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Abstract

The article develops parameter estimation in the Logistic regression when the covar-
iate is observed with measurement error. In Logistic regression under the case—con-
trol framework, the logarithmic ratio of the covariate densities between the case and
control groups is a linear function of the regression parameters. Hence, an integrated
least-square-type estimator of the Logistic regression can be obtained based on the
estimated covariate densities. When the covariate is precisely measured, the covari-
ate densities can be effectively estimated by the kernel density estimation and the
corresponding parameter estimator was developed by Geng and Sakhanenko (2016).
When the covariate is observed with measurement error, we propose the least-
square-type parameter estimators by adapting the deconvolution kernel density esti-
mation approach. The consistency and asymptotic normality are established when
the measurement error in covariate is ordinary smooth. Simulation study shows
robust estimation performance of the proposed estimator in terms of bias reduction
against the error variance and unbalanced case—control samples. A real data applica-
tion is also included.
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1 Introduction

Case-control studies are frequently used for studying the association between
health outcomes and risk factors. Logistic regression is one of the most com-
monly applied statistical methods to model the relationship between binary health
outcomes and the factors of interest. In the univariate logistic regression analysis,
the response Y is binary (Y = 0 or 1), the predictor X is a real value, and the cor-
responding conditional regression function is

exp(a® + px)

1.1
Here a* and f are scalar parameters. Let 7 denote P(Y = 1) and f be the marginal
density of X, then 7 = f Y(x)f (x)dx. We denote the conditional density functions of
the covariate X as f;, and f; corresponding to the response ¥ = 0 and ¥ = 1, respec-
tively. Then under (1.1), the density functions obey the relation:

fi0) = expla + px)fy(x), a=a*+In{(1-x)/x}. (1.2)

This case—control sampling scheme was first introduced by Prentice and Pyke
(1979). Since then, various parameter estimation methods were developed by Qin
and Zhang (1997), Bondell (2005), and Geng and Sakhanenko (2016). Particularly,
Geng and Sakhanenko (2016) observed the linear relationship between the loga-
rithm of the density ratio and the parameters from (1.2) and further proposed the
estimation approach based on an integrated square distance (ISD). The ISD estima-
tors were shown to achieve superior performance for the cases of small sample sizes
and severely unbalanced samples.

However, the predictor variable X may not be accurately observed in practice.
Instead, one observes a surrogate Z of X with measurement error. Specifically, we
adapt the errors-in-variables (EIVs) model:

Z=X+U. (1.3)

Here we assume that U and (X, Y) are independent. Moreover, the density f;; of the
measurement error random variable U is known for model identification purpose.
See Carroll et al. (2006) for details. In practice, when the measurement error density
Sy 1s unknown, it is natural to estimate the error density from additional data such
as validation data, auxiliary variables and instrumental variables. For example, addi-
tional negative control data are available in Lumina Bead microarray studies (Xie
et al. 2009) for the background noise. In the cases without additional data, paramet-
ric assumptions of the distribution of U can be made such as Laplace distribution
with unknown variance and the parameters can be estimated under different criteria.
See Sects. 4 and 5 for more details. For the Logistic EIVs regression, Stefanski and
Carroll (1985) proposed an effective bias-adjusted maximum likelihood estimation
approach for normally distributed measurement errors and small variances. Carroll
and Wand (1991) developed a semiparametric estimation method when there is a
validation data set available for the covariate.
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In this paper, we propose the ISD estimator for the Logistic EIVs models based
on the deconvolution kernel density estimation and investigate the asymptotic prop-
erties as well as simulation performance. We first demonstrate the bias of naive
estimators when ignoring measurement errors in covariate, then present the decon-
volution ISD estimation in Sect. 2.1. Furthermore, we show the consistency and
the asymptotic normality of the proposed estimator and the needed assumptions in
Sect. 2.2. In Sect. 3, we conduct simulation study to address the estimation perfor-
mance under various settings. Moreover, we include a real data application of the
Framingham Heart Study in Sect. 4. Practical guidelines and limitations of the pro-
posed method are included in Sect. 5. The proofs of the main results can be found in
Sect. 6. Programming R codes for the simulation study and real data application are
available in supplemental material.

2 Nonparametric estimation

We first briefly review the ISD estimation method by Geng and Sakhanenko (2016)
when the covariate X is error free. When the covariate is observed with measure-
ment error, we show that the naive ISD estimator by ignoring the measurement error
is biased in the Gaussian distribution setting. We further propose the ISD estimation
approach based on the deconvolution kernel density estimators in Stefanski and Car-
roll (1990).

2.1 Bias of naive ISD estimators

In the Logistic regression under case—control study, Geng and Sakhanenko (2016)
discovered the linear relationship between the log-ratio of the covariate densities
and the parameters in (2.1), constructed the integrated square distance in (2.2), and
obtained the parameter estimators by minimizing the ISD in (2.3), i.e.,

fi(x0) _
In (m) —a+px, @.1)

N P (Ao +by, 2
Tn(s,t).=/a [ln{m}—s—tx] dx, seReR, (22

(@, f) := argmin,, T, (s, 1), (2.3)

where fo(x) and fl (x) are the kernel density estimators of covariate X in the control
and case group, respectively, a and b are pre-determined real value constants, b, and
b, are small positive values to ensure the log-ratio is well defined.

In the Logistic EIVs regression under the case—control study, a naive ISD
estimator of Geng and Sakhanenko (2016) can be obtained based on the ker-
nel density estimators of samples of Z by ignoring the measurement error.
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However, there are two main issues about the naive estimation. First, the yielded
naive estimator can be biased. For example, consider the Gaussian distribu-
tion setting for both covariate and measurement error. Specifically, when X in
the control group is normally distributed f, = N(,ux,crf(), then (1.2) implies that
fi = N(ux + foy. 03). We denote g, and g, as the density of Z under the control
and case group, respectively. Assume the measurement error U follows a nor-
mal distribution N(O c2) and U is independent of X, then g, = N(uy, o5 + 02) and
= N(uy + foy. 05 + 62). It further implies that

2

n (&(Z)) _ Gom— Pop)* — (z — uy)* %N g

=a+
80(@) 2(0)2( +02) 6 + 02

where @ = {—2uyfo; — f*oy}/{2(c; + 02)}. Therefore, the naive estimator f,,;..
based on the integrated least square idea converges to -

