The Annals of Applied Statistics

2023, Vol. 17, No. 3, 21922211
https://doi.org/10.1214/22-A0AS1714

© Institute of Mathematical Statistics, 2023

USING PERSISTENT HOMOLOGY TOPOLOGICAL FEATURES TO
CHARACTERIZE MEDICAL IMAGES: CASE STUDIES ON LUNG AND
BRAIN CANCERS

BY CHUL MoON"2®, QIWEI L1>P® AND GUANGHUA XI1A0™¢

lDepartment of Statistical Science, Southern Methodist University, ® chulm@ smu.edu
2Department of Mathematical Sciences, University of Texas at Dallas, bqiwei‘ li@utdallas.edu

3Quantimtive Biomedical Research Center, Department of Population & Data Sciences and Department of Bioinformatics,
University of Texas Southwestern Medical Center, € guanghua.xiao @utsouthwestern.edu

Tumor shape is a key factor that affects tumor growth and metastasis.
This paper proposes a topological feature computed by persistent homology
to characterize tumor progression from digital pathology and radiology im-
ages and examines its effect on the time-to-event data. The proposed topolog-
ical features are invariant to scale-preserving transformation and can summa-
rize various tumor shape patterns. The topological features are represented
in functional space and used as functional predictors in a functional Cox pro-
portional hazards model. The proposed model enables interpretable inference
about the association between topological shape features and survival risks.
Two case studies are conducted using consecutive 133 lung cancer and 77
brain tumor patients. The results of both studies show that the topological
features predict survival prognosis after adjusting clinical variables, and the
predicted high-risk groups have worse survival outcomes than the low-risk
groups. Also, the topological shape features found to be positively associated
with survival hazards are irregular and heterogeneous shape patterns which
are known to be related to tumor progression.

1. Introduction. Recent advancements in the field of medical imaging have led to a
high-resolution and informative description of human cancer. Artificial intelligence (Al) im-
age processing algorithms, such as deep learning, have been developed to extract informa-
tion from medical images and have attained comparable achievements with human experts
(Havaei et al. (2017), Levine et al. (2019), Wang et al. (2019)). These Al algorithms also have
enabled efficient medical image segmentation, classifying image patches into categories such
as tumor and normal regions. With such developments medical images have a significant in-
fluence on medical decision-making. Radiomics has been developed for decision support by
extracting quantitative features of images and providing data for further analyses (Gillies,
Kinahan and Hricak (2016), Rizzo et al. (2018)). The two most common types of radiomic
features are texture and shape (Bianconi et al. (2018)). The textural features summarize the
area, kurtosis, entropy, and correlation computed from pixel intensity and the gray-level co-
occurrence matrix (Haralick, Shanmugam and Dinstein (1973)). The shape features mainly
focus on the boundaries of segmented tumor regions and quantify their roughness or irreg-
ularities (Bharath et al. (2018), Bookstein (1997), Bru et al. (2008), Crawford et al. (2020),
Kilday, Palmieri and Fox (1993), Zhang et al. (2020)). However, the existing features provide
limited explanations about the tumor shape, so detailed local patterns such as a relationship,
distribution, and connectivity between tumor and normal regions are not well summarized.
Also, the features developed to deal with radiographic images could be inadequate in high-
resolution pathology images (Madabhushi and Lee (2016), Zhang et al. (2020)). In this paper
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we propose topological features computed by persistent homology to quantify various aspects
of tumor shape features in Al-segmented medical images.

Topological data analysis is a recently emerged area of study that investigates the shape
of data using their topological features. Persistent homology is a commonly used topolog-
ical data analysis tool that analyzes the shape of data with the multi-scale topological lens
(Carlsson (2009)). Persistent homology provides a numeric summary of the shape that is
robust to noise and insensitive to metrics (Chazal et al. (2017)). Persistent homology has
been applied to various tumor image analyses, including colorectal tumor region segmenta-
tion (Qaiser et al. (2016)), clustering of Gleason score of prostate cancer histology (Berry
et al. (2020), Lawson et al. (2019)), and hepatic tumor classification (Oyama et al. (2019)).
Only a few studies have focused on survival prediction using topological features of medi-
cal images. Crawford et al. (2020) propose the smooth Euler characteristics to describe the
shape of tumor boundaries and develop a functional survival model. Also, Somasundaram
et al. (2021) show that persistent homology summary features of computed tomography (CT)
images predict lung cancer patients’ survivals.

We propose topological features computed by persistent homology for analyzing Al-
segmented medical images. We develop the distance transform that can reveal the tumor
shape of Al-segmented medical images. Persistent homology is computed based on the pro-
posed distance transform values. Unlike most existing shape features that only focus on a few
large segmented tumor regions, the proposed approach quantifies all tumor shape patterns
regardless of size. The proposed topological features are invariant to the scale-preserving
transformation, such as rotation and translation, and are applicable to various types of medi-
cal images, including pathology and radiology images.

