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ABSTRACT
As a special infinite-order vector autoregressive (VAR) model, the vector autoregressive moving average
(VARMA) model can capture much richer temporal patterns than the widely used finite-order VAR model.
However, its practicality has long been hindered by its non-identifiability, computational intractability, and
difficulty of interpretation, especially for high-dimensional time series. This article proposes a novel sparse
infinite-order VAR model for high-dimensional time series, which avoids all above drawbacks while inherit-
ing essential temporal patterns of the VARMAmodel. As another attractive feature, the temporal and cross-
sectional structures of the VARMA-type dynamics captured by this model can be interpreted separately,
since they are characterized by different sets of parameters. This separation naturally motivates the sparsity
assumption on the parameters determining the cross-sectional dependence. As a result, greater statistical
efficiency and interpretability can be achieved with little loss of temporal information. We introduce two
�1-regularized estimationmethods for the proposedmodel, which can be efficiently implemented via block
coordinate descent algorithms, and derive the corresponding nonasymptotic error bounds. A consistent
model order selection method based on the Bayesian information criteria is also developed. The merit of
the proposed approach is supported by simulation studies and a real-world macroeconomic data analysis.
Supplementary materials for this article are available online including a standardized description of the
materials available for reproducing the work.
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1. Introduction

Let yt ∈ R
N be the observation of anN-dimensional time series

at time t. The need for modeling yt with a large dimension N
is ubiquitous, ranging from economics and finance (Nicholson
et al. 2020; Wilms et al. 2023) to biology and neuroscience
(Lozano et al. 2009; Gorrostieta et al. 2012), and to environmen-
tal and health sciences (Dowell and Pinson 2016; Davis, Zang,
and Zheng 2016). For modeling yt , three issues are of particular
importance:

(I1) Flexibility of temporal dynamics: As N increases, it is more
likely that yt contains component series with complex tem-
poral dependence structures. Then information further in
the past may be needed to generate more flexible temporal
dynamics.

(I2) Efficiency: It is important that the estimation is efficient
both statistically and computationally under largeN, so that
accurate forecasts can be obtained.

(I3) Interpretability: Ideally, the model should have easy inter-
pretations, such as direct implications of Granger causality
(Granger 1969) among the N component series.

The finite-order vector autoregressive (VAR) model, coupled
with dimension reduction techniques such as sparse (Basu and
Matteson 2021) and low-rank (Wang et al. 2022) methods,
has been widely studied for high-dimensional time series. This
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model is highly popular due to its theoretical and computational
tractability, and the coefficient matrices have intuitive interpre-
tations analogous to those in the multivariate linear regression.
However, in practice, a large lag order is often required for the
VAR model to adequately fit the data (Chan, Eisenstat, and
Koop 2016; Nicholson et al. 2020). Thus, it is more realistic to
assume that the data follow themore general, infinite-orderVAR
(VAR(∞)) process:

yt =
∞∑
h=1

Ahyt−h + εt , (1.1)

where εt are the innovations, and Ah ∈ R
N×N are the AR

coefficient matrices; in particular, it reduces to the VAR(P)
model when Ah = 0 for h > P. In fact, if a sample {yt}Tt=1 is
generated from (1.1), we can approximate it by a VAR(P) model
provided that P → ∞ at an appropriate rate as the sample
size T → ∞ (Lütkepohl 2005), which in turn explains the
practical need for a large P. Nonetheless, for yt in (1.1) to be
stationary, Ah must diminish quickly as h → ∞; otherwise,
the infinite sum will be ill-defined. The decay property of Ah,
coupled with a large P, will not only pose difficulties in high-
dimensional estimation, but make the fitted VAR(P) model hard
to interpret. Take the Lasso estimator of the VAR(P) model
with sparse Ah’s. Since all entries of Ah must be small at even
moderately large h, the Lasso may fail to capture the significant
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yet small entries. Moreover, the sparsity pattern of Ah for the
fitted model generally varies substantially across h, making it
even more difficult to interpret Ah’s simultaneously (Shojaie,
Basu, and Michailidis 2012; Nicholson et al. 2020).

In the literature on multivariate time series, an alternative
approach to infinite-order VAR modeling is to consider the
vector autoregressive moving average (VARMA) model. For
example, the VARMA(1, 1) model is

yt = �yt−1 + εt − �εt−1, (1.2)

where �,� ∈ R
N×N are the AR and MA coefficient matrices.

Assuming that (1.2) is invertible, that is, all eigenvalues of �

are less than one in absolute value, (1.2) can be written as the
VAR(∞) process in (1.1) withAh = Ah(�,�) = �h−1(�−�)

for h ≥ 1. Note that Ah diminishes quickly as h → ∞
due to the exponential factor �h−1, so the VAR(∞) process is
well defined. Hence, the MA part of the model is the key to
parsimoniously generating VAR(∞)-type temporal dynamics.
For the general VARMA(p, q) model, yt =∑p

i=1 �iyt−i + εt −∑q
j=1 �jεt−j, the richness of temporal patterns will increase

with p and q, but with only small orders p and q, the VARMA
model can usually provide more accurate forecasts than large-
order VARmodels in practice (Athanasopoulos andVahid 2008;
Chan, Eisenstat, and Koop 2016). Compared with finite-order
VAR models, the VARMA model is more favorable in terms
of (I1) but suffers from severe drawbacks regarding (I2), as its
computation is generally complicated due to the following two
problems:

(P1) Non-identifiability: For example, in theVARMA(1, 1) case,
there are multiple pairs of (�,�) corresponding to the
same process. The root cause of this problem is the matrix
multiplications in the parametric form of Ah(�,�) =
�h−1(� − �).

(P2) High-order matrix polynomials: Consider as an exam-
ple the ordinary least squares (OLS) estimation of the
VARMA(1, 1) model. For a sample {yt}Tt=1, sinceAh(�,�)

is an hth-order matrix polynomial for 1 ≤ h ≤ T,
the loss function will have a computational complexity of
O(T2N3)1, hence, unscalable under large N.

While recent attempts have been made to improve the feasi-
bility of VARMA models (Metaxoglou and Smith 2007; Chan,
Eisenstat, and Koop 2016; Dias and Kapetanios 2018; Wilms
et al. 2023), they do not tackle (P1) and (P2) directly, but rather
resort to sophisticated identification constraints and optimiza-
tion methods. Moreover, high-dimensional VARMA models
can be difficult to interpret due to their latent MA structures.
Particularly, while it may be natural to assume that � and
� in (1.2) are sparse under large N (Wilms et al. 2023), this
does not necessarily result in a sparse VAR(∞) model; that is,
Ah(�,�)’s may not be sparse. Thus, the sparse VARMA model
is not particularly attractive in terms of (I3).

1The computational complexity in this article is calculated in amodel of com-
putationwhere field operations (addition andmultiplication) take constant
time.

For high-dimensional time series, we aim to develop a sparse
VAR(∞)model that is favorable in all of (I1)–(I3). The proposed
approach is motivated by reparameterizing the VAR(∞) form of
the VARMA(p, q) model into formulation (1.1) with

Ah =
d∑

k=1
�h,k(ω)Gk for h ≥ 1, (1.3)

where G1, . . . ,Gd ∈ R
N×N are unknown coefficient matrices,

{�h,k(·)}∞h=1 for 1 ≤ k ≤ d are different sequences of real-
valued functions characterizing the exponential decay pattern
of Ah, with �h,k(ω) → 0 as h → ∞ for each k, and ω

is an unknown low-dimensional parameter vector; see also
Huang, Lu, and Zheng (2023) for a high-dimensional Tucker-
low-rank time series model concurrently developed from (1.3)
with different techniques and interpretations. Similar to the
orders (p, q) of the VARMA model, d can be viewed as the
overall order that controls the complexity of temporal patterns
of the VAR(∞) model; see Section 2 for the detailed model
formulation. Note that (1.3) preserves the essential temporal
patterns of the VARMA process, since it is derived directly from
the former with little loss of generality. Thus, it is fundamentally
more flexible than finite-order VAR models, that is, more desir-
able regarding (I1). Moreover, each Ah = Ah(ω,G1, . . . ,Gd)
in (1.3) is a linear combination of matrices. Hence, unlike
Ah(�,�)mentioned above, this form ofAh gets rid of all matrix
multiplications. As a result, both problems (P1) and (P2) are
eliminated, and then (I2) can be achieved. To tackle the high
dimensionality, we assume that Gk’s are sparse, leading to the
proposed sparse parametric VAR(∞) (SPVAR(∞)) model. In
addition to improving the estimation efficiency as required by
(I2), the sparsity assumption enables greater interpretability,
that is, (I3), thanks to the novel separation of temporal and
cross-sectional dependence in parameterizing the VARMA-type
dynamic structure:

(D1) Temporal dependence: In (1.3), the decay pattern of Ah
as h → ∞ is fully characterized by the scalar weights
�h,k(ω)’s.

(D2) Cross-sectional dependence: TheGk’s, independent of the
above decay pattern as h → ∞, fully capture the cross-
sectional dependence.