ﬂ This variance ratio

factor is well known in the parameter estimation bias of the tradltlonal linear errors-
in-variables models. This discovery is also consistent with the finding of bias and
attenuation in Stefanski and Carroll (1985). Second, the linear relationship in (2.1)
may simply no longer hold for the density of the surrogate Z. For instance, when X is
exponentially distributed under the case—control study, f, = Exp(4) with mean 1/4
and f; = Exp(4 — f), and U follows Laplace distribution f;,(u) = exp{—|u|/y}/Q2y),
then g, and g, are no longer exponentially distributed. In fact,

A et/ A iy
g0 = { Z(IIM ’ y z<0 21) = { 2[1+(21—ﬂ)71€ ’ ip y z<0
e e~ e O ) - ~z/r :
e T 2w e 220, —a-prr2 ¢ e 120

Hence, it is critical to take the measurement error model (1.3) into consideration in
the ISD estimation. In the following subsection, we adapt the deconvolution kernel
density estimation by Stefanski and Carroll (1990) to effectively estimate the densi-
ties of the covariate X under case and control groups, and obtain the modified ISD
estimators according to (2.2).

2.2 Deconvolution ISD estimation

In this subsection, we describe the data structure for the Logistic EIVs models,
present the explicit expression of the proposed ISD estimators and establish their
asymptotic normality. We assume that {z;,i =1,...,n,} are the observed surro-
gate values of Z from (1.3) in the control group (¥; =0); and {Z;,j=1,...,n;}
are the observed surrogate values of Z in the case group (¥; = 1). Let n = n, + ny.
The measurement error U has known density f;; and E(U) = 0. Let K be a kernel
density and denote h; := h;(n;), i =0, 1 as the bandwidths for the control and case
group, respectively. We adapt the deconvolution kernel density estimators f‘o and
f, by Stefanski and Carroll (1990) for the estimation of f, and f; as follows. For
each x € R,
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Fo®) = o)™ Y Ky (@ = 0/hg), @) = (mh)™ YK (G = 0)/hy),
i=1 i=1
! (2.4)

Pk (1)

—dt, j=0,1,
bo/h) 2:5)

K, 0 = @m) ' / exp(—ity) == ——
where ¢ and ¢, are the characteristic functions of a chosen kernel density K and
the measurement error density f;;, respectively. Furthermore, we define the inte-
grated square distance and the modified ISD estimators & and § as

b f 0)+b
T,(s,1) :=/ [ln{w}—s—m]zdx, seR, reR,
a (fox) vO) + bno

@ p) : =argming, T, (s, 1).

Here x vV y = max(x, y) for any x,y € R. Due to the fact that the deconvolution den-
sity estimator based on finite samples may take negative values when Ixl is large,
Fi(x) v 0 is used to truncate those negative values to 0. The finite constants a, b and
the positive sequences b, are chosen similarly as in Geng and Sakhanenko (2016).
Details can be found in the Sect. 3.

Similar to the ISD estimation in Geng and Sakhanenko (2016), the unique
solution to the optimization problem can be written as

R 12 b (fl(x)vo)+bnl a+b
== ), M Gavoms e
b -a) Ja (fo) v 0) + b, 2
bro (VO +b,
s [ [ S
b—a/, (fox) vV O) + b,

Note that the deconvolution kernel density estimators fo and fl play a key role in the
proposed estimation. As established in Carroll and Hall (1988) and Fan (1991), the

asymptotic behavior of the deconvolution kernel density estimators heavily depend
on the tail of ¢b;;. Hence the measurement errors were separated into two cases:

2.6)

=}

(1) ordinary smooth case: ¢, (#) = O(t™") as t = oo for some 7 > 0;
(2) supersmooth case: |, (1)| = O(t~% exp(—tP /y,)) for some B, > 0, y, > 0 and
real number «.

In this paper, we focus on the ordinary smooth case as shown in the assumptions
below. Examples of ordinary smooth distributions include gamma, uniform, and
Laplace distributions. For instance, the characteristic function of a uniform dis-
tribution on (—a, a) is ¢(¢) = sin(at)/(at) = O(t~") which belongs to the ordinary
smooth case with 7 = 1. A second example of ordinary smooth errors is Laplace
distribution whose density f;,(#) = exp{—|u|/y}/(2y) and characteristic function
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¢y = (1 +y**)~! = O(?) with 7 = 2. The supersmooth case which includes
the normal and Cauchy errors is worth of future study.

We now state the assumptions needed for establishing the asymptotic normality
of (& f).

fo and f; have m continuous derivatives, for m > 2. 2.7

¢k is a symmetric function; ¢ has m + 2 bounded integrable derivatives;
(2.8)

¢x(0) = 1;¢ () =14+ 0(")ast - 0.
|py ()] > 0 for all real ; dy|t|™" < |py(H)| < d,|t|™" ast — oo for some constants

(2.9)

0 <d, £d, and 7 > 0. Moreover, / {lpx (O] + |¢;((t)|}|t|1dt < 0.

There exists §; > 0 such that nf’/ zhfi+1(2+5i) — oo fori=0,1.

(2.10)
h; = 0 and n;h; — oo fori =0, 1. (2.11)
n;h? — oo and n;i?™ — 0 fori =0, 1. (2.12)
n;h;/logn; — oo and |log i;|/ log(logn;) — oo fori =0, 1. (2.13)
n*b, — 0fori=0,1. (2.14)
n/n—=p,0<p<1,n=n +n, (2.15)

Assumption (2.8) implies that the kernel K(x) is symmetric and of m-th order, i.e,
all moments less than m of the kernel are equal to 0. The assumption of the higher-
order kernel is used to ensure the bias of the deconvolution kernel density estima-
tors converges to zero sufficiently fast. The assumption of ¢, in (2.9) indicates that
the error density is ordinary smooth. The assumption of ¢ in (2.9), along with the
bandwidth assumption (2.10), is used to verify the Lyapunov’s Central Limit Theo-
rem conditions for the proposed estimator (&, B) in Theorems 2.1 and 2.2. The band-
width assumption (2.11) is used in Lemma 5.1 below to establish the consistency