Statistical inference on different tumor shape patterns in medical images can be achieved
by using the proposed persistent homology features. However, persistent homology results
are algebraic objects, and this makes it difficult to use them as inputs of machine learning
and statistical models. Although persistent homology outputs can be summarized as numeric
values, they are given as a multiset of intervals, not a vector. As a result, several methods have
been suggested to vectorize persistent homology results by representing them in different
spaces, such as Euclidean space (Adams et al. (2017)), functional space (Adams et al. (2017),
Berry et al. (2020), Bubenik (2015), Chen et al. (2015)), and reproducing kernel Hilbert space
(Kusano, Hiraoka and Fukumizu (2016), Reininghaus et al. (2015)). In our study persistent
homology results are represented in a functional space to maintain interpretability and assign
flexible weights to topological features. Furthermore, the represented functional summary is
implemented in a functional survival model as a functional predictor.

We develop a functional Cox proportional hazards (FCoxPH) model to characterize the
association between functional persistent homology features and survival outcomes. Since
Chen et al. (2011) proposed the FCoxPH model, various approaches have been developed
(Gellar et al. (2015), Hao et al. (2021), Kong et al. (2018), Lee et al. (2015), Qu, Wang and
Wang (2016)). In our study the dimension of functional predictors is reduced by Functional
Principal Component Analysis (FPCA), one of the key techniques in functional data analysis
(Yao, Miiller and Wang (2005)). We select a finite number of basis functions by FPCA and
use them in the FCoxPH model. We extend the FCoxPH model of Kong et al. (2018) to in-
clude multiple functional predictors obtained by persistent homology. The proposed FCoxPH
model implements both clinical variables and functional persistent homology features and
enables interpretable inference about tumor shape patterns.

We conduct case studies on lung cancer pathology images and brain tumor magnetic res-
onance imaging (MRI) images where both image data were collected as part of routine clin-
ical procedures. The results show that the proposed shape features, calculated from routine
medical images, can be used to predict patient prognosis. The predicted high- and low-risk
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groups show significant differences in survival outcomes for both lung cancer pathology im-
age (p-value =4 x 10~ and hazard ratio = 5.381) and brain tumor MRI image applications
(p-value = 8 x 10~* and hazard ratio = 2.176). Also, the simulation studies show that the
proposed method detects the tumor shape patterns and is robust to false shape information.
We find that the irregular tumor shapes and heterogeneous patterns are positively related to
risks of death which coincide with the aggressive tumor patterns. The proposed method en-
ables in-depth shape and pattern analysis on the survival prognosis using topological features
of medical images.

The rest of the paper is organized as follows. Section 2 proposes persistent homology
features of Al-segmented medical images, their functional representations, and the FCoxPH
model. Section 3 presents a simulation study about false shape information, and Section 4
applies the proposed method to lung cancer pathology and brain tumor MRI image data.
Section 5 concludes the paper and discusses future research topics.

2. Topological shape analysis for medical images. Only a few studies have used topo-
logical features of medical images to predict patient survival outcomes. First, Crawford et al.
(2020) use the smooth Euler characteristic transform (SECT) to summarize the shape of the
tumor boundary of glioblastoma multiforme (GBM) and predict the survival prognosis us-
ing Gaussian process (GP) regression. Although their approach suggests that tumor shape
information paired with its location is useful, it comes with some limitations. First, the GP
regression model does not consider censored observations because their study is motivated by
the dataset without censoring. Second, the SECT is sensitive to the rotation and orientation
of images. This makes it difficult to use when medical images do not have predefined orien-
tations, such as pathological images. Lastly, it is difficult to interpret the GP regression result
and provide clinical implications. Also, Somasundaram et al. (2021) use persistent homology
features of the grayscale CT images of lung cancer patients and conduct a Cox proportional
hazards (CoxPH) model. They summarize persistent homology results using the moments of
the topological feature curve. However, the proposed summary loses some information about
topological features and lacks interpretability. To overcome these challenges, we propose
using persistent homology to describe the tumor shape patterns and the FCoxPH model.

2.1. Persistent homology shape features of medical images. Persistent homology re-
cently emerged as a powerful analytic tool to characterize shapes (Chazal and Michel (2021)).
In persistent homology the shape of data is quantified using topological features, such as con-
nected components, loops, and voids. The connected components and loops are often referred
to as the dimension-zero and dimension-one features, respectively. Persistent homology keeps
track of the evolution of such topological features in nested shapes defined over a filtration.
The persistence of topological features is recorded by their birth and death across the range of
the filtration values, and it can be summarized by a persistence diagram, a collection of (birth,
death) points in R2. For a more detailed introduction to persistent homology, see Section S1
of the Supplementary Material (Moon, Li and Xiao (2023)).