As a result of (D2), the Granger causal network of theN compo-
nent series of yt is directly linked to the aggregate sparsity pat-
tern of Gk’s. Moreover, as detailed in Section 2.1, {�h,k(ω)}∞h=1’s
in (1.3) are specifically defined such thatAk = Gk for 1 ≤ k ≤ p,
whereas Ap+j for j ≥ 1 are expressed as linear combinations
of Gp+1, . . . ,Gd, where p is the AR order of the VARMA(p, q)
model from which (1.3) originates. Consequently, there is an
interesting dichotomy in the interpretations of different Gk’s:
On the one hand, each Gk with 1 ≤ k ≤ p has the same
interpretation as the lag-k AR coefficient matrix of the VAR(p)
model, capturing the short-term cross-sectional dependence.
On the other hand, the “MA” coefficient matrices Gp+1, . . . ,Gd
encapsulate the cross-sectional dependence associated with the
VARMA-type temporal structure, that is, the long-term influ-
ence among the component series that extends into high lags.
It is worth noting that the Granger causal network each Gk
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individually captures is specific to a particular temporal pat-
tern characterized by {�h,k(ω)}∞h=1. This granularity provides
a more detailed perspective on Granger causality from a tem-
poral standpoint; see Section 2.2 for details. Additionally, in
view of (D1), the sparsity of Gk’s incurs little loss of temporal
information, so the essential VARMA-type temporal pattern is
well preserved. This is a distinct advantage over regularized
VARMA models (Chan, Eisenstat, and Koop 2016; Wilms et al.
2023).

In fact, even compared to sparse finite-order VAR models,
the proposed model can be more interpretable for the following
two reasons. First, while the AR coefficient matrices Ah must
diminish quickly as h → ∞ to ensure stationarity of yt ,
Gk’s do not need to decay thanks to the diminishing �h,k(ω)’s.
Consequently, Gk’s, which have relatively strong signals, can be
easier to interpret than the diminishing Ah’s. Second, similar to
the orders (p, q) of VARMA models, the required d is generally
small in practice. For example, d = 2 works well for themacroe-
conomic data in Section 6, so we only need to interpret two
adjacency matrices G1 and G2. However, if the VAR(P) model
were fitted, we would have to interpret P adjacency matrices,
where the required P would be much larger.

We summarize the main contributions of this article as
follows:

(i) A sparse parametricVAR(∞)model is introduced for high-
dimensional time series, which is favorable regarding (I1)–
(I3), while avoiding problems (P1) and (P2).

(ii) We develop two �1-regularized estimators, which can be
implemented via efficient block coordinate descent algo-
rithms, and derive their nonasymptotic error bounds under
weak sparsity; particularly, our theory takes into account
the effect of initializing yt = 0 for t ≤ 0, which is needed
for feasible estimation of VAR(∞) models.

(iii) A high-dimensional Bayesian information criterion (BIC)
is proposed for model order selection, and its consistency
is established.

The remainder of this article is organized as follows. Section 2
introduces the proposed model and its interpretation. Section 3
presents two �1-regularized estimators and their nonasymptotic
theory. Section 4 introduces the proposed BIC. Sections 5 and 6
provide simulation and empirical studies. Section 7 concludes
with a brief discussion. The block coordinate descent algo-
rithms for implementing the estimation, additional simulation
and empirical results, and all technical proofs are provided in a
separate supplementary file.

Unless otherwise specified, we denote scalars, vectors and
matrices by lowercase letters (e.g., x), boldface lowercase letters
(e.g., x), and boldface capital letters (e.g.,X), respectively. Let I{·}
be the indicator function taking value one when the condition is
true and zero otherwise. For any a, b ∈ R, let a∨ b = max{a, b}
and a ∧ b = min{a, b}. The �q-norm of any x ∈ R

p is denoted
by ‖x‖q = (

∑p
j=1 |xj|q)1/q for q > 0. For any X ∈ R

d1×d2 , let
X
,σmax(X) (orσmin(X)),λmax(X) (orλmin(X)), vec(X), ‖X‖op,
and ‖X‖F be its transpose, largest (or smallest) singular value,
largest (or smallest) eigenvalue, vectorization, operator norm
‖X‖op = σmax(X), and Frobenius norm ‖X‖F =

√
tr(X
X),

respectively. We use C > 0 (or c > 0) to denote generic large (or

small) absolute constants. For any sequences xn and yn, denote
xn � yn (or xn � yn) if there is C > 0 such that xn ≤ Cyn
(or xn ≥ Cyn). We write xn � yn if xn � yn and xn � yn. In
addition, xn � yn if yn/xn → 0 as n → ∞.

2. ProposedModel

2.1. Motivation: Reparameterization of VARMAModels

This section introduces the motivation behind the proposed
model. Recall that the shared root cause of problems (P1) and
(P2) of the VARMA(1, 1) model, as discussed in Section 1, lies
in the matrix multiplications involved in computing the AR
coefficient matricesAh(�,�) = �h−1(�−�) in the VAR(∞)
formof themodel. Thus, the key to overcoming both problems is
to eliminate the matrix multiplications in the parameterization
of Ah.

To this end, we show that a reparameterization of Ah(�,�)

free of matrix multiplications can be derived via the following
two main steps: (a) Block-diagonalize � via the Jordan decom-
position, � = BJB−1, where B ∈ R

N×N is an invertible matrix,
and J ∈ R

N×N is the real Jordan form containing eigenvalues
of �; see (2.1) for details. (b) Then, merge B with all remaining
components in the expression of Ah(�,�).

Specifically, by Theorem 1 in Hartfiel (1995), for any 0 <

n ≤ N, real matrices with n distinct nonzero eigenvalues are
dense in the set of all N × N real matrices with rank at most n.
Thus, with only a little loss of generality, we can assume that �

is a real matrix with n distinct nonzero eigenvalues, where n =
rank(�); a more general result allowing repeated eigenvalues
is derived in the technical appendix of Huang, Lu, and Zheng
(2023). Then suppose that � has r nonzero real eigenvalues,
λ1, . . . , λr , and s conjugate pairs of nonzero complex eigenval-
ues, (λr+2m−1, λr+2m) = (γmeiθm , γme−iθm) for 1 ≤ m ≤ s,
where |λj| ∈ (0, 1) for 1 ≤ j ≤ r, γm ∈ (0, 1) and θm ∈ (0,π)

for 1 ≤ m ≤ s, and i represents the imaginary unit. Therefore,
n = r+2s, and the real Jordan form of� is a real block diagonal
matrix:

J = diag {λ1, . . . , λr ,C1, . . . ,Cs, 0} , (2.1)

Cm = γm ·
(

cos θm sin θm
− sin θm cos θm

)
∈ R

2×2,

where 1 ≤ m ≤ s; see chap. 3 in Horn and Johnson (2012).
Let A1 = � − � := G1. Substituting the Jordan decompo-

sition � = BJB−1 into the expression of Ah, we can show that
for all h ≥ 2, Ah = BJh−1B−1(� − �) = ∑r

j=1 λh−1
j G1+j +∑s

m=1 γ h−1
m [cos{(h − 1)θm}G1+r+2m−1 + sin{(h − 1)θm}

G1+r+2m], where G2, . . . ,G1+r+2s ∈ R
N×N are determined

jointly by B and B−1(� − �); see the proof of Proposition
1 in the supplementary file for details. This result is a
reparameterization of Ah’s in terms of the scalars λj’s, γm’s,
θm’s, and matrices G1, . . . ,G1+r+2s. As each Ah is a linear
combination of G1, . . . ,G1+r+2s, problems (P1) and (P2) are
tackled at their root: It not only ensures the identifiability
of the parameters λj’s, γm’s, θm’s, and the G-matrices, up
to a permutation in the indices j and m, but also leads to
a significantly reduced computational complexity, such as
O(TN2 + T2N) for the squared loss function.
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In general, the VARMA(p, q) model is given by yt =∑p
i=1 �iyt−i + εt −∑q

j=1 �jεt−j, where �i,�j ∈ R
N×N for

1 ≤ i ≤ p and 1 ≤ j ≤ q. Assuming invertibility, it has the
following VAR(∞) representation:

yt =
∞∑
h=1

⎛⎝p∧h∑
i=0

P�h−iP
�i

⎞⎠
︸ ︷︷ ︸

Ah

yt−h + εt , (2.2)

� =

⎛⎜⎜⎜⎜⎜⎝
�1 �2 · · · �q−1 �q
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎞⎟⎟⎟⎟⎟⎠ ,

where�0 = −I andP = (IN , 0N×N(q−1)) are constantmatrices,
� is called the MA companion matrix, and all eigenvalues of �
are less than one in absolute value; see Lütkepohl (2005). Similar
to the VARMA(1, 1) case, the following reparameterization can
be derived.

Proposition 1. Suppose that all nonzero eigenvalues of � are
distinct, and there are r distinct nonzero real eigenvalues of �,
λj ∈ (−1, 0) ∪ (0, 1) for 1 ≤ j ≤ r, and s distinct conjugate
pairs of nonzero complex eigenvalues of�, (λr+2m−1, λr+2m) =
(γmeiθm , γme−iθm)with γm ∈ (0, 1) and θm ∈ (0,π) for 1 ≤ m ≤
s. Then for all h ≥ 1, we have

Ah =
p∑

k=1
I{h=k}Gk +

r∑
j=1

I{h≥p+1}λ
h−p
j Gp+j

+
s∑

m=1
I{h≥p+1}γ

h−p
m
[
cos{(h − p)θm}Gp+r+2m−1

+ sin{(h − p)θm}Gp+r+2m
]
,

(2.3)

where Gk = Ak for 1 ≤ k ≤ p, and {Gk}p+r+2s
k=p+1 are

determined jointly by ˜B and ˜B−, with ˜B = PB and ˜B− =
B−1
(∑p

i=0 �p−iP
�i
)
. In addition, the corresponding term in

(2.3) is suppressed if p, r or s is zero.

