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Abstract
The article develops parameter estimation in the Logistic regression when the covar-
iate is observed with measurement error. In Logistic regression under the case–con-
trol framework, the logarithmic ratio of the covariate densities between the case and 
control groups is a linear function of the regression parameters. Hence, an integrated 
least-square-type estimator of the Logistic regression can be obtained based on the 
estimated covariate densities. When the covariate is precisely measured, the covari-
ate densities can be effectively estimated by the kernel density estimation and the 
corresponding parameter estimator was developed by Geng and Sakhanenko (2016). 
When the covariate is observed with measurement error, we propose the least-
square-type parameter estimators by adapting the deconvolution kernel density esti-
mation approach. The consistency and asymptotic normality are established when 
the measurement error in covariate is ordinary smooth. Simulation study shows 
robust estimation performance of the proposed estimator in terms of bias reduction 
against the error variance and unbalanced case–control samples. A real data applica-
tion is also included.
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1  Introduction

Case-control studies are frequently used for studying the association between 
health outcomes and risk factors. Logistic regression is one of the most com-
monly applied statistical methods to model the relationship between binary health 
outcomes and the factors of interest. In the univariate logistic regression analysis, 
the response Y is binary ( Y = 0 or 1), the predictor X is a real value, and the cor-
responding conditional regression function is

Here �∗ and � are scalar parameters. Let � denote P(Y = 1) and f be the marginal 
density of X, then � = ∫ Ψ(x)f (x)dx . We denote the conditional density functions of 
the covariate X as f0 and f1 corresponding to the response Y = 0 and Y = 1 , respec-
tively. Then under (1.1), the density functions obey the relation:

This case–control sampling scheme was first introduced by Prentice and Pyke 
(1979). Since then, various parameter estimation methods were developed by Qin 
and Zhang (1997), Bondell (2005), and Geng and Sakhanenko (2016). Particularly, 
Geng and Sakhanenko (2016) observed the linear relationship between the loga-
rithm of the density ratio and the parameters from (1.2) and further proposed the 
estimation approach based on an integrated square distance (ISD). The ISD estima-
tors were shown to achieve superior performance for the cases of small sample sizes 
and severely unbalanced samples.

However, the predictor variable X may not be accurately observed in practice. 
Instead, one observes a surrogate Z of X with measurement error. Specifically, we 
adapt the errors-in-variables (EIVs) model:

Here we assume that U and (X, Y) are independent. Moreover, the density fU of the 
measurement error random variable U is known for model identification purpose. 
See Carroll et al. (2006) for details. In practice, when the measurement error density 
fU is unknown, it is natural to estimate the error density from additional data such 
as validation data, auxiliary variables and instrumental variables. For example, addi-
tional negative control data are available in Lumina Bead microarray studies (Xie 
et al. 2009) for the background noise. In the cases without additional data, paramet-
ric assumptions of the distribution of U can be made such as Laplace distribution 
with unknown variance and the parameters can be estimated under different criteria. 
See Sects. 4 and 5 for more details. For the Logistic EIVs regression, Stefanski and 
Carroll (1985) proposed an effective bias-adjusted maximum likelihood estimation 
approach for normally distributed measurement errors and small variances. Carroll 
and Wand (1991) developed a semiparametric estimation method when there is a 
validation data set available for the covariate.

(1.1)Ψ(x) = E(Y = 1|X = x) =
exp(�∗ + �x)

1 + exp(�∗ + �x)
.

(1.2)f1(x) = exp(� + �x)f0(x), � = �∗ + ln{(1 − �)∕�}.

(1.3)Z = X + U.
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In this paper, we propose the ISD estimator for the Logistic EIVs models based 
on the deconvolution kernel density estimation and investigate the asymptotic prop-
erties as well as simulation performance. We first demonstrate the bias of naive 
estimators when ignoring measurement errors in covariate, then present the decon-
volution ISD estimation in Sect.  2.1. Furthermore, we show the consistency and 
the asymptotic normality of the proposed estimator and the needed assumptions in 
Sect. 2.2. In Sect. 3, we conduct simulation study to address the estimation perfor-
mance under various settings. Moreover, we include a real data application of the 
Framingham Heart Study in Sect. 4. Practical guidelines and limitations of the pro-
posed method are included in Sect. 5. The proofs of the main results can be found in 
Sect. 6. Programming R codes for the simulation study and real data application are 
available in supplemental material.

2 � Nonparametric estimation

We first briefly review the ISD estimation method by Geng and Sakhanenko (2016) 
when the covariate X is error free. When the covariate is observed with measure-
ment error, we show that the naive ISD estimator by ignoring the measurement error 
is biased in the Gaussian distribution setting. We further propose the ISD estimation 
approach based on the deconvolution kernel density estimators in Stefanski and Car-
roll (1990).

2.1 � Bias of naive ISD estimators

In the Logistic regression under case–control study, Geng and Sakhanenko (2016) 
discovered the linear relationship between the log-ratio of the covariate densities 
and the parameters in (2.1), constructed the integrated square distance in (2.2), and 
obtained the parameter estimators by minimizing the ISD in (2.3), i.e.,

where f̃0(x) and f̃1(x) are the kernel density estimators of covariate X in the control 
and case group, respectively, a and b are pre-determined real value constants, bn0 and 
bn1 are small positive values to ensure the log-ratio is well defined.

In the Logistic EIVs regression under the case–control study, a naive ISD 
estimator of Geng and Sakhanenko (2016) can be obtained based on the ker-
nel density estimators of samples of Z by ignoring the measurement error. 

(2.1)ln
( f1(x)
f0(x)

)
= � + �x,

(2.2)T̃n(s, t) ∶= ∫
b

a

[
ln
{ f̃1(x) + bn1

f̃0(x) + bn0

}
− s − tx

]2
dx, s ∈ ℝ, t ∈ ℝ,

(2.3)(𝛼̃, 𝛽) ∶= argmins,tT̃n(s, t),
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However, there are two main issues about the naive estimation. First, the yielded 
naive estimator can be biased. For example, consider the Gaussian distribu-
tion setting for both covariate and measurement error. Specifically, when X in 
the control group is normally distributed f0 = N(�X , �

2
X
) , then (1.2) implies that 

f1 = N(�X + ��2
X
, �2

X
) . We denote g0 and g1 as the density of Z under the control 

and case group, respectively. Assume the measurement error U follows a nor-
mal distribution N(0, �2

e
) and U is independent of X, then g0 = N(�X , �

2
X
+ �2

e
) and 

g1 = N(�X + ��2
X
, �2

X
+ �2

e
) . It further implies that

where 𝛼̃ = {−2𝜇X𝛽𝜎
2
X
− 𝛽2𝜎4

X
}∕{2(𝜎2

X
+ 𝜎2

e
)} . Therefore, the naive estimator 𝛽naive 

based on the integrated least square idea converges to �2
X

�2
X
+�2

e

� . This variance ratio 
factor is well known in the parameter estimation bias of the traditional linear errors-
in-variables models. This discovery is also consistent with the finding of bias and 
attenuation in Stefanski and Carroll (1985). Second, the linear relationship in (2.1) 
may simply no longer hold for the density of the surrogate Z. For instance, when X is 
exponentially distributed under the case–control study, f0 = Exp(�) with mean 1∕� 
and f1 = Exp(� − �) , and U follows Laplace distribution fU(u) = exp{−|u|∕�}∕(2�) , 
then g0 and g1 are no longer exponentially distributed. In fact,

Hence, it is critical to take the measurement error model (1.3) into consideration in 
the ISD estimation. In the following subsection, we adapt the deconvolution kernel 
density estimation by Stefanski and Carroll (1990) to effectively estimate the densi-
ties of the covariate X under case and control groups, and obtain the modified ISD 
estimators according to (2.2).

