 0
to 1, where a value closer to 1 indicates a higher
similarity between the two community detection
results. Additionally, the Jaccard index (JI; Frigo
et al. 2021) provides localized assessment of the sim-
ilarity between two community detection results,
quantifying the extent to which a node belongs to
the same community in both A and B. The JI
between A and B is calculated by dividing the size
of their intersection (common elements) by the size
of their union (all unique elements present in both
sets). It ranges between 0 and 1, where 0 indicates
no similarity and 1 represents complete similarity.

Results

Traditional Analysis of Excess Commuting

The traditional method for EC yields a 7-km Cmin

and a Cex of 63.2 percent, indicating a large ineffi-
cient commuting system in Florida overall. In other
words, existing land-use layouts in Florida cities and
towns would allow for a much-reduced one-way
commute of 7 km, compared to the observed 19-km
commute, for general workers, and 63.2 percent of
the observed commute could have been reduced
through relevant policymaking balancing jobs–hous-
ing relationships. Clearly, the traditional method is
of limited value as it only reports these global statis-
tics about overall commuting distance and
efficiency.

Complex Network Analysis of Excess Commuting

Figure 2A–B illustrates one configuration
(weighted, undirected) of ACN and OCN, revealing
a striking discrepancy in their layouts. This notable
visual inconsistency is further supported by a quite
low WJI value of 0.083, indicating poor similarity
between ACN and OCN. These findings are in
line with the 63.2 percent Cex discussed earlier.
Figure 2C presents the spatial pattern and distance
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distribution of the differences in flows between
ACN and OCN. To achieve Cmin, a substantial 86.5
percent of the actual commuting flows are reallo-
cated, leading to both decreased and increased flows
among commuting connections. Commuting links
with decreased flows are distributed throughout the
region over a wide distance range of 0 to 160 km,
and links with increased flows are more concen-
trated, primarily on shorter commutes less
than 7 km.

Macroscale Analysis: Examining the Overall Degree
of Connectivity. This subsection examines differ-
ences in the overall degree of connectivity between
ACN and OCN. As the LP model reassigns a worker
to an overall nearest job, the number of edges
expectedly has a sharp decline from 210,324 in
ACN to 8,347 in OCN. In OCN, workers are pre-
dominantly redistributed to nearby employment
opportunities, resulting in a significantly sparser net-
work. Moreover, the 96 percent edge reduction

Figure 2. Network visualizations of actual commuting network (ACN), optimal commuting network (OCN), and their differences.
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results in remarkable growth in l from 4.5 for ACN
to 74.1 for OCN, indicating an average of seventy
more commuting connections for any two tracts to
be connected. This suggests a much-reduced overall
connectivity for OCN over ACN. Although the
minimum commuting scenario has the best overall
spatial proximity between jobs and housing, the sig-
nificantly lower connectivity of OCN indicates that
places that are physically close can be further apart
due to the lack of direct commuting connections.
OCN, although having the shortest overall com-
mute, is instead quite topologically inefficient.

Additionally, CC drops from 0.31 in ACN to
0.12 in OCN with more open triads. The drastic
increase of l and decrease of CC signify the struc-
tural change from a relatively small-world network
(ACN), where nodes are closely connected to one
another, to a more separated network of an overall
less cohesive and efficient structure (OCN).

Microscale Analysis: Examining the Node Hierarchy.
The in- and out-degree (kinðoutÞi ) of ACN and OCN
are compared to analyze the shifts in the employment
and housing hierarchy within the commuting system.
Figure 3A demonstrates significant changes in the dis-
tributions of kinðoutÞi : The mean values of kinðoutÞi show a
significant decrease from 50.22 in ACN to 1.99 in
OCN, indicating a notable reduction in the overall
intensity of spatial interaction within the commuting
system after optimization. Moreover, the coefficient of
variation (CV) shows contrasting trends between kini
and kouti : The CV for kini declines from 1.15 in ACN
to 0.94 in OCN, indicating that the variation in
employment attraction among nodes in OCN has
become less dispersed compared to ACN. In other
words, the differences in the number of incoming
commuters to different employment locations in
OCN have become less pronounced. Nonetheless, the
CV for kouti increases from 0.44 in ACN to 0.52 in
OCN, suggesting that although the housing opportu-
nities tend to be more evenly distributed than the
employment opportunities (smaller CV for kouti than
for kini ), housing opportunities become more dispersed
or variable in OCN compared to ACN. These trends
are also notable in Figure 3C. To further explore the
structural changes in the node hierarchy (i.e., in- and
out-degree ranking) between ACN and OCN, the
Spearman’s rank correlation coefficient (q) is calcu-
lated. The findings reveal a substantial reshaping of
the node hierarchy concerning the housing function
from ACN to OCN (q ¼ 0.23 for kouti ). A moderate

level of consistency or similarity in the node hierarchy
is observed, however, for the employment function
between ACN and OCN (q ¼ 0.62 for kini ). These
trends are clearly evident in Figure 3B, which depicts
the changes in ranks for kinðoutÞi across metropolitan
statistical areas (MSAs) in Florida, ordered by the
number of workers. Overall, larger MSAs tend to
undergo downgrades in rank, whereas smaller ones
demonstrate upgrades in the commuting system.

