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Abstract

As camera traps have grown in popularity, their utilization has expanded to
numerous fields, including wildlife research, conservation, and ecological studies.
The information gathered using this equipment gives researchers a precise and
comprehensive understanding about the activities of animals in their natural
environments. For this type of data to be useful, camera trap images must be
labeled so that the species in the images can be classified and counted. This has
typically been done by teams of researchers and volunteers, and it can be said that
the process is at best time-consuming. With recent developments in deep learning,
the process of automatically detecting and identifying wildlife using Convolutional
Neural Networks (CNN) can significantly reduce the workload of research teams and

free up resources so that researchers can focus on the aspects of conservation.
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1.0 Introduction

With an increase in camera trap availability, researchers from a range of fields have
been able to effectively deploy camera traps to observe wildlife remotely. Data
collected in this manner can provide researchers with accurate, detailed, and up-to-
date information regarding the location and behavior of wild animals and can
improve the ability to study and conserve ecosystems (Norouzzadeh, 2018). Camera
trap imagery needs to be labeled so that the wildlife in the imagery can be
categorized and counted, and this has traditionally been done by groups of
researchers and volunteers, which can be described as time-consuming at best
(Norouzzadeh, 2018). The use of these camera traps in New Mexico has resulted in
millions of unlabeled camera trap images waiting to be analyzed (Sanderson &
Harris, 2013). With recent developments in deep learning, the process of
automatically detecting and identifying wildlife using Convolutional Neural Networks
(CNN) can significantly reduce the workload of research teams and free up
resources so that researchers can focus on the aspects of the project (Islam and

Valles 2020).
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Figure 1 (A) Image of an African Oryx taken from a camera trap. (B) Image of a camera trap being deployed.



For CNNs to be able to accurately classify objects in images, they must first be
trained with a large amount of labeled training samples that will produce updated
weight parameters for learning (Han et al 2018). While camera trap imagery is in
ample supply, the labels that identify the location of bounding boxes are not.
Transfer learning allows researchers to take advantage of neural networks that have
already been trained on larger datasets and then fine-tune them on a much smaller,
domain-specific dataset. The method of training allows additional flexibility and
increases the functionality of CNNs when classifying imagery, which can help
researchers learn more about places that only have a small amount of data. This
strategy can also help researchers who utilize camera traps for operational wildlife
monitoring to improve species identification in a variety of environments based on
the accumulated knowledge represented in labels from other sites. Furthermore,
researchers may do more complicated detections like counting individuals or
determining distance by utilizing CNNs that use bounding boxes for training rather

than images with the entire sample labeled.

This research will evaluate the performance of the You Only Look Once version 5
(YOLOV5) algorithms in the detection and classification of animals located in the
Sevilleta wildlife refuge. Due to its speed and precision, YOLOv5 was chosen for this
project over other algorithms because, in a number of varying detection tasks,
YOLOV5 has been demonstrated to achieve comparable performance with faster
speeds (Kuznetsova et al., 2020) (Sa’Doun et al., 2021). YOLO divides the image
into regions, applies a single neural network to the entire image once, and instantly

determines the range of objects and probabilities of classes for each item



(Kuznetsova et al., 2020). The first model type will be trained on a domain-specific
data set and be tested on imagery solely from the Sevilleta Wildlife Refuge. This is
referred to as the domain model (DM). The second model type will utilize transfer
learning for creating customized weights. This involves using a larger, regionally
based data set instead of one that focuses only on wildlife in New Mexico. This
method will allow the model to learn from a data set consisting of similar animals and
be able to take advantage of a large amount of annotated imagery. The best-fit
model (TM) will be further fine-tuned by exploring different learning rates that can
impact the time needed for convergence. Therefore, this study assesses the
potential of using transfer learning from national sources to enhance the detection
and classification of camera trap imagery from the Sevilleta National Wildlife Refuge

based on a limited collection of locally generated annotations.



2.0 Background

2.1 Introduction

Habitat is becoming depleted as the human population expands (Bar-Massada et al,
2014). This encroachment into adjoining natural lands drastically inhibits natural
species movement and disrupts other natural processes (Butler, 2006). Because of
this increase, human and animal populations alike have found themselves in
numerous potentially dangerous situations they would not have found themselves in
otherwise. As urbanization moves further into animal habitats, new anthropogenic
mortality causes become more prevalent, producing major changes in natural
ecology (Collins & Kays, 2011). The existing and increasing global scale and
influence of human population expansion is incompatible with the survival of

biological diversity, and the sixth mass extinction cannot be reversed (Naggs, 2017).

One of the most common methods for monitoring wildlife in its natural environment is
to analyze imagery collected from camera traps (Beery et al., 2019). Since traps can
be and often are deployed for extended periods, data sets collected in this manner
tend to be very large, containing thousands of images per class. These data sets are
often labeled manually by either a research team or a group of volunteers, which is
described as time-consuming at best (Evans et al., 2020). Following recent
advances in deep learning, researchers have been able to start exploring the
process of automatic species identification through CNNs (Willi et al., 2019). The
integration of camera trap imagery and Convolutional Neural Networks have been

shown to be a promising tool for a potential method for persistent monitoring of



species presence, evaluation of species populations, and animal behavior without

the need for a physical gathering of the subject (Evens et al., 2020).