P

of the deconvolution kernel density estimators f;,i = 0, 1. The assumption (2.12) is
imposed to eliminate the bias of Al-,i =0, 1 as shown in Lemma 5.2. The assumption
(2.13) is used in Lemma 5.2 to obtain the upper bound of sup, []A‘i(x) — Ef"i(x)l, i=0,1
by Giné and Guillou (2002). To make the assumptions more explicit, consider the
case that the true covariate f;,i = 0,1 follows a normal distribution and the meas-
urement error f;; follows a Laplace distribution. In this case, m = oo in (2.7) and

=2 in (2.9). One possible bandwidth choice that satisfies (2.11)—(2.13) is
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h; = O(n;“),i=0,1 with a < 1/6. Consequentially, there exists ¢, > 8a/(1 — 6a)
that satisfies (2.10).
Letc, = —6(a + b)/(b — a)* and ¢, = 12/(b — a)*. Define

cy{x —2(a* + ab + b*)/(3a + 3b)} ) = c{x—(a+b)/2}
£ L B e

Now we present the asymptotic results of the proposed estimator. Proof details can
be found in Sect. 6. Denote —, as the convergence in distribution.

g1 = ,i=0,1.

Theorem 2.1 (0 < p < 1). Under models (1.1) and (1.3), when assumptions (2.7)—
(2.14) hold, and 0 < p < 1in (2.15), we have that @ and f are consistent estimators
of a and f, respectively. Moreover,

N <Z ~ “) >, NO,5), % =p7'S, + (1 - p)7'5,,
where the ki-th entries (k,l = 1,2) of £, and X are

b b b
W = / 84 (08, (%) g (X)dx — / F,(0)g(xX)dx / fi(0)g;(x)dx, fori=0,1,

8i(@) = / Fi0fy(z — x)dx.
(2.16)

Theorem 2.2 (p = 0 or 1). Under models (1.1) and (1.3), when assumptions (2.7)—
(2.14) hold, we have

\/n_l<;:z> —p N(O, X)), for p=0; \/n_()(g:;) —p N0, %), forp =1,

where Xy and X, are defined as in Theorem 2.1.

The covariance matrix X in Theorem 2.1 is the weighted sum of X, and X, with
the coefficients p~! and (1 — p)~! determined by the sample size ratio of case and
control groups. Theorem 2.2 shows the asymptotic result of the estimators when the
sample sizes of the case and control groups are severely unbalanced. In each ki-th
entry of the matrix X;, the integrand of the first integration term includes the sur-
rogate density g;,i = 0, 1. When the covariate is observed free of error, the surrogate
density g; coincides with the true covariate density f;, hence our covariance structure
degenerates to that of Geng and Sakhanenko (2016).

3 Simulation study

In this section, we consider the Logistic EIVs regression in (1.1) and (1.3) with the
measurement error distribution chosen as the Laplace distribution L(0, y) where
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fy) = exp{=lul/y}/Q2y), $y® =1+ )"

One can see that the Laplace distribution L(0,y) satisfies the ordinary smooth
assumption in (2.9) with ¢ = 2. Moreover, the measurement error variance a%] =2y

This simulation study aims to investigate the effectiveness and robustness of the
proposed deconvolution ISD estimator /4 in estimation bias reduction under different
choices of the covariate distribution, sample sizes and error variance. Various scenarios
are simulated to evaluate the estimation performance based on the following factors: 1)
increasing sample sizes (1, n;) when n,/n; = 1, 2) small or large error variance o-%,, 3)
the sample size ratio n, /n,, for unbalanced case control studies.

To generate the case—control data, we specifically consider two distribution cases of
covariate X with Case 1 as Gaussian and Case 2 as Exponential. For each case and each
combination of chosen values of (n,n,) and o-?], we generate {x;,i = 1,...,n,} from

Jo and measurement error {u;,i = 1, ...,ny} from L0,y = o-U/\/z) L0,y = o-U/\/z),
then we form the observed surrogate {z;,i = 1,...ny} with z; = x; + u; for the control

group. Similarly, {Z;,j =1,..n,} is simulated with Z; = X; + &; for the case group,

where ¥; ~ fiand it; ~ L0,y = o,/ \/5). We simulate 500 replicates for each scenario
to present the estimation results.

Four estimation methods are computed based on the simulated case—control data
{zi=1,..np} and {Z;,j = 1,..n; }. Note that the parameter « is not identifiable due
to the unknown parameter z in (1.2), therefore we only focus on the estimation of f.
Specifically, we compared the estimation bias and root mean square error (RMSE) of
the proposed estimator / with three existing estimators: the naive ISD estimator ﬁ,SD,
the naive MLE estimator f,,; » described in Dobson and Barnett (2018), and the bias-
corrected estimator ﬁBC by Stefanski and Carroll (1985). The proposed estimator f is
computed by (2.6) and (2.4) while the naive ISD estimator is calculated by

R br o (i) +b,
o= g2 [ [ (B (o

in which fo(x) and fl (x) are the standard kernel density estimators using the observed
contaminated covariate data in the control and case group, respectively. The naive
MLE estimator, f,,; z is the solution that maximizes the log-likelihood function

£= Y [ In¥@) + 1 =30 = In(¥G)D).
i=1

in which ¥(x) is defined as in (1.1). The bias-corrected estimator can be calculated
by

ﬁBC =(- U%/Bn)BMLE’

in which O'?/ is the known measurement error variance and
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B n

! Z, 1IP (z ﬂMLE)Z

Z Y @) ziBue — ~ Z ¥ @B |-

Since the proposed ISD estimation relies on the deconvolution kernel density esti-
mators as defined in (2.4), the choices of kernel function K and bandwidth #;,i = 0, 1
are two key elements. First, the kernel function K should be carefully chosen so
that the integral in (2.5) exists. For ordinary smooth errors, as addressed in Yi et al.
(2021), commonly used kernel functions include the standard Gaussian kernel, the
sinc kernel K, (x) = sin(x)/(zx) with ¢ k(O =1 {t| < 1} and the kernel K,(x) defined
through its characteristic function ¢y (1) = (1 — 2)3I{t| < 1}. In this simulation
study, we set the density kernel K(x) to be the Gaussian kernel so that the deconvo-
lution kernel K*(x) takes the following form when the measurement error follows
Laplace(0, y)

. 1 —x2 y2(1 —x%)
K (x) = \/Zexp <T>[1+T] 3.1

Note that K*(x) may take negative values when Ixl is large, for the log ratio of the
densities to be well-defined, we use truncate fi(x) to zero when it is negative and
further set b, = n;".