2.2 � Deconvolution ISD estimation

In this subsection, we describe the data structure for the Logistic EIVs models, 
present the explicit expression of the proposed ISD estimators and establish their 
asymptotic normality. We assume that {zi, i = 1,… , n0} are the observed surro-
gate values of Z from (1.3) in the control group (Yi = 0) ; and {z̃j, j = 1,… , n1} 
are the observed surrogate values of Z in the case group (Yj = 1) . Let n = n0 + n1 . 
The measurement error U has known density fU and E(U) = 0 . Let K be a kernel 
density and denote hi ∶= hi(ni), i = 0, 1 as the bandwidths for the control and case 
group, respectively. We adapt the deconvolution kernel density estimators f̂0 and 
f̂1 by Stefanski and Carroll (1990) for the estimation of f0 and f1 as follows. For 
each x ∈ ℝ,

ln
(g1(z)
g0(z)

)
= −

(z − 𝜇X − 𝛽𝜎2
X
)2 − (z − 𝜇X)

2

2(𝜎2
X
+ 𝜎2

e
)

= 𝛼̃ +
𝜎2
X

𝜎2
X
+ 𝜎2

e

𝛽z,

g0(z) =

{ �
2(1+��) e

z∕� , z < 0
�

1−�2�2 e
−�z + �

2(��−1) e
−z∕� , z ≥ 0,

g1(z) =

{ �
2[1+(�−�)�] e

z∕� , z < 0
�

1−(�−�)2�2 e
−(�−�)z + �−�

2[(�−�)�−1] e
−z∕� , z ≥ 0

.
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where �K and �U are the characteristic functions of a chosen kernel density K and 
the measurement error density fU , respectively. Furthermore, we define the inte-
grated square distance and the modified ISD estimators 𝛼̂ and 𝛽  as

Here x ∨ y = max(x, y) for any x, y ∈ ℝ . Due to the fact that the deconvolution den-
sity estimator based on finite samples may take negative values when |x| is large, 
f̂i(x) ∨ 0 is used to truncate those negative values to 0. The finite constants a, b and 
the positive sequences bni are chosen similarly as in Geng and Sakhanenko (2016). 
Details can be found in the Sect. 3.

Similar to the ISD estimation in Geng and Sakhanenko (2016), the unique 
solution to the optimization problem can be written as

Note that the deconvolution kernel density estimators f̂0 and f̂1 play a key role in the 
proposed estimation. As established in Carroll and Hall (1988) and Fan (1991), the 
asymptotic behavior of the deconvolution kernel density estimators heavily depend 
on the tail of �U . Hence the measurement errors were separated into two cases: 

(1)	 ordinary smooth case: �U(t) = O(t−�) as t → ∞ for some � ≥ 0;
(2)	 supersmooth case: |�U(t)| = O(t−�0 exp(−t�0∕�0)) for some 𝛽0 > 0 , 𝛾0 > 0 and 

real number �0.

In this paper, we focus on the ordinary smooth case as shown in the assumptions 
below. Examples of ordinary smooth distributions include gamma, uniform, and 
Laplace distributions. For instance, the characteristic function of a uniform dis-
tribution on (−a, a) is �U(t) = sin(at)∕(at) = O(t−1) which belongs to the ordinary 
smooth case with � = 1 . A second example of ordinary smooth errors is Laplace 
distribution whose density fU(u) = exp{−|u|∕�}∕(2�) and characteristic function 

(2.4)

f̂0(x) = (n0h0)
−1

n0∑

i=1

K∗
h0
((zi − x)∕h0), f̂1(x) = (n1h1)

−1

n1∑

j=1

K∗
h1
((z̃j − x)∕h1),

(2.5)K∗
hj
(y) = (2�)−1h−1

j ∫ exp(−ity)
�K(t)

�U(t∕hj)
dt, j = 0, 1,

Tn(s, t) ∶=∫
b

a

[
ln
{ (f̂1(x) ∨ 0) + bn1

(f̂0(x) ∨ 0) + bn0

}
− s − tx

]2
dx, s ∈ ℝ, t ∈ ℝ,

(𝛼̂, 𝛽) ∶=argmins,tTn(s, t).

(2.6)

𝛽 =
12

(b − a)3 ∫
b

a

[
ln
{ (f̂1(x) ∨ 0) + bn1

(f̂0(x) ∨ 0) + bn0

}]{
x −

a + b

2

}
dx,

𝛼̂ =
1

b − a ∫
b

a

[
ln
{ (f̂1(x) ∨ 0) + bn1

(f̂0(x) ∨ 0) + bn0

}
− 𝛽x

]
dx.
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�U(t) = (1 + �2t2)−1 = O(t−2) with � = 2 . The supersmooth case which includes 
the normal and Cauchy errors is worth of future study.

We now state the assumptions needed for establishing the asymptotic normality 
of (𝛼̂, 𝛽).

Assumption (2.8) implies that the kernel K(x) is symmetric and of m-th order, i.e, 
all moments less than m of the kernel are equal to 0. The assumption of the higher-
order kernel is used to ensure the bias of the deconvolution kernel density estima-
tors converges to zero sufficiently fast. The assumption of �U in (2.9) indicates that 
the error density is ordinary smooth. The assumption of �K in (2.9), along with the 
bandwidth assumption (2.10), is used to verify the Lyapunov’s Central Limit Theo-
rem conditions for the proposed estimator (𝛼̂, 𝛽) in Theorems 2.1 and 2.2. The band-
width assumption (2.11) is used in Lemma 5.1 below to establish the consistency 
of the deconvolution kernel density estimators f̂i, i = 0, 1 . The assumption (2.12) is 
imposed to eliminate the bias of f̂i, i = 0, 1 as shown in Lemma 5.2. The assumption 
(2.13) is used in Lemma 5.2 to obtain the upper bound of supx |f̂i(x) − Ef̂i(x)|, i = 0, 1 
by Giné and Guillou (2002). To make the assumptions more explicit, consider the 
case that the true covariate fi, i = 0, 1 follows a normal distribution and the meas-
urement error fU follows a Laplace distribution. In this case, m = ∞ in (2.7) and 
� = 2 in (2.9). One possible bandwidth choice that satisfies (2.11)–(2.13) is 

(2.7)f0 and f1 have m continuous derivatives, for m ≥ 2.

(2.8)
�K is a symmetric function; �K has m + 2 bounded integrable derivatives;

(2.9)

𝜙K(0) = 1;𝜙K(t) = 1 + O(tm) as t → 0.

|𝜙U(t)| > 0 for all real t; d0|t|−𝜏 ≤ |𝜙U(t)| ≤ d1|t|−𝜏 as t → ∞ for some constants

(2.10)

0 < d0 ≤ d1 and 𝜏 > 0. Moreover, �
∞

−∞

{|𝜙K(t)| + |𝜙�
K
(t)|}|t|𝜏dt < ∞.

There exists 𝛿i > 0 such that n
𝛿i∕2

i
h
𝛿i+𝜏(2+𝛿i)

i
→ ∞ for i = 0, 1.

(2.11)hi → 0 and nihi → ∞ for i = 0, 1.

(2.12)nih
2
i
→ ∞ and nih

2m
i

→ 0 for i = 0, 1.

(2.13)nihi∕ log ni → ∞ and | log hi|∕ log(log ni) → ∞ for i = 0, 1.

(2.14)n
1∕2

i
bni → 0 for i = 0, 1.