Persistent homology is a great tool to summarize the shape of data. However, it is not
directly applicable to Al-segmented medical images because the segmented images do not
carry natural shape information. We propose a signed Euclidean distance transform for the
three-class medical images (SEDT-3) to reveal the shape information. The SEDT-3 extends
the signed Euclidean distance transform for the binary material images (SEDT-2) of Robins
et al. (2016). Suppose that all pixels of medical images are classified into one of the three
classes: tumor, normal, and empty regions. For example, Figure 1(a) presents the three-class
example image where the green-, blue-, and yellow-colored pixels are tumor, normal, and
empty regions, respectively. The three-class image itself does not reveal the shape informa-
tion, such as connectivity and size information. However, such information can be discovered
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FI1G. 1. (a): Three-class example image. The green-, blue-, and yellow-colored pixels are tumor, normal, and
empty regions, respectively. (b): Signed distances using the taxicab distance. (c)—(h): A sequence of cubical com-
plices based on the computed signed distance. The pixels included in the cubical complices are marked in gray.
(i)—(j): Dimension zero- and one-persistence diagrams.

by applying the distance transform. For a given pixel, the SEDT-3 finds the nearest pixel with
a different class. Then it computes the Euclidean distance to that pixel and assigns the com-
puted distance to the given pixel. The sign of the SEDT-3 value depends on the class of pixel;
negative values for tumor region pixels, positive values for normal region pixels, and infinite
values for the empty region pixels. The signed distance values have shape information in that
they show connectivity and adjacency relationships between neighboring pixels. The SEDT-3
values of Figure 1(a) are computed in Figure 1(b). Here a taxicab metric is used instead of
a Euclidean distance for convenience. The number of operations of the SEDT-3 algorithm
depends on the image content as well as the size, and the time complexity is up to O (N?)
where N is the number of pixels (Fabbri et al. (2008)).

We construct a cubical complex using SEDT-3 to compute persistent homology. The cu-
bical complex is a set of multidimensional cubes, such as points, lines, squares, and cubes,
that are glued together. The cubical complex allows describing a structure of an image while
preserving its topology (Couprie, Bezerra and Bertrand (2001)). We can obtain multiscale
shape information by computing persistent homology of the sequence of cubical complices.
Let C, be the cubical complex with filtration €. In C, the pixels whose assigned distances are
less than € enter the complex. For example, Figures from 1(c) to 1(h) present the sequence
of cubical complices based on the signed distance in Figure 1(b) with € € {—3, -2, ...,3}.
The empty regions are not used to construct cubical complices, so they do not directly affect
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persistent homology results. For example, the empty region pixels in Figure 1(b) are not used
in C¢ as long as € < oo.

Persistent homology features are computed using the sequence of cubical complices.
In Figure 1 example, two dimension-zero features (i.e., two connected components) are
recorded. The first dimension-zero feature appears in C_3 in the bottom-left corner of Fig-
ure 1(c). The second dimension-zero feature appears in C_ in the middle of Figure 1(e) and
merges with the first dimension-zero feature in C;. As a result, the first feature appears at
€ = —3 and persists to the upper bound € = 3, and the second feature is born at ¢ = —1 and
dies at € = 1. Also, we observe three dimension-one features (i.e., three loops) in the exam-
ple. Two holes show up in C_; in the middle of Figure 1(e). The smaller hole disappears in
Cy, whereas the larger hole is filled in C,. The other dimension-one component appears in C;
and disappears in C,. Such birth and death information of topological features is summarized
in persistence diagrams in Figures 1(i) and 1(j). The time complexity of the persistent homol-
ogy computation algorithm for the cubical complex is @ (3PN + D2PN), where D is the
dimension of the image and N is the number of pixels (Wagner, Chen and Vugini (2012)).

The proposed approach provides different tumor shape information than existing methods.
The previous studies apply persistent homology to the grayscale images and use the intensity
level as a filtration (Berry et al. (2020), Lawson et al. (2019), Oyama et al. (2019), Qaiser
et al. (2016), Somasundaram et al. (2021)). On the other hand, the proposed method applies
to the segmented images and uses the signed Euclidean distances as a filtration.

Also, the proposed persistent homology features are invariant to scale-preserving trans-
formations, including rotation, translation, and reflection. Our features only depend on the
relative locations to the nearest pixels with different classes. Therefore, the proposed ap-
proach is automatically invariant to rotations and orientation shifts; see Section S1.2 in the
Supplementary Material (Moon, Li and Xiao (2023)) for more examples.