Second, for the bandwidth selection in the deconvolution kernel estimation,
we adopted the bootstrap bandwidth selection method proposed by Delaigle and
Gijbels (2004a). The method first requires obtaining a pilot bandwidth using the
rule of thumb method hy, = O(n~'/°) for Laplace error. This bandwidth and
the contaminated observed data are then used to obtain the pseudo deconvolu-
tion kernel density estimator FrCxs hyio)- Next, a bootstrap sample X7, X7, ..., X}
is drawn from fy(x; hpﬂot) and the error U is added to the sample. The contaml—
nated bootstrap sample is then used to construct the deconvolution kernel density
estimator fX(x h). The optimal bandwidth is obtained by minimizing the mean
integrated square error between fy(x, Do) and fx (x;h). The function bw.dboot2
in the R package decon is available to obtain the bandwidths #;,i = 0, 1, under
the Gaussian kernel. The bootstrap bandwidth selection method is proven to be
consistent by Delaigle and Gijbels (2004a) and its performance in deconvolution
density estimation is shown via simulation study by Delaigle and Gijbels (2004b)
to be superior to other commonly used methods such as cross-validation. For the
naive ISD estimator, we follow the setting in Geng and Sakhanenko (2016) and
used the bandwidth w; = n, ? The integral limits (a, b) are chosen as the sample
means of the two contaminated samples.

Case 1: Gaussian covariates. In this case, we consider that the true covariate is
symmetrically distributed with Gaussian distributions, f, = N(0, 1) for the control
group and f; = N(f, 1) for the case group obeying (1.2). Particularly, we set § = 2.
To investigate the effect of the error variance, two choices of o7, = 0.5% and 67, = 1
are chosen to represent small error and large error, respectively. The sample size
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Table 1 Bias and RMSE

. . . Estimator ny =100 ny=300 ny=500 n,=1000
comparison of estimators with
error variance 67, = 0.5% and ny =100 n, =300 n, =500 n, =1000
ny/n; = lunder Case 1 N ]
B IBiasl 0.1462 0.0652 0.0708 0.0851

RMSE 0.5663 0.4349 0.3458 0.2505

brsp IBiasl  0.3556 0.3563 0.3556 0.3628
RMSE 0.5199 0.4260 0.3950 0.3810
Brre IBiasl ~ 0.3459 0.3760 0.3798 0.3885

RMSE 0.4212 0.3989 0.3908 0.3952
Brc IBias| ~ 0.0233 0.0757 0.0822 0.0959
RMSE 0.3572 0.2043 0.1548 0.1394

Table 2 Bias and RMSE

. . . Estimator ny, =100 n, =300 ny,=500 n,= 1000
comparison of estimators with
error variance 67, = 1 and n; =100 n; =300 n; =500 n, =1000
ny/n; = lunder Case 1 R ]
i IBiasl 0.1866 0.0398 0.0319 0.0279

RMSE 0.8953 0.7695 0.7097 0.6044

brsp IBiasl ~ 0.7699 0.8067 0.7920 0.8048
RMSE 0.8580 0.8348 0.8101 0.8139
Bre IBiasl ~ 0.9378 0.9673 0.9661 0.9720

RMSE  0.9537 0.9723 0.9692 0.9734
Bac IBias| ~ 0.4488 0.5140 0.5101 0.5246
RMSE  0.5553 0.5441 0.5294 0.5327

ratio is chosen as ny/n; = {1/10,1/5,1/3,1,5,10} where n,/n, = 1 represents the

balanced case and ny/n; = {1/10,1/5,1/3,5, 10} represent the unbalanced cases.
Tables 1 and 2 display the bias and RMSE of the four estimators with increased

sample sizes for the sample size ratio n,/n; = 1 when 0'12/ =0.5% and 65 =1,

respectively. When the measurement error is small d?] = 0.5%, Table 1 indicates

that both the proposed f and the bias-corrected estimator fp attain minimal bias
compared to the other two estimators. Table 2 shows that when the measurement
error variance is large a = 1, for each fixed sample size combination, the pro-
posed deconvolution ISD estimator § achieves the smallest bias among the four
estimators while other three estimators show dramatically large bias. Partlcularly,
compared to the naive ISD estimator f,, the bias reduction shown in f is sig-
nificant for both small and large sample sizes. Moreover, the bias and RMSE of
f decrease as the sample sizes increase for each chosen ratio setting. Overall, we
can see that the proposed deconvolution ISD estimator f shows robust perfor-
mance against the error variance GU, however, the bias-corrected estimator fp
performs poorly when the error is large.

Tables 3 and 4 present the estimation performance for different unbalanced

choices of (ny,n;) with ny/n; ={1/10,1/3,1/5,5,10} when o7 =0.5% and
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Table 3 Bias and RMSE comparison of estimators with ‘712/ = 0.5% and unbalanced sample sizes under
Case 1

Estimator ny=50  ng=50  my=100 1ny=100  ny=500 ny=1000
n =150 1, =500 n, =500 n,=1000 n, =100 n, =100

I} |Biasl 0.1011 0.1375 0.0770 0.0823 0.0958 0.0862
RMSE 0.5897 0.5500 0.4891 0.4434 0.4271 0.4799
brsp |Biasl 0.3201 0.3599 0.3457 0.3484 0.3576 0.3638
RMSE 0.5379 0.5307 0.4578 0.4458 0.4455 0.4618
Brre IBiasl 0.3398 0.3871 0.3827 0.3881 0.3873 0.4014
RMSE 0.4355 0.4408 0.4151 0.4123 0.4207 0.4215
Brc IBiasl 0.1234 0.2569 0.2227 0.2606 0.0642 0.0796
RMSE 0.3875 0.3570 0.2982 0.3072 0.2589 0.2145

Table 4 Bias and RMSE comparison of estimators with 0'12] = 1 and unbalanced sample sizes under Case
1