(2.15)n1∕n → �, 0 ≤ � ≤ 1, n = n1 + n0.
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hi = O(n−a
i
), i = 0, 1 with a < 1∕6 . Consequentially, there exists 𝛿i > 8a∕(1 − 6a) 

that satisfies (2.10).
Let c1 = −6(a + b)∕(b − a)3 and c2 = 12∕(b − a)3 . Define

Now we present the asymptotic results of the proposed estimator. Proof details can 
be found in Sect. 6. Denote →D as the convergence in distribution.

Theorem 2.1  (0 < 𝜌 < 1 ). Under models (1.1) and (1.3), when assumptions (2.7)–
(2.14) hold, and 0 < 𝜌 < 1 in (2.15), we have that 𝛼̂ and 𝛽  are consistent estimators 
of � and � , respectively. Moreover,

where the kl-th entries ( k, l = 1, 2 ) of Σ1 and Σ0 are

Theorem 2.2  (� = 0 or 1). Under models (1.1) and (1.3), when assumptions (2.7)–
(2.14) hold, we have

where Σ0 and Σ1 are defined as in Theorem 2.1.

The covariance matrix Σ in Theorem 2.1 is the weighted sum of Σ1 and Σ0 with 
the coefficients �−1 and (1 − �)−1 determined by the sample size ratio of case and 
control groups. Theorem 2.2 shows the asymptotic result of the estimators when the 
sample sizes of the case and control groups are severely unbalanced. In each kl-th 
entry of the matrix Σi , the integrand of the first integration term includes the sur-
rogate density gi, i = 0, 1 . When the covariate is observed free of error, the surrogate 
density gi coincides with the true covariate density fi , hence our covariance structure 
degenerates to that of Geng and Sakhanenko (2016).

3 � Simulation study

In this section, we consider the Logistic EIVs regression in (1.1) and (1.3) with the 
measurement error distribution chosen as the Laplace distribution L(0, �) where

g1i(x) =
c1{x − 2(a2 + ab + b2)∕(3a + 3b)}

fi(x)
, g2i(x) =

c2{x − (a + b)∕2}

fi(x)
, i = 0, 1.

√
n

�
𝛼̂ − 𝛼

𝛽 − 𝛽

�
→D N(0,Σ),Σ = 𝜌−1Σ1 + (1 − 𝜌)−1Σ0,

(2.16)

Σ
(kl)

i
= ∫

b

a

gki(x)gli(x)gi(x)dx − ∫
b

a

fi(x)gki(x)dx∫
b

a

fi(x)gli(x)dx, for i = 0, 1,

gi(z) = ∫ fi(x)fU(z − x)dx.

√
n1

�
𝛼̂ − 𝛼

𝛽 − 𝛽

�
→D N(0,Σ1), for 𝜌 = 0;

√
n0

�
𝛼̂ − 𝛼

𝛽 − 𝛽

�
→D N(0,Σ0), for 𝜌 = 1,
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One can see that the Laplace distribution L(0, �) satisfies the ordinary smooth 
assumption in (2.9) with � = 2 . Moreover, the measurement error variance �2

U
= 2�2

.
This simulation study aims to investigate the effectiveness and robustness of the 

proposed deconvolution ISD estimator 𝛽 in estimation bias reduction under different 
choices of the covariate distribution, sample sizes and error variance. Various scenarios 
are simulated to evaluate the estimation performance based on the following factors: 1) 
increasing sample sizes (n0, n1) when n0∕n1 = 1 , 2) small or large error variance �2

U
 , 3) 

the sample size ratio n1∕n0 for unbalanced case control studies.
To generate the case–control data, we specifically consider two distribution cases of 

covariate X with Case 1 as Gaussian and Case 2 as Exponential. For each case and each 
combination of chosen values of (n0, n1) and �2

U
 , we generate {xi, i = 1,… , n0} from 

f0 and measurement error {ui, i = 1,… , n0} from L(0, � = �U∕
√
2) L(0, � = �U∕

√
2) , 

then we form the observed surrogate {zi, i = 1, ...n0} with zi = xi + ui for the control 
group. Similarly, {z̃j, j = 1, ...n1} is simulated with z̃j = x̃j + ũj for the case group, 

where x̃j ∼ f1 and ũj ∼ L(0, 𝛾 = 𝜎U∕
√
2) . We simulate 500 replicates for each scenario 

to present the estimation results.
Four estimation methods are computed based on the simulated case–control data 

{zi, i = 1, ...n0} and {z̃j, j = 1, ...n1} . Note that the parameter � is not identifiable due 
to the unknown parameter � in (1.2), therefore we only focus on the estimation of � . 
Specifically, we compared the estimation bias and root mean square error (RMSE) of 
the proposed estimator 𝛽 with three existing estimators: the naive ISD estimator 𝛽ISD , 
the naive MLE estimator 𝛽MLE described in Dobson and Barnett (2018), and the bias-
corrected estimator 𝛽BC by Stefanski and Carroll (1985). The proposed estimator 𝛽 is 
computed by (2.6) and (2.4) while the naive ISD estimator is calculated by

in which f̃0(x) and f̃1(x) are the standard kernel density estimators using the observed 
contaminated covariate data in the control and case group, respectively. The naive 
MLE estimator, 𝛽MLE is the solution that maximizes the log-likelihood function

in which Ψ(x) is defined as in (1.1). The bias-corrected estimator can be calculated 
by

in which �2
U

 is the known measurement error variance and

fU(u) = exp{−|u|∕�}∕(2�), �U(t) = (1 + �2t2)−1.

𝛽ISD =
12

(b − a)3 ∫
b

a

[
ln
{ f̃1(x) + bn1

f̃0(x) + bn0

}]{
x −

a + b

2

}
dx,

� =

n∑

i=1

[
yi ln{Ψ(zi)} + (1 − yi)(1 − ln{Ψ(zi)})

]
,

𝛽BC = (1 − 𝜎2
U
B̂n)𝛽MLE,
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Since the proposed ISD estimation relies on the deconvolution kernel density esti-
mators as defined in (2.4), the choices of kernel function K and bandwidth hi, i = 0, 1 
are two key elements. First, the kernel function K should be carefully chosen so 
that the integral in (2.5) exists. For ordinary smooth errors, as addressed in Yi et al. 
(2021), commonly used kernel functions include the standard Gaussian kernel, the 
sinc kernel K1(x) = sin(x)∕(�x) with �K1

(t) = I{t| ≤ 1} and the kernel K2(x) defined 
through its characteristic function �K2

(t) = (1 − t2)3I{t| ≤ 1} . In this simulation 
study, we set the density kernel K(x) to be the Gaussian kernel so that the deconvo-
lution kernel K∗(x) takes the following form when the measurement error follows 
Laplace(0, �)

Note that K∗(x) may take negative values when |x| is large, for the log ratio of the 
densities to be well-defined, we use truncate f̂i(x) to zero when it is negative and 
further set bni = n−1

i
.