2.2. Interpretation of persistent homology computation result. Various tumor shape pat-
terns can be summarized by the proposed persistent homology approach, and they are
recorded in different areas of persistence diagrams. Figures 2(a) and 2(b) show examples
of tumor shape patterns and in which quadrants they are summarized in dimension-zero and
dimension-one persistence diagrams, respectively.

Dimension-zero features appear in the three nonzero quadrants of a dimension-zero per-
sistence diagram: quadrants I, II, and III. First, the scattered tumors are recorded in quadrant
II. The larger the tumor regions, the larger birth values are in quadrant II (e.g., A vs. B and
C vs. D of Figure 2(a)). Also, larger death values mean that the distances between scattered
tumor regions are far from each other (e.g., A vs. C and B vs. D of Figure 2(a)). Second,
quadrant I represents the separate normal regions that include tumor regions. Death values
are proportional to distances between boundaries of normal regions and tumor regions inside
(e.g., E vs. F of Figure 2(a)). Third, connected tumor regions are summarized in quadrant
III. Birth values are the size of tumor regions (e.g., G vs. H of Figure 2(a)), and death values
are the size of the contact area of two tumor regions (e.g., G vs. I of Figure 2(a)). Therefore,
the death value indicates how close the connected tumor regions are. The connected tumor
regions may have different shapes. For example, they could be a series of overlapped tumor
regions (left panels of G, H, and I of Figure 2(a)) or tumor regions that have normal regions
inside (right panels of G, H, and I of Figure 2(a)).

Dimension-one features are summarized in quadrants I and II of a dimension-one persis-
tence diagram. First, normal regions surrounded by the tumor regions appear in quadrant IIL.
Here a large negative birth value means a thicker surrounding tumor regions (e.g., J vs. K
and L vs. M of Figure 2(b)), and a large death value means a large trapped normal regions
(e.g., J vs. L and K vs. M of Figure 2(b)). Second, broken-ring-shaped or double-broken-
ring-shaped tumor regions are recorded in quadrant I. A large birth value implies that there
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FIG. 2. Persistence diagrams of three-class medical images and corresponding tumor shape pattern examples.
The green, blue, and yellow colored pixels are tumor, normal, and empty regions, respectively.

are a large gap in the broken-ring or double-broken-ring-shaped shaped regions (e.g., N vs.
O of Figure 2(b)). Also, a large death value means a size of the inside of the broken-ring or
double-broken-ring shape is large (e.g., N vs. P of Figure 2(b)).

The size of persistent homology features is measured by the radius of the largest circle that
can be placed inside. Also, dimension-zero and dimension-one features are not exclusive;
the pixels used to construct dimension-zero features can be used to build dimension-one
features and vice versa. For example, the ring-shaped and broken-ring-shaped tumor regions
in Figure 2(b) are also counted as dimension-zero features.

We note that the persistence diagram is not an invertible function of the shape; we can
summarize the shape using the persistence diagram but cannot recover the shape from the
persistence diagram. However, one may identify the location of the features on the image
using the persistence diagram (Obayashi, Hiraoka and Kimura (2018)).

2.3. Functional representation of persistent homology shape features. Although persis-
tence diagrams include topological persistence information, it is not easy to use them directly
as input in data analysis. This is because persistence diagrams are not in a common data
type that most statistical models use. In our study we represent persistence diagrams in a
functional space, inspired by Chen et al. (2015) and Adams et al. (2017).

Let P = {(b,d) € R?>: b < d} be a persistence diagram such that (b, d) denotes the
birth and death values. The persistence surface function pp of the persistence diagram P
can be defined as pp(x, y) = > . a)ep 8b.d)(X, ¥) - w(b, d), where x and y are the (x, y)-
coordinates of the persistence surface function, g 4 is a smoothing function for (b, d) € P,
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and w(b, d) > 0 is a nonnegative weight function. A persistence surface function is a sta-
ble representation of a persistence diagram; persistence surface functions are robust to small
perturbations of (b, d) points in persistence diagrams (Adams et al. (2017)). Figure S3 in
the Supplementary Material (Moon, Li and Xiao (2023)) illustrates the persistence diagram
example and its functional representation.

Two persistence surface functions will be obtained when the proposed persistent homology
approach is applied to 2D medical images: dimension-zero and dimension-one. We denote
persistence surface functions of dimension-zero and dimension-one persistence diagrams of
image i by X lQ and X il, respectively.

