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Abstract  

As camera traps have grown in popularity, their utilization has expanded to 

numerous fields, including wildlife research, conservation, and ecological studies. 

The information gathered using this equipment gives researchers a precise and 

comprehensive understanding about the activities of animals in their natural 

environments. For this type of data to be useful, camera trap images must be 

labeled so that the species in the images can be classified and counted. This has 

typically been done by teams of researchers and volunteers, and it can be said that 

the process is at best time-consuming. With recent developments in deep learning, 

the process of automatically detecting and identifying wildlife using Convolutional 

Neural Networks (CNN) can significantly reduce the workload of research teams and 

free up resources so that researchers can focus on the aspects of conservation.  
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1.0 Introduction 

With an increase in camera trap availability, researchers from a range of fields have 

been able to effectively deploy camera traps to observe wildlife remotely. Data 

collected in this manner can provide researchers with accurate, detailed, and up-to-

date information regarding the location and behavior of wild animals and can 

improve the ability to study and conserve ecosystems (Norouzzadeh, 2018). Camera 

trap imagery needs to be labeled so that the wildlife in the imagery can be 

categorized and counted, and this has traditionally been done by groups of 

researchers and volunteers, which can be described as time-consuming at best 

(Norouzzadeh, 2018). The use of these camera traps in New Mexico has resulted in 

millions of unlabeled camera trap images waiting to be analyzed (Sanderson & 

Harris, 2013). With recent developments in deep learning, the process of 

automatically detecting and identifying wildlife using Convolutional Neural Networks 

(CNN) can significantly reduce the workload of research teams and free up 

resources so that researchers can focus on the aspects of the project (Islam and 

Valles 2020). 

     
Figure 1 (A) Image of an African Oryx taken from a camera trap. (B) Image of a camera trap being deployed. 

 



For CNNs to be able to accurately classify objects in images, they must first be 

trained with a large amount of labeled training samples that will produce updated 

weight parameters for learning (Han et al 2018). While camera trap imagery is in 

ample supply, the labels that identify the location of bounding boxes are not. 

Transfer learning allows researchers to take advantage of neural networks that have 

already been trained on larger datasets and then fine-tune them on a much smaller, 

domain-specific dataset. The method of training allows additional flexibility and 

increases the functionality of CNNs when classifying imagery, which can help 

researchers learn more about places that only have a small amount of data. This 

strategy can also help researchers who utilize camera traps for operational wildlife 

monitoring to improve species identification in a variety of environments based on 

the accumulated knowledge represented in labels from other sites. Furthermore, 

researchers may do more complicated detections like counting individuals or 

determining distance by utilizing CNNs that use bounding boxes for training rather 

than images with the entire sample labeled. 

This research will evaluate the performance of the You Only Look Once version 5 

(YOLOv5) algorithms in the detection and classification of animals located in the 

Sevilleta wildlife refuge. Due to its speed and precision, YOLOv5 was chosen for this 

project over other algorithms because, in a number of varying detection tasks, 

YOLOv5 has been demonstrated to achieve comparable performance with faster 

speeds (Kuznetsova et al., 2020) (Sa’Doun et al., 2021). YOLO divides the image 

into regions, applies a single neural network to the entire image once, and instantly 

determines the range of objects and probabilities of classes for each item 



(Kuznetsova et al., 2020). The first model type will be trained on a domain-specific 

data set and be tested on imagery solely from the Sevilleta Wildlife Refuge. This is 

referred to as the domain model (DM). The second model type will utilize transfer 

learning for creating customized weights. This involves using a larger, regionally 

based data set instead of one that focuses only on wildlife in New Mexico. This 

method will allow the model to learn from a data set consisting of similar animals and 

be able to take advantage of a large amount of annotated imagery. The best-fit 

model (TM) will be further fine-tuned by exploring different learning rates that can 

impact the time needed for convergence. Therefore, this study assesses the 

potential of using transfer learning from national sources to enhance the detection 

and classification of camera trap imagery from the Sevilleta National Wildlife Refuge 

based on a limited collection of locally generated annotations. 

 

 

 



2.0 Background 

2.1 Introduction 

Habitat is becoming depleted as the human population expands (Bar-Massada et al, 

2014). This encroachment into adjoining natural lands drastically inhibits natural 

species movement and disrupts other natural processes (Butler, 2006). Because of 

this increase, human and animal populations alike have found themselves in 

numerous potentially dangerous situations they would not have found themselves in 

otherwise. As urbanization moves further into animal habitats, new anthropogenic 

mortality causes become more prevalent, producing major changes in natural 

ecology (Collins & Kays, 2011). The existing and increasing global scale and 

influence of human population expansion is incompatible with the survival of 

biological diversity, and the sixth mass extinction cannot be reversed (Naggs, 2017). 

One of the most common methods for monitoring wildlife in its natural environment is 

to analyze imagery collected from camera traps (Beery et al., 2019). Since traps can 

be and often are deployed for extended periods, data sets collected in this manner 

tend to be very large, containing thousands of images per class. These data sets are 

often labeled manually by either a research team or a group of volunteers, which is 

described as time-consuming at best (Evans et al., 2020). Following recent 

advances in deep learning, researchers have been able to start exploring the 

process of automatic species identification through CNNs (Willi et al., 2019). The 

integration of camera trap imagery and Convolutional Neural Networks have been 

shown to be a promising tool for a potential method for persistent monitoring of 



species presence, evaluation of species populations, and animal behavior without 

the need for a physical gathering of the subject (Evens et al., 2020). 