Second, for the bandwidth selection in the deconvolution kernel estimation, 
we adopted the bootstrap bandwidth selection method proposed by Delaigle and 
Gijbels (2004a). The method first requires obtaining a pilot bandwidth using the 
rule of thumb method hpilot = O(n−1∕9) for Laplace error. This bandwidth and 
the contaminated observed data are then used to obtain the pseudo deconvolu-
tion kernel density estimator f̂X(x;hpilot) . Next, a bootstrap sample X∗

1
,X∗

2
,… ,X∗

n
 

is drawn from f̂X(x;hpilot) and the error U is added to the sample. The contami-
nated bootstrap sample is then used to construct the deconvolution kernel density 
estimator f̂ ∗

X
(x;h) . The optimal bandwidth is obtained by minimizing the mean 

integrated square error between f̂X(x, hpilot) and f̂ ∗
X
(x;h) . The function bw.dboot2 

in the R package decon is available to obtain the bandwidths hi, i = 0, 1 , under 
the Gaussian kernel. The bootstrap bandwidth selection method is proven to be 
consistent by Delaigle and Gijbels (2004a) and its performance in deconvolution 
density estimation is shown via simulation study by Delaigle and Gijbels (2004b) 
to be superior to other commonly used methods such as cross-validation. For the 
naive ISD estimator, we follow the setting in Geng and Sakhanenko (2016) and 
used the bandwidth wi = n

−1∕3

i
 . The integral limits (a, b) are chosen as the sample 

means of the two contaminated samples.
Case 1: Gaussian covariates. In this case, we consider that the true covariate is 

symmetrically distributed with Gaussian distributions, f0 = N(0, 1) for the control 
group and f1 = N(�, 1) for the case group obeying (1.2). Particularly, we set � = 2 . 
To investigate the effect of the error variance, two choices of �2

U
= 0.52 and �2

U
= 1 

are chosen to represent small error and large error, respectively. The sample size 

B̂n =
n

∑n

i=1
Ψ

�
(zi𝛽MLE)z

2
i

�
−

1

2n

n�

i=1

Ψ
��

(zi𝛽MLE)zi𝛽MLE −
1

n

n�

i=1

Ψ
�

(zi𝛽MLE)

�
.

(3.1)K∗
h
(x) =

1
√
2�

exp

�
−x2

2

��
1 +

�2(1 − x2)
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.
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ratio is chosen as n0∕n1 = {1∕10, 1∕5, 1∕3, 1, 5, 10} where n0∕n1 = 1 represents the 
balanced case and n0∕n1 = {1∕10, 1∕5, 1∕3, 5, 10} represent the unbalanced cases.

Tables 1 and 2 display the bias and RMSE of the four estimators with increased 
sample sizes for the sample size ratio n0∕n1 = 1 when �2

U
= 0.52 and �2

U
= 1 , 

respectively. When the measurement error is small �2
U
= 0.52 , Table 1 indicates 

that both the proposed 𝛽  and the bias-corrected estimator 𝛽BC attain minimal bias 
compared to the other two estimators. Table 2 shows that when the measurement 
error variance is large �2

U
= 1 , for each fixed sample size combination, the pro-

posed deconvolution ISD estimator 𝛽  achieves the smallest bias among the four 
estimators while other three estimators show dramatically large bias. Particularly, 
compared to the naive ISD estimator 𝛽ISD , the bias reduction shown in 𝛽  is sig-
nificant for both small and large sample sizes. Moreover, the bias and RMSE of 
𝛽  decrease as the sample sizes increase for each chosen ratio setting. Overall, we 
can see that the proposed deconvolution ISD estimator 𝛽  shows robust perfor-
mance against the error variance �2

U
 , however, the bias-corrected estimator 𝛽BC 

performs poorly when the error is large.
Tables  3 and 4 present the estimation performance for different unbalanced 

choices of (n0, n1) with n0∕n1 = {1∕10, 1∕3, 1∕5, 5, 10} when �2
U
= 0.52 and 

Table 1   Bias and RMSE 
comparison of estimators with 
error variance �2

U
= 0.52 and 

n
0
∕n

1
= 1 under Case 1

Estimator n
0
= 100 n

0
= 300 n

0
= 500 n

0
= 1000

n
1
= 100 n

1
= 300 n

1
= 500 n

1
= 1000

𝛽 |Bias| 0.1462 0.0652 0.0708 0.0851
RMSE 0.5663 0.4349 0.3458 0.2505

𝛽
ISD

|Bias| 0.3556 0.3563 0.3556 0.3628
RMSE 0.5199 0.4260 0.3950 0.3810

𝛽
MLE

|Bias| 0.3459 0.3760 0.3798 0.3885
RMSE 0.4212 0.3989 0.3908 0.3952

𝛽
BC

|Bias| 0.0233 0.0757 0.0822 0.0959
RMSE 0.3572 0.2043 0.1548 0.1394

Table 2   Bias and RMSE 
comparison of estimators with 
error variance �2

U
= 1 and 

n
0
∕n

1
= 1 under Case 1

Estimator n
0
= 100 n

0
= 300 n

0
= 500 n

0
= 1000

n
1
= 100 n

1
= 300 n

1
= 500 n

1
= 1000

𝛽 |Bias| 0.1866 0.0398 0.0319 0.0279
RMSE 0.8953 0.7695 0.7097 0.6044

𝛽
ISD

|Bias| 0.7699 0.8067 0.7920 0.8048
RMSE 0.8580 0.8348 0.8101 0.8139

𝛽
MLE

|Bias| 0.9378 0.9673 0.9661 0.9720
RMSE 0.9537 0.9723 0.9692 0.9734

𝛽
BC

|Bias| 0.4488 0.5140 0.5101 0.5246
RMSE 0.5553 0.5441 0.5294 0.5327
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�2
U
= 1 , respectively. The proposed estimator 𝛽  shows well controlled bias for all 

the chosen unbalanced scenarios compared to the other three estimators espe-
cially when the error variance is large �2

U
= 1 as shown in Table 4. The bias-cor-

rected estimator 𝛽BC performs fairly comparable to 𝛽  only when the error variance 
is small �U = 0.52 and n0∕n1 is large ( n0∕n1 = 5 or 10) as shown in Table 3.

Case 2: Exponential covariates. In this case, we consider that the true covariate 
is skewed with exponential distributions, i.e., f0 = Exp(�) with � = 3 in the control 
group and f1 = Exp(� − �) in the case group. We set � = 2 . The Laplace measure-
ment error variance is chosen as �2

U
= 0.12 and �2

U
= 0.22 . The sample size ratio is 

chosen as n0∕n1 = {1∕10, 1∕5, 1, 5, 10} . Similar to Case 1, Tables 5 and 6 present 
the performance of bias and RMSE of the four estimators with increased sample 
sizes for the balanced case when �2

U
= 0.12 and �2

U
= 0.22 , respectively. Tables 7 and 

8 show the estimation performance for different unbalanced choices of (n0, n1) with 
n0∕n1 = {1∕10, 1∕5, 1, 5, 10} when �2

U
= 0.12 and �2

U
= 0.22 , respectively. For both 

balanced and unbalanced sample sizes, when the error variance is smaller �2
U
= 0.12 , 

both 𝛽  and 𝛽BC give small bias than the other two methods. When the error variance 

Table 3   Bias and RMSE comparison of estimators with �2

U
= 0.52 and unbalanced sample sizes under 

Case 1

Estimator n
0
= 50 n

0
= 50 n

0
= 100 n

0
= 100 n

0
= 500 n

0
= 1000

n
1
= 150 n

1
= 500 n

1
= 500 n

1
= 1000 n

1
= 100 n

1
= 100

𝛽 |Bias| 0.1011 0.1375 0.0770 0.0823 0.0958 0.0862
RMSE 0.5897 0.5500 0.4891 0.4434 0.4271 0.4799

𝛽
ISD

|Bias| 0.3201 0.3599 0.3457 0.3484 0.3576 0.3638
RMSE 0.5379 0.5307 0.4578 0.4458 0.4455 0.4618

𝛽
MLE

|Bias| 0.3398 0.3871 0.3827 0.3881 0.3873 0.4014
RMSE 0.4355 0.4408 0.4151 0.4123 0.4207 0.4215

𝛽
BC

|Bias| 0.1234 0.2569 0.2227 0.2606 0.0642 0.0796
RMSE 0.3875 0.3570 0.2982 0.3072 0.2589 0.2145