This section focuses on how developments in deep learning, specifically CNNs, can
allow researchers to non-intrusively analyze animal populations through camera trap
imagery. The first key theme focuses on areas that are being used for wildlife
conservation and areas with an increase in human-animal interaction (wildlife urban
interface). The second key theme of this review examines the advantages and
disadvantages of using camera trap imagery for wildlife monitoring. The third key
theme of this review discusses how deep learning algorithms can be used for
conservation and discusses how CNNs can enable scaled sampling using camera
traps. The fourth and final key theme looks at how integrating transfer learning and
data augmentation methods into domain-specific camera trap projects can increase

classification accuracy.

2.2 Areas That Can Benefit from Monitoring Wildlife

Human development has had a significant impact on natural species movement,
population dynamics, and other natural processes in the wilderness (Butler, 2006).
The rate of human settlement expansion does not appear to be slowing down
anytime soon, so one can only expect the wildlife-urban interface boundary to
expand (Sella Veluswami, 2021). To limit the amount of damage to neighboring
ecosystems, it is necessary to monitor the repercussions of increased human-animal
contact and assess the effects humanity has on animal populations, habitats, and

behavior.



With such dramatic growth in human population and urbanization, wildlife habitats
are becoming even more constrained (Butler, 2006). The boundary between human
communities and wildlife is referred to as the wildland—urban interface. This area
consists of either interfaced housing developments, which are typically placed along

the edges of continuous swathes of uncultivated land, or intermixed housing,

which is housing that is surrounded by natural or seminatural areas (Bar-Massada et
al., 2014). Residential areas near natural boundaries can affect neighboring
ecosystems in many ways, including exotic species introduction, wildlife
subsidization, disease transfer, landcover conversion, fragmentation, and habitat

loss (Bar-Massada et al., 2014).

The National Wildlife Refuge System is a designation for certain protected areas of
the United States managed by the United States Fish and Wildlife Service. Fish and
wildlife refuges make up 95 million acres, and it is estimated the total value of
ecosystem services provided by the Refuge System in the United States is
approximately $26.9 billion/year (Ingraham & Foster, 2008). The objective of wildlife
refuges is to sustain and promote biodiversity-focused conservation initiatives as
well as conservation activities that protect ecological integrity (Fischman, 2003).
Some Fish and Wildlife programs, for instance, have focused on restoring native
biological variety by assessing wildlife refuges for foreign species, evaluating the
impacts of exotic wildlife on native animals, using removal strategies, and calculating

the benefits of successful removal (Veitch & Clout, n.d.).

For conservation to be effective, a flexible and responsive recovery strategy, such as

adaptive management, should include provisions for monitoring, allowing



researchers to track species throughout the recovery process (Campbell et al.,
2002)(Gillson et al., 2019).By monitoring animals through this imagery,
investigations into natural systems have provided new insights into migration
patterns and species counts that can benefit the fields of ecology, zoology, and
many others. Furthermore, conservation initiatives supported by CNNs can assist in
the understanding of the complexities of natural ecosystems and act as a catalyst for

the transformation of ecology (Islam & Valles, 2020).

2.3 Camera Trap Imagery for Monitoring Wildlife

While biologists and ecologists use many different methods of monitoring animal
behavior, such as radio-tracking, wireless sensor network tracking, and animal
sound recognition, one of the most common tools to monitor wildlife around the
world is the camera trap (Islam & Valles, 2020) (Monterroso et al., 2009) (Li & Wu,
2015) (Handcock et al., 2009). Camera traps are heat- or motion-activated cameras
placed in the wild to monitor and investigate animal populations and behavior (Beery
et al., 2019). Existing camera-trap systems for wildlife monitoring have developed as
a result of technological improvements in hardware and embedded software and are
now commercially available at a reasonable cost, rapidly deployable, and easy to
maintain, allowing them to be utilized by a wide variety of organizations (Chen et al.,
2014). Moreover, while the cost of employing camera traps is relatively low,
extracting information from these photographs remains an expensive, time-
consuming, and manual task. (Norouzzadeh et al., 2018). Before the widespread
use of CNNS, researchers devised a number of innovative and successful methods

for automating the interpretation of animals from camera traps using raw pixel data



from images (Schneider et al., 2018). Earlier approaches to species classification
required a domain expert to identify significant features for the desired classification,
design an algorithm to extract these features from images and compare individual

differences using statistical analysis (Schneider et al., 2018).

Images from camera traps can be used to help researchers learn more about an
animal's behavior and social structure, which are not visible when using other
monitoring techniques like GPS collars. The ability to study and conserve
ecosystems would be enhanced if researchers had precise, detailed, and up-to-date
information regarding the location and behavior of wild animals (Norouzzadeh et al.,
2018). For example, imagery collected from camera traps can be used to identify,
and locate threatened species, identify important habitats, monitor sites of interest,
and analyze wildlife activity patterns (Beery et al., 2019). To create a better
understanding of wildlife environments, it is essential to be able to acquire and
analyze fine-scale, non-intrusive imagery. Other methods of monitoring wildlife
include Manned Just in Time (MJIT) flights and Global Positioning System (GPS)
collars, both of which collect wildlife observations in unique ways. MJIT refers to a
technique for tracking wildlife with aerial vehicles over a predetermined area while
tracking and monitoring wildlife in real-time, but it has been demonstrated that in
some circumstances, the temporal resolution of sSUAS collected images is
constrained by the relatively short flight times, limited swath-width, and logistics of
operating under existing regulations (Lippitt and Zhang, 2018) Hodgson et al., 2016).
On the other hand, GPS collars provide highly precise position data by satellite

triangulation, and researchers can analyze gain insights into a range of ecological
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questions, such as animal migration patterns, home range size, and social structure
(Naidoo et al., 2016) (Foley & Sillero-Zubiri, 2020). That being said, GPS collars
have been known to fail prematurely (Johnson et al., 2002). In contrast, camera
traps cover a small area in space, but they do so at infinite temporal resolution and

for long durations when compared to the just-in-time counts that UAS are capable of.