The weight function w(b, d) allows assigning different importance to (b, d) points in per-
sistence diagrams. Various weights have been proposed, including the weights that depend
on the persistence of features (Adams et al. (2017), Chen et al. (2015), Kusano, Hiraoka
and Fukumizu (2016)) and birth, death, and persistence values (Berry et al. (2020)). In our
study we use three weights: (1) maximum distance weight w,, (b, d) = max{|b|, |d|, d — b},
(2) linear weight w;(b, d) =d — b, and (3) arctangent weight w, (b, d) = arctan(C(d — nP)
with C = D = 1. The maximum distance weight assigns heavier weights to features far from
the origin of persistence diagrams. On the other hand, the linear and arctangent weights are
proportional to persistence. We only present the results using the maximum distance weight
for the rest of the paper. The results using linear and arctangent weights are included in Sec-
tion S3.1 of the Supplementary Material (Moon, Li and Xiao (2023)). The results of the three
weights are generally similar, but they are not the same because each weight emphasizes dif-
ferent aspects of topological features. For example, the linear and arctangent weights focus
on the long-persisting features over the short-living features, whereas the maximum distance
weight can highlight a few short-surviving features far from the origin.
exp[—((x— b)2+(y -] -

We use the Gaussian smoothing function g 4)(x, y) = in the persis-
tence surface function. The Gaussian smoothing function requires the selection of smoothing
parameter o. We denote the smoothing parameters for dimension-zero and dimension-one
persistence surface functions as o and oy. In our study the smoothing parameters are deter-
mined by the leave-one-out cross-validation (LOOCYV) using 625 combinations of o and o
over the 2D grid in [0.2, 5] with a step size 0.2. The LOOCYV results of case studies are given
in Section S3.2 in the Supplementary Material (Moon, Li and Xiao (2023)).

2.4. Cox regression model for functional data. The CoxPH model (Cox (1972)) is a
commonly used model to investigate the association between patients’ survival progno-
sis and predictor variables. The hazard function with a p-dimensional scalar predictor

=(z1,.. .,z,,)T has the form h(?) = ho(t)exp(ZTy), where hg is the baseline hazard
function and 7 € [0, 7] for 0 < 7 < 00. We aim to conduct the FCoxPH model that uses a set
of clinical predictors y and two functional predictors X? and X' as

(1) h(t) =h0(t)exp(ZTy +fX°(u)a(u)du+/X1(v),3(v)dv).

The objective of the FCoxPH model is to determine the unknown coefficients y, «, and
B. Due to the infinite dimensionality of functional data, dimension reduction is often re-
quired. We use FPCA to represent functional data in a lower-dimensional space. Let X?

and X 1.1 be the persistence surface functions of medical image i and ww)=E [Xl(.)(u)] and
Ml (v) =E[X l-l (v)] be the mean functions of X ? and X 1_1' By the spectral decomposition, the
covariance functions can be represented as Cov(X?(u), X?(u/)) = ch?ozl Li¢j(u)¢j(u') and
Cov(Xl.l(v), Xl.l(v’)) = Y pe Sk (v)mr (v'), where {A;}j>1 and {8;}x>1 are nonincreasing
eigenvalues and {¢;};>1 and {m;}>1 are orthonormal eigenfunctions of Xl(-)(u) and X 1.1 (v),
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respectively. By the Karhunen-Loe¢ve expansion (Karhunen (1947), Loeve (1946)), the per-
sistence surface functions can be expressed as X?(u) = uo(u) + Z?’;l §ij¢j(u) and Xi1 (v) =

) + 22 Gk (v), where &; = [(X)(u) — nO@)¢;w)du and &ix = [(X](v) —
! (v)7r (v) du are the functional principal component (FPC) scores of dimension-zero and
dimension-one, respectively. The FPC scores have mean zero E[§;;] = E[¢ix] = 0 with
covariances E[£;;&;] = A;1(j = j') and E[{ix¢iw] = 8k = k'), where 1(-) is an in-
dicator function. We can approximate functional data X? ~ Mo(u) + Zjl-zl &j¢j(u) and

X l.l = ,ul(v) + > i1 Cikmr(v), where g and r are the selected number of eigenfunctions.
Then the FCoxPH model (1) can be approximated as

q r
2) hi(t) ~ hg(1) exp(Z,-Ty + Z §ijaj + Z Zikﬂk>,

j=1 k=1

where A (t) = ho(t) exp(f uOw)a(u)du + [ ' (v)B(v)dv). The dimension of predictors
is reduced to p + ¢ + r in (2). We can obtain the estimated coefficients using the se-
lected eigenfunctions and their estimated coefficients as &(u) ~ Z?: (¢ (u) and B(v) ~

> k=1 Bt (v).

The FCoxPH model that incorporates the functional tumor shape predictors enables inter-
pretable inference about the association between shape patterns and survival outcomes. The
estimated functional coefficients & (x) and ,3 (v) inform which parts of persistence surface
functions are associated with survival risks. The findings also can be displayed graphically
by plotting the estimated coefficients on the space of the persistence surface function. By
comparing the estimated coefficients plots and the topological features summarized in Fig-
ure 2, one can see which types of shape patterns may contribute the most to hazard prediction.