Estimator ne=50  ng=50  my=100 ny=100  ny=500 ny=1000
n, =150 1, =500 n, =500 n,=1000 n, =100 n, =100

I} [Biasl 0.1947 0.1316 0.1065 0.0853 0.0986 0.1282
RMSE 0.8299 0.8309 0.7714 0.7575 0.7935 0.7414
brsp |Biasl 0.7619 0.7670 0.7979 0.7899 0.7951 0.7964
RMSE 0.8576 0.8575 0.8458 0.8332 0.8369 0.8368
Brre IBiasl 0.9514 1.0065 0.9881 1.0103 0.9913 1.0183
RMSE 0.9735 1.0171 0.9946 1.015 0.9979 1.0227
Brc IBiasl 0.5988 0.7602 0.7068 0.7695 0.3415 0.3438
RMSE 0.6941 0.7882 0.7269 0.7810 0.4181 0.3984

af/ = 1, respectively. The proposed estimator § shows well controlled bias for all

the chosen unbalanced scenarios compared to the other three estimators espe-
cially when the error variance is large af] =1las shgwn in Table 4. The bias-cor-
rected estimator f~ performs fairly comparable to f only when the error variance
is small 6, = 0.5% and n,,/n, is large (n,/n; = 5 or 10) as shown in Table 3.

Case 2: Exponential covariates. In this case, we consider that the true covariate
is skewed with exponential distributions, i.e., f, = Exp(4) with 4 = 3 in the control
group and f; = Exp(4 — f) in the case group. We set § = 2. The Laplace measure-
ment error variance is chosen as o7, = 0.1 and o7, = 0.2%. The sample size ratio is
chosen as n,/n; = {1/10,1/5,1,5,10}. Similar to Case 1, Tables 5 and 6 present
the performance of bias and RMSE of the four estimators with increased sample
sizes for the balanced case when o7, = 0.1> and 6, = 0.22, respectively. Tables 7 and
8 show the estimation performance for different unbalanced choices of (n, n;) with
no/ny = {1/10,1/5,1,5,10} when o7, = 0.1 and o7, = 0.2?, respectively. For both
balanced and unbalanced sample sizes, when the error variance is smaller 0'[2] =0.12,
both § and f, give small bias than the other two methods. When the error variance
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Table 5 Bias and RMSE

comparison of estimators with
error variance 67, = 0.1> and

ny/n; = lunder Case 2

Table 6 Bias and RMSE

comparison of estimators with
error variance 67 = 0.2% and

ny/n; = lunder Case 2

Estimator ny =100 1ny=300 ny=500 ny=1000
n, =100 n, =300 n, =500 n, =1000
j Biasl  0.0390  0.0016  0.0445  0.0179
RMSE 09879 06789 05722  0.3872
Brsp Biasl 02398  0.0980  0.0238  0.05467
RMSE 0.6253 04868 04262 03112
e Biasl  0.0413  0.0810  0.0758  0.0909
RMSE 03903 02338 01765  0.1458
Bac Biasl  0.0308 00141  0.0088  0.0254
RMSE 04190 02351 01710  0.1246
Estimator ny =100 1ny=300 ny,=500 ny=1000
n, =100 n, =300 n, =500 n, =1000
I Biasl  0.0073  0.0207  0.0623  0.0102
RMSE 1.1089 07773 06311 04748
Brsp Biasl 04241 02840 02074  0.2278
RMSE 07163 05510 04489  0.3775
e IBiasl  0.2800 03070 03025 03172
RMSE 04366 03640 03329  0.3326
Bac Biasl  0.0730  0.1121  0.1074  0.1264
RMSE 04209 02643 02011  0.1757

Table 7 Bias and RMSE comparison of estimators with error variance O'%] = 0.12 under severely unbal-
anced cases under Case 2

Estimator ng=100 ny=100  1ny=200  n,=1000 ny=1000 ny =500
n, =500 n,=1000 n, =1000 n, =200 n, =100  n, =100
I} |Biasl 0.0633 0.0155 0.0046 0.0030 0.0150 0.0441
RMSE  0.8707 0.8493 0.6688 0.5213 0.6663 0.7321
ﬁISD |Biasl 0.3089 0.3573 0.1711 0.0034 0.0447 0.0514
RMSE  0.5626 0.5715 0.4541 0.3975 0.4540 0.4955
ﬁMLE |Biasl 0.0955 0.1258 0.1114 0.0530 0.0388 0.0416
RMSE 03115 0.3213 0.2337 0.1799 0.2284 0.2436
ﬁgc IBiasl 0.0507 0.0864 0.0682 0.0500 0.0766 0.0634
RMSE  0.3157 0.3208 0.2260 0.1942 0.2587 0.2701
is larger aé = 0.22, the proposed estimator f§ outperforms all other methods with the

least bias for all choices of (n, ).
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Table 8 Bias and RMSE comparison of estimators with error variance aé = 0.22 under severely unbal-
anced cases under Case 2

Estimator ne=100 ny=100  1nyg=200  ny=1000 15y =1000 ny =500
n, =500 n, =1000 »n,=1000 n, =200 a, =100 n, =100

I} IBiasl 0.0597 0.1013 0.0278 0.0433 0.0836 0.0801
RMSE  0.9167 0.9546 0.7709 0.6153 0.6939 0.8012
brsp |Biasl 0.5171 0.5619 0.3945 0.1594 0.0870 0.1279
RMSE  0.6998 0.7143 0.5654 0.4332 0.4534 0.5003
Brre |Biasl 0.3850 0.4276 0.3989 0.2221 0.1918 0.2193
RMSE  0.4537 0.4855 0.4336 0.2743 0.2869 0.3124
Brc IBiasl 0.2635 0.3221 0.2808 0.0946 0.1666 0.1006
RMSE  0.3825 0.4146 0.3422 0.2293 0.3267 0.3071

In summary, the proposed deconvolution ISD estimator shows robust perfor-
mance in bias reduction for different choices of covariate distributions, error vari-
ance and sample sizes. Particularly, the proposed estimator shows superior perfor-
mance when the error variance is large for both balanced and severely unbalanced
case control studies.