This section focuses on how developments in deep learning, specifically CNNs, can 

allow researchers to non-intrusively analyze animal populations through camera trap 

imagery. The first key theme focuses on areas that are being used for wildlife 

conservation and areas with an increase in human-animal interaction (wildlife urban 

interface). The second key theme of this review examines the advantages and 

disadvantages of using camera trap imagery for wildlife monitoring. The third key 

theme of this review discusses how deep learning algorithms can be used for 

conservation and discusses how CNNs can enable scaled sampling using camera 

traps. The fourth and final key theme looks at how integrating transfer learning and 

data augmentation methods into domain-specific camera trap projects can increase 

classification accuracy. 

2.2 Areas That Can Benefit from Monitoring Wildlife 

Human development has had a significant impact on natural species movement, 

population dynamics, and other natural processes in the wilderness (Butler, 2006). 

The rate of human settlement expansion does not appear to be slowing down 

anytime soon, so one can only expect the wildlife-urban interface boundary to 

expand (Sella Veluswami, 2021). To limit the amount of damage to neighboring 

ecosystems, it is necessary to monitor the repercussions of increased human-animal 

contact and assess the effects humanity has on animal populations, habitats, and 

behavior. 



With such dramatic growth in human population and urbanization, wildlife habitats 

are becoming even more constrained (Butler, 2006). The boundary between human 

communities and wildlife is referred to as the wildland3urban interface. This area 

consists of either interfaced housing developments, which are typically placed along 

the edges of continuous swathes of uncultivated land, or intermixed housing,  

which is housing that is surrounded by natural or seminatural areas (Bar-Massada et 

al., 2014). Residential areas near natural boundaries can affect neighboring 

ecosystems in many ways, including exotic species introduction, wildlife 

subsidization, disease transfer, landcover conversion, fragmentation, and habitat 

loss (Bar-Massada et al., 2014). 

The National Wildlife Refuge System is a designation for certain protected areas of 

the United States managed by the United States Fish and Wildlife Service. Fish and 

wildlife refuges make up 95 million acres, and it is estimated the total value of 

ecosystem services provided by the Refuge System in the United States is 

approximately $26.9 billion/year (Ingraham & Foster, 2008). The objective of wildlife 

refuges is to sustain and promote biodiversity-focused conservation initiatives as 

well as conservation activities that protect ecological integrity (Fischman, 2003). 

Some Fish and Wildlife programs, for instance, have focused on restoring native 

biological variety by assessing wildlife refuges for foreign species, evaluating the 

impacts of exotic wildlife on native animals, using removal strategies, and calculating 

the benefits of successful removal (Veitch & Clout, n.d.).   

For conservation to be effective, a flexible and responsive recovery strategy, such as 

adaptive management, should include provisions for monitoring, allowing 



researchers to track species throughout the recovery process (Campbell et al., 

2002)(Gillson et al., 2019).By monitoring animals through this imagery, 

investigations into natural systems have provided new insights into migration 

patterns and species counts that can benefit the fields of ecology, zoology, and 

many others. Furthermore, conservation initiatives supported by CNNs can assist in 

the understanding of the complexities of natural ecosystems and act as a catalyst for 

the transformation of ecology (Islam & Valles, 2020). 

2.3 Camera Trap Imagery for Monitoring Wildlife  

While biologists and ecologists use many different methods of monitoring animal 

behavior, such as radio-tracking, wireless sensor network tracking, and animal 

sound recognition, one of the most common tools to monitor wildlife around the 

world is the camera trap (Islam & Valles, 2020) (Monterroso et al., 2009) (Li & Wu, 

2015) (Handcock et al., 2009). Camera traps are heat- or motion-activated cameras 

placed in the wild to monitor and investigate animal populations and behavior (Beery 

et al., 2019). Existing camera-trap systems for wildlife monitoring have developed as 

a result of technological improvements in hardware and embedded software and are 

now commercially available at a reasonable cost, rapidly deployable, and easy to 

maintain, allowing them to be utilized by a wide variety of organizations (Chen et al., 

2014). Moreover, while the cost of employing camera traps is relatively low, 

extracting information from these photographs remains an expensive, time-

consuming, and manual task. (Norouzzadeh et al., 2018). Before the widespread 

use of CNNS, researchers devised a number of innovative and successful methods 

for automating the interpretation of animals from camera traps using raw pixel data 



from images (Schneider et al., 2018). Earlier approaches to species classification 

required a domain expert to identify significant features for the desired classification, 

design an algorithm to extract these features from images and compare individual 

differences using statistical analysis (Schneider et al., 2018). 

Images from camera traps can be used to help researchers learn more about an 

animal's behavior and social structure, which are not visible when using other 

monitoring techniques like GPS collars. The ability to study and conserve 

ecosystems would be enhanced if researchers had precise, detailed, and up-to-date 

information regarding the location and behavior of wild animals (Norouzzadeh et al., 

2018). For example, imagery collected from camera traps can be used to identify, 

and locate threatened species, identify important habitats, monitor sites of interest, 

and analyze wildlife activity patterns (Beery et al., 2019). To create a better 

understanding of wildlife environments, it is essential to be able to acquire and 

analyze fine-scale, non-intrusive imagery. Other methods of monitoring wildlife 

include Manned Just in Time (MJIT) flights and Global Positioning System (GPS) 

collars, both of which collect wildlife observations in unique ways. MJIT refers to a 

technique for tracking wildlife with aerial vehicles over a predetermined area while 

tracking and monitoring wildlife in real-time, but it has been demonstrated that in 

some circumstances, the temporal resolution of sUAS collected images is 

constrained by the relatively short flight times, limited swath-width, and logistics of 

operating under existing regulations (Lippitt and Zhang, 2018) Hodgson et al., 2016). 

On the other hand, GPS collars provide highly precise position data by satellite 

triangulation, and researchers can analyze gain insights into a range of ecological 



questions, such as animal migration patterns, home range size, and social structure 

(Naidoo et al., 2016) (Foley & Sillero-Zubiri, 2020). That being said, GPS collars 

have been known to fail prematurely (Johnson et al., 2002). In contrast, camera 

traps cover a small area in space, but they do so at infinite temporal resolution and 

for long durations when compared to the just-in-time counts that UAS are capable of. 