Two criteria are used to select the number of FPCs for the FCoxPH models. First, the
percentage of variance, explained by the FPCs, is used to determine g and r for valida-
tion tests. Let PVO(g) = I hj/ 252 A and PVY(r) = Y0y 8k/ 372 8k be the per-
centages of variances explained by g dimension-zero and r dimension-one FPCs, respec-
tively. For a given variability threshold C, the minimum number of FPCs that exceed the
threshold: ¢ = min{g : PV%(g) > C} and r = min{r : PV!(r) > C}. Second, the Akaike
information criterion (AIC) is used to choose the number of the FPCs for estimating the
FCoxPH models (Yao, Miiller and Wang (2005)). Let L(y1, ..., ¥p,a1,...,Qq, B1, .., Br |
q,r) denote the partial likelihood function of the FCoxPH model (2), given the number
of the FPCs g and r. The AIC value of the FCoxPH model is AIC(g,r) =2(q +r) —
2log{L(P1,...,Vp, 01, ..., 04, Bis..o Bl q,r)}. We determine an optimal number of com-
ponents g and r by computing the AIC under the various combinations of ¢ and r. For the
tied event times, we use the approximation method of Efron (1977) to adjust the partial likeli-
hood. Kong et al. (2018) show by simulation studies that the percentage of variance criterion
and the AIC are suitable for validation tests and model estimation for the FCoxPH model,
respectively.

3. Simulation study. We conduct simulation studies under two scenarios. For each sce-
nario we randomly generate 100 binary tumor images of size 200 x 200 pixels from two
groups of A and B, respectively, and create 30 independent datasets. In scenario 1, the main
tumor region is created by applying Gaussian smoothing and thresholding to 50 points sam-
pled from the bivariate normal distribution. Then, up to five and 20 random points are added
as small tumor regions to groups A and B, respectively. The two groups mainly differ by the
number of small disconnected tumor regions, summarized in quadrant IV of the dimension-
zero persistence diagram, as illustrated in Figure 2(a). In scenario 2, larger main tumor re-
gions are created similar to scenario 1, and up to 20 small tumor regions are added to both
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birth birth

(a) Scenario 1 (b) Scenario 2

FIG. 3.  The tumor image examples (left) and the average estimated dimension-zero coefficient functions of the
functional Cox proportional hazards model (right) for each scenario. In the tumor image examples, the green
and purple colored pixels are tumor and normal regions. The estimated dimension-zero coefficient functions are
plotted on the space of the dimension-zero persistence surface function. The example tumor shape patterns that
correspond to the nonzero coefficients are presented.

groups. For group B up to 50 holes are created around the boundary of the main tumor re-
gion. The tumor region with holes corresponds to topological features in quadrant III of the
dimension-zero persistence diagram, as shown in Figure 2(a). The simulated tumor image
examples of two groups are given in the left panels in Figures 3(a) and 3(b).

We transform the simulated images by the SEDT for two-class (SEDT-2). The SEDT-2
is a simpler version of the SEDT-3; it does not assign infinite values because the generated
images do not have empty regions. Interpretation of the topological shape features of binary
images is similar to interpretation of the three-class images shown in Figure 2, except that
there are no topological features that summarize separate nontumor regions (e.g., E and F in
Figure 2(a)).

Persistent homology is computed, as illustrated in Section 2, and the results are represented
as persistence surface functions using smoothing parameters oy = o1 = 2. We replace the
dimension-zero persistence result with infinite death value (b, co) with (b, b).

The survival times are generated from the CoxPH model by using the inverse probability
method of Bender, Augustin and Blettner (2005). We assume the hazard function h(z) =
0.01exp(0.8 x 1(B)), where 1(B) is the indicator of group B. As a result, higher hazard is
assigned to group B. We also generate two clinical variables, age and sex, under the same
conditions for both groups: age is sampled from the Poisson distribution with mean 40, and
sex is randomly determined with the probability of 0.5.

We conduct two models, the CoxPH and FCoxPH models. The CoxPH model only uses
two clinical variables, whereas the FCoxPH model uses the functional persistent homology
basis selected by the AIC in addition to two clinical variables. We examine the validity of
topological features in the FCoxPH model for predicting the survival outcome. We conduct
the chi-square test with g 4 r degrees of freedom that uses the g + r number of coefficients
of functional basis,

H():O[l:O[z:---:(xqzﬂl:...zﬂrzo’
Hy:aj#0or B #0foratleastone j € {1,2,...q}orke{1,2,...r}.

The percentage of variance explained by functional basis is used to select g and r, and the
variance threshold of C = 90% is used.