Although camera trap imagery can be useful to researchers in general, there are a
number of challenges in processing and interpreting it. For example, the vast
majority of camera trap imagery that is gathered is unlabeled and does not contain
any objects of interest (Zhu et al., 2011). To make the imagery useful for analysis,
researchers or volunteers must go into the imagery and manually identify objects,
which is a time-consuming operation. With the growing number of camera trap
studies, it is becoming increasingly difficult to recruit enough participants to complete
all projects on time (Willi et al., 2019). In addition to having to manually identify
objects, roughly ~70% of camera trap images do not contain any objects, and this
can be caused by false triggers (Beery et al., 2021). The manual labeling of the
Snapshot Serengeti collection, which consists of 1.2 million images, has taken
28,000 registered and 40,000 unregistered volunteer citizen-scientists 2—3 months to
identify each 6-month batch of photos (Norouzzadeh et al.,2018). As digital cameras
improve and become more affordable, researchers will begin to use camera traps in

their own domains, putting more strain on volunteer resources that identify imagery.

2.4 Deep Learning as an Alternative to Manual Classification

Deep Learning, a subfield of machine learning, is based on Atrtificial Neural

Networks, a computational architecture inspired by how the human brain learns and
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recognizes objects (O’Mahony et al., 2020). These networks consist of many
neurons that conduct a simple operation and interact with one another to produce a
decision, just like the human brain (O’Mahony et al., 2020). Neural networks,
hierarchical probabilistic models, and unsupervised and supervised feature learning
algorithms are all part of deep learning and have shown the potential to outperform
the previous state of the art machine learning techniques in several tasks
(Voulodimos et al., 2018). Deep Learning has expanded the boundaries of what was

previously thought to be achievable in the field of digital image processing.

A Convolutional Neural Network (CNN) is a specific deep learning method that
requires the user to train algorithms to recognize objects (e.g., animals, humans,
and cars) in photos and classify the objects (e.g., species) present (Vélez et al.,
2022). CNN platforms come in several different forms, and new ones are released
on a regular basis, but they all have similar structures. CNNs are comprised of three
main types of neural layers called convolutional layers, pooling layers, and fully
connected layers (Voulodimos et al., 2018). Each layer of a CNN eventually converts
the input volume to an output volume of neuron activation; this creates a fully
connected layer that results in a 1D feature vector that can be categorized and

classified (Voulodimos et al., 2018)

The convolutional layer consists of weighted filters that match the input data and
helps identify features of varying complexities. Each filter identifies specific patterns
or traits such as edges, corners, bright spots, dark spots, and shapes (Hussain et al.
2018). By stacking multiple convolutional layers, CNNS are able to learn more

complex features and eventually will be able to identify complex objects like animals,
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vehicles, or faces (Hussain et al. 2018). The max pooling layer utilizes a window (ex
2x2/3x3 pixels) that travels across the image, storing the maximum value of each
step, reducing the spatial dimensions of the feature maps to leave only the most
significant data, which can then be merged into one (LeCun et al., 2015). Each
image's dimension is reduced while the most crucial information is retained (Hussain
et al. 2018). The outputs of convolutional layers and max pooling layers are
processed by the fully connected layers (see figure 2). Every neuron in one layer is
connected to every other neuron in the following layer by fully connected layers
(Voulodimos et al., 2018). The goal is to learn nonlinear combinations of information

from previous layers that are relevant to identifying objects in an image.

Simply put, an image from a camera trap dataset is fed into the neural network,
where it moves through different filters that creates feature maps and pooling layers
that reduce the spatial dimensions of the image. Once the foregoing processes are
completed, the final output can be identified and classified, and this can
automatically be done to thousands of photos, saving researchers time improve the

understanding of the population dynamics (Schneider et al., 2018a).
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Figure 2 Basic structure of a Convolutional Neural Network (Hussain et al. 2018)
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A CNN designed for species identification will output a set of activations,
representing the observation of a particular species at a particular location and time,
and are often used as a way to calculate population sizes in different regions (Evens
et al, 2020). This is beneficial because it allows ecologists and other experts to
observe animals in their native habitat without producing avoidance behaviors,
habituation, or physiological changes in reaction to human-induced interactions (St.
John, 2022). This has demonstrated great potential, but it has also revealed some
limitations with CNNs that are particularly caused by camera trap images, such as
varying illumination, weather, seasons, and a cluttered background (Evans et al.,

2020) (Favorskaya & Pakhirka, 2019).

While CNNS may be trained to perform a variety of tasks, some are better than
others at specific operations. For example, MegaDetector, created by Microsoft Al
for Earth, provides a JSON file as an output, which indicates the locations of
detected objects in the form of bounding boxes and is associated with confidence
values for each detection (Velez et al., 2022). While this architecture can accurately
detect objects, it is unable to classify species into distinct categories (Velez et al.,
2022). While somewhat limited, this specific detector can still be beneficial in many
fields. It was shown that 75% of the Snapshot Serengeti dataset, which consists of
3.2 million-images, were labeled empty by humans; therefore, automating the first
stage alone can save 75% of human labor (Norouzzadeh et al., 2018). Additionally,

MegaDetector detections can also be cropped to the predicted bounding box and
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utilized in a different species classifier, reducing the species classifier's ability to

overfit to the image background (Evans et al., 2020).