Although camera trap imagery can be useful to researchers in general, there are a 

number of challenges in processing and interpreting it. For example, the vast 

majority of camera trap imagery that is gathered is unlabeled and does not contain 

any objects of interest (Zhu et al., 2011). To make the imagery useful for analysis, 

researchers or volunteers must go into the imagery and manually identify objects, 

which is a time-consuming operation. With the growing number of camera trap 

studies, it is becoming increasingly difficult to recruit enough participants to complete 

all projects on time (Willi et al., 2019). In addition to having to manually identify 

objects, roughly ~70% of camera trap images do not contain any objects, and this 

can be caused by false triggers (Beery et al., 2021). The manual labeling of the 

Snapshot Serengeti collection, which consists of 1.2 million images, has taken 

28,000 registered and 40,000 unregistered volunteer citizen-scientists 233 months to 

identify each 6-month batch of photos (Norouzzadeh et al.,2018). As digital cameras 

improve and become more affordable, researchers will begin to use camera traps in 

their own domains, putting more strain on volunteer resources that identify imagery. 

2.4 Deep Learning as an Alternative to Manual Classification 

Deep Learning, a subfield of machine learning, is based on Artificial Neural 

Networks, a computational architecture inspired by how the human brain learns and 



recognizes objects (O’Mahony et al., 2020). These networks consist of many 

neurons that conduct a simple operation and interact with one another to produce a 

decision, just like the human brain (O’Mahony et al., 2020). Neural networks, 

hierarchical probabilistic models, and unsupervised and supervised feature learning 

algorithms are all part of deep learning and have shown the potential to outperform 

the previous state of the art machine learning techniques in several tasks 

(Voulodimos et al., 2018). Deep Learning has expanded the boundaries of what was 

previously thought to be achievable in the field of digital image processing. 

A Convolutional Neural Network (CNN) is a specific deep learning method that 

requires the user to train algorithms to recognize objects (e.g., animals, humans, 

and cars) in photos and classify the objects (e.g., species) present (Vélez et al., 

2022). CNN platforms come in several different forms, and new ones are released 

on a regular basis, but they all have similar structures. CNNs are comprised of three 

main types of neural layers called convolutional layers, pooling layers, and fully 

connected layers (Voulodimos et al., 2018). Each layer of a CNN eventually converts 

the input volume to an output volume of neuron activation; this creates a fully 

connected layer that results in a 1D feature vector that can be categorized and 

classified (Voulodimos et al., 2018) 

The convolutional layer consists of weighted filters that match the input data and 

helps identify features of varying complexities. Each filter identifies specific patterns 

or traits such as edges, corners, bright spots, dark spots, and shapes (Hussain et al. 

2018). By stacking multiple convolutional layers, CNNS are able to learn more 

complex features and eventually will be able to identify complex objects like animals, 



vehicles, or faces (Hussain et al. 2018). The max pooling layer utilizes a window (ex 

2x2/3x3 pixels) that travels across the image, storing the maximum value of each 

step, reducing the spatial dimensions of the feature maps to leave only the most 

significant data, which can then be merged into one (LeCun et al., 2015). Each 

image's dimension is reduced while the most crucial information is retained (Hussain 

et al. 2018). The outputs of convolutional layers and max pooling layers are 

processed by the fully connected layers (see figure 2). Every neuron in one layer is 

connected to every other neuron in the following layer by fully connected layers 

(Voulodimos et al., 2018). The goal is to learn nonlinear combinations of information 

from previous layers that are relevant to identifying objects in an image. 

Simply put, an image from a camera trap dataset is fed into the neural network, 

where it moves through different filters that creates feature maps and pooling layers 

that reduce the spatial dimensions of the image. Once the foregoing processes are 

completed, the final output can be identified and classified, and this can 

automatically be done to thousands of photos, saving researchers time improve the 

understanding of the population dynamics (Schneider et al., 2018a). 

 

Figure 2 Basic structure of a Convolutional Neural Network (Hussain et al. 2018)  



 

A CNN designed for species identification will output a set of activations, 

representing the observation of a particular species at a particular location and time, 

and are often used as a way to calculate population sizes in different regions (Evens 

et al, 2020).  This is beneficial because it allows ecologists and other experts to 

observe animals in their native habitat without producing avoidance behaviors, 

habituation, or physiological changes in reaction to human-induced interactions (St. 

John, 2022). This has demonstrated great potential, but it has also revealed some 

limitations with CNNs that are particularly caused by camera trap images, such as 

varying illumination, weather, seasons, and a cluttered background (Evans et al., 

2020) (Favorskaya & Pakhirka, 2019). 

While CNNS may be trained to perform a variety of tasks, some are better than 

others at specific operations. For example, MegaDetector, created by Microsoft AI 

for Earth, provides a JSON file as an output, which indicates the locations of 

detected objects in the form of bounding boxes and is associated with confidence 

values for each detection (Velez et al., 2022). While this architecture can accurately 

detect objects, it is unable to classify species into distinct categories (Velez et al., 

2022). While somewhat limited, this specific detector can still be beneficial in many 

fields. It was shown that 75% of the Snapshot Serengeti dataset, which consists of 

3.2 million-images, were labeled empty by humans; therefore, automating the first 

stage alone can save 75% of human labor (Norouzzadeh et al., 2018). Additionally, 

MegaDetector detections can also be cropped to the predicted bounding box and 



utilized in a different species classifier, reducing the species classifier's ability to 

overfit to the image background (Evans et al., 2020). 