The simulation study results show that the proposed topological features reflect the differ-
ences of tumor shape patterns between the two groups. The average p-values of the chi-square
tests are small, 0.016 and 0.026 for scenarios 1 and 2, respectively. Also, the average p-value
of the Wald test of the FCoxPH models is 0.004 for both scenarios, which is smaller than
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those of the CoxPH models, 0.557 and 0.475 for scenarios 1 and 2, respectively. The distri-
bution of the p-values is summarized in Figure S5 in the Supplementary Material (Moon, Li
and Xiao (2023)).

We also conduct simulation studies to examine false positives using images from a sin-
gle group, either group A or B. The results imply that the proposed model robustly detects
the false shape features; see Section S2 in the Supplementary Material (Moon, Li and Xiao
(2023)) for a more detailed summary.

The functional coefficients of the proposed model show which shape patterns contribute
the most to hazard. The average estimated dimension-zero functional coefficients are shown
in the right panels in Figures 3(a) and 3(b). The coefficients show how topological features
are associated with the survival prognosis; the blue-colored and red-colored areas are posi-
tively and negatively related to the hazard function, respectively. Thus, if a larger number of
topological features appear in the blue (red) region, it is associated with higher (lower) haz-
ard. For scenario 1 the topological features summarized in quadrant IV of the dimension-zero
persistence diagram in Figure 3(a) are positively associated with hazard. This is consistent
with group B having a larger number of small disconnected tumors than group A. Also, for
scenario 2 the topological features that appear in quadrant III near the origin of the dimension-
zero persistence diagram in Figure 3(b) are related to higher hazard. This corresponds to the
tumor regions created by small holes. The red-colored region around (—30, 30) in Figure 3(b)
shows the difference of the size of tumor regions. Because the holes are added to the main
tumor region in group B, its size, measured by the radius of the largest circle that can be
placed inside, is smaller than that of group A. The coefficient of dimension-one functional
predictors is not reported because they are not selected for more than half of the datasets.

4. Case studies.

4.1. Application to lung adenocarcinoma pathology images. Lung cancer is one of the
most deadly cancers (Siegel, Miller and Jemal (2020)). One of the most common types of
lung cancer is adenocarcinoma which accounts for about 40% of all lung cancers (Zappa and
Mousa (2016)) and has various morphological features (Matsuda and Machii (2015)). We use
230 pathology images of 133 lung adenocarcinoma patients in the National Lung Screening
Trial (NLST) data. All images are obtained under 40X magnification, and the median size
of images is 24,244 x 19,261 pixels. The image patches of size 300 x 300 pixels (75 x 75
microns) are segmented into three classes of the tumor, normal, and empty regions using a
deep convolutional neural network (CNN) (Wang et al. (2018)). For example, for a given
NLST pathology image of size 30,000 x 30,000, the CNN model generates the segmented
image of size 100 x 100. We implement an additional preprocessing step to remove noise:
a single pixel is considered to be noise when its class is different from the surrounding eight
singular-class pixels, and the noise pixels are reclassified to the class of the surrounding
pixels. The denoised three-class images are transformed using the SEDT-3. Figure 4 presents
the pathology image, the segmented three-class image of Wang et al. (2018), and the SEDT-3
image.

A sequence of cubical complices is constructed using the SEDT-3 values as filtration, and
persistent homology is computed using GUDHI (Dlotko (2015)). We replace the dimension-
zero result with infinite death value (b, oo) with (b, b) and exclude the dimension-one result
with infinite death value (b, oo) to remove features related to empty regions. The median
number of the computed features per image slice is 694 for dimension-zero and 1768 for
dimension-one. The ranges of persistence diagrams are (—41, 11) for dimension-zero and
(—19, 26) for dimension-one. The smoothing parameters og = 1.8 and o1 = 0.4 are used for
the persistence surface functions.
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(a) Pathology image (b) Three-class image (c) Signed distance

F1G. 4. The lung adenocarcinoma pathology image (left), three-class pathology image segmented by Wang et al.
(2018) (middle), and signed Euclidean distance transformed image (right). In the three-class image, the green,
purple, and yellow colored pixels are tumor, normal, and empty regions. In the signed distance transformed image,
tumor regions are colored from blue to green and normal regions are colored yellow to red.

4.1.1. Model estimation. We construct the CoxPH model only using the following scalar
clinical predictors: age, sex, smoking status, cancer stage (I to IV), cancer grade (0 to 4), and
tumor size. The size of the tumor is measured by the number of tumor pixels in an image
slice. Also, we fit the FCoxPH model using the functional predictors and the same clinical
predictors used in the CoxPH model. For both models we assume the baseline hazard function
ho(t) = 1. The AIC is used to choose the number of FPCs for the FCoxPH model and yields
four FPCs: one FPC for dimension-zero and three FPCs for dimension-one. We note that the
SECT of Crawford et al. (2020) is not used because it is sensitive to rotation and translation
and is not suitable for pathology image application.