Figure 3C provides a closer examination of the shift
in the node hierarchy. For kini , the employment hierar-
chical system in ACN showcases the dominant pres-
ence of three MSAs—Miami, Tampa, and Orlando—
occupying the top-tier positions in the job market, fol-
lowed by Jacksonville. Notably, the top 5 percent
nodes with the highest kini are primarily concentrated
in these three MSAs, particularly in areas near central
business districts (CBDs), regional airports, and theme
parks (especially in Orlando). In OCN, although the
top three MSAs still hold prominence at the regional
level, their influence has diminished as indicated by a
decreasing share of the top-ranked nodes, owing to the
rise of other MSAs in the job market. Generally,
OCN demonstrates a polycentric tendency character-
ized by the emergence of regional employment centers
located in the CBDs of smaller MSAs including
Tallahassee, Gainesville, and Ocala. This polycentric
trend is further supported by the growing number of
high–low clusters revealed through Moran’s I analysis
(Anselin 1995), distributed along the border areas
between cities in OCN. For kouti , the four MSAs—
Miami, Tampa, Orlando, and Jacksonville—with a
broader reach of labor supply hold more prominent
positions in ACN. Unlike kini , however, nodes with
the highest kouti tend to be dispersed over the suburbs.
Similarly, kouti exhibits a reshaping into a more poly-
centric and uniform structure, indicated by the disper-
sion of high–high clusters throughout the suburbs of
smaller MSAs.

Mesoscale Analysis: Examining Local Labor Market
Geographies. As shown in Figure 4A, ACN exhib-
its sixteen geographically cohesive communities
(LMAs) with a high modularity score of 0.84, indi-
cating a robust division (Hu and Huang 2023). The
within-LMA commutes across LMAs contribute to
93.9 percent of the total commutes in Florida, sug-
gesting a high level of employment self-containment.
Additionally, Figure 4A illustrates the proportion of
the within-LMA commutes relative to the total
commutes in Florida for each identified LMA.

Multiscale Complex Network Analysis of Commuting Efficiency 7



Figure 3. (A) Distributions of kinðoutÞi in actual commuting network (ACN) and optimal commuting network (OCN). (B) Changes in
node ranking associated with kinðoutÞi between ACN and OCN. (C) Spatial distributions of kinðoutÞi in ACN and OCN (the four insets
show spatial patterns of local Moran’s I statistics of kinðoutÞi ).
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Notably, approximately 41.4 percent of the total
commutes concentrate in the top three largest
LMAs centered around Tampa (15.3 percent),
Orlando (13.1 percent), and Miami (13.0 percent),
followed by three medium-sized LMAs surrounding
Fort Lauderdale, Palm Beach, and Jacksonville, each
capturing 8 percent to 10 percent of the total flows.
In contrast, OCN comprises 118 significantly smaller
and isolated LMAs, each accounting for less than 3
percent of the total commutes in Florida (Figure
4B). With a higher modularity score of 0.97, it indi-
cates an even more pronounced degree of employ-
ment self-containment, as evidenced by an even
higher share (98.9 percent) of total within-LMA
commutes across LMAs in relation to the total com-
mutes in Florida.

The notable difference in LMA geography
between ACN and OCN is supported by a moder-
ately low FMI value of 0.35, indicating a lower level
of agreement between the two LMA delineations
overall. The JI further provides a more detailed
examination of the similarity between two LMA
delineations for each node (tract). As shown in
Figure 4C, tracts in Tallahassee, Key West, and
Panama City exhibit higher JI values, suggesting
higher consistency in LMA delineations between
ACN and OCN. Conversely, tracts within the top
three MSAs, particularly those located in the out-
skirts, show more pronounced changes, as indicated
by lower JI values.

After optimizing commuting flows, most LMAs in
ACN undergo significant contraction, especially for
the top three MSAs, which possess greater capacity
in reorganizing flows due to higher job and

population densities. The optimal commuting system
now exhibits a more fragmented functional system
comprised of numerous loosely connected small
LMAs. It is important to note, however, that these
smaller LMAs in OCN tend to exhibit a more bal-
anced jobs–housing relationship.