Throughout this article, we denote d = p + r + 2s. Let
ω = (λ1, . . . , λr , η


1 , . . . η

s )
 ∈ R

r+2s, where ηm = (γm, θm)


for 1 ≤ m ≤ s, and g = vec(G) ∈ R
N2d, where G =

(G1, . . . ,Gd) ∈ R
N×Nd. Then, we can succinctly write (2.3) in

the parametric form of Ah = Ah(ω, g) = ∑d
k=1 �h,k(ω)Gk for

all h ≥ 1. Here �h,k(·)’s are real-valued functions predetermined
according to (2.3), which can be defined conveniently through a
matrix as follows: for any h ≥ 1 and 1 ≤ k ≤ d, �h,k(ω) is the
(h, k)th entry of the ∞ × dmatrix,
L(ω) = (�h,k(ω)

)
h≥1,1≤k≤d

=
(

Ip 0p×1 · · · 0p×1 0p×2 · · · 0p×2
0∞×p �I(λ1) · · · �I(λr) �II(η1) · · · �II(ηs)

)
∈ R

∞×d,

where, for any λ and η = (γ , θ)
, the blocks �I(λ) and �II(η)

are defined as
�I(λ) = (λ, λ2, λ3, . . . )
 ∈ R

∞,

�II(η) =
(

γ cos(θ) γ 2 cos(2θ) γ 3 cos(3θ) · · ·
γ sin(θ) γ 2 sin(2θ) γ 3 sin(3θ) · · ·

)


∈ R
∞×2.

2.2. Proposed Sparse Parametric VAR(∞) Model

Motivated by the discussion in Section 2.1, we propose the
following VAR(∞) model for high-dimensional time series:

yt =
∞∑
h=1

Ah(ω, g)yt−h + εt (2.4)

=
d∑

k=1
Gk

∞∑
h=1

�h,k(ω)yt−h + εt ,

where ω ∈ (−1, 1)r × Πs ⊂ R
r+2s is a parameter vector, with

Π = [0, 1) × (0,π), �h,k(·)’s are known real-valued functions
defined as in Section 2.1, Gk ∈ R

N×N for 1 ≤ k ≤ d are
parameter matrices with d = p + r + 2s. To handle the high-
dimensionality, we assume that Gk’s are sparse matrices. In this
section, we will focus on the exact sparsity as it is instrumental
for model interpretability. However, it will be relaxed to weak
sparsity in our theoretical analysis; see Assumptions 4 and 4′ in
Section 3. We call model (2.4) with exactly or weakly sparseGk’s
the Sparse Parametric VAR(∞) (SPVAR(∞)) model.

Note that if no sparsity assumption is imposed on Gk’s,
then (2.4) provides an alternative low-dimensional time series
model comparable to the VARMA model; see Section 2.3 for
its stationarity condition. While formulation (2.4) is derived
from the VARMA model, it is worth clarifying that it relaxes
the restrictions on Gp+j for 1 ≤ j ≤ r + 2s. Specifically, by
Proposition 1, if {yt} is indeed generated from aVARMAmodel,
then Gp+j’s would fulfill certain restrictions as determined by
the Jordan decomposition of the MA companion matrix �. By
contrast, (2.4) treats these matrices as free parameters.

The resemblance between (2.4) and the VARMA model is
mainly achieved by �h,k(·)’s, which yield VARMA-type decay
patterns of Ah as h → ∞. According to (2.3), �h,k(·)’s implic-
itly depend on the orders (p, r, s). Note that p and (r, s) are
counterparts of the AR and MA orders of the VARMA model,
respectively. In fact, when r = s = 0, (2.4) reduces to the
VAR(p) model, yt = ∑p

h=1 Ghyt−h + εt . For this reason, we
call G1, . . . ,Gp and Gp+1, . . . ,Gd the AR and MA coefficient
matrices of themodel, respectively.While larger (p, r, s) allow for
more complex temporal patterns, similar to the VARMAmodel,
usually it suffices to use small orders in practice; see Section 6
for empirical evidence.

The proposed model can be directly used to infer the mul-
tivariate Granger causality (MGC), which concerns Granger
causal (GC) relations (Granger 1969) between any pair of com-
ponent series in yt = (y1,t , . . . , yN,t)
; see Shojaie and Fox
(2021) for an excellent review. By definition, {yj,t} is GC for {yi,t}
if the past information of yj,t can improve the forecast of yi,t ,
where 1 ≤ i �= j ≤ N. Most existing works study the MGC
under the finite-orderVAR for its convenience: Under themodel
yt = ∑P

h=1 Ahyt−h + εt , {yj,t} is GC for {yi,t} if ai,j,h �= 0 for
some h ∈ {1, . . . ,P}, where ai,j,h is the (i, j)th entry of Ah, for
1 ≤ i �= j ≤ N. Notably, while working with Ah’s would be
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Figure 1. Illustration for different scenarios of Granger causality of {y2,t} for {y1,t} when (p, r, s) = (1, 1, 0) and N = 3, as determined by the (1, 2)th entry ofG1 andG2.
Cell (1, 2) ofGk is marked with “0”when g1,2,k = 0, and “X”when g1,2,k �= 0.

Figure 2. Illustration for different types of lagged influence of {y2,t} on {y1,t} under general orders (p, r, s) and N = 3. Cell (1, 2) ofGk is marked with “X”when g1,2,k �= 0.

infeasible when P = ∞, we can directly infer the MGC through
Gk’s: By (2.4), we have that {yj,t} is GC for {yi,t} if gi,j,k �= 0 for
some k ∈ {1, . . . , d}, where gi,j,k is the (i, j)th entry of Gk, for
1 ≤ i �= j ≤ N; see Figure 1 for an illustrationwith (i, j) = (1, 2),
(p, r, s) = (1, 1, 0), and N = 3.

More interestingly, since each Gk captures a piece of cross-
sectional information associated with a particular sequence
{�h,k(ω)}∞h=1, we can discern the decay pattern of any GC rela-
tions over time, achieving a more granular understanding of the
MGC. For simplicity, consider themodel for y1,t when (p, r, s) =
(1, 1, 0): y1,t =∑N

j=1 g1,j,1yj,t−1 +∑N
j=1 g1,j,2

∑∞
h=2 λh−1yj,t−h +

ε1,t , where gi,j,k denotes the (i, j)th entry of Gk. First, it is clear
that {yj,t} is GC for {y1,t} if g1,j,1 and g1,j,2 are not both zero.
Second, if this GC relation exists, the lagged influence of {yj,t}
on {y1,t} can be classified into the following three scenarios: (a)
lag-one only, if g1,j,1 �= 0 and g1,j,2 = 0; (b) all lags beyond lag
one, if g1,j,1 = 0 and g1,j,2 �= 0; and (c) all lags, if g1,j,1 �= 0
and g1,j,2 �= 0. In scenarios (b) and (c), the exponential decay of
the influence over time is determined by λ; see Figure 1 for an
illustration for j = 2.

In general, with orders (p, r, s), the model equation for y1,t
will consist of two conditional mean terms: The first term
involves the sum of g1,j,kyj,t−k for lags 1 ≤ k ≤ p, whereas
the second term captures the influence beyond lag p. The latter
involves a weightedmixture of r distinct exponential decay rates
and s distinct pairs of damped cosine and sine waves. Then
the lagged influence of {yj,t} on {y1,t} can be generalized to the
following three scenarios, if theGC relation exists: (1) short-term
only, if g1,j,k �= 0 for some 1 ≤ k ≤ p, while g1,j,p+1 = · · · =
g1,j,d = 0; (2) long-term only, if g1,j,1 = · · · = g1,j,p = 0, while
g1,j,k �= 0 for some p + 1 ≤ k ≤ d; and (3) both short-term
and long-term influences, if g1,j,k �= 0 for some 1 ≤ k ≤ p and
some p + 1 ≤ k ≤ d. A more detailed illustration is given in
Figure 2.

Remark 1. Inmany applications, the cross-sectional dependence
may not be time-invariant; for example, Barigozzi and Brown-
lees (2017) found that the estimated Granger causal network in
a sparse VAR system for stock volatilities may be time-varying.
Time-varying cross-sectional dependence is also common in
behavioral and neural studies: for example, different segments
of video time series of freely moving animals may correspond to
distinct behaviors (Costacurta et al. 2022), and discrete shifts in
the dynamics of neural activity may reflect changes in under-
lying brain state (Fiecas et al. 2023). To accommodate such
applications, the proposed model can be extended to allow Gk’s
to be time varying; for example, aMarkov-switching SPVAR(∞)
model may be developed along the lines of Li, Safikhani, and
Shojaie (2022).