4 Data Application

In this section, we apply our proposed method to the Framingham Heart Study
data to investigate the relationship between the systolic blood pressure (SBP) X
and the presence of cardiovascular disease Y. The Framingham Heart Study was
begun in 1948 to explore risk factors and consequences of cardiovascular disease
in a longitudinal population-based cohort and it is one of the longest running epi-
demiological studies conducted under the National Heart, Lung, and Blood Insti-
tute. The variables of interest are the repeated systolic blood pressure measure-
ments and the presence or absence of cardiovascular disease of 1615 patients.
This example was first described by Carroll et al. (2006) to study the effect of
measurement error. The data is available as framingham in the software R pack-
age deconvolve. During the first visit, each subject had two SBP measurements Z,
and Z,. There are 128 individuals with cardiovascular disease and 1487 individu-
als without the disease. To fit the case—control framework, we generated a nested
case—control dataset (Clayton and Hills 2013) by matching 5 controls for each
case with cardiovascular disease according to their age and smoking status. In the
case—control dataset, there are n; = 127 cases and n, = 566 controls due to some
cases could not be matched. The two SBP measurements Z; and Z, are treated
as the surrogate of the true value. We use the average of the two blood pressure
measurements of each subject as the “true” measurement X of the subject and
the difference between Z,;, Z, and the average as the measurement error U. The
Normal Q-Q plot of the measurement error sample in Fig. 1 indicates a heavier
tail than the normal distribution (The p-value = 1.7 x 10~ for the Shapiro-Wilk
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Table 9 Parameter estimation
using the deconvolution ISD
method, naive ISD, naive
maximum likelihood and
bias-corrected methods in the
Framingham Heart Study data

Normal Q-Q plot of the measurement error

sample

-20- [

First measurement
Z

Second meausrement
Z,

ﬂISD
ﬂMLE

Bsc

0.022709
0.025736
0.014023
0.014032

0.023068
0.027160
0.012568
0.012578

0

theoretical

Fig. 1 Normal Q-Q plot for the measurement error in SBP

normality test). Hence we assume the error U follows a Laplace distribution. The
estimated measurement error variance is 6'%, = 5.53862. In Table 9, the four esti-
mators described in Sect. 3 are shown based on the two SBP measurements. It
appears that the ISD methods detect larger effects of SBP on the cardiovascular
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disease compared to other two methods. The bias-corrected estimation is very
close to the naive MLE estimation for both measurements while the deconvolution
ISD estimator is reduced from the naive ISD estimator for both measurements.

5 Discussion

In practice, there are great potential application opportunities of the proposed
method in many real data studies. For example, the National Health and Nutrition
Examination Survey (NHANES) was designed to assess the health and nutritional
status of adults and children in the United States. Many variables in NHANES
were collected with measurement errors and raised attention to researchers and
practitioners such as physical activity level (Tooze et al. 2013), Body Mass Index
measures (Stommel and Schoenborn 2009) and sodium intake (Va et al. 2019).
With the concerns in measurement error, many studies started collecting vali-
dation samples to investigate the errors. The validation data make it possible to
confirm the error distribution as required in the proposed method. Additionally,
numerous papers have focused on the estimation correction using validation data
(Lee and Sepanski 1995; Thiirigen et al. 2000; Siddique et al. 2019).

If no extra data is available for the measurement error distribution, an alterna-
tive approach is to assume the error distribution with unknown parameters such
as Laplace with unknown variance a?]. A grid search of the parameter values can
be performed to select the optimal value to minimize the approximated mean
integrated squared error (MISE) of the deconvolution density estimator in Stefan-
ski and Carroll (1990). For instance, if the covariate X is normally distributed, the
estimated MISE is

1 |k (DI

MISE(h, 62) =
(hop) =5 DR

4
dt+ 0.3757‘[_1/2(S§ - 65)_5/2% /x2K(x)dx.

The optimal bandwidth / and the variance o-lzj can be selected iteratively. If the nor-

mality assumption of X is violated, a bootstrap MISE proposed by Delaigle and Gij-
bels (2004a) can be used to select & and o,

Despite the proposed method is developed based on the case—control frame-
work, as demonstrated in Bondell (2005), yet it is also applicable under prospec-
tive sampling. However, some limitations in the proposed methods include the
ordinary smoothness assumption of the measurement error. This excludes the
commonly used normal error which belongs to the super smooth case. The main
reason is the pessimistic slow convergence rate of the deconvolution density esti-
mation for the super smooth error (Fan 1991). As explained in page 192 of Yi
et al. (2021), despite the slow convergence rate, deconvolution in practice works
reasonably well even if the error is super smooth. Hence it holds promises for the
proposed deconvolution ISD estimation to work fairly well even if the error is
normally distributed.
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6 Proofs
We need the following four lemmas to prove Theorems 2.1 and 2.2.

Lemma 6.1 Let g(x) be a continuous function over [a, b]. Under assumptions (2.7)—
(2.9), we have

E[%KZ(XZZ)] = fi@) + O™ fori=0,1.

L 1

b _z b
/ E [}TKZ (x Y >] gx)dx = / fix)g)dx + Oh") fori=0,1.

L 1

Proof For brevity, we only show the calculation of E' [h1_1 K;l {x=2)/h}]

E[lK; x=2) ]

moh

-1 R (+uw—x | ¢

i / / 27 / i f] 3/ oduf, )y

1 1 (y=x) | éx®
- h_l/ E/,e"p [’ 0 t] B/ PV IAINOHY

‘ K(y,%x)flcv)dw / K@f,(x+ hywdu = f,(x) + OR).
1

T h
Denote S,; = /" {f,(x) — ()} egn dx + [ {Fo@) = fo()}gpdx fori=1,2. 0O

Lemma 6.2 Under models (1.1) and (1.3), if assumptions (2.7)—(2.9), (2.11)—(2.14)
hold, then

n'?(@—a—=5,)=0,1), n'*(f-p—-S, =o0,1),for0<p<1;
n2@-a-58,)=0,01), n*(f-p~-S,) =o0,1), forp=0;
n*(@—a—58,)=0,1); n/*(f—p—58,) =0,1), forp=1.