Table 4   Bias and RMSE comparison of estimators with �2

U
= 1 and unbalanced sample sizes under Case 

1

Estimator n
0
= 50 n

0
= 50 n

0
= 100 n

0
= 100 n

0
= 500 n

0
= 1000

n
1
= 150 n

1
= 500 n

1
= 500 n

1
= 1000 n

1
= 100 n

1
= 100

𝛽 |Bias| 0.1947 0.1316 0.1065 0.0853 0.0986 0.1282
RMSE 0.8299 0.8309 0.7714 0.7575 0.7935 0.7414

𝛽
ISD

|Bias| 0.7619 0.7670 0.7979 0.7899 0.7951 0.7964
RMSE 0.8576 0.8575 0.8458 0.8332 0.8369 0.8368

𝛽
MLE

|Bias| 0.9514 1.0065 0.9881 1.0103 0.9913 1.0183
RMSE 0.9735 1.0171 0.9946 1.015 0.9979 1.0227

𝛽
BC

|Bias| 0.5988 0.7602 0.7068 0.7695 0.3415 0.3438
RMSE 0.6941 0.7882 0.7269 0.7810 0.4181 0.3984



	 P. Geng, H. Nguyen 

1 3

is larger �2
U
= 0.22 , the proposed estimator 𝛽  outperforms all other methods with the 

least bias for all choices of (n0, n1).

Table 5   Bias and RMSE 
comparison of estimators with 
error variance �2

U
= 0.12 and 

n
0
∕n

1
= 1 under Case 2

Estimator n
0
= 100 n

0
= 300 n

0
= 500 n

0
= 1000

n
1
= 100 n

1
= 300 n

1
= 500 n

1
= 1000

𝛽 |Bias| 0.0390 0.0016 0.0445 0.0179
RMSE 0.9879 0.6789 0.5722 0.3872

𝛽
ISD

|Bias| 0.2398 0.0980 0.0238 0.05467
RMSE 0.6253 0.4868 0.4262 0.3112

𝛽
MLE

|Bias| 0.0413 0.0810 0.0758 0.0909
RMSE 0.3903 0.2338 0.1765 0.1458

𝛽
BC

|Bias| 0.0308 0.0141 0.0088 0.0254
RMSE 0.4190 0.2351 0.1710 0.1246

Table 6   Bias and RMSE 
comparison of estimators with 
error variance �2

U
= 0.22 and 

n
0
∕n

1
= 1 under Case 2

Estimator n
0
= 100 n

0
= 300 n

0
= 500 n

0
= 1000

n
1
= 100 n

1
= 300 n

1
= 500 n

1
= 1000

𝛽 |Bias| 0.0073 0.0207 0.0623 0.0102
RMSE 1.1089 0.7773 0.6311 0.4748

𝛽
ISD

|Bias| 0.4241 0.2840 0.2074 0.2278
RMSE 0.7163 0.5510 0.4489 0.3775

𝛽
MLE

|Bias| 0.2800 0.3070 0.3025 0.3172
RMSE 0.4366 0.3640 0.3329 0.3326

𝛽
BC

|Bias| 0.0730 0.1121 0.1074 0.1264
RMSE 0.4209 0.2643 0.2011 0.1757

Table 7   Bias and RMSE comparison of estimators with error variance �2

U
= 0.12 under severely unbal-

anced cases under Case 2

Estimator n
0
= 100 n

0
= 100 n

0
= 200 n

0
= 1000 n

0
= 1000 n

0
= 500

n
1
= 500 n

1
= 1000 n

1
= 1000 n

1
= 200 n

1
= 100 n

1
= 100

𝛽 |Bias| 0.0633 0.0155 0.0046 0.0030 0.0150 0.0441
RMSE 0.8707 0.8493 0.6688 0.5213 0.6663 0.7321

𝛽
ISD

|Bias| 0.3089 0.3573 0.1711 0.0034 0.0447 0.0514
RMSE 0.5626 0.5715 0.4541 0.3975 0.4540 0.4955

𝛽
MLE

|Bias| 0.0955 0.1258 0.1114 0.0530 0.0388 0.0416
RMSE 0.3115 0.3213 0.2337 0.1799 0.2284 0.2436

𝛽
BC

|Bias| 0.0507 0.0864 0.0682 0.0500 0.0766 0.0634
RMSE 0.3157 0.3208 0.2260 0.1942 0.2587 0.2701
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In summary, the proposed deconvolution ISD estimator shows robust perfor-
mance in bias reduction for different choices of covariate distributions, error vari-
ance and sample sizes. Particularly, the proposed estimator shows superior perfor-
mance when the error variance is large for both balanced and severely unbalanced 
case control studies.

4 � Data Application

In this section, we apply our proposed method to the Framingham Heart Study 
data to investigate the relationship between the systolic blood pressure (SBP) X 
and the presence of cardiovascular disease Y. The Framingham Heart Study was 
begun in 1948 to explore risk factors and consequences of cardiovascular disease 
in a longitudinal population-based cohort and it is one of the longest running epi-
demiological studies conducted under the National Heart, Lung, and Blood Insti-
tute. The variables of interest are the repeated systolic blood pressure measure-
ments and the presence or absence of cardiovascular disease of 1615 patients. 
This example was first described by Carroll et  al. (2006) to study the effect of 
measurement error. The data is available as framingham in the software R pack-
age deconvolve. During the first visit, each subject had two SBP measurements Z1 
and Z2 . There are 128 individuals with cardiovascular disease and 1487 individu-
als without the disease. To fit the case–control framework, we generated a nested 
case–control dataset (Clayton and Hills 2013) by matching 5 controls for each 
case with cardiovascular disease according to their age and smoking status. In the 
case–control dataset, there are n1 = 127 cases and n0 = 566 controls due to some 
cases could not be matched. The two SBP measurements Z1 and Z2 are treated 
as the surrogate of the true value. We use the average of the two blood pressure 
measurements of each subject as the “true” measurement X of the subject and 
the difference between Z1, Z2 and the average as the measurement error U. The 
Normal Q-Q plot of the measurement error sample in Fig. 1 indicates a heavier 
tail than the normal distribution (The p-value = 1.7 × 10−9 for the Shapiro-Wilk 

Table 8   Bias and RMSE comparison of estimators with error variance �2

U
= 0.22 under severely unbal-

anced cases under Case 2

Estimator n
0
= 100 n

0
= 100 n

0
= 200 n

0
= 1000 n

0
= 1000 n

0
= 500

n
1
= 500 n

1
= 1000 n

1
= 1000 n

1
= 200 n

1
= 100 n

1
= 100

𝛽 |Bias| 0.0597 0.1013 0.0278 0.0433 0.0836 0.0801
RMSE 0.9167 0.9546 0.7709 0.6153 0.6939 0.8012

𝛽
ISD

|Bias| 0.5171 0.5619 0.3945 0.1594 0.0870 0.1279
RMSE 0.6998 0.7143 0.5654 0.4332 0.4534 0.5003

𝛽
MLE

|Bias| 0.3850 0.4276 0.3989 0.2221 0.1918 0.2193
RMSE 0.4537 0.4855 0.4336 0.2743 0.2869 0.3124

𝛽
BC

|Bias| 0.2635 0.3221 0.2808 0.0946 0.1666 0.1006
RMSE 0.3825 0.4146 0.3422 0.2293 0.3267 0.3071
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normality test). Hence we assume the error U follows a Laplace distribution. The 
estimated measurement error variance is 𝜎̂2

U
= 5.53862 . In Table 9, the four esti-

mators described in Sect.  3 are shown based on the two SBP measurements. It 
appears that the ISD methods detect larger effects of SBP on the cardiovascular 

Table 9   Parameter estimation 
using the deconvolution ISD 
method, naive ISD, naive 
maximum likelihood and 
bias-corrected methods in the 
Framingham Heart Study data

First measurement Second meausrement
Z
1

Z
2

𝛽 0.022709 0.023068

𝛽
ISD

0.025736 0.027160

𝛽
MLE

0.014023 0.012568

𝛽
BC

0.014032 0.012578

Fig. 1   Normal Q-Q plot for the measurement error in SBP
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disease compared to other two methods. The bias-corrected estimation is very 
close to the naive MLE estimation for both measurements while the deconvolution 
ISD estimator is reduced from the naive ISD estimator for both measurements.