While the structure of CNNs is complex and training them requires users to have 

extensive training, the impact they can have on ecological studies is apparent 

(PIRES DE LIMA et al., 2020)(Schneider et al., 2018a). By incorporating CNNs into 

camera trap projects, the number of volunteers needed for labeling could be 

significantly reduced, allowing researchers to focus on other aspects of these types 

of projects. Manual labeling is a time-consuming task that improves in deep learning, 

and CNNs specifically, are well positioned to automate. 

2.5  Enhancing Model Predictive Performance  

The confidence of a Convolutional Neural Network's (CNN) detection and 

categorization is impacted by the excessive data hunger of deep learning models, 

which require massive amounts of high-quality data to function properly. (Pires de 

Lima et al., 2019). Neural networks can learn to identify spatial characteristics by 

adjusting their weights during the training phase due to the backpropagation of 

errors (Willi et al., 2019). Once training is complete, users then use additional 

imagery for validation. While this appears to be a simple process, complications can 

arise when working with various animal classes. When the model works well with the 

training data but fails to generalize validation data, it is referred to as overfitting 

(Islam & Valles, 2020). If there is an unbalanced amount of imagery used to train the 

model, it may learn to focus on specific patterns in the training data that are not 

relevant for other classes in the camera trap collection, which can also lead to 

overfitting (Willi et al., 2019).  



2.5.1 The Power of Transfer Learning and Its Impacts on Computer 

Vision 

Inspired by human beings’ capabilities to transfer information across domains, 

transfer learning is the process of preconditioning a CNN on a preexisting repository 

of data that already consists of labeled imagery (Zhuang et al., 2021). For deep 

learning classification projects with insufficient data or computational limits, transfer 

learning has gradually become the preferred method of training CNNs (Liu et al., 

2019). This process has shown that models that take advantage of transfer learning 

can increase output classification accuracy by 10.3 percent (Willi et al., 2019). 

Rather than starting the learning process on the model from scratch with random 

weight initialization, transfer learning allows users to start with learned features from 

weights generated from larger image collections and then adapt these features to 

suit the new set of imagery (Hussain et al., 2018). This process allows researchers 

who use domain specific data sets the benefits of higher accuracy classification 

without the need to collect the thousands of images needed to train accurate CNNS.  

CNNs and transfer learning have reshaped the field of computer vision and have 

been effectively used for a variety of applications, such as the interpretation of 

camera trap data (Hussain et al., 2018). By leveraging pre-trained CNN models on 

large image datasets such as Snapshot Serengeti, transfer learning enables the 

efficient use of limited camera trap data for the automation of data analysis 

(Schneider et al., 2018b). This approach has enabled the development of CNN 

models capable of classifying and detecting species in camera trap images with high 

reliability and accuracy (Sharma et al., 2020). It has even been demonstrated that a 



CNN can learn to recognize distinctive aspects of individual animals, such as their 

coat pattern or facial markings, by being trained on a sizable collection of annotated 

photos (Nepovinnykh et al., 2018). This makes it possible to create a database of 

distinct species and individuals for future population analysis. While transfer learning 

can be used to minimize overfitting and strengthen classification predictions, the 

primary benefit is not having to wait for more images to be labeled for training (Han 

et al., 2018). 

2.5.2 Improving Deep Learning Performance Through Data 

Augmentation 

To increase the accuracy of outputs in a localized region that doesn’t have the 

benefit of using a domain focused repository to train networks, researchers can use 

preprocessing methods like data augmentation to artificially expand classes in a 

data set. Data augmentation is a regularization technique that uses label-preserving 

modifications to artificially enhance the data set by adding altered domain-specific 

pictures to an already existing collection of imagery. (Taylor & Nitschke, 2017). This 

process can expand existing datasets in a wide range of image variations that will 

help the model recognize objects in various shapes and forms (Islam & Valles, 

2020). The basic augmentation process is accomplished by creating a copy of the 

original image that has been shifted, zoomed in/out, rotated, flipped, deformed, or 

tinted with a hue (Perez & Wang, 2017 Researchers in a variety of fields may 

employ generic data augmentation as a cost-effective substitute if transfer learning 

is not an option due to object rarity or distinctive settings (Taylor & Nitschke, 2017). 

By increasing the amount of domain specific training data artificially, the chance of 



overfitting is significantly reduced. It was shown that data augmentation techniques 

that take advantage of transformations that alter the geometry of images were 

shown to improve neural network classification accuracy when compared to 

alterations of lighting and color (Taylor & Nitschke, 2017 (Perez & Wang, 2017).  

Data augmentation alone can aid future camera trap projects aimed at observing 

species that are difficult to photograph or in locations that are difficult to access, 

such as beneath water.  

2.5.3 Optimizing Model Training with Learning Rates 

The learning rate is a hyperparameter that specifies how much the model should 

change in response to the predicted error each time the model weights are updated. 

The learning rate parameter in gradient descent learning methods, such as error 

backpropagation, can have a substantial effect on generalization accuracy (Wilson & 

Martinez, 2001). In this case, using different learning rates translates to how fast 

YOLOv5 is able to learn what a mule deer looks like and how well it is at recognizing 

mule deer in new images. It has been shown that too small a learning rate will make 

a training algorithm converge slowly, while too large a learning rate will make the 

training algorithm diverge (Smith, 2017). Lowering learning rates below those which 

achieve the fastest convergence can improve generalization accuracy considerably, 

especially on complicated tasks (Wilson & Martinez, 2001). An unoptimized learning 

rate can require orders of magnitude more training time than one that is in an 

appropriate range. According to conventional thinking, the learning rate should be a 

single value that declines monotonically over training, and users should experiment 



with a variety of learning rates so that optimal performance of the model can be 

achieved (Smith, 2017). 