Proof Taylor’s expansion implies that

b b
a—a-—3S, =/ R, (0)f (x)g;(x)dx — / R, (0)fp(x)g10(x)dx 6.1
b b
+b, / g1 (dx — bno/ 81o(x)dx, (6.2)

b b
f-B-S, =/ R, (0)f(x)g;; (x)dx — / R, (0)fo(x)g20(x)dx (6.3)
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b b
+ b, / 8 ()dx — b, / 8orp(x)dx. (6.4)
a a

in which

Fi(0)+b,, 1.
Rn[(x)z/ —2{f x)+b — t}dt.
fi)

Since g;; and g,; for i = 0, 1 are bounded over [a, b], the two terms in (6.2) and (6.4)

are o(n, Y 2) by (2.14), respectively. Similar argument as in the the proof of Lemma

4.2 in Geng and Sakhanenko (2016), using Corollary 3.2 of Liu and Taylor (1989)
and Theorem 2.3 of Giné and Guillou (2002), we derive the upper bound for R, (x)
as

swlRun<0(wpvm — @ +1b, [*)

x€Ela,b] x€E€la,b
< 0,(sup |fix) - E;WII> + sup |E[F)] - ;) + b, [*)
x€la,b] x€la,b]

log(h71)
=0 LA+ b ).
P< nihi i n;

Then, (2.12)—(2.14) imply that

b log(h7h)
n’? / R, (X)f;(x)g;(x)dx = OP(TZ; + 2" B2 ) =0, (1), i=0,1.
a n. i

(6.5)

Therefore the two terms in (6.1) and (6.3) are op(ni_l/ 2) respectively. This completes
the proof. O

Lemma 6.3 Let g,(x) and g,(x) be continuous functions over [a, b]. Under the
assumptions (2.7)—(2.9), (2.11), and (2.12), we have

b b
E[/ﬂ {21{*( P > f(X)}gl(x)dx/a {2[{*( . ) f(x)}gz(x)dx]

- / 81(%)8(0)g;(x)dx — / gl(x)f,-(x)alx/ Z,f(x)dx ash,—»0 fori=0,1,
(6.6)
in which g;(x) is defined as in (2.16).

Proof Fori =1, by Lemma 6.1, we have
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! x—Z 1
o e (252) s | {0 (552) s oo
a 1 a 1
b
_E[/ —K*< )gl(x)dx/ iK;; <X_Z>§2(x)dx
I a b\ Iy

- / J1(0g, (x)dx / J1(08,(x)dx

+ O(H™.

6.7)
First, we rewrite the term in (6.7)

by 7\ by _
E[/a h_lKh'(xh —)é’l(@d)([z h_lKh|< 7 >g2(x)dx]
* 1 % y—Z » 5
_E—/ / hy h‘( hy )thh (h_>81(x)g2(y)dxdy
: -7
</ / / )/ / hy ;1< )thZ,<yh_)g1(x)g2()’)gl(z)dxdydz
1 1 1 1

= M, + M, +M;.

We will show that M, — 0,M, — /abgl(x)gz(x)gl(x)dx, and M; - 0 as h; = 0.
Rewrite

. (y-Z\.
M, = / // x ,( : ) i <th >g|(x)gz@)g|(z)dxdydz

b=2)/h b=2)/hy
/ / K; (9K (D3, + shy)3,(z + thy)g, (2)dsdtdz
@/ Ja=om '

b=2)/hy b=2)/hy

/ / / (K (5) = Ky~ (DNK; (1) = Ky~ (0121 + sh)&y (2 + thy g, (dsdidz
(a=2)/hy (a=2)/hy

=M, +M,+M;+M,.

We consider M|,. Because g, &, are bounded on [a,b], K* is bounded and integrable
on R, M, is bounded by, up to a constant C,

-/l p=2)/h
(a=2)/h (a=2)/h,

From Stefanski and Carroll (1990), we know that K,’;‘] (x) is integrable and
/ K}’:l (x)dx = 1. Define F**(x) = f_xoo KZT(t)dt. Then (6.8) can be rewritten as

“ b—-z a—z :
[ () - (5 svo ©

F(%) F*+<ah_> — F*(c0) = F**(00) =0, as h; = 0, (6.10)
1 1

ForVz < a,
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By the dominated convergence theorem, (6.9) converges to 0. Similarly, M ,, M3,
and M,, all converges to 0. Therefore, M; — 0 as h; — 0. By similar argument,
M; — 0.Ash; = 0,

K* 1 ¢ y_Z ~ ~
M —K' | —— dxdyd
2= /// 7y h1< n >h1 h1< n >g1(x)gz(y)gl(z)xyz
(b—=2)/h, (b=2)/h,
= / / / K;T(S)Kh*f(t)gl(z)dsdtdz
a J@a-2/h J@-2)/h

b 0 o0 b
- / / / K}, (9K}, (08, (2)8,(2)g, (2)dsdrdz = / 81(2)2:(2)g1(2)dz.
Thus, (6.6) holds for i = 1. Similar argument shows that (6.6) holds for i = 0. O

Lemma 6.4 Let g(x) be a continuous function over [a, b]. Under (2.7)—(2.12), we
have

b
Vi / @) - £ }g@)dx — N(O.s?), 6.11)

where 2 = [ ¢2(0)g,(x)dx — { s fi(x)g(x)dx}z, i=0,1
Proof We first show that
S h@gdx — E [ f()gdx
\ Var(f! Fi (o)

Let

K* X = Zli b
Ty(x) = =K ; . W= / T,,(x)g(x)dx.
1 a

Note that fa b fl (x)g(x)dx is the sum of an i.i.d sequence. It suffices to show the Lya-
punov’s condition for the asymptotic normality in (6.12), i.e., for some 6; > 0,

E|W,, — EW11|2+61
nfl/Z[Var(W“)]H&l/z

(6.13)

as n; — oo. Since g(x) is continuous and bounded over [a, b], by similar argument to
Lemma 6.1 and Fubini’s theorem, we have

b
EW,, = / J10)g)dx + O(hY).

Moreover, by Lemma 6.3, we have
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b
Var(W,,) < EW,,)* — / 2 (g, (x)dx.