While the structure of CNNs is complex and training them requires users to have
extensive training, the impact they can have on ecological studies is apparent
(PIRES DE LIMA et al., 2020)(Schneider et al., 2018a). By incorporating CNNs into
camera trap projects, the number of volunteers needed for labeling could be
significantly reduced, allowing researchers to focus on other aspects of these types
of projects. Manual labeling is a time-consuming task that improves in deep learning,

and CNNs specifically, are well positioned to automate.

2.5 Enhancing Model Predictive Performance

The confidence of a Convolutional Neural Network's (CNN) detection and
categorization is impacted by the excessive data hunger of deep learning models,
which require massive amounts of high-quality data to function properly. (Pires de
Lima et al., 2019). Neural networks can learn to identify spatial characteristics by
adjusting their weights during the training phase due to the backpropagation of
errors (Willi et al., 2019). Once training is complete, users then use additional
imagery for validation. While this appears to be a simple process, complications can
arise when working with various animal classes. When the model works well with the
training data but fails to generalize validation data, it is referred to as overfitting
(Islam & Valles, 2020). If there is an unbalanced amount of imagery used to train the
model, it may learn to focus on specific patterns in the training data that are not
relevant for other classes in the camera trap collection, which can also lead to

overfitting (Willi et al., 2019).
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2.5.1 The Power of Transfer Learning and Its Impacts on Computer
Vision

Inspired by human beings’ capabilities to transfer information across domains,
transfer learning is the process of preconditioning a CNN on a preexisting repository
of data that already consists of labeled imagery (Zhuang et al., 2021). For deep
learning classification projects with insufficient data or computational limits, transfer
learning has gradually become the preferred method of training CNNs (Liu et al.,
2019). This process has shown that models that take advantage of transfer learning
can increase output classification accuracy by 10.3 percent (Willi et al., 2019).
Rather than starting the learning process on the model from scratch with random
weight initialization, transfer learning allows users to start with learned features from
weights generated from larger image collections and then adapt these features to
suit the new set of imagery (Hussain et al., 2018). This process allows researchers
who use domain specific data sets the benefits of higher accuracy classification

without the need to collect the thousands of images needed to train accurate CNNS.

CNNs and transfer learning have reshaped the field of computer vision and have
been effectively used for a variety of applications, such as the interpretation of
camera trap data (Hussain et al., 2018). By leveraging pre-trained CNN models on
large image datasets such as Snapshot Serengeti, transfer learning enables the
efficient use of limited camera trap data for the automation of data analysis
(Schneider et al., 2018b). This approach has enabled the development of CNN
models capable of classifying and detecting species in camera trap images with high

reliability and accuracy (Sharma et al., 2020). It has even been demonstrated that a
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CNN can learn to recognize distinctive aspects of individual animals, such as their
coat pattern or facial markings, by being trained on a sizable collection of annotated
photos (Nepovinnykh et al., 2018). This makes it possible to create a database of
distinct species and individuals for future population analysis. While transfer learning
can be used to minimize overfitting and strengthen classification predictions, the
primary benefit is not having to wait for more images to be labeled for training (Han

et al., 2018).

2.5.2 Improving Deep Learning Performance Through Data

Augmentation

To increase the accuracy of outputs in a localized region that doesn’t have the
benefit of using a domain focused repository to train networks, researchers can use
preprocessing methods like data augmentation to artificially expand classes in a
data set. Data augmentation is a regularization technique that uses label-preserving
modifications to artificially enhance the data set by adding altered domain-specific
pictures to an already existing collection of imagery. (Taylor & Nitschke, 2017). This
process can expand existing datasets in a wide range of image variations that will
help the model recognize objects in various shapes and forms (Islam & Valles,
2020). The basic augmentation process is accomplished by creating a copy of the
original image that has been shifted, zoomed in/out, rotated, flipped, deformed, or
tinted with a hue (Perez & Wang, 2017 Researchers in a variety of fields may
employ generic data augmentation as a cost-effective substitute if transfer learning
is not an option due to object rarity or distinctive settings (Taylor & Nitschke, 2017).

By increasing the amount of domain specific training data artificially, the chance of
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overfitting is significantly reduced. It was shown that data augmentation techniques
that take advantage of transformations that alter the geometry of images were
shown to improve neural network classification accuracy when compared to
alterations of lighting and color (Taylor & Nitschke, 2017 (Perez & Wang, 2017).
Data augmentation alone can aid future camera trap projects aimed at observing
species that are difficult to photograph or in locations that are difficult to access,

such as beneath water.

2.5.3 Optimizing Model Training with Learning Rates

The learning rate is a hyperparameter that specifies how much the model should
change in response to the predicted error each time the model weights are updated.
The learning rate parameter in gradient descent learning methods, such as error
backpropagation, can have a substantial effect on generalization accuracy (Wilson &
Martinez, 2001). In this case, using different learning rates translates to how fast
YOLOVS is able to learn what a mule deer looks like and how well it is at recognizing
mule deer in new images. It has been shown that too small a learning rate will make
a training algorithm converge slowly, while too large a learning rate will make the
training algorithm diverge (Smith, 2017). Lowering learning rates below those which
achieve the fastest convergence can improve generalization accuracy considerably,
especially on complicated tasks (Wilson & Martinez, 2001). An unoptimized learning
rate can require orders of magnitude more training time than one that is in an
appropriate range. According to conventional thinking, the learning rate should be a

single value that declines monotonically over training, and users should experiment
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with a variety of learning rates so that optimal performance of the model can be

achieved (Smith, 2017).