Deep learning systems function best when the training data has a balanced 

distribution of samples across all classes, but realistically camera traps will not 

collect an equal amount of imagery for each class (Schneider et al., 2020). This 

means that CNNS trained only on a large general repository will underperform when 

classifying images from different areas (Schneider et al., 2020). For researchers to 

achieve higher recognition accuracy, a combination of general repository transfer 

learning and data augmentation of domain specific classes is recommended (Perez 

and Wang 2017) (Hussain et al. 2018). 

2.5.4 You Only Look Once 

YOLOv5 is a resilient object detection deep learning network that has been utilized 

in a variety of applications, including pedestrian detection for self-driving cars, 

surveillance systems, and conservation (Vikram Reddy & Thale, 2021) (Sa’Doun et 

al., 2021). YOLOv5 is more user-friendly and requires far fewer processing 

resources than other Deep Learning neural networks while maintaining comparable 

results and operating faster than other networks (Choiński et al., 2021). Yet another 

explanation for why YOLOv5 is so effective is that it is a one-stage detection 

technique, which means it predicts bounding boxes and class probabilities for each 

object in a single forward pass of the network, whereas other networks use a two-

stage method (Jiang et al., 2022). It has been demonstrated that, when comparing 

the speed and accuracy of the detection of wildlife from imagery, the YOLO 

architecture can perform just as well as other high-performance CNNs (Sa’Doun et 



al., 2021). That is partly due to the fact that YOLO can either be trained from scratch 

or the user can take advantage of the Common Objects in Context (COCO) pre-

trained model. The COCO dataset is a collection of challenging, high-quality images 

and labels that can be used for object detection or segmentation (Adamczyk, 2020). 

This repository includes 91 object categories and 330K images, and 200K labels. 

Stop signs, zebras, eyeglasses, elephants, and fire hydrants are among the 

categories included (Admin, 2018). 

2.6 Conclusion  

Despite the fact that CNNs have been readily accessible for several years, there are 

still no trained models that specialize in the detection of ungulates in New Mexico. 

Processing such vast amounts of data with CNNs necessitates substantial computer 

resources and knowledge, which may not be widely available. However, as the need 

for data analysis utilizing CNNs grows, more resources and experience will most 

likely become accessible, making it easier to process the data and extract valuable 

insights. 

By training YOLOv5 with larger general image repositories, expanding domain 

specific data sets artificially, and optimizing learning rates, deep learning can provide 

new tools for researchers to label and categorize camera trap imagery in wildlife 

refuges without the need for extensive labeling campaigns. The process of collecting 

and analyzing large amounts of imagery from camera traps in an automated, 

accurate, and cost-effective manner can help accelerate the transformation of the 

fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior 

into big data sciences (Norouzzadeh et al., 2018). This combination has the potential 



to produce new information that can aid wildlife conservation efforts around the 

world and help create a balance between human-wildlife relations.  

  



3.0 Research Design 

This study aims to determine the effectiveness of using large collections of 

annotated camera trap imagery that can influence YOLOv5 predictions when 

determining the location and classification of ungulates in camera trap imagery from 

the Sevilleta wildlife refuge. In addition to evaluating the impact of transfer learning, 

YOLOv5 was fine-tuned using varying degrees of data augmentation and learning 

rates for practical employment in support of the USFWS. 

3.1 Data 

The primary image repository used for this project consists of 4 camera traps that 

are distributed around the Sevilleta wildlife refuge and consist of ∼ 2000 images. 

These camera traps were set up in 2019 by the University of New Mexico (UNM) 

and the USFWS. Common species in this collection include but are not limited to 

mule deer, coyotes, elk, pronghorns, and African oryx. For this imagery to be used 

for training the CNN, it must contain separate bounding box information (category id, 

x, y, width, and height). For this portion of the project, images were labeled by 

volunteers from Zooniverse, which is a citizen science web portal that allows 

volunteers to participate in a wide range of research projects (see fig 3). Animal 

classification, x, y, width, and height of bounding box in are just a few examples of 

the label information that is provided (see fig 4). The Sevilleta labels on Zooniverse 

are 15 times redundant, majority rule, implying that a minimum of 15 volunteers must 

either build a bounding box around an object or say that there is no object in the 

image for it to be classified. 



 

Figure 3 Zooniverse Labeling Interface 

 

Figure 4 Zooniverse label example. 

 

This Caltech Repository (Caltech Camera Traps), located in the Labeled Information 

Library of Alexandria: Biology and Conservation (LILA BC), contains 243,100 photos 

from 140 camera locations across the Southwest, with labels for 21 animal 

categories, primarily at the species level (the most common labels are opossum, 

raccoon, and coyote), and approximately 66,000 bounding box annotations, with 

approximately 70% of photos labeled "empty." The zipped data set is approximately 



105 GB and can be downloaded from the Alexandria Labeled Information Library: 

Biology and Conservation ("Camera Traps Archives," n.d.). 

Name of class Category ID Number in class 

Pronghorn 0 439 

African Oryx 1 694 

Mule Deer 2 343 

Other Than Ungulate 3 35 

Table 1 Sevilleta Class Count 

3.2 Data Pre-processing 

The Caltech bounding box annotations are in JSON format and include the image id, 

class id, x coordinates, y coordinates, height, width, and information about the 

classes. YOLOv5 needs a single .txt file for each image where the annotation is 

normalized and only needs the bounding box x coordinates, y coordinates, height, 

width, and class id. The required single txt files were produced using Python and 

values and converted from COCO format ([x_min, y_min, width, height]) into YOLO 

format ([x_center, y_center, width, height]). 