Then, to show the Lyapunov’s condition in (6.13), it suffices to show for some
6, >0,

n"CEW, —EW, [*% - 0. (6.14)

Using similar argument to the proof of Lemma 4.4 of Geng and Sakhanenko (2016)

and Koul and Ni (2004), by Holder’s inequality and g(x) bounded on [a, b], we get
the upper bound

0l /2 -5,/2 —6,/2

E|Wy, — EWy [P <[220 (E|W P90+ |EW |2P00) < n V2220 BT 1P 4 o(1)

246,

2
< nl_é‘/222+5'E(/ T,,(x) sup |g(x)|dx> +o(l) < Cn_b /222+5'E(/ T+ /2(x)dx> +o(1)
a x€la,b] a

with constant C = (Sup ¢, |§(0)] )2+61 and

) b b
n]—a,/zE</ 71+ ﬂ(x)dx) 5‘/2E/ T]l:»o,/Z(x)dx/ T]l;—él/z(y)dy
© b b (1+6,/2) (1+6,/2)
_ 1 W[ X=2 (Y2 )
- [ LG [ ()] s
b +6,/2 yoz\ ]
< (L [ L ()] s ()] s

i=N, +N, +N;.

Then, showing (6.14) is equivalent to showing N; = 0, N, = 0, and N; — 0. We
consider N,. Rewrite

(1+6,/2) y—z (1+6,/2)
N, = l/2 2+5,/ / / [ ;;]( I, >] [KZ,(,T)] 81(2)dxdydz
(b—2)/hy (b=2)/hy .
= /2 ; / / / (K ()12 /P1K (0] g, (2)dsdrdz
Lh @a/h J@a/m
/ / o iy [ (145,/2)
= G, 10 [ 1 g
Mzhé' Y @l "
Define
X
F(x):/ [KZI(S)](H&]/Z)dS-
Then,

(b-2)/h
/ Tk @11 = F<b ‘Z> . F<“ - Z).
(a=2)/h, ! hy hy

@ Springer



Parameter estimation for Logistic errors-in-variables...

Ash, — 0,Ya <u <b,

F(bh_z> — F(+00); F(‘lh‘z> — F(—00) =

1 1

Therefore,

N2=0<T/ / [K;, ()10 ds

n

/ [K;;(t)](1+51/2)dtg1(z)dz>.

Here, we employ equation (3.2) of Theorem 2.1 of Fan (1991),
|th;;(s)| < min {Cl, B } 1= M(s).

for some constants C; and C, independent of n, and s. Then, |M(s)|! /2 s integrable
for 6, > 0. We have

/ [KZ] (s)](1+51/2)ds — / [hTK* (S)]1+§]/2ds

T<1+5 Tr(1+6,/2)

< (1%/2)/ |M(s)| "+ 2ds = O(hl_T(H‘S‘/z)),
pr+e/ [
1

Therefore,

1
N, = (—) .
=0 n(]SI/Zh(]S]+T(2+51) -0

We then show that N; — 0. Rewrite

(1+6,/2) y—z\ [+
v [ [ )] ()] svosas

b=2)/h ‘ (b-2)/h,
1/2 51 / / [Kh*](s)](l+"‘/2)ds/ [KZl(l)](1+5'/2)dtg1(z)dz.

(a=2)/h, (a=2)/h,
Ash; - 0,Vu < q,
(b=2)/hy
/ LK, ()]+/2ds — F(o0) = F(c0) =
(a=2)/h, :

Hence, N; — 0. Using similar argument, N; — 0. By Lemma 6.1,
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b ny b
E / Fiwgdx = ni D EW, = / fi0g)dx + O,
a 1 =1 a

By Lemma 6.3, we have

b 2 b
< / fl(X)g(X>dx>= ! [E( / Ly &2 Z’g( )dx) —<E / h—K* = Z)g< )dx)]
ny a 1 a
1 b ’
=— [ / g7 (0)g (W)dx — ( / fl(x)g<x)dx+0(h',">> ]
1 a a

Replacing E fa b f‘l (x)g(x)dx and Var(f”1 (x)g(x)dx) in (6.12), we get

Vi L@ = £} g

S

— N, 1).

Similar argument implies that (6.11) holds for i = 0.

Proof of Theorem 2.1 By Lemmas 6.1, 6.2, and 6.3, we have E(f — f)? and E(@ — a)?
converge to 0. Therefore, (f, &) are consistent estimators of (#, @). Furthermore, by
Lemma 6.4, we have for all a;;,a,; € R,

b b
011\/”_1/ {fl(x)—fl(x)}g“(x)dx+a21\/’1_1/ {fl(x)_fl(x)}gzl(x)dx

is normally distributed by letting g(x) = a;,g,;(x) + a,;8,,(x). Then,

\/— /{fl(x) = fi0}g (Ddx
/ {f,(x) = £,(0) } g2 (¥)dx

is a bivariate normal random variable. By Lemmas 6.1 and 6.3, we obtain

2

b b b
Var(wz / o) —fl(x>}gn<x)dx> - / g}, (0g, (0dx — ( / fl(x)gnmdx)

a

b b b
Var(ﬁ / (i) —fl(x)}gﬂ(x)dx) - / 83, (0g (X)dx — < / ﬁ(x)gmmdx)

and

2

b b
cov(Vir [ G0 =enas i [0 = A )

b b b
_’/ g”(x)g21(x)gl(x)dx—/ f1(x)g11(x)dx/ S1(0)ga; (x)dx.

Therefore,
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f i@ =AWIgn@dx) o s
v SR G) = £} g2y ()dx ©0.2).

Similarly,

/ab {f‘()(x) —fo(x)}glo(X)dx S NO.S
\/n_o /ab {fo(x) _fl (x)}gz()(x)dx ©, 0)'

The asymptotic normality above, the independence between case and control sam-
ples and 0 < p < 1in (2.15) complete the proof. O

Proof of Theorem 2.2 When p = 0, we have n,/n, - 0. By Lemmas 6.1-6.4, we
obtain

a—a PR ®-Am)en@d) - VM S0 = o)) grodx
+-— A
v <l3 ﬂ) v (/,, he -A (x)}82|(x)dx> N Vio (/f o) = £} gap(x)dx

+0,(1)+0 (\/n_/\/%)

f {fl(x) —fi(x)} g1 (x)dx
+0,(1) - N, %)).
\/_<f {100 = 1)) g2y () ° 1

By similar argument when p = 1,

a—a) | f Ty () — £ (0} g10(0)dlx
\/n_o(” ‘ﬂ> Vi JP @) = £} ga0(0)dx

O
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