Deep learning systems function best when the training data has a balanced
distribution of samples across all classes, but realistically camera traps will not
collect an equal amount of imagery for each class (Schneider et al., 2020). This
means that CNNS trained only on a large general repository will underperform when
classifying images from different areas (Schneider et al., 2020). For researchers to
achieve higher recognition accuracy, a combination of general repository transfer
learning and data augmentation of domain specific classes is recommended (Perez

and Wang 2017) (Hussain et al. 2018).

2.5.4 You Only Look Once

YOLOVS is a resilient object detection deep learning network that has been utilized
in a variety of applications, including pedestrian detection for self-driving cars,
surveillance systems, and conservation (Vikram Reddy & Thale, 2021) (Sa’Doun et
al., 2021). YOLOvS5 is more user-friendly and requires far fewer processing
resources than other Deep Learning neural networks while maintaining comparable
results and operating faster than other networks (Choinski et al., 2021). Yet another
explanation for why YOLOVS5 is so effective is that it is a one-stage detection
technique, which means it predicts bounding boxes and class probabilities for each
object in a single forward pass of the network, whereas other networks use a two-
stage method (Jiang et al., 2022). It has been demonstrated that, when comparing
the speed and accuracy of the detection of wildlife from imagery, the YOLO

architecture can perform just as well as other high-performance CNNs (Sa’Doun et
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al., 2021). That is partly due to the fact that YOLO can either be trained from scratch
or the user can take advantage of the Common Obijects in Context (COCO) pre-
trained model. The COCO dataset is a collection of challenging, high-quality images
and labels that can be used for object detection or segmentation (Adamczyk, 2020).
This repository includes 91 object categories and 330K images, and 200K labels.
Stop signs, zebras, eyeglasses, elephants, and fire hydrants are among the

categories included (Admin, 2018).

2.6 Conclusion

Despite the fact that CNNs have been readily accessible for several years, there are
still no trained models that specialize in the detection of ungulates in New Mexico.
Processing such vast amounts of data with CNNs necessitates substantial computer
resources and knowledge, which may not be widely available. However, as the need
for data analysis utilizing CNNs grows, more resources and experience will most
likely become accessible, making it easier to process the data and extract valuable

insights.

By training YOLOV5 with larger general image repositories, expanding domain
specific data sets artificially, and optimizing learning rates, deep learning can provide
new tools for researchers to label and categorize camera trap imagery in wildlife
refuges without the need for extensive labeling campaigns. The process of collecting
and analyzing large amounts of imagery from camera traps in an automated,
accurate, and cost-effective manner can help accelerate the transformation of the
fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior

into big data sciences (Norouzzadeh et al., 2018). This combination has the potential



to produce new information that can aid wildlife conservation efforts around the

world and help create a balance between human-wildlife relations.

20



21

3.0 Research Design

This study aims to determine the effectiveness of using large collections of
annotated camera trap imagery that can influence YOLOvVS5 predictions when
determining the location and classification of ungulates in camera trap imagery from
the Sevilleta wildlife refuge. In addition to evaluating the impact of transfer learning,
YOLOvV5 was fine-tuned using varying degrees of data augmentation and learning

rates for practical employment in support of the USFWS.

3.1 Data

The primary image repository used for this project consists of 4 camera traps that
are distributed around the Sevilleta wildlife refuge and consist of ~ 2000 images.
These camera traps were set up in 2019 by the University of New Mexico (UNM)
and the USFWS. Common species in this collection include but are not limited to
mule deer, coyotes, elk, pronghorns, and African oryx. For this imagery to be used
for training the CNN, it must contain separate bounding box information (category id,
X, Y, width, and height). For this portion of the project, images were labeled by
volunteers from Zooniverse, which is a citizen science web portal that allows
volunteers to participate in a wide range of research projects (see fig 3). Animal
classification, x, y, width, and height of bounding box in are just a few examples of
the label information that is provided (see fig 4). The Sevilleta labels on Zooniverse
are 15 times redundant, majority rule, implying that a minimum of 15 volunteers must
either build a bounding box around an object or say that there is no object in the

image for it to be classified.
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Figure 4 Zooniverse label example.

This Caltech Repository (Caltech Camera Traps), located in the Labeled Information

Library of Alexandria: Biology and Conservation (LILA BC), contains 243,100 photos

from 140 camera locations across the Southwest, with labels for 21 animal

categories, primarily at the species level (the most common labels are opossum,

raccoon, and coyote), and approximately 66,000 bounding box annotations, with

approximately 70% of photos labeled "empty." The zipped data set is approximately
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105 GB and can be downloaded from the Alexandria Labeled Information Library:

Biology and Conservation ("Camera Traps Archives," n.d.).