The Sevilleta labels provided by Zooniverse are 15x redundant, majority rule. This 

means that for an object to be labeled, it must meet the agreed-upon threshold of 15 

identifications, with the majority agreeing on the category id. Of these, the 15 

bounding boxes created median value was taken to create a new bounding box 

(Swanson et al, 2016). To do this, a script is used to count the number of labels for 

each potential class before designating the majority class as the class label for each 

training example (Sheng et al, 2019). Similar to the Caltech JSON, a Python script 

was used to filter out extraneous information and produce single Txt files and values 



were converted to YOLO format. As previously stated, these single Txt files contain 

class ID, x coordinates, y coordinates, height, and width. 

Location/Data Set Number of Camera 

Traps 

Image 

Count 

Number of Labels in 

Data sets 

Source Label 

format 

Caltech Repository 140 243,100 66,000  Library of Alexandria COCO.csv 

Sevilleta Wildlife Refuge 

Repository  

4 2,292 2,292 

 

United States Fish and 

Wildlife  

COCO.json 

Table 2 Camera Trap Data Description 

3.3 Increasing Recognition Accuracy 

CNNs trained solely on a large general repository will underperform when classifying 

images from different domains (Schneider et al., 2020). To mitigate this, data 

augmentation and fine-tuning of learning rates were employed. By utilizing data 

augmentation, the model can leverage a larger number of samples for training, 

thereby potentially enhancing overall performance. Fine-tuning the learning rate of 

the model facilitates faster convergence. Ultimately, employing both of these 

methods can stabilize the training and validation phases. 



4.0 Project Execution 

4.1 Data Management  

For this project, the Caltech imagery was zipped and stored on an external hard 

drive. The imagery provided by the USFWS was compiled on one drive and backed 

up on an external hard drive. The Python scripts that were used for YOLOv5 are 

also accessible on a local machine, and the original code is also backed up on an 

external hard drive. Additionally, changes made to the data sets, including but not 

limited to data augmentation processes, were noted. The labels generated are open-

sourced and located in the Wild Southwest repository and stored in the labeled 

Information Library of Alexandria: Biology and Conservation website. 

4.2 Research Question 

To progress towards the reliable use of Convolutional Neural Networks applied to 

camera trap imagery for monitoring wildlife in New Mexico, the proposed research is 

guided by the following question: 

How does transfer learning based on regional wildlife samples affect the 

classification and detection accuracy of Convolutional Neural Networks for the 

detection and identification of wildlife from camera trap imagery at the Sevilleta 

National Wildlife Refuge? 

Sub Questions 

How do learning rates impact the robustness of transfer learning? 

How does data augmentation affect transfer learning performance? 



4.3 Study area 

Imagery that was classified during the detection phase comes from the Sevilleta 

National Wildlife Refuge. The refuge itself is situated about 50 miles south of 

Albuquerque, NM, and consists of 230,000-acre refuge that includes four different 

biomes (Pi渃̀on3Juniper Woodlands, Colorado Plateau Shrub3Steppe lands, 

Chihuahuan Desert, Great Plains Grasslands) that intersect and support a wide 

array of biological diversity (<Sevilleta National Wildlife Refuge-Visitor Center Area,= 

2022). Unlike other protected areas, the Sevilleta refuge was intended to preserve 

natural systems, allowing this sanctuary to remain as close to its original state as 

possible. This has led to a refuge where hundreds of species can thrive (<Sevilleta 

National Wildlife Refuge-Visitor Center Area,= n.d.). 

 
Figure 5 Sevilleta National Wildlife Refuge  



4.4 Methods  

This project systematically evaluates the effects of transfer learning on the 

calibration of YOLOv5 to detect and classify large ungulate species. Models that 

take advantage of both data augmentation and transfer learning were run 10x with a 

variety of learning rates so that training times are reduced, and overall performance 

is increased (Smith 2020). The optimal learning rate is identified by using different 

orders of magnitude, and effectiveness is determined by classification accuracies 

and mean average precision (mAP) (Wilson & Martinez, 2001). Transfer learning is 

used in two ways; the first method uses a pre-trained neural network that uses either 

COCO weights or Caltech weights. The second method also used the weights 

generated from either the Caltech data set or the COCO weights, but instead of 

using the entire network, the first ten layers of the backbone are frozen, and only the 

head of the network is trained. Models that use data augmentation are further fined 

tuned by using varying degrees of augmentation. 

Model 

# 

Model Description Transfer 

Learning 

Pretrained 

Transfer 

Learning 

Freeze 

layers  

Data 

Augmentation 

Learning 

rates 

 

1 Sevilleta from scratch no data 

augmentation 

- - - 0.01 

2 Sevilleta COCO pretrained weights no 

data augmentation 

X - - 0.01 

3 Sevilleta COCO pretrained model data 

augmentation low 

X - - 0.01 

4 Sevilleta Caltech freeze 10 no data 

augmentation  

- X - 0.01 

Table 3 Model Description 

 



Model 

# 

Model Description Transfer 

Learning 

Pretrained 

Transfer 

Learning 

Freeze layers  

Data 

Augmentation 

Learning 

rates 

 

5 Sevilleta Caltech pretrained model data 

augmentation low 

X - X 0.01 

6 Sevilleta Caltech pretrained model data 

augmentation high 

X - X 0.01 

7 Sevilleta from scratch data augmentation 

high 

- - X 0.01 

8 Sevilleta Caltech pretrained model data 

augmentation high Lr 0.001 

X - X 0.001 

9 Sevilleta Caltech pretrained model 

augmentation low Lr 0.0001 

X - X 0.0001 

10 Sevilleta Caltech pretrained model data 

augmentation low Lr 0.1 

X - X 0.1 

11 Sevilleta COCO freeze 10 no data 

augmentation High Lr 0.01 

- X X 0.01 

13 Sevilleta Caltech pretrained model data 

augmentation High Lr 0.001 

X - X 0.001 

14 Sevilleta Caltech pretrained model data 

augmentation High Lr 0.0001 

X - X 0.0001 

15 Sevilleta Caltech pretrained model data 

augmentation High Lr 0.1 

X - X 0.1 

16 Sevilleta Caltech pretrained model No 

data augmentation Lr 0.1 

X - X 0.1 

Table 3 Model Description Continued 

4.5 Implementation of YOLOv5 

To successfully run YOLOv5, the first thing needed to do is install its dependencies, 

which consist of python 3.7, pytorch 1.7, and base requirements (see figure 

6)(Ultralytics/Yolov5, 2020/2022). They were installed on the Center for 

Advancement of Spatial Informatics Research & Education (ASPIRE) local BISON, 



GPU-enabled computer (16 x 2.1 Ghz cores, 256GB RAM, 2 x 11GB 1080ti GPUs), 

using pip, a Python package installer. Initiation of models takes place in Anaconda3 

command prompt. 