Discussion

On Commuting Efficiency

The multiscale complex network analysis of EC
proposes an alternative perspective for understanding
commuting efficiency. The overall inefficient com-
muting system with a 63.2 percent Cex emerges from
two distinct underlying spatial interaction pro-
cesses—ACN and OCN—reflected at multiple
scales. At the macroscale, ACN and OCN exhibit
divergent urban connectivity patterns due to signifi-
cantly reduced commuting connections over longer
distances after commuting cost minimization. ACN
demonstrates a highly connected and topologically
efficient structure manifesting small-world network
properties, whereas OCN is more simplified, topolog-
ically distant, less cohesive, and less efficient. At the
microscale, the cost minimization reshapes the node
hierarchy of the commuting system. ACN exhibits a
centralization of nodes mainly in three major
MSAs—Miami, Tampa, and Orlando—at the
regional level, whereas OCN demonstrates a poly-
centric tendency characterized by emerging regional
employment and residential centers in smaller MSAs
like Gainesville, Ocala, and Tallahassee. Another
striking difference arises in the delineation of LMAs

Figure 4. Labor market area (LMA) geographies in actual commuting network (ACN) and optimal commuting network (OCN).
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at the mesoscale. ACN is divided into sixteen
larger-sized LMAs, whereas OCN displays a more
fragmented pattern with 118 significantly smaller
and isolated LMAs, primarily based on smaller labor
sheds with limited mobility opportunities. The strik-
ing distinction between ACN and OCN highlights
the paradox between commuting efficiency and labor
mobility behind the single statistic, which, to some
extent, reveals the dual nature of commuting behav-
ior. Commuting produces various externalities and is
often urged to be minimized for promoting sustain-
ability, but it is essential for spatial interactions that
facilitate economic growth and regional development
through transmitting information, capital, and peo-
ple across space (Goetz et al. 2010). In this sense,
this paradox highlights the need to reexamine the
theoretical foundation of the traditional EC frame-
work, which has predominantly focused on the nega-
tive aspects of commuting while overlooking its
benefits.

On the Accuracy of Minimum Commute

By redistributing workers to nearby employment
opportunities, the LP method achieves the best over-
all spatial proximity between jobs and housing at the
expense of reducing topological efficiency. Hence,
pursuing the resulting OCN obtained by solely mini-
mizing travel cost might not be a practical approach.
It would lead to an oversimplified and fragmented
commuting system, lacking vital commuting connec-
tions among large centers. Such a system could be
less adaptable to external changes like COVID-19
lockdowns and might impede regional integration,
reinforce regional disparities, and strengthen the
urban–rural dichotomy. In this regard, the traditional
EC framework might underestimate the minimum
commute and potentially lead to ineffective jobs–
housing policy recommendations. Nevertheless, this
research does not seek to dismiss the practical signif-
icance of Cmin as a benchmark for assessing spatial
structure or advocate for longer commutes to achieve
greater mobility. Rather, its purpose is to present an
alternative perspective on understanding EC by
exploring its underlying spatial interaction process.
Moreover, this pilot study attempts to spark further
discussions on designing a more appropriate commut-
ing benchmark by capturing the trade-off between
spatial proximity and labor mobility.

Conclusions

Using commuting flows from the 2012 to 2016
CTPP of Florida, this study reexamines EC through
multiscale complex network analysis, delving into
the underlying spatial interaction patterns behind
the single global statistic. The findings reveal strik-
ing divergences in urban connectivity, node hierar-
chy, and labor market geography between ACN and
OCN. Compared to ACN, OCN exhibits notewor-
thy reductions in both its average path length and
global clustering coefficient, indicating a less con-
nected and cohesive structure. The spatial distribu-
tion of degree centrality in OCN has undergone a
transformation, illustrating a polycentric trend char-
acterized by the emergence of regional employment
and residential centers. Additionally, OCN demon-
strates a more fragmented and isolated division of
LMAs, which in turn limits labor mobility and
regional integration. Although OCN results in cost
savings for commuting, it might not represent a
practical commuting objective, as it does not fully
consider the economic significance of commuting.
Hence, there is a critical need to delve deeper into
the economic implications of commuting within the
traditional LP model.

This study has several limitations. First, it does
not consider the heterogeneity in jobs, workers,
and transportation modes that can influence com-
muting patterns during the flow reallocation pro-
cess (e.g., Niedzielski et al. 2020). A disaggregated
analysis of workers across various employment,
socioeconomic, and transportation mode groups
could address this issue. Second, this study is based
on a single aggregated commuting data set for
Florida between 2012 and 2016, potentially limit-
ing the generalizability to other regions and time
periods. Nevertheless, the versatility of our pro-
posed methodology allows for future investigations
to easily extend the analysis to alternative data
sets, thereby enhancing the understanding of EC
and its temporal dynamics across different geo-
graphic contexts.
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