5 � Discussion

In practice, there are great potential application opportunities of the proposed 
method in many real data studies. For example, the National Health and Nutrition 
Examination Survey (NHANES) was designed to assess the health and nutritional 
status of adults and children in the United States. Many variables in NHANES 
were collected with measurement errors and raised attention to researchers and 
practitioners such as physical activity level (Tooze et al. 2013), Body Mass Index 
measures (Stommel and Schoenborn 2009) and sodium intake (Va et  al. 2019). 
With the concerns in measurement error, many studies started collecting vali-
dation samples to investigate the errors. The validation data make it possible to 
confirm the error distribution as required in the proposed method. Additionally, 
numerous papers have focused on the estimation correction using validation data 
(Lee and Sepanski 1995; Thürigen et al. 2000; Siddique et al. 2019).

If no extra data is available for the measurement error distribution, an alterna-
tive approach is to assume the error distribution with unknown parameters such 
as Laplace with unknown variance �2

U
 . A grid search of the parameter values can 

be performed to select the optimal value to minimize the approximated mean 
integrated squared error (MISE) of the deconvolution density estimator in Stefan-
ski and Carroll (1990). For instance, if the covariate X is normally distributed, the 
estimated MISE is

The optimal bandwidth h and the variance �2
U

 can be selected iteratively. If the nor-
mality assumption of X is violated, a bootstrap MISE proposed by Delaigle and Gij-
bels (2004a) can be used to select h and �U.

Despite the proposed method is developed based on the case–control frame-
work, as demonstrated in Bondell (2005), yet it is also applicable under prospec-
tive sampling. However, some limitations in the proposed methods include the 
ordinary smoothness assumption of the measurement error. This excludes the 
commonly used normal error which belongs to the super smooth case. The main 
reason is the pessimistic slow convergence rate of the deconvolution density esti-
mation for the super smooth error (Fan 1991). As explained in page 192 of Yi 
et al. (2021), despite the slow convergence rate, deconvolution in practice works 
reasonably well even if the error is super smooth. Hence it holds promises for the 
proposed deconvolution ISD estimation to work fairly well even if the error is 
normally distributed.

M̂ISE(h, �2
U
) =

1

2�nh ∫
|�K(t)|2

|�U(t∕h)|2
dt + 0.375�−1∕2(s2

Z
− �2

U
)−5∕2

h4

4 ∫ x2K(x)dx.
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6 � Proofs

We need the following four lemmas to prove Theorems 2.1 and 2.2.

Lemma 6.1  Let g(x) be a continuous function over [a, b]. Under assumptions (2.7)–
(2.9), we have

Proof  For brevity, we only show the calculation of E[h−1
1
K∗
h1
{(x − Z)∕h1}].

Denote Sni = ∫ b

a
{f̂1(x) − f1(x)}gi1(x)dx + ∫ b

a
{f̂0(x) − f0(x)}gi0(x)dx for i = 1, 2 . 	�  ◻

Lemma 6.2  Under models (1.1) and (1.3), if assumptions (2.7)–(2.9), (2.11)–(2.14) 
hold, then

Proof  Taylor’s expansion implies that

E

[
1

hi
K∗
hi

(
x − Z

hi

)]
= fi(x) + O(hm

i
) for i = 0, 1.

∫
b

a

E

[
1

hi
K∗
hi

(
x − Z

hi

)]
g(x)dx = ∫

b

a

fi(x)g(x)dx + O(hm
i
) for i = 0, 1.

E

[
1

h1
K∗
h1

(x − Z)

h1

]

=
1

h1 ∫ ∫
1

2� ∫t

exp

[
i
(y + u) − x

h1
t

]
�K(t)

�U(t∕h)
dtfU(u)duf1(y)dy

=
1

h1 ∫
1

2� ∫t

exp

[
i
(y − x)

h1
t

]
�K(t)

�U(t∕h)
�U(t∕h)dtf1(y)dy

=
1

h1 ∫ K

(
y − x

h1

)
f1(y)dy = ∫ K(u)f1(x + h1u)du = f1(x) + O(hm

1
).

n1∕2(𝛼̂ − 𝛼 − Sn1) = op(1), n1∕2(𝛽 − 𝛽 − Sn2) = op(1), for 0 < 𝜌 < 1;

n
1∕2

1
(𝛼̂ − 𝛼 − Sn1) = op(1), n

1∕2

1
(𝛽 − 𝛽 − Sn2) = op(1), for 𝜌 = 0;

n
1∕2

0
(𝛼̂ − 𝛼 − Sn1) = op(1); n

1∕2

0
(𝛽 − 𝛽 − Sn2) = op(1), for 𝜌 = 1.

(6.1)𝛼̂ − 𝛼 − Sn1 =∫
b

a

Rn1
(x)f1(x)g11(x)dx − ∫

b

a

Rn0
(x)f0(x)g10(x)dx

(6.2)+ bn1 ∫
b

a

g11(x)dx − bn0 ∫
b

a

g10(x)dx,

(6.3)𝛽 − 𝛽 − Sn2 =∫
b

a

Rn1
(x)f1(x)g21(x)dx − ∫

b

a

Rn0
(x)f0(x)g20(x)dx



1 3

Parameter estimation for Logistic errors‑in‑variables…

in which

Since g1i and g2i for i = 0, 1 are bounded over [a, b], the two terms in (6.2) and (6.4) 
are o(n−1∕2

i
) by (2.14), respectively. Similar argument as in the the proof of Lemma 

4.2 in Geng and Sakhanenko (2016), using Corollary 3.2 of Liu and Taylor (1989) 
and Theorem 2.3 of Giné and Guillou (2002), we derive the upper bound for Rni

(x) 
as

Then, (2.12)–(2.14) imply that

Therefore the two terms in (6.1) and (6.3) are op(n
−1∕2

i
) respectively. This completes 

the proof. 	�  ◻

Lemma 6.3  Let g̃1(x) and g̃2(x) be continuous functions over [a,  b]. Under the 
assumptions (2.7)–(2.9), (2.11), and (2.12), we have

in which gi(x) is defined as in (2.16).

Proof  For i = 1 , by Lemma 6.1, we have

(6.4)+ bn1 ∫
b

a

g21(x)dx − bn0 ∫
b

a

g20(x)dx.

Rni
(x) = ∫

f̂i(x)+bni

fi(x)

1

t2
{f̂i(x) + bni − t}dt.

(6.5)

sup
x∈[a,b]

|Rni
(x)| ≤ Op( sup

x∈[a,b]

|f̂i(x) − fi(x)|2 + |bni |
2)

≤ Op( sup
x∈[a,b]

|f̂i(x) − E[f̂i(x)]|2 + sup
x∈[a,b]

|E[f̂i(x)] − fi(x)|2 + |bni |
2)

= Op

(
log(h−1

i
)

nihi
+ hm

i
+ b2

ni

)
.

n
1∕2

i ∫
b

a

Rni
(x)fi(x)g2i(x)dx = Op

(
log(h−1

i
)

n
1∕2

i
hi

+ nih
2m
i

+ n
1∕2

i
b2
ni

)
= op(1), i = 0, 1.