Remark 2. In VAR models, the GC relations as captured by the
coefficient matrices Ah’s correspond to lagged cross-sectional
dependence, whereas the instantaneous cross-sectional depen-
dence is captured by the variance-covariance matrix 	ε of εt .
While this section focuses on the former, 	ε can also be esti-
mated based on residuals from the fitted SPVAR(∞) model; see
Remark 5 in Section 3.1.

Remark 3. We can also conduct impulse response analysis based
on the VMA(∞) form of the proposed model; see Theorem 1
in Section 2.3 for the VMA(∞) representation. For example,
when (p, r, s) = (1, 1, 0), the corresponding MA coefficient
matrices are 
1 = G1, 
2 = G2

1 + λG2, 
3 = G3
1 +

λG1G2 + λG2G1 + λ2G2, etc. When G1 and G2 are both sparse
with their nonzero entries in sufficiently different positions, all

 j’s will also tend to be sparse; this is indeed the case for the
empirical example in Section 6. Thus, we can alternatively inter-
pret the high-dimensional time series via the impulse response
analysis.
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2.3. Stationarity Condition

We provide a sufficient condition onω andGk’s for the existence
of a unique strictly stationary solution for (2.4) in the following
theorem, which is valid whether Gk’s are sparse or not. Similar
to the AR companion matrix of a VARMA(p, q) model, denote

G1 =

⎛⎜⎜⎜⎜⎜⎝
G1 G2 · · · Gp−1 Gp
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎞⎟⎟⎟⎟⎟⎠ .

Theorem 1. Suppose that there exists 0 < ρ̄ < 1 such that

max{|λ1|, . . . , |λr|, γ1, . . . , γs} ≤ ρ̄ and

ρ(G1) + ρ̄

1 − ρ̄

r+2s∑
k=1

ρ(Gp+k) < 1,

where ρ(·) denotes the spectral radius of a matrix, and ρ(G1)
disappears when p = 0. Moreover, {εt} is a strictly stationary
sequence. Then there exists a unique strictly stationary solution
to the model equation in (2.4), given by yt = εt +∑∞

j=1 
 jεt−j,
where 
 j = ∑∞

k=1
∑

j1+···+jk=j Aj1 · · ·Ajk for j ≥ 1, with Ah =∑d
k=1 �h,k(ω)Gk for h ≥ 1.

When r = s = 0, the condition in Theorem 1 reduces to
ρ(G1) < 1, which coincides with the necessary and sufficient
condition for the strict stationarity of the VAR(p) model. When
r and s are not both zero, the stationarity region for Gk’s in
Theorem 1 will be larger if ρ̄ becomes smaller, that is, if Ah
diminishes more quickly as h → ∞.

Remark 4. If {yt} is a VARMA(p, q) process fulfilling the repre-
sentation in (2.4), it is known that the necessary and sufficient
condition for its strict stationarity is simply ρ(G1) < 1; see
Lütkepohl (2005). This suggests that the sufficient condition in
Theorem1 could sometimes be restrictive. Indeed, the condition
on ω and Gk’s in Theorem 1 is derived from the necessary and
sufficient condition:

∑∞
j=1 ‖
 j‖ < ∞, where 
 j’s are functions

of Ah’s as defined in the VMA(∞) form of {yt} in Theorem 1,
and ‖ · ‖ is any submultiplicative matrix norm. This motivates
us to recommend a more general numerical method to check
stationarity for practical use: first compute the sequence {
 j}
using the parameters ω and Gk’s, and then numerically check
whether the partial sum

∑J
j=1 ‖
 j‖ converges as J → ∞. This

method is applied in Section 6 to check the stationarity of the
fitted model.

3. High-Dimensional Estimation

3.1. �1-Regularized Joint Estimator

We first propose an �1-regularized estimator for the SPVAR(∞)
model via jointly fitting all component series of yt . An alternative
estimator will be introduced in the next section.

For {yt}Tt=1 generated from (2.4) with orders (p, r, s),
the squared loss is LT(ω, g) = T−1∑T

t=1 ‖yt − ∑∞
h=1

Ah(ω, g)yt−h‖22 = T−1∑T
t=1 ‖yt − ∑d

k=1 Gk
∑∞

h=1

�h,k(ω)yt−h‖22. Here g = vec(G), where G = (G1, . . . ,Gd) ∈
R
N×Nd. Since the loss function depends on observations in

the infinite past, initial values for {yt , t ≤ 0} will be needed
in practice. We set them to zero as E(yt) = 0, and then the
corresponding loss becomes

L̃T(ω, g) = 1
T

T∑
t=1

∥∥∥yt −
t−1∑
h=1

Ah(ω, g)yt−h

∥∥∥2
2

(3.1)

= 1
T

T∑
t=1

∥∥∥yt −
d∑

k=1
Gk

t−1∑
h=1

�h,k(ω)yt−h

∥∥∥2
2
.

The initialization effect will be taken into account in our theoret-
ical analysis, and its negligibility is confirmed by our simulation
study; see Lemmas S6–S8 and Section S2 in the supplementary
file. We propose the �1-regularized joint estimator (JE) as fol-
lows:

(ω̂, ĝ) = argmin
ω∈�,g∈RN2d

{
L̃T(ω, g) + λg‖g‖1

}
, (3.2)

where λg > 0 is the regularization parameter, and � ⊂
(−1, 1)r×Πs denotes the parameter space ofω. Let a = vec(A),
where A = (A1,A2, . . . ) is the horizontal concatenation of
{Ah}∞h=1. Note that a = (L(ω) ⊗ IN2)g. Based on (3.2), the
estimator of Ah is ̂Ah = ∑d

k=1 �h,k(ω̂)̂Gk for h ≥ 1. Then,
â = vec(̂A) = (L(ω̂) ⊗ IN2 )̂g, wherêA = (̂A1,̂A2, . . . ).

Denote the true value of any parameter with the super-
script “∗”, for example, g∗, ω∗, and a∗. For ω∗ ∈ �, let
ν∗
lower = (min1≤j≤r |λ∗

j |) ∧ (min1≤m≤s |γ ∗
m|) and ν∗

gap =
min1≤j�=k≤r+2s |x∗

j − x∗
k |, where x∗

j = λ∗
j for 1 ≤ j ≤ r and

(x∗
r+2m−1, x∗

r+2m) = (γ ∗
meiθ

∗
m , γ ∗

me−iθ∗
m) for 1 ≤ m ≤ s. The

assumptions for our theoretical analysis are presented as follows.

Assumption 1 (Parameter space and stationarity). (i) There
exists an absolute constant 0 < ρ̄ < 1 such that
|λ1|, . . . , |λr|, γ1, . . . , γs ≤ ρ̄ for all ω ∈ �; and (ii) the time
series {yt} is stationary.
Assumption 2 (Separability). (i) There exists an absolute con-
stant cν > 0 such that ν∗

lower ≥ cν and ν∗
gap ≥ cν ; and (ii) r and s

are fixed.

Assumption 3 (Sub-Gaussian errors). Let εt = 	
1/2
ε ξ t , where

ξ t is a sequence of i.i.d. random vectors with zero mean and
var(ξ t) = IN , and 	ε is a positive definite covariance matrix.
In addition, the coordinates (ξit)1≤i≤N within ξ t are mutually
independent and σ 2-sub-Gaussian.

Assumption 1(i) ensures that |λj|’s and γm’s are bounded
away from one. A sufficient condition for Assumption 1(ii)
is given in Theorem 1. Under stationarity, {yt} has the
VMA(∞) form yt = 
∗(B)εt , where 
∗(B) = IN +∑∞

j=1 
∗
j Bj, and B is the backshift operator; see Theorem 1. Let

μmin(
∗) = min|z|=1 λmin(
∗(z)
H∗ (z)) and μmax(
∗) =
max|z|=1 λmax(
∗(z)
H∗ (z)), where 
H∗ (z) is the conjugate
transpose of 
∗(z) for z ∈ C. It can be verified that
μmin(
∗) > 0; see also Basu and Michailidis (2015). Then
we define the positive constants κ1 = λmin(	ε)μmin(
∗)
and κ2 = λmax(	ε)μmax(
∗). Assumption 2(i) requires that
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different λ∗
j ’s or η∗

m’s are bounded away from zero and from each
other. Since these parameters lie in bounded parameter spaces,
this also entails that r and smust be fixed; see Assumption 2(ii).
Assumption 3 relaxes the Gaussian assumption commonly used
in the literature on high-dimensional time series models (e.g.,
Basu and Michailidis 2015) to sub-Gaussianity.

Let gAR = vec(GAR) and gMA = vec(GMA), where GAR =
(G1, . . . ,Gp) ∈ R

N×Np and GMA = (Gp+1, . . . ,Gd) ∈
R
N×N(r+2s). Let gi,j,k be the (i, j)th entry of Gk. Then, we

define the weak sparsity of g∗
AR and g∗

MA by restricting
them into the �q-“balls”, Bq(RARq ) := {gAR ∈ R

N2p |∑p
k=1
∑N

i=1
∑N

j=1 |gi,j,k|q ≤ RARq } and Bq(RMA
q ) := {gMA ∈

R
N2(r+2s) | ∑d

k=p+1
∑N

i=1
∑N

j=1 |gi,j,k|q ≤ RMA
q }, respectively,

which is a more general assumption than exact sparsity.