Name of class Category ID Number in class
Pronghorn 0 439
African Oryx 1 694
Mule Deer 2 343
Other Than Ungulate 3 35

Table 1 Sevilleta Class Count

3.2 Data Pre-processing

The Caltech bounding box annotations are in JSON format and include the image id,
class id, x coordinates, y coordinates, height, width, and information about the
classes. YOLOV5 needs a single .ixt file for each image where the annotation is
normalized and only needs the bounding box x coordinates, y coordinates, height,
width, and class id. The required single txt files were produced using Python and
values and converted from COCO format ([x_min, y_min, width, height]) into YOLO

format ([x_center, y_center, width, height]).

The Sevilleta labels provided by Zooniverse are 15x redundant, majority rule. This
means that for an object to be labeled, it must meet the agreed-upon threshold of 15
identifications, with the majority agreeing on the category id. Of these, the 15
bounding boxes created median value was taken to create a new bounding box
(Swanson et al, 2016). To do this, a script is used to count the number of labels for
each potential class before designating the majority class as the class label for each
training example (Sheng et al, 2019). Similar to the Caltech JSON, a Python script

was used to filter out extraneous information and produce single Txt files and values
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were converted to YOLO format. As previously stated, these single Txt files contain

class ID, x coordinates, y coordinates, height, and width.

243,100 COCO.csv

4 2,292 2,292 United States Fishand ~ COCO.json
Wildlife

Table 2 Camera Trap Data Description

Library of Alexandria

3.3 Increasing Recognition Accuracy

CNNs trained solely on a large general repository will underperform when classifying
images from different domains (Schneider et al., 2020). To mitigate this, data
augmentation and fine-tuning of learning rates were employed. By utilizing data
augmentation, the model can leverage a larger number of samples for training,
thereby potentially enhancing overall performance. Fine-tuning the learning rate of
the model facilitates faster convergence. Ultimately, employing both of these

methods can stabilize the training and validation phases.
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4.0 Project Execution

4.1 Data Management

For this project, the Caltech imagery was zipped and stored on an external hard
drive. The imagery provided by the USFWS was compiled on one drive and backed
up on an external hard drive. The Python scripts that were used for YOLOv5 are
also accessible on a local machine, and the original code is also backed up on an
external hard drive. Additionally, changes made to the data sets, including but not
limited to data augmentation processes, were noted. The labels generated are open-
sourced and located in the Wild Southwest repository and stored in the labeled

Information Library of Alexandria: Biology and Conservation website.

4.2 Research Question

To progress towards the reliable use of Convolutional Neural Networks applied to
camera trap imagery for monitoring wildlife in New Mexico, the proposed research is

guided by the following question:

How does transfer learning based on regional wildlife samples affect the
classification and detection accuracy of Convolutional Neural Networks for the
detection and identification of wildlife from camera trap imagery at the Sevilleta

National Wildlife Refuge?
Sub Questions

How do learning rates impact the robustness of transfer learning?

How does data augmentation affect transfer learning performance?
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4.3 Study area

Imagery that was classified during the detection phase comes from the Sevilleta
National Wildlife Refuge. The refuge itself is situated about 50 miles south of
Albuquerque, NM, and consists of 230,000-acre refuge that includes four different
biomes (Pifion—Juniper Woodlands, Colorado Plateau Shrub—Steppe lands,
Chihuahuan Desert, Great Plains Grasslands) that intersect and support a wide
array of biological diversity (“Sevilleta National Wildlife Refuge-Visitor Center Area,”
2022). Unlike other protected areas, the Sevilleta refuge was intended to preserve
natural systems, allowing this sanctuary to remain as close to its original state as
possible. This has led to a refuge where hundreds of species can thrive (“Sevilleta

National Wildlife Refuge-Visitor Center Area,” n.d.).
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4.4 Methods

This project systematically evaluates the effects of transfer learning on the
calibration of YOLOV5 to detect and classify large ungulate species. Models that
take advantage of both data augmentation and transfer learning were run 10x with a
variety of learning rates so that training times are reduced, and overall performance
is increased (Smith 2020). The optimal learning rate is identified by using different
orders of magnitude, and effectiveness is determined by classification accuracies
and mean average precision (mAP) (Wilson & Martinez, 2001). Transfer learning is
used in two ways; the first method uses a pre-trained neural network that uses either
COCO weights or Caltech weights. The second method also used the weights
generated from either the Caltech data set or the COCO weights, but instead of
using the entire network, the first ten layers of the backbone are frozen, and only the
head of the network is trained. Models that use data augmentation are further fined

tuned by using varying degrees of augmentation.

Sevilleta from scratch no data - - - 0.01
augmentation
Sevilleta COCO pretrained weights no X - - 0.01

data augmentation

Sevilleta COCO pretrained model data X - - 0.01
augmentation low

Sevilleta Caltech freeze 10 no data - X - 0.01

augmentation

Table 3 Model Description
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4.5 Implementation of YOLOv5

Sevilleta Caltech pretrained model data
augmentation low

Sevilleta Caltech pretrained model data
augmentation high

Sevilleta from scratch data augmentation
high

Sevilleta Caltech pretrained model data
augmentation high Lr 0.001

Sevilleta Caltech pretrained model
augmentation low Lr 0.0001

Sevilleta Caltech pretrained model data
augmentation low Lr 0.1

Sevilleta COCO freeze 10 no data
augmentation High Lr 0.01

Sevilleta Caltech pretrained model data
augmentation High Lr 0.001

Sevilleta Caltech pretrained model data
augmentation High Lr 0.0001

Sevilleta Caltech pretrained model data
augmentation High Lr 0.1

Sevilleta Caltech pretrained model No

data augmentation Lr 0.1

Table 3 Model Description Continued

0.01

0.01

0.01

0.001

0.0001

0.1

0.01

0.001

0.0001

0.1

0.1

To successfully run YOLOV5, the first thing needed to do is install its dependencies,

which consist of python 3.7, pytorch 1.7, and base requirements (see figure

6)(Ultralytics/Yolov5, 2020/2022). They were installed on the Center for

Advancement of Spatial Informatics Research & Education (ASPIRE) local BISON,
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GPU-enabled computer (16 x 2.1 Ghz cores, 256GB RAM, 2 x 11GB 1080ti GPUs),
using pip, a Python package installer. Initiation of models takes place in Anaconda3

command prompt.