(6.6)

E

[

∫
b

a

{
1

hi
K∗
hi

(
x − Z

hi

)
− fi(x)

}
g̃1(x)dx∫

b

a

{
1

hi
K∗
hi

(
x − Z

hi

)
− fi(x)

}
g̃2(x)dx

]

→ ∫
b

a

g̃1(x)g̃2(x)gi(x)dx − ∫
b

a

g̃1(x)fi(x)dx∫
b

a

g̃2(x)fi(x)dx as hi → 0 for i = 0, 1,
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First, we rewrite the term in (6.7)

We will show that M1 → 0,M2 → ∫ b

a
g̃1(x)g̃2(x)g1(x)dx , and M3 → 0 as h1 → 0 . 

Rewrite

We consider M11 . Because g̃1, g̃2 are bounded on [a,b], K∗ is bounded and integrable 
on ℝ , M11 is bounded by, up to a constant C,

From Stefanski and Carroll (1990), we know that K∗
h1
(x) is integrable and 

∫ K∗
h1
(x)dx = 1 . Define F∗+(x) = ∫ x

−∞
K∗+
h1
(t)dt . Then (6.8) can be rewritten as

For ∀z < a,

(6.7)

E

[

∫
b

a

{
1

h1
K∗
h1

(
x − Z

h1

)
− f1(x)

}
g̃1(x)dx∫

b

a

{
1

h1
K∗
h1

(
x − Z

h1

)
− f1(x)

}
g̃2(x)dx

]

= E

[

∫
b

a

1

h1
K∗
h1

(
x − Z

h1

)
g̃1(x)dx∫

b

a

1

h1
K∗
h1

(
x − Z

h1

)
g̃2(x)dx

− ∫
b

a

f1(x)g̃1(x)dx∫
b

a

f1(x)g̃2(x)dx

]
+ O(hm

1
).

E

[

∫
b

a

1

h1
K∗
h1

(
x − Z

h1

)
g̃1(x)dx∫

b

a

1

h1
K∗
h1

(
x − Z

h1

)
g̃2(x)dx

]

= E ∫
b

a ∫
b

a

1

h1
K∗
h1

(
x − Z

h1

)
1

h1
K∗
h1

(
y − Z

h1

)
g̃1(x)g̃2(y)dxdy

=

(

∫
a

−∞

+∫
b

a

+∫
∞

b

)

∫
b

a ∫
b

a

1

h1
K∗
h1

(
x − Z

h1

)
1

h1
K∗
h1

(
y − Z

h1

)
g̃1(x)g̃2(y)g1(z)dxdydz

=∶ M1 +M2 +M3.

M1 = ∫

a

−∞ ∫

b

a ∫

b

a

1
h1

K∗
h1

(

x − Z
h1

)

1
h1

K∗
h1

(

y − Z
h1

)

g̃1(x)g̃2(y)g1(z)dxdydz

= ∫

a

−∞ ∫

(b−z)∕h1

(a−z)∕h1
∫

(b−z)∕h1

(a−z)∕h1
K∗
h1
(s)K∗

h1
(t)g̃1(z + sh1)g̃2(z + th1)g1(z)dsdtdz

= ∫

a

−∞ ∫

(b−z)∕h1

(a−z)∕h1
∫

(b−z)∕h1

(a−z)∕h1
[K∗+

h1
(s) − K∗−

h1
(s)][K∗+

h1
(t) − K∗−

h1
(t)]g̃1(z + sh1)g̃2(z + th1)g1(z)dsdtdz

= :M11 +M12 +M13 +M14.

(6.8)∫
a

−∞ ∫
(b−z)∕h1

(a−z)∕h1
∫

(b−z)∕h1

(a−z)∕h1

K∗+
h1
(s)K∗+

h1
(t)g1(z)dsdtdz.

(6.9)∫
a

−∞

[
F∗+

(
b − z

h1

)
− F∗+

(
a − z

h1

)]2
g1(z)du.

(6.10)F∗+

(
b − z

h1

)
− F∗+

(
a − z

h1

)
→ F∗+(∞) − F∗+(∞) = 0, as h1 → 0,
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By the dominated convergence theorem, (6.9) converges to 0. Similarly, M12,M13, 
and M14 all converges to 0. Therefore, M1 → 0 as h1 → 0 . By similar argument, 
M3 → 0 . As h1 → 0,

Thus, (6.6) holds for i = 1 . Similar argument shows that (6.6) holds for i = 0 . 	�  ◻

Lemma 6.4  Let g(x) be a continuous function over [a,  b]. Under (2.7)–(2.12), we 
have

where s2
i
= ∫ b

a
g2(x)gi(x)dx −

{∫ b

a
fi(x)g(x)dx

}2

 , i = 0, 1.

Proof  We first show that

Let

Note that ∫ b

a
f̂1(x)g(x)dx is the sum of an i.i.d sequence. It suffices to show the Lya-

punov’s condition for the asymptotic normality in (6.12), i.e., for some 𝛿1 > 0,

as n1 → ∞ . Since g(x) is continuous and bounded over [a, b], by similar argument to 
Lemma 6.1 and Fubini’s theorem, we have

Moreover, by Lemma 6.3, we have

M2 = ∫
b

a ∫
b

a ∫
b

a

1

h1
K∗
h1

(
x − Z

h1

)
1

h1
K∗
h1

(
y − Z

h1

)
g̃1(x)g̃2(y)g1(z)dxdydz

= ∫
b

a ∫
(b−z)∕h1

(a−z)∕h1
∫

(b−z)∕h1

(a−z)∕h1

K∗+
h1
(s)K∗+

h1
(t)g1(z)dsdtdz

→ ∫
b

a ∫
∞

−∞ ∫
∞

−∞

K∗
h1
(s)K∗

h1
(t)g̃1(z)g̃2(z)g1(z)dsdtdz = ∫

b

a

g̃1(z)g̃2(z)g1(z)dz.

(6.11)
√
ni ∫

b

a

{f̂i(x) − fi(x)}g(x)dx → N(0, s2
i
),

(6.12)
∫ b

a
f̂1(x)g(x)dx − E ∫ b

a
f̂1(x)g(x)dx

√
Var(∫ b

a
f̂1(x)g(x)dx)

→ N(0, 1).

T1i(x) =
1

h1
K∗
h1

(
x − Z1i

h1

)
, W1i = ∫

b

a

T1i(x)g(x)dx.

(6.13)
E|W11 − EW11|2+�1

n
�1∕2

1
[Var(W11)]

1+�1∕2
→ 0,

EW11 = ∫
b

a

f1(x)g(x)dx + O(hm
1
).
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Then, to show the Lyapunov’s condition in (6.13), it suffices to show for some 
𝛿1 > 0,

Using similar argument to the proof of Lemma 4.4 of Geng and Sakhanenko (2016) 
and Koul and Ni (2004), by Hölder’s inequality and g(x) bounded on [a, b], we get 
the upper bound

with constant C = (supx∈[a,b] |g(x)|)2+�1 and

Then, showing (6.14) is equivalent to showing N1 → 0 , N2 → 0 , and N3 → 0 . We 
consider N2 . Rewrite

Define

Then,

Var(W11) ≤ E(W11)
2
→ �

b

a

g2(x)g1(x)dx.