Assumption 4 (Weak sparsity). There exists q ∈ [0, 1] such
that g∗

AR ∈ Bq(RARq ) and g∗
MA ∈ Bq(RMA

q ) for some radii
RARq ,RMA

q > 0.

Assumption 4 implies that g∗ ∈ Bq(Rq), where Rq := RARq +
RMA
q and Bq(Rq) := {g ∈ R

N2d | ∑d
k=1
∑N

i=1
∑N

j=1 |gi,j,k|q ≤
Rq}. If q = 0, Assumption 4 becomes the exact sparsity
constraints—g∗

AR and g∗
MA have at most RARq and RMA

q nonzero
entries, respectively. If q ∈ (0, 1], the �q-“balls” enforce a certain
decay rate on the absolute values of the entries in g∗ as the
dimension N grows. Note that we do not require RARq and RMA

q
to be fixed.

A main theoretical challenge is that the loss function
L̃T(ω, g) is highly nonconvex with respect to ω. Consequently,
the global statistical consistency commonly established for high-
dimensional convex M-estimators is not available. However, if
the nonconvex loss function exhibits a benign convex curvature
over local regions, then a form of local statistical consistency
can be established; see, for example, Loh (2017). For many non-
convexM-estimators, certain convexity holds within a constant-
radius neighborhood of the true parameter value; for the high-
dimensional setup, this is termed as local restricted strong con-
vexity in Loh (2017). Then it can be shown that all local optima
within this region can enjoy the same convergence rate as the
�1-regularized least squared estimator for linear regression; see
also Janková and van de Geer (2021) and Wang and He (2022)
for other works on local statistical guarantees for estimators with
nonconvex losses or regularizers. Our method is reminiscent
of that for high-dimensional nonconvex M-estimators in the
literature. However, our setting is special in that L̃T(ω, g) is only
partially nonconvex, as it is convex with respect to g, for any
fixed ω. Thus, unlike Loh (2017), we only need to restrict ω

within a local region of restricted curvature around ω∗, while
g can be free.

Let αMA = min1≤j≤r+2s ‖G∗
p+j‖F and αMA =

max1≤j≤r+2s ‖G∗
p+j‖F, which are both allowed to grow with

N. Then let α = αMA/αMA. The local convexity of our loss
function around ω∗ is an immediate consequence of the
following proposition.

Proposition 2. Suppose that αMA > 0. Then under Assump-
tions 1(i) and 2, there exists a constant cω = min(2, c/α) > 0

such that for any ω ∈ � with ‖ω − ω∗‖2 ≤ cω, it holds
‖g − g∗‖2 + αMA‖ω − ω∗‖2 � ‖a − a∗‖22 � ‖g − g∗‖2 +
αMA‖ω − ω∗‖2, where a = (L(ω) ⊗ IN2)g.

Proposition 2 shows that the mapping (ω, g) → a is linear
within a constant-radius neighborhood of ω∗. Then, since the
squared loss of our model is convex with respect to a, it is also
convex with respect to (ω, g) jointly within the local region of
ω∗. Note that the radius cω is a constant independent of N and
T under the mild condition that αMA � αMA, in which case
{‖G∗

p+j‖F}r+2s
j=1 are of the same order of magnitude.

Since Proposition 2 relies on confining ω to a local neighbor-
hood of ω∗, the theoretical guarantees derived in this article are
applicable to local estimators. That is, to derive nonasymptotic
error bounds, we need to assume that the estimator ω̂ obtained
from (3.2) lies within the local region of ω∗ defined in Propo-
sition 2. We will discuss the practical aspect of this assumption
after stating the main result. For simplicity, denote

ηT =
√

κ2λmax(	ε) log{N(p ∨ 1)}
κ2
1T

and

� = λmax(	ε)

κ2(p ∨ 1)
.

Theorem 2. Suppose that Assumptions 1–4 hold with∑∞
j=0 ‖
∗

j ‖2op < ∞, Rq � �/η
2−q
T , α2 � Rq/RMA

q ,
� � α2

MARq/RMA
q , and αMA > 0. In addition, assume

that logN � (κ2/κ1)
2, T � max{κ2(p ∨ 1)4, (κ2/κ1)2(p ∨

1) log{(κ2/κ1)αN(p ∨ 1)}}, and we solve (3.2) with
λg � √

κ2λmax(	ε) log{N(p ∨ 1)}/T. If ‖ω̂ − ω∗‖2 ≤ cω,
then with probability at least 1 − C(p ∨ 1)e−c(κ1/κ2)2 logN ,

‖̂a − a∗‖2 � η
1−q/2
T

√
Rq and

1
T

T∑
t=1

∥∥∥∥∥
t−1∑
h=1

(̂Ah − A∗
h)yt−h

∥∥∥∥∥
2

2

�
η
2−q
T Rq
κ
1−q
1

.

Combining Theorem 2 with Proposition 2, we immediately
have the estimation error bounds ‖̂g − g∗‖2 � η

1−q/2
T
√
Rq

and ‖ω̂ − ω∗‖2 � α−1
MAη

1−q/2
T
√
Rq. In particular, under exact

sparsity, when r = s = 0, the bound for ‖̂a − a∗‖2 in Theo-
rem 2 matches that for the Lasso estimator of VAR(p) models in
Basu and Michailidis (2015), while the Gaussian assumption is
relaxed. Also note that we do not require the uniqueness of the
optimal solution to (3.2), that is, Theorem 2 is valid for all local
optima within the constant-radius neighborhood of ω∗.

The JE can be efficiently implemented via the block coordi-
nate descent algorithm; see Section S1.1 of the supplementary
file for details. While the value of cω is unknown in practice, it is
known to be independent of N and T under the mild condition
that αMA � αMA. The practical implication of the condition
‖ω̂ − ω∗‖2 ≤ cω is that a reasonably good initialization for
ω will be needed for the optimization algorithm of (3.2). For
nonconvex estimators, to meet such requirements, commonly a
convex preliminary estimator is used to initialize the algorithm
(e.g., Janková and van de Geer 2021). However, for our model,
the initialization task can be simplified, because the r values
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λ1, . . . , λr ∈ (−1, 1) and the s values η1, . . . , ηs ∈ [0, 1)× (0,π)

are restricted to bounded spaces and must be well separated
from one another; see Assumptions 1(i) and 2(i). In fact, when r
and s are larger, the initialization of ω will be even easier, as the
selected r and s values will be denser on the bounded space and
hence naturally tend to be closer to the true values. In practice,
we recommend considering several different initial values for ω

and selecting the solution of the optimizationwithminimum in-
sample squared loss; see Section S1.2 of the supplementary file
for details.

Remark 5. Following the method for sparse VAR(P) models in
Krampe and Paparoditis (2021), under a weak sparsity assump-
tion on 	ε , we can construct a high-dimensional estimator
of 	ε as ̂	ε = THRλε (T−1∑T

t=1 ε̂tε̂


t ), where the residuals

ε̂t are obtained based on ̂Ah’s, and THRλε (·) is the entrywise
thresholding function with a chosen threshold parameter λε >

0; see Krampe and Paparoditis (2021) for details. Then, based on
̂	ε and̂Ah’s, we can estimate var(yt), so the instantaneous cross-
sectional dependence can be interpreted. We leave a rigorous
theoretical study of this estimation for future research.

Remark 6. While Theorem 2 establishes statistical error bounds,
an interesting avenue for future research is to develop a more
comprehensive estimation theory that integrates both statistical
and algorithmic convergence analyses; see similar works such as
Agarwal, Negahban, andWainwright (2012) and Loh (2017). To
tackle the theoretical challenges arising from the nonconvexity
of the loss function, Proposition 2may be leveraged to transform
the problem into a convex one within a local region around ω∗.

3.2. �1-Regularized Rowwise Estimator

While Theorem 2 allows Rq to grow with N, it requires Rq �
�/η

2−q
T ; for example, if q = 0, then this essentially will become

R0 � T/ log{N(p ∨ 1)}. However, this requirement could
be stringent when T is relatively small. To relax the sparsity
requirement, we further introduce a rowwise estimator (RE)
based on separately fitting each row of the proposed model.

For 1 ≤ i ≤ N, the ith row of model (2.4) is
yi,t = ∑∞

h=1 a

i,hyt−h + εi,t , where ai,h = ∑d

k=1 �h,k(ω)g i,k ∈
R
N is the ith row of Ah, and g i,k ∈ R

N is the ith
row of Gk. Then, the squared loss for the ith row is
Li,T(ω, g i) = T−1∑T

t=1(yi,t − ∑∞
h=1 a


i,hyt−h)
2 =

T−1∑T
t=1{yi,t − ∑d

k=1 g

i,k
∑∞

h=1 �h,k(ω)yt−h}2, where
g i = (g


i,1, . . . , g

i,d)


 ∈ R
Nd is the ith row of G = (G1, . . . ,Gd).