 
Figure 6 YOLOv5 base requirements 

4.6 Hyper parameter configuration 

Data augmentation, adjustments to learning rates, and other hyperparameters are 

defined via a yaml file. A yaml file is a human-readable data serialization language 

that is commonly used to create configuration files. The data folder in the master 

folder contains hyp.Objects365.yaml, hyp.scratch-low.yaml, hyp.scratch-high.yaml, 

hyp.scratch-med.yaml, hyp.VOC.yaml. All of these are preconfigured 



hyperparameter settings that can be used for the model. In this file, data 

augmentation techniques like mosaic, shear, saturation, and translate are provided. 

4.7 Training 

 All models are trained using 70 percent of the labels from the camera trap 

collections, with a randomly selected 20 percent held out for validation and 10 

percent for detection/testing. The beginning segment of the model makes use of the 

Python training.py script. This is where the models are presented with the images 

and the corresponding labels so that weights can be updated and generated. Once 

completed, the model's performance is evaluated on mAP, bounding box regression 

loss, objectness loss, and classification loss (PhD, 2022) (Solawetz et al., 2020). 

The transfer learning models employ either the COCO weights or the Caltech 

best.py weights, and the newly trained model employs random weights. Data 

augmentation and learning rates that are to be used during training are applied in 

the hyperparameter yaml file. This file allows for the usage of high, mid, low, or 

custom augmentations and learning rates. All of which are executed through the 

training command line for training. 

4.8 Validation 

After training, the network is applied to 20 percent of the imagery with known labels 

and performance. Once validation is completed, mAP, bounding box regression loss, 

objectness loss, classification loss, and precision and recall are compared between 

the training set and the validation set. Overall performance is assessed using a 

confusion matrix of known species labels to modeled labels, in which each prediction 

label is compared to the appropriate ground truth label (Sa'Doun et al., 2021). 



Commission errors identify false positives, and omission errors represent false 

negatives in the actual modeled results when compared to known examples. 

4.9 Detection  

Traditionally, the detect.py script is used for inference, but this does not generate 

useful statistics like mAP values, so instead, the val.py script is used for the 

detection phase. This is only possible because the test imagery has a corresponding 

annotation. It is necessary to do this so that all the model's inference capabilities can 

be compared. Once all models have been run, the confusion matrix for each run is 

compared. 

 

 

 

 

 

 

 

 

 

 

 



5.0 Results 

The best fit model was derived from a combination of using a pre-trained model that 

was based on the Caltech repository (transfer learning), high levels of data 

augmentation, and a learning rate of 0.01 (Table 4). The mAP values produced from 

the test set showed that the average for all classes was 0.567. Since the 

OTHERTHANUNGULATE class accounted for less than 5% of the whole training 

set, an additional average was calculated with it removed. This raised the mAP 

value to 0.735. P values were 0.756, indicating that the model's predictions were 

right 76% of the time. R values were 0.627, reflecting how well the true bounding 

box was predicted. Values for mAP@.5:95 were 0.384, indicating that the model 

could not effectively predict bounding box overlap (IOU). 

Model 

number 

mAP@.

5 

 

mAP@.5 W/O  

OTHERTHANUNGULATE 

mAP@.5:.95 

 

Precision(P) 

 

Recall(R) 

 

1 0.475 0.611 0.276 0.706 0.603 

2 0.52 0.699 0.35 0.676 0.642 

3 0.545 0.707 0.373 0.604 0.615 

4 0.501 0.656 0.327 0.712 0.618 

5 0.527 0.688 0.36 0.748 0.563 

6 0.526 0.692 0.339 0.712 0.649 

7 0.542 0.699 0.366 0.739 0.657 

8 0.537 0.706 0.371 0.702 0.653 

9 0.425 0.558 0.284 0.598 0.542 

10 0.531 0.698 0.346 0.756 0.601 

11 0.514 0.671 0.339 0.75 0.633 

Table 4 Results of All Models 



Model 

number 

mAP@.

5 

 

mAP@.5 W/O  

OTHERTHANUNGULATE 

mAP@.5:.95 

 

Precision(P) 

 

Recall(R) 

 

12  0.567 0.735 0.384 0.756 0.627 

13 0.553 0.727 0.383 0.744 0.617 

14 0.47 0.62 0.338 0.691 0.592 

15 0.544 0.71 0.377 0.738 0.652 

16 0.493 0.643 0.335 0.704 0.632 

Table 4 Results of All Models continued. 

The model was able to detect objects from 3 out of the 4 classes, which can be seen 

in Figure 7. Detection among the 3 classes had varying degrees of accuracy, but all 

fell within an acceptable range. African oryx had the highest precision scores (0.98). 

While pronghorn and mule deer had significantly lower scores (0.89, 0.73). This 

might be the case given the particular unique characteristics of the African Oryx and 

the inclusion of more training samples4about 350 more in total (see Table 1). The 

fourth category, other than ungulate, had no detection, but this could be due to the 

extremely small sample size that was used. Additionally, this model had many 

issues with background detection, meaning that for many of the images, the model 

did not think there were any objects present when in fact, there were. Furthermore, 

excessive detection in each class afflicted the model as a whole. The values 

presented in the confusion matrix indicate that the model mistook portions of the 

backdrop vegetation for animal features. 