1 # pip install -r requirements.txt

s

w
+*
(mu )
W
w
i

4  matplotlib»>=3.2.2
numpy>=1.18.5

i

o

opencv-python>=4.1.2
Pi1lows=7.1.2

8 PyYAML>=5.3.1

9 requests>=2.23.0

~J

1@ scipy»>=1.4.1
11 torch>=1.7.0
12  torchvision>=0.8.1
13 tqdm»>=4.41.0

Figure 6 YOLOVS5 base requirements

4.6 Hyper parameter configuration

Data augmentation, adjustments to learning rates, and other hyperparameters are
defined via a yaml file. A yaml file is a human-readable data serialization language
that is commonly used to create configuration files. The data folder in the master

folder contains hyp.Objects365.yaml, hyp.scratch-low.yaml, hyp.scratch-high.yaml,

hyp.scratch-med.yaml, hyp.VOC.yaml. All of these are preconfigured
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hyperparameter settings that can be used for the model. In this file, data

augmentation techniques like mosaic, shear, saturation, and translate are provided.

4.7 Training

All models are trained using 70 percent of the labels from the camera trap
collections, with a randomly selected 20 percent held out for validation and 10
percent for detection/testing. The beginning segment of the model makes use of the
Python training.py script. This is where the models are presented with the images
and the corresponding labels so that weights can be updated and generated. Once
completed, the model's performance is evaluated on mAP, bounding box regression
loss, objectness loss, and classification loss (PhD, 2022) (Solawetz et al., 2020).
The transfer learning models employ either the COCO weights or the Caltech
best.py weights, and the newly trained model employs random weights. Data
augmentation and learning rates that are to be used during training are applied in
the hyperparameter yaml file. This file allows for the usage of high, mid, low, or
custom augmentations and learning rates. All of which are executed through the

training command line for training.

4.8 Validation

After training, the network is applied to 20 percent of the imagery with known labels
and performance. Once validation is completed, mAP, bounding box regression loss,
objectness loss, classification loss, and precision and recall are compared between
the training set and the validation set. Overall performance is assessed using a
confusion matrix of known species labels to modeled labels, in which each prediction

label is compared to the appropriate ground truth label (Sa'Doun et al., 2021).
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Commission errors identify false positives, and omission errors represent false

negatives in the actual modeled results when compared to known examples.

4.9 Detection

Traditionally, the detect.py script is used for inference, but this does not generate
useful statistics like mAP values, so instead, the val.py script is used for the
detection phase. This is only possible because the test imagery has a corresponding
annotation. It is necessary to do this so that all the model's inference capabilities can
be compared. Once all models have been run, the confusion matrix for each run is

compared.
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5.0 Results

The best fit model was derived from a combination of using a pre-trained model that
was based on the Caltech repository (transfer learning), high levels of data
augmentation, and a learning rate of 0.01 (Table 4). The mAP values produced from
the test set showed that the average for all classes was 0.567. Since the
OTHERTHANUNGULATE class accounted for less than 5% of the whole training
set, an additional average was calculated with it removed. This raised the mAP
value to 0.735. P values were 0.756, indicating that the model's predictions were
right 76% of the time. R values were 0.627, reflecting how well the true bounding

box was predicted. Values for mAP@.5:95 were 0.384, indicating that the model

could not effectively predict bounding box overlap (IOU).

- 0.475 0.611 0.276 0.706 0.603
- 0.52 0.699 0.35 0.676 0.642
- 0.545 0.707 0.373 0.604 0.615
- 0.501 0.656 0.327 0.712 0.618
- 0.527 0.688 0.36 0.748 0.563
- 0.526 0.692 0.339 0.712 0.649
- 0.542 0.699 0.366 0.739 0.657
- 0.537 0.706 0.371 0.702 0.653
- 0.425 0.558 0.284 0.598 0.542
- 0.531 0.698 0.346 0.756 0.601
- 0.514 0.671 0.339 0.75 0.633

Table 4 Results of All Models
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Model mAP@. mAP@.5 W/O mAP@.5:.95 Precision(P) Recall(R)
number 5 OTHERTHANUNGULATE

12 0.567 0.735 0.384 0.756 0.627

13 0.553 0.727 0.383 0.744 0.617

14 0.47 0.62 0.338 0.691 0.592

15 0.544 0.71 0.377 0.738 0.652

16 0.493 0.643 0.335 0.704 0.632

Table 4 Results of All Models continued.