Note that joint loss function as defined in the previous section
can be decomposed as LT(ω, g) = ∑N

i=1 Li,T(ω, g i). Thus,
the rowwise losses Li,T(·)’s can be minimized separately with
respect to g i for 1 ≤ i ≤ N. Meanwhile, since ω is shared by
all Li,T(·)’s, each rowwise minimization can yield a consistent
estimator of ω. This motivates us to consider the following
�1-regularized RE for 1 ≤ i ≤ N:

(ω̂i, ĝ i) = argminω∈�, g i∈RNd
{
L̃i,T(ω, g i) + λg‖g i‖1

}
, (3.3)

where λg > 0 is the regularization parameter, and L̃i,T(ω, g i)
is defined by setting the initial values {yi,s, s ≤ 0} to zero,

that is, L̃i,T(ω, g i) = T−1∑T
t=1(yi,t − ∑t−1

h=1 a


i,hyt−h)

2 =
T−1∑T

t=1{yi,t − ∑d
k=1 g


i,k
∑t−1

h=1 �h,k(ω)yt−h}2. Let ai =
(a


i,1, a

i,2, . . . )


 ∈ R
∞ be the ith row of A = (A1,A2, . . . ) for

1 ≤ i ≤ N. Note that ai = (L(ω) ⊗ IN)g i. Based on (3.3),
we have âi = (̂a


i,1, â


i,2, . . . )
 = (L(ω̂) ⊗ IN )̂g i, where ĝ i =

(̂g

i,1, . . . , ĝ



i,d)


, and âi,h =∑d
k=1 �h,k(ω̂i)̂g i,k. The algorithm for

the RE is provided in Section S1.1 of the supplementary file.
Similar to the previous section, we can derive the nonasymp-

totic error bounds for the RE. For 1 ≤ i ≤ N, let g i,AR =
(g


i,1, . . . , g

i,p)


 ∈ R
Np and g i,MA = (g


i,p+1, . . . , g

i,d)


 ∈
R
N(r+2s). To define the weak sparsity of g∗

i,AR and g∗
i,MA, we

consider the �q-“balls”, Bq(RARi,q ) := {g i,AR ∈ R
Np |∑p

k=1
∑N

j=1 |gi,j,k|q ≤ RARi,q } and Bq(RMA
i,q ) := {g i,MA ∈

R
N(r+2s) | ∑d

k=p+1
∑N

j=1 |gi,j,k|q ≤ RMA
i,q }. The following is the

row-wise counterpart of Assumption 4.

Assumption 4′ (Rowwise weak sparsity). For 1 ≤ i ≤ N, there
exists q ∈ [0, 1] such that g∗

i,AR ∈ Bq(RARi,q ) and g∗
i,MA ∈

Bq(RMA
i,q ) for some radii RARi,q ,R

MA
i,q > 0.

Let Ri,q = RARi,q + RMA
i,q , and then by Assumption 4′, g∗

i ∈
Bq(Ri,q) := {g i ∈ R

Nd | ∑d
k=1
∑N

j=1 |gi,j,k|q ≤ Ri,q}. Moreover,
Assumption 4′ implies the overall sparsity level inAssumption 4,
since it leads to g∗

AR ∈ Bq(RARq ), g∗
MA ∈ Bq(RMA

q ), and
consequently g∗ ∈ Bq(Rq), where RARq = ∑N

i=1 RARi,q , RMA
q =∑N

i=1 RMA
i,q , and Rq = RMA

q + RARq =∑N
i=1 Ri,q.

For 1 ≤ i ≤ N, let αi,MA = min1≤j≤r+2s ‖g∗
i,p+j‖2 and

αi,MA = max1≤j≤r+2s ‖g∗
i,p+j‖2, which are both allowed to grow

withN. Denote αi = αi,MA/αi,MA. The rowwise counterparts of
Proposition 2 and Theorem 2 are established as follows.

Proposition 3. Fix 1 ≤ i ≤ N. Suppose that αi,MA > 0. Then
under Assumptions 1(i) and 2, there exists a constant ci,ω =
min(2, c/αi) > 0 such that for anyω ∈ �with ‖ω−ω∗‖2 ≤ ci,ω,
it holds ‖g i − g∗

i ‖2 + αi,MA‖ω − ω∗‖2 � ‖ai − a∗
i ‖22 �

‖g i − g∗
i ‖2 + αi,MA‖ω − ω∗‖2, where ai = (L(ω) ⊗ IN)g i.

Theorem 3. Suppose that Assumptions 1–3 and 4′ hold with∑∞
j=0 ‖
∗

j ‖2op < ∞, Ri,q � �/η
2−q
T , α2

i � Ri,q/RMA
i,q ,

� � α2
i,MARi,q/RMA

i,q , and αi,MA > 0, for 1 ≤ i ≤
N. In addition, assume that logN � (κ2/κ1)2, T �
max{κ2(p ∨ 1)4, (κ2/κ1)2(p ∨ 1) log{(κ2/κ1)αmaxN(p ∨ 1)}},
with αmax = max1≤i≤N αi, and we solve (3.3) with λg �√

κ2λmax(	ε) log{N(p ∨ 1)}/T. For 1 ≤ i ≤ N, if ‖ω̂i−ω∗‖2 ≤
ci,ω, then with probability at least 1 − C(p ∨ 1)e−c(κ1/κ2)2 logN ,

‖̂ai − a∗
i ‖2 � η

1−q/2
T

√
Ri,q and

1
T

T∑
t=1

∥∥∥∥∥
t−1∑
h=1

(̂ai,h − a∗
i,h)


yt−h

∥∥∥∥∥
2

2

�
η
2−q
T Ri,q
κ
1−q
1

.

Compared toTheorem3, the sparsity condition inTheorem3
is much weaker, that is, Ri,q � �/η

2−q
T for 1 ≤ i ≤ N; or
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essentially, Ri,0 � T/ log{N(p ∨ 1)} when q = 0. Thus, the RE
may be preferred in practice when T is relatively small.

Moreover, by Theorem 3 and Proposition 3, we have ‖̂g i −
g∗
i ‖2 � η

1−q/2
T
√
Ri,q and ‖ω̂i − ω∗‖2 � α−1

i,MAη
1−q/2
T
√
Ri,q for

1 ≤ i ≤ N. Note that each RE ω̂i is a consistent estimator of
ω∗, and the estimation error is proportional to α−1

i,MA
√
Ri,q. On

the other hand, as implied by Theorem 2, the estimation error
of the JE for ω∗ is proportional to α−1

MA
√
Rq. For example, if

Ri,q � Rq/N and α2
i,MA � α2

MA/N, then the two bounds will be
comparable. However, intuitively, allowing different estimators
ω̂i for different rows may enhance the flexibility in practice,
although it may also increase the risk of overfitting. In addition,
combining the results for âi, ĝ i and the prediction error across all
rows, we have ‖̂a−a∗‖2 � η

1−q/2
T
√
Rq, ‖̂g−g∗‖2 � η

1−q/2
T
√
Rq,

and T−1∑T
t=1 ‖∑t−1

h=1(
̂Ah −A∗

h)yt−h‖22 � η
2−q
T Rq/κ

1−q
1 . Here,

with a slight abuse of notation, â, ĝ, and ̂Ah’s represent the
estimates obtained based on merging the RE âi or ĝ i for 1 ≤
i ≤ N. Note that these bounds match exactly those of the JE in
the previous section.

In addition to the above upper bounds analysis, we numeri-
cally assess the actual comparative performance of RE and JE via
simulations in Section S2.2 of the supplementary file. It is shown
that they can perform very similarly for the estimation of g∗,
while RE may outperform JE for the estimation of ω∗, resulting
in an overall advantage for the estimation of a∗. However, as
long as T is not too small compared to Rq, JE and RE tend to
have similar out-of-sample forecast accuracy; see the empirical
analysis in Section 6 and the simulation study in Section S2.4 of
the supplementary file for details. Furthermore, as commented
by one referee, the competitive numerical performance of the JE
might hint that its more stringent sparsity condition could be an
artifact of the proof technique.

4. Model Order Selection

In this section, we introduce a Bayesian information criterion
(BIC) based approach to selecting the model orders for the
proposed high-dimensional SPVAR(∞) model.

Let M∗ = (p∗, r∗, s∗) denote the true orders. For the feasi-
bility of order selection, it is crucial to ensure that M∗ is irre-
ducible; that is, if {yt} is generated with orders M∗, there is no
alternative parameterizationwith reduced orders. As established
in Lemma S14 in the supplementary file, the irreducibility of r∗
and s∗ is guaranteed if λ∗

j ’s, γ
∗
m’s, and αMA are nonzero. On the

other hand, p∗ is irreducible under the following assumption.

Assumption 5 (Irreducibility). Gp∗ �= ∑r∗
j=1 Gp∗+j + ∑s∗

m=1
Gp∗+r∗+2m−1.

To select the model orders, for any M = (p, r, s), we define
the high-dimensional BIC,

BIC(M) = log L̃T(ω̂M, ĝM) (4.1)

+ τNd
[
log{N(p ∨ 1)}

T

]1−q/2
logT,

where ω̂M and ĝM denote estimates obtained by fitting the
model with orders M using either the JE in (3.2) or the RE in

(3.3). In particular, if the RE is employed, then L̃T(ω̂M, ĝM) =∑N
i=1 Li,T(ω̂i,M, ĝ i,M), where ω̂M and ĝM denote collections

of ω̂i,M’s and ĝ i,M’s, respectively. Note that for notational sim-
plicity, we suppress the dependence of L̃T(·) and LT(·) on M
in this section. Additionally, τN > 0 is a sequence possibly
dependent on N satisfying the following condition.