For this project, transfer learning proved to be greatly advantageous. Models that 

only used this approach saw an increase in mAP of ~ 9%, but the major benefit was 

that mAP, mAP .5: .95, Precision, Recall, Bbox loss, Object loss, and Class loss all 



remained stable and consistent during training. Without data augmentation and 

without freezing the first ten layers, the model that used the COCO dataset (2) 

slightly outperformed the Caltech repository model (16). Given that the COCO data 

set has ~ 200,000 annotations whereas the Caltech datasets have ~ 60,000, this 

suggests that researchers can get similar conclusions using only roughly 25% of the 

data. 

Freezing the models' backbone and only training the head of the network showed 

increases in overall performance and prediction accuracy in both models. The model 

trained on the Caltech repository, model (4), had a slightly higher overall score in 

performance when compared to model (19), which froze the first ten layers and used 

COCO weights. That being said, class predictions were similar. The most significant 

advantage of this method was decreased training time, but since this data set was 

small, it did not make a significant difference. The most benefit would be seen when 

applied to a data set that has tens of thousands of images or when one is willing to 

trade minor drops in precision for time. Overall using transfer learning via freezing 

the backbone is beneficial, but this particular method still fell short when compared 

to the network when it was first pre-trained on Caltech weights. 

Unsurprisingly the data augmentation techniques applied to these data sets 

significantly increased overall performance. This can be seen in the overall 

performance of model (01) and model (07) (table 4), which is about an 8% increase 

in the mAP@.5 W/O OTHERTHANUNGULATE. The effectiveness of the best-fit 

model (12) can also be linked to this method. Ultra-high augmentation was 



attempted, but distorted images in such a way that the performance of the model 

was greatly decreased, and overall training became erratic and unreliable.  

The best-fit model was negatively impacted by a change in learning rates of an order 

of magnitude. The model (15) using a larger learning rate (0.1) provided adequate 

performance but still fell short when compared to the best-fit model (12). Models that 

used a lower learning rate (0.001, 0.0001) showed significant decreases in 

prediction accuracy and overall performance during training. This is mainly due to 

the fact that YOLOv5 is already a proven model, as well as the fact that the data set 

is so small there were few changes in the amount of time the model needed to 

converge. However, if researchers adjusted the learning rate of a model that was 

analyzing a dataset with tens of thousands of samples, the model's time to converge 

would differ noticeably. 



 
Figure 7 Best fit model confusion matrix from detection. This matrix can be used to evaluate the accuracy of object detection by 

showing the true positives (correctly detected objects), false positives (incorrectly detected objects), false negatives (missed 
objects), and true negatives (correctly rejected non-object areas). 

 

 

 



6.0 Discussion  

The purpose of this research was to use cutting-edge techniques to improve the 

state-of-the-art CNN, YOLOv5s, dependability when trained on infinitesimal data 

sets. It was demonstrated that YOLOv5 could produce acceptable detection and 

classification results using a combination of transfer learning and data augmentation. 

Since the Sevilleta collection is so small, we cannot completely rule out the 

possibility of overfitting, but we believe that this will have a minimal consequence 

because new images will still originate from the same camera traps. 

Additional future work includes retraining the model on a new larger domain-specific 

repository called The Wild Southwest. The Wild Southwest is hosted on a citizen 

science platform called Zooniverse.  Zooniverse is currently being labeled by ~6,500 

volunteers. In total, it contains 87,000 images and as of May 2023 it is 17% 

completed. Doing this can increase the model's understanding of domain specific 

features, such as the shape of antlers that are only in New Mexico. Using a domain 

specific repository also reduces the bias and variance, which keeps the model from 

learning features that are not relevant to the task, and it also helps with the model's 

generalization (Shallu & Mehra, 2018). 

Additionally, approaches like active learning can be utilized to improve the model's 

detection/classification capabilities and further raise performance. An active learning 

strategy automatically chooses additional images that, when annotated and 

incorporated, will improve the recognition performance after starting the learning 

process with an original model that was only trained with a small, labeled training 

dataset (Auer et al., 2021). Active learning can greatly outperform baseline models 



because it uses the most useful examples and selects them so that only a few 

annotations are required (Auer et al., 2021). It was shown that binary region-specific 

active learning-based classification models outperformed well-known binary 

classifiers like Megadetector (Auer et al., 2021). A similar approach might show 

promise when integrated with the ungulate classifier. 

We believe that YOLOv5 can be employed to detect ungulates in images that have 

no annotations and that have been taken at the Sevilleta Wildlife Refuge. This will 

provide Southwest researchers insight into ungulate populations and interactions. 

Population monitoring in this region is crucial for establishing the efficiency of 

conservation initiatives and can be utilized as an early warning system so that these 

systems can be protected. 



7.0 Appendix YOLOv5 Performance                                                                          

 

Figure 8 Confusion matrix that was generated from the training and validation phases. 

 

 
Figure 9 Detailed analysis of YOLOv5 performance from the training and validation phases. 

 



 
Figure 10 F1 curve provides insights into the overall detection performance of the mode at different confidence thresholds, 

enabling model selection, optimization, and comparison across different experiments or variations of the algorithm. 

 

 
Figure 11 Precision curve shows the precision achieved by YOLOv5 at different confidence thresholds during the training and 

validation phases. 

 



 
Figure 12 Precision and recall (PR) curve shows the relationship between precision and recall at different confidence 

thresholds. 

 
Figure 13 Recall curve displays the recall achieved by YOLOv5 at different confidence thresholds. 
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