(6.14)n
−�1∕2

1
E|Wn11

− EWn11
|2+�1 → 0.

n−�1∕21 E|W11 − EW11|
2+�1 ≤ n−�1∕21 22+�1 (E|W11|

2+�1 + |EW11|
2+�1 ) ≤ n−�1∕21 22+�1E|W11|

2+�1 + o(1)

≤ n−�1∕21 22+�1E
(

∫

b

a
T11(x) sup

x∈[a,b]
|g(x)|dx

)2+�1
+ o(1) ≤ Cn−�1∕21 22+�1E

(

∫

b

a
T1+�1∕2
11 (x)dx

)2

+ o(1)

n−�1∕21 E
(

∫

b

a
T1+�1∕2
11 (x)dx

)

= n−�1∕21 E ∫

b

a
T1+�1∕2
11 (x)dx∫

b

a
T1+�1∕2
11 (y)dy

= 1
n�1∕21 h2+�11

∫

∞

−∞ ∫

b

a ∫

b

a

[

K∗
h1

(

x − z
h1

)](1+�1∕2)[

K∗
h1

(

y − z
h1

)](1+�1∕2)

g1(z)dxdydz

= 1
n�1∕21 h2+�11

(

∫

a

−∞
+∫

b

a
+∫

∞

b

)

∫

b

a ∫

b

a

[

K∗
h1

(

x − z
h1

)](1+�1∕2)[

K∗
h1

(

y − z
h1

)](1+�1∕2)

g1(z)dxdydz

: = N1 + N2 + N3.

N2 =
1

n
�1∕2

1
h
2+�1
1

∫
b

a ∫
b

a ∫
b

a

[
K∗
h1

(
x − z

h1

)](1+�1∕2)[
K∗
h1

(
y − z

h1

)](1+�1∕2)
g1(z)dxdydz

=
1

n
�1∕2

1
h
�1
1
∫

b

a ∫
(b−z)∕h1

(a−z)∕h1
∫

(b−z)∕h1

(a−z)∕h1

[K∗
h1
(s)](1+�1∕2)[K∗

h1
(t)](1+�1∕2)g1(z)dsdtdz

=
1

n
�1∕2

1
h
�1
1
∫

b

a ∫
(b−z)∕h1

(a−z)∕h1

[K∗
h1
(s)](1+�1∕2)ds∫

(b−z)∕h1

(a−z)∕h1

[K∗
h1
(t)](1+�1∕2)dtg1(z)dz.

F(x) = ∫
x

−∞

[K∗
h1
(s)](1+�1∕2)ds.

∫
(b−z)∕h1

(a−z)∕h1

[K∗
h1
(s)](1+�1∕2)ds = F

(
b − z

h1

)
− F

(
a − z

h1

)
.
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As h1 → 0,∀a ≤ u ≤ b,

Therefore,

Here, we employ equation (3.2) of Theorem 2.1 of Fan (1991),

for some constants C1 and C2 independent of n1 and s. Then, |M(s)|1+�1∕2 is integrable 
for 𝛿1 > 0 . We have

Therefore,

We then show that N1 → 0 . Rewrite

As h1 → 0,∀u ≤ a,

Hence, N1 → 0 . Using similar argument, N3 → 0 . By Lemma 6.1,

F

(
b − z

h1

)
→ F(+∞); F

(
a − z

h1

)
→ F(−∞) = 0.

N2 = O
( 1
n�1∕21 h�11

∫

b

a ∫

∞

−∞
[K∗

h1
(s)](1+�1∕2)ds

∫

∞

−∞
[K∗

h1
(t)](1+�1∕2)dtg1(z)dz

)

.

|h�
1
K∗
h1
(s)| ≤ min

{
C1,

C2

|s|

}
∶= M(s).

∫

∞

−∞
[K∗

h1
(s)](1+�1∕2)ds = 1

h�(1+�1∕2)1
∫

∞

−∞
[h�K∗

h1
(s)]1+�1∕2ds

≤ 1
h�(1+�1∕2)1

∫

∞

−∞
|M(s)|1+�1∕2ds = O(h−�(1+�1∕2)1 ).

N2 = O
(

1

n
�1∕2

1
h
�1+�(2+�1)

1

)
→ 0.

N1 =
1

n
�1∕2

1
h
2+�1
1

∫
a

−∞ ∫
b

a ∫
b

a

[
K∗
h1

(
x − z

h1

)](1+�1∕2)[
K∗
h1

(
y − z

h1

)](1+�1∕2)
g1(z)dxdydz

=
1

n
�1∕2

1
h
�1
1
∫

a

−∞ ∫
(b−z)∕h1

(a−z)∕h1

[K∗
h1
(s)](1+�1∕2)ds∫

(b−z)∕h1

(a−z)∕h1

[K∗
h1
(t)](1+�1∕2)dtg1(z)dz.

∫
(b−z)∕h1

(a−z)∕h1

[K∗
h1
(s)](1+�1∕2)ds → F(∞) − F(∞) = 0.
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By Lemma 6.3, we have

Replacing E ∫ b

a
f̂1(x)g(x)dx and Var(f̂1(x)g(x)dx) in (6.12), we get

Similar argument implies that (6.11) holds for i = 0.

Proof of Theorem 2.1  By Lemmas 6.1, 6.2, and 6.3, we have E(𝛽 − 𝛽)2 and E(𝛼̂ − 𝛼)2 
converge to 0. Therefore, (𝛽, 𝛼̂) are consistent estimators of (�, �) . Furthermore, by 
Lemma 6.4, we have for all a11, a21 ∈ ℝ,

is normally distributed by letting g(x) = a11g11(x) + a21g21(x) . Then,

is a bivariate normal random variable. By Lemmas 6.1 and 6.3, we obtain

and

Therefore,

E ∫
b

a

f̂1(x)g(x)dx =
1

n1

n1∑

i=1

EW11 = ∫
b

a

f1(x)g(x)dx + O(hm
1
).

Var
(

∫

b

a
f̂1(x)g(x)dx

)

= 1
n1

[

E
(

∫

b

a

1
h1

K∗
h1
(x − Z)
h1

g(x)dx
)2

−
(

E ∫

b

a

1
h1

K∗
h1
(x − Z)
h1

g(x)dx
)2]

= 1
n1

[

∫

b

a
g2(x)g1(x)dx −

(

∫

b

a
f1(x)g(x)dx + O(hm1 )

)2]

.

√
n1 ∫ b

a
{f̂1(x) − f1(x)}g(x)dx

s1
→ N(0, 1).

a11
√
n1 ∫

b

a

{f̂1(x) − f1(x)}g11(x)dx + a21
√
n1 ∫

b

a

{f̂1(x) − f1(x)}g21(x)dx

√
n1

�∫ b

a
{f̂1(x) − f1(x)}g11(x)dx∫ b

a
{f̂1(x) − f1(x)}g21(x)dx

�

Var

�√
n1 ∫

b

a

{f̂1(x) − f1(x)}g11(x)dx

�
→ ∫

b

a

g2
11
(x)g1(x)dx −

�

∫
b

a

f1(x)g11(x)dx

�2

Var

�√
n1 ∫

b

a

{f̂1(x) − f1(x)}g21(x)dx

�
→ ∫

b

a

g2
21
(x)g1(x)dx −

�

∫
b

a

f1(x)g21(x)dx

�2

Cov

�√
n1 ∫

b

a

{f̂1(x) − f1(x)}g11(x)dx,
√
n1 ∫

b

a

{f̂1(x) − f1(x)}g21(x)dx

�

→ ∫
b

a

g11(x)g21(x)g1(x)dx − ∫
b

a

f1(x)g11(x)dx∫
b

a

f1(x)g21(x)dx.
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Similarly,

The asymptotic normality above, the independence between case and control sam-
ples and 0 < 𝜌 < 1 in (2.15) complete the proof. 	�  ◻

Proof of Theorem  2.2  When � = 0 , we have n1∕n0 → 0 . By Lemmas  6.1–6.4, we 
obtain

By similar argument when � = 1,

	�  ◻
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