Assumption 6 (Penalty parameter).
τN � N−1Rq{κ2λmax(	ε)}1−q/2/κ

3−2q
1 .

Assumption 6 ensures that the proposed BIC can rule out any
overspecified model, M ∈ Mover = {M ∈ M | p ≥ p∗, r ≥
r∗ and s ≥ s∗} \ M∗. When the constants κ1, κ2 and λmax(	ε)

are fixed, Assumption 6 can be simplified to τN � N−1Rq.While
Rq is unknown in practice, to set a reasonable τN , wemay assume
that Rq � N; for example, this will hold ifG∗

k ’s are (weakly) row-
sparse. Then it would suffice to fix τN ≡ τ > 0. In practice, we
may simply set q = 0.We recommend τ = 0.05,which performs
well in our simulations.

Based on (4.1), we estimate the model orders by

M̂ = (̂p, r̂,̂ s) = argminM∈M BIC(M),

where M = {(p, r, s) | 0 ≤ p ≤ p, 0 ≤ r ≤ r, 0 ≤ s ≤ s}, with
M := (p, r, s) being predetermined maximum orders. Since the
true orders are usually small in practice,Mneed not be large; for
example p = r = s = 6 may be sufficient for most applications.
Our simulations show that M̂ is insensitive to the choice ofM
as long as it is large enough compared toM∗.

Let Mmis = {M ∈ M | p < p∗, r < r∗ or s < s∗}.
To establish the conditions that prevent the proposed BIC from
selecting anymisspecifiedmodel, we need to accurately quantify
the minimum difference between any M ∈ Mmis and M∗.
This analysis is challenging since there is no monotonic nested
ordering over M due to the involvement of three different
orders, p, r and s. Particularly, M ∈ Mmis may not be nested
within M∗ regarding all three orders. For instance, if M∗ =
(1, 1, 0), then a misspecified model may be M1 = (p, 0, 0) or
M2 = (0, r, s), where, for example, p = r = s = 6. Clearly, we
cannot simply treatM1 orM2 as a smaller model thanM∗, as
they possess orders as large as p, r, or s.

To uniformly accommodate the possibly nonnested relation-
ship between M ∈ Mmis and M∗, we leverage their connec-
tions with a common model,M = (p, r, s). Specifically, we can
show that model (2.4) with any orders M = (p, r, s) ∈ M
can be reparameterized as the model with M = (p, r, s). In
addition, the corresponding parameter vectors, denoted ω ∈
(−1, 1)r × Πs and g ∈ R

N×Nd, satisfy the following equality
constraints:

CM
1 ω = 0 and

(
CM
2 (ω) ⊗ IN2

)
g = 0, (4.2)

where CM
1 ∈ R

(δr+2δs)×(r+2s) is a constant matrix encoding
(δr + 2δs) constraints on ω, specifying which elements are
restricted to zero, and the matrix function CM

2 (ω) ∈ R
δd×d

encodes δd equality constraints on g for any given ω, with δr =
r − r, δs = s − s, and δd = d − d; see Section S7.3 in the
supplementary file for detailed definitions ofCM

1 andCM
2 (·). In

particular, increasing p by one amounts to deleting a particular
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row from the constraint matrix CM
2 (·). On the other hand,

increasing r (or s) by one is equivalent to deleting a particular
row (or a pair of rows) from both CM

1 and CM
2 (·).

Note thatCM
2 (·) cannot reduce to a constantmatrix indepen-

dent of ω except in the special cases where p = p− 1 or r = s =
0. In particular, when p = p − 1, the second equation in (4.2) is
essentially the reducibility condition of p, which resembles that
for p∗ in Assumption 5(i). However, in general, this equation
represents much more intricate constraints, since CM

2 (·) is a
nonlinear function. The complexity of this form can be under-
stood from two perspectives. First, due to the nonlinearity of
model (2.4) in ω, the effect of any underspecification in r or s
will be highly nonlinear. Second, the order p plays a special role
in the definition of �h,k(·)’s as it is involved in I{h≥p+1}λ

h−p
j and

I{h≥p+1}γ
h−p
m ; see (2.3). Then, whenever p �= p∗, the exponent

h − p will differ from that under M∗ for all lags h ≥ p + 1,
thereby affecting all �h,k(·)’s. Consequently, due to the interplay
between p and �h,k(·)’s, an underspecification in p generally will
also have a nonlinear effect.

Let 
M = {ω ∈ (−1, 1)r × Πs, g ∈ R
N2d : CM

1 ω =
0 and (CM

2 (ω) ⊗ IN2)g = 0} denote the restricted parameter
space for any candidate model M. By leveraging (4.2), we can
characterize the minimum difference between the true model
and the approximated model of orders M ∈ Mmis via the
quantity δM := κ1 inf (ω,g)∈
M ‖(L(ω) ⊗ IN2)g − a∗‖22; see
Proposition S1 and the proof of Theorem 4 in Section S7 of the
supplementary file for details. We may regard δM as the sig-
nal strength of the misspecification. The following assumption
guarantees that δM is large enough for the BIC to detect the
misspecification.

Assumption 7 (Minimum signal strength).
(i) minM∈Mmis δM/N � (T−1 logN)1−q/2τN logT; and (ii)
maxM∈Mmis δ

−1
M|L̃T(ω̂M, ĝM) − E{LT(ω◦

M, g◦
M)}| = op(1),

where (ω◦
M, g◦

M) is the minima of E{LT(ωM, gM)} over the
parameter space ωM ∈ (−1, 1)r × Πs and gM ∈ R

N2d.

Note that δM/N can be viewed as the average level of mis-
specification across N rows of the model equation. As men-
tioned earlier, we may let τN ≡ τ under mild condition. Thus,
the lower bound in Assumption 7(i) tends to zero as T →
∞. Assumption 7(ii) requires that the empirical loss for any
fitted misspecified model converges to some population loss
at a rate faster than δM as T → ∞. Here the mispecified
model with parameters (ω◦

M, g◦
M) can be understood as the

best approximation of the process {yt} under the misspecifi-
cation. Now we are ready to establish the consistency of the
estimator M̂.

Theorem 4. If the JE (or the RE) is used, suppose that for any
M ∈ Mover, there is a subvector ω̂M∗ ∈ (−1, 1)r∗ × Πs∗ of
ω̂M (or ω̂i,M∗ ∈ (−1, 1)r∗ ×Πs∗ of ω̂i,M with 1 ≤ i ≤ N) such
that ‖ω̂M∗ − ω∗‖2 ≤ cω (or ‖ω̂i,M∗ − ω∗‖2 ≤ ci,ω with 1 ≤
i ≤ N), and the conditions in Theorem 2 (or 3) hold withM =
M∗. In addition, suppose that M is fixed, with p ≥ p∗, r ≥ r∗
and s ≥ s∗. Under Assumptions 5–7, P(M̂ = M∗) → 1 as
N,T → ∞.

5. Simulation Experiments

In this section, we present two simulation experiments to verify
the estimation error rates of the JE and the consistency of the
BIC. Four additional experiments on the estimation error of
the RE, its comparison with the JE, sensitivity analysis of the
initialization for {yt , t ≤ 0}, and comparison of the proposed
estimators with competing approaches are provided in Section
S2 of the supplementary file.

Throughout this section, we generate {yt} from model (2.4),
where {εt} are generated independently from N(0, σ 2IN) with
σ = 0.2, and each Gk is exactly sparse with cN nonzero entries
for 1 ≤ k ≤ d, so the overall sparsity level is R0 = cdN. We gen-
erate {Gk}dk=1 by drawing their nonzero entries independently
from the uniform distribution on [−0.5, 0.5]. Then, to ensure
the stationarity of {yt}, after setting ω, we rescale all Gk’s by a
common factor such that ρ(G1) + ρ̄

∑r+2s
k=1 ρ(Gp+k)/(1− ρ̄) =

0.8; see Theorem 1.
In the first experiment, we examine the estimation error

rates for the JE. Two data generating processes are considered:
(p, r, s) = (1, 1, 0) (DGP1) and (1, 0, 1) (DGP2), where λ1 =
−0.6 for DGP1, and (γ1, θ1) = (0.6,π/4) for DGP2. We let
all Gk’s be row-sparse matrices with three nonzero entries in
each row, that is, R0 = 3dN, where N = 10, 20, 40, or 80.
Note that by Theorem 2, we have ‖̂a − a∗‖2/

√
N � ηT

√
R0/N,

‖̂g − g∗‖2/
√
N � ηT

√
R0/N, and αMA‖ω̂ − ω∗‖2/

√
N �

ηT
√
R0/N, where ηT = √T−1 logN. To verify these bounds,

we choose a grid of equally spaced values for the theoretical
rate ηT

√
R0/N = √3T−1d logN within the range of I1 =

[0.3756, 0.4981] for DGP1 and I2 = [0.46, 0.61] for DGP2.
Then we compute T given the theoretical rate, N and d. The
selected ranges I1 and I2 lead to the same range of T for both
DGPs under any N; that is, the ranges of the x-axis in Figure 3
are set such that the corresponding points in upper and lower
panels share the same T. Across all settings, T falls in the range
of [55, 186]. Figure 3 plots the scaled estimation errors ‖̂a −
a∗‖2/

√
N, ‖̂g − g∗‖2/

√
N, and αMA‖ω̂ − ω∗‖2/

√
N, averaged

over 500 replications, against the theoretical rate ηT
√
R0/N.