The model was able to detect objects from 3 out of the 4 classes, which can be seen
in Figure 7. Detection among the 3 classes had varying degrees of accuracy, but all
fell within an acceptable range. African oryx had the highest precision scores (0.98).
While pronghorn and mule deer had significantly lower scores (0.89, 0.73). This
might be the case given the particular unique characteristics of the African Oryx and
the inclusion of more training samples—about 350 more in total (see Table 1). The
fourth category, other than ungulate, had no detection, but this could be due to the
extremely small sample size that was used. Additionally, this model had many
issues with background detection, meaning that for many of the images, the model
did not think there were any objects present when in fact, there were. Furthermore,
excessive detection in each class afflicted the model as a whole. The values
presented in the confusion matrix indicate that the model mistook portions of the

backdrop vegetation for animal features.

For this project, transfer learning proved to be greatly advantageous. Models that
only used this approach saw an increase in mAP of ~ 9%, but the major benefit was

that mAP, mAP .5: .95, Precision, Recall, Bbox loss, Object loss, and Class loss all
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remained stable and consistent during training. Without data augmentation and
without freezing the first ten layers, the model that used the COCO dataset (2)
slightly outperformed the Caltech repository model (16). Given that the COCO data
set has ~ 200,000 annotations whereas the Caltech datasets have ~ 60,000, this
suggests that researchers can get similar conclusions using only roughly 25% of the

data.

Freezing the models' backbone and only training the head of the network showed
increases in overall performance and prediction accuracy in both models. The model
trained on the Caltech repository, model (4), had a slightly higher overall score in
performance when compared to model (19), which froze the first ten layers and used
COCO weights. That being said, class predictions were similar. The most significant
advantage of this method was decreased training time, but since this data set was
small, it did not make a significant difference. The most benefit would be seen when
applied to a data set that has tens of thousands of images or when one is willing to
trade minor drops in precision for time. Overall using transfer learning via freezing
the backbone is beneficial, but this particular method still fell short when compared

to the network when it was first pre-trained on Caltech weights.

Unsurprisingly the data augmentation techniques applied to these data sets
significantly increased overall performance. This can be seen in the overall
performance of model (01) and model (07) (table 4), which is about an 8% increase
in the mAP@.5 W/O OTHERTHANUNGULATE. The effectiveness of the best-fit

model (12) can also be linked to this method. Ultra-high augmentation was
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attempted, but distorted images in such a way that the performance of the model

was greatly decreased, and overall training became erratic and unreliable.

The best-fit model was negatively impacted by a change in learning rates of an order
of magnitude. The model (15) using a larger learning rate (0.1) provided adequate
performance but still fell short when compared to the best-fit model (12). Models that
used a lower learning rate (0.001, 0.0001) showed significant decreases in
prediction accuracy and overall performance during training. This is mainly due to
the fact that YOLOVS5 is already a proven model, as well as the fact that the data set
is so small there were few changes in the amount of time the model needed to
converge. However, if researchers adjusted the learning rate of a model that was
analyzing a dataset with tens of thousands of samples, the model's time to converge

would differ noticeably.
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6.0 Discussion

The purpose of this research was to use cutting-edge techniques to improve the
state-of-the-art CNN, YOLOv5s, dependability when trained on infinitesimal data
sets. It was demonstrated that YOLOv5 could produce acceptable detection and
classification results using a combination of transfer learning and data augmentation.
Since the Sevilleta collection is so small, we cannot completely rule out the
possibility of overfitting, but we believe that this will have a minimal consequence

because new images will still originate from the same camera traps.

Additional future work includes retraining the model on a new larger domain-specific
repository called The Wild Southwest. The Wild Southwest is hosted on a citizen
science platform called Zooniverse. Zooniverse is currently being labeled by ~6,500
volunteers. In total, it contains 87,000 images and as of May 2023 it is 17%
completed. Doing this can increase the model's understanding of domain specific
features, such as the shape of antlers that are only in New Mexico. Using a domain
specific repository also reduces the bias and variance, which keeps the model from
learning features that are not relevant to the task, and it also helps with the model's

generalization (Shallu & Mehra, 2018).

Additionally, approaches like active learning can be utilized to improve the model's
detection/classification capabilities and further raise performance. An active learning
strategy automatically chooses additional images that, when annotated and
incorporated, will improve the recognition performance after starting the learning
process with an original model that was only trained with a small, labeled training

dataset (Auer et al., 2021). Active learning can greatly outperform baseline models
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because it uses the most useful examples and selects them so that only a few
annotations are required (Auer et al., 2021). It was shown that binary region-specific
active learning-based classification models outperformed well-known binary
classifiers like Megadetector (Auer et al., 2021). A similar approach might show

promise when integrated with the ungulate classifier.

We believe that YOLOvV5 can be employed to detect ungulates in images that have
no annotations and that have been taken at the Sevilleta Wildlife Refuge. This will
provide Southwest researchers insight into ungulate populations and interactions.
Population monitoring in this region is crucial for establishing the efficiency of
conservation initiatives and can be utilized as an early warning system so that these

systems can be protected.
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Figure 8 Confusion matrix that was generated from the training and validation phases.
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Figure 9 Detailed analysis of YOLOv5 performance from the training and validation phases.
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Figure 10 F1 curve provides insights into the overall detection performance of the mode at different confidence thresholds,
enabling model selection, optimization, and comparison across different experiments or variations of the algorithm.
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Figure 11 Precision curve shows the precision achieved by YOLOV5 at different confidence thresholds during the training and
validation phases.
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Figure 12 Precision and recall (PR) curve shows the relationship between precision and recall at different confidence

thresholds.
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Figure 13 Recall curve displays the recall achieved by YOLOvS5 at different confidence thresholds.
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