An approximately linear relationship can be observed across all
settings, confirming our theoretical results.

In the second experiment, we verify the consistency of the
proposed BIC. Three cases of true model orders are considered:
(p∗, r∗, s∗) = (0, 0, 1), (0, 1, 1), and (1, 0, 1), referred to as DGPs
1, 2, and 3, respectively. We set N = 40, θ1 = π/4, and λ1 =
−γ1 = ρ̄, where three choices of the decay rate are considered:
ρ̄ ∈ {0.45, 0.5, 0.5}. For 1 ≤ k ≤ d, eachGk contains 3N nonzero
entries, so R0 = 3dN, but unlike the first experiment, we do not
restrict each row ofGk to have exactly three nonzero entries. We
set τ = 0.05 and p = r = s = 9; the results are found to be
unchanged if the maximum orders are 3. Figure 4 displays the
proportion of correct order selection based on 500 replications
for each setting, with the models fitted by the JE; the results for
the RE are very similar and hence omitted. It shows that the BIC
generally performs better asT or ρ̄ increases, and the proportion
of correct order selection eventually becomes close to one with
sufficiently large T. Thus, the consistency of the BIC is verified.
Additionally, the required sample size for achieving accurate
order selection follows this order among the three DGPs: DGP1
< DGP3 < DGP2. To understand this, first note that R0 =
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Figure 3. Plots of scaled estimation errors ‖̂a − a∗‖2/
√
N (left panel), ‖̂g − g∗‖2/

√
N (middle panel), and αMA‖ω̂ − ω∗‖2/

√
N (right panel) against theoretical rate

ηT
√
R0/N for JE.

Figure 4. Proportion of correct model order selection for three DGPs and three choices of decay rates, ρ̄ ∈ {0.45, 0.5, 0.55}.

6N, 9N, and 9N for DGPs 1, 2, and 3, respectively. Thus, the
estimation accuracy is highest for DGP1, and so is the order
selection accuracy. Moreover, since DGP2 has a more complex
temporal structure than DGP3, it leads to greater challenges in
estimating ω and, consequently, in order selection.

6. Empirical Analysis

We analyze N = 20 quarterly macroeconomic variables of
the United States from the first quarter of 1969 to the fourth
quarter of 2007. These are key economic and financial indicators
collected by Koop (2013), seasonally adjusted as needed. We
conduct the transformations following Koop (2013) to make all
series stationary, resulting in a sample of length T = 194. Then
each series is normalized to have zero mean and unit variance;
see Table S1 in the supplementary file for detailed descriptions
of the 20 variables.

We first fit the proposedmodel to the entire dataset. Using the
JE and the proposed BIC, we select (p, r, s) = (1, 1, 0), so d = 2,
and the fittedmodel is yt = ̂G1yt−1+

∑∞
h=2(−0.45)h−1

̂G2yt−h+
εt , where ̂G1 and ̂G2 are displayed in Figure 5; the estimation
results based on the RE are roughly similar and provided in the
supplementary file. The stationarity of the model is confirmed
by the method in Remark 4. As discussed in Section 2.2,̂G1 and
̂G2 captures lag-one (or short-term) and higher-lag (or long-
term) dependence, respectively. Note that ̂G1 is much denser
than ̂G2, suggesting that many dynamic interactions are short-
term. However, most of the nonzero entries in ̂G2 are fairly
large in absolute value, supporting the necessity of a VARMA-
typemodel. For the Granger causal (GC) interpretation, take the
model equation for real GDP (RGDP) as an example:

yRGDP,t = 0.17yCons,t−1 + 0.11yIP:total,t−1 + 0.07yHStarts:total,t−1

+ 0.12yS&P:indust,t−1
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Figure 5. Estimates ofG1 andG2 for the proposed model based on JE.

+
∞∑
h=2

(−0.45)h−1(0.39yFFR,t−h − 0.30yCons,t−h)

+ εRGDP,t ,

suppressing other lag-one terms with coefficients less than 0.014
in absolute value for brevity. The above equation indicates that
five time series are GC for RGDP and can be categorized as
follows: (a) the industrial production index (IP: total), housing
starts (HStarts: total), and S&P stock price index (S&P: indust)
only have short-term influence on RGDP; (b) the federal funds
rate (FFR) only has long-term influence on RGDP; (c) the real
personal consumption expenditures (Cons) has both short-term
and long-term influence on RGDP. For other insights from the
estimation results, see Section S3 in the supplementary file for
more discussions.

Next we evaluate the forecasting performance via a rolling
procedure: First set the forecast origin to t = 166 (Q4-2000).
For each k = 1, . . . , 28, fit the model using the data of 1 ≤
t ≤ Ttrain = 165 + k, and then compute the one-step ahead
forecast for t = 166 + k. Thus, rolling forecasts over the period
of Q1-2001 to Q4-2007 are obtained. We measure the forecast
error by ‖̂yt − yt‖2; our findings based on the �1-norm are
similar and hence are omitted. For the proposed model, we
consider both JE and RE, and implement them using a fixed
regularization parameter λg throughout the forecasting period.
Five other competing approaches are considered as follows:

(i) VAR OLS: As a low-dimensional baseline, we consider the
VAR(4) model fitted via the OLS method, where the lag
order 4 is employed following Koop (2013).

(ii) VAR Lasso: Since the VAR(∞) model can be approximated
by the VAR(P) with P → ∞ as T → ∞, we fit the
sparse VAR(P) model via the Lasso with P = �1.5√Ttrain�
following the first-stage estimation in Wilms et al. (2023).

(iii) VAR HLag: Same as (ii) except that the hierarchical lag
(HLag) regularization in Nicholson et al. (2020) is used
instead of the �1-regularization.

(iv) VARMA �1: Sparse VARMA(p, q) (Wilms et al. 2023) with
the �1-regularization for the second stage and p = q =
�0.75√Ttrain� as in the above article.

(v) VARMA HLag: Same as (iv) except that the HLag regular-
ization is used at the second stage.

We implement (ii)–(v) by the R package bigtime which
offers two regularization parameter selection methods, cross
validation (CV) and BIC. We observe that neither one of these
two methods uniformly outperforms the other throughout the
forecasting period. To better ensure the competitiveness of (ii)–
(v), we obtain the forecast errors under both CV and BIC and
only report the smaller value for each rolling step.

The average forecast error over the entire forecast period is
5.367, 4.307, 4.069, 4.318, 4.144, 3.971, and 3.968 for VAR OLS,
VAR Lasso, VARHLag, VARMA �1, VARMAHLag, SPVAR(∞)
JE, and SPVAR(∞) RE, respectively. Among the 28 rolling steps,
each of these approaches performs best 4, 4, 0, 2, 2, 10, and 6
times, respectively. Thus, based on these measures, SPVAR(∞)
has the highest overall forecast accuracy among all models, and
the performance of JE andRE are very similar; see Table S2 in the
supplementary file for the forecast errors of all seven methods
for each rolling step. Moreover, to check whether the advantage
of the SPVAR(∞)-based forecasts is statistically significant, we
conduct the model confidence set (MCS) procedure of Hansen,
Lunde, and Nason (2011) implemented by the R package MCS.
We find that based on either the Tmax or TR statistic, the
97.5% MCS only includes SPVAR(∞) JE and SPVAR(∞) RE,
confirming that the proposed model indeed outperforms the
competing ones in terms of forecasting for the data.

7. Conclusion and Discussion

This article develops the SPVAR(∞) model as a tractable vari-
ant of the VARMA model for high-dimensional time series. It
overcomes the drawbacks in identification, computation, and
interpretation of the latter, while greater statistical efficiency
and Granger causal interpretations are achieved by imposing
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sparsity on the parameter matrices capturing the cross-sectional
dependence. To the best of our knowledge, it is the first high-
dimensional sparse VARMA- or VAR(∞)-type model with all
of the above advantages.

There is a vast literature on nonlinear and nonstationaryVAR
models (e.g., Kalliovirta, Meitz, and Saikkonen 2016; Zhang
and Wu 2021), factor-augmented VAR (Miao, Phillips, and Su
2022), and other extensions. The method in this article can
be extended to develop corresponding VAR(∞) counterparts;
for example, (2.4) can be extended to the nonlinear model:
yt = f (x[1]

t , . . . , x[d]
t ) + εt , where x[k]

t = ∑∞
h=1 �h,k(ω)yt−h

for 1 ≤ k ≤ d parsimoniously summarize the temporal infor-
mation over all lags into d predictors. Other interesting exten-
sions include imposing group sparsity on Gk’s to capture group-
wise homogeneity (Basu, Shojaie, andMichailidis 2015), extend-
ing �h,k(ω)’s to polynomial decay functions for long-memory
time series (Chung 2002), and incorporating dynamic factor
structures (Wang et al. 2022). Lastly, it is important to study
the high-dimensional statistical inference under the proposed
model, for example, hypothesis testing for Granger causality
(Chernozhukov et al. 2021; Babii, Ghysels, and Striaukas 2022).

Supplementary Materials

Online supplementary materials contain the block coordinate descent algo-
rithms for implementing the proposed estimation, additional simulation
studies and empirical results, and all technical proofs for the main paper.
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