Table 1 shows the results of the CoxPH and FCoxPH models. The clinical variables behave
similarly for both models, except for the tumor size. The p-value of the tumor size variable
increases in the FCoxPH model as the functional predictors are added, suggesting that one of
the functional predictors may include the tumor size information. The p-values of the Wald
tests are close to zero for both models.

Figure 5 shows the estimated functional coefficients. The dimension-zero topological fea-
tures summarized in the blue-colored areas in quadrants II and III of Figure 5(a) correspond

TABLE 1
The outputs of the Cox proportional hazards (CoxPH) and functional Cox proportional hazards (FCoxPH)
models of the lung cancer adenocarcinoma patients. The “PH” is the abbreviation of persistent homology

CoxPH FCoxPHI

Coef. p-value Coef. p-value
Age 0.070 0.036 0.062 0.082
Smoker vs. nonsmoker 0.014 0.967 —0.181 0.597
Male vs. female —0.032 0.927 —0.020 0.958
Tumor size <0.001 0.026 <0.001 0.796
Stage II vs. stage | —-0.327 0.596 0.136 0.836
Stage III vs. stage I 1.042 0.015 1.066 0.014
Stage IV vs. stage | 1.519 0.003 1.786 0.001
Grade 1 vs. grade 0 —1.557 0.065 —1.969 0.039
Grade 2 vs. grade 0 —0.752 0.308 —0.912 0.285
Grade 3 vs. grade 0 —0.611 0.394 —0.625 0.447
Grade 4 vs. grade 0 —16.980 <0.001 —-17.150 <0.001
PH dimension 0, 13 FPC - - 0.015 <0.001
PH dimension 1, 15t FPC - - 0.001 0.002
PH dimension 1, ond ppC - - —0.002 0.001

PH dimension 1, 3td FpC - - —0.001 0.047
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FIG. 5. Estimated coefficient functions &(u) and B(v) of the functional Cox proportional hazards model of
the lung adenocarcinoma patients. The estimated coefficient functions are plotted on the spaces of the dimen-
sion-zero and dimension-one persistence surface functions. The example tumor shape patterns that correspond to
the nonzero coefficients are drawn.

to the aggressive tumor patterns. First, the colored area in quadrant II in Figure 5(a) rep-
resents the small-sized scattered tumor regions close to each other (e.g., D of Figure 2(a)).
Also, quadrant III of Figure 5(a) represents the relatively small connected tumor shapes. The
small connected tumor features are spotted where multiple tumor regions spread inside nor-
mal regions (e.g., H of Figure 2(a)). These patterns imply a fast spread of tumors.

On the other hand, the shapes that appear in the red-colored regions in quadrant I of Fig-
ure 5(b) match with less aggressive tumor patterns. The red-colored region corresponds to
broken-ring-shaped tumor regions (i.e., see the examples of areas N, P, and O in Figure 2(b)).
These shapes require an ample-sized normal region that could be surrounded by the tumor
but not invaded by the tumor.

These dimension-one features do not appear when small tumor regions penetrate the nor-
mal region inside the broken-ring-shaped tumor regions. Therefore, the broken-ring-shaped
tumor may not likely appear where the small tumor regions are densely populated. These
results coincide with the findings that tumor shape complexity and heterogeneous spread
are associated with prognosis (Chatzistamou et al. (2010), Grove et al. (2015), Miller et al.
(2003), Vogl et al. (2013), Yokoyama et al. (1991)) and tissue transport properties (Sefidgar
et al. (2014), Soltani and Chen (2012)).

Another interesting observation is that the relatively small-sized topological features, ap-
proximately a radius of up to 10 pixels (750 microns), have a strong association with the
hazard function. We see that the estimated nonzero functional coefficients, the colored re-
gions in Figure 5, are close to the origin compared to the ranges of persistence surface func-
tions. The topological features near the origin correspond to small-sized features that have
small birth and death values. This indicates that the valuable information for our lung cancer
study obtained by the proposed persistent homology approach relates mainly to local shape
patterns.

4.1.2. Validity test. We conduct the chi-square test that uses the ¢ + r number of coef-
ficients of functional basis. The variance threshold of C = 90% is used, and two dimension-
zero and two dimension-one functional basis are selected (¢ = r = 2). The computed p-value
of the chi-square test of degrees of freedom four is 7 x 10~13, suggesting that the topological
features are a strong signal. Therefore, aside from the clinical variables included in the model,
the topological features offer additional information in predicting lung cancer patients’ sur-
vival outcomes.
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FI1G. 6. The Kaplan—Meier plots for the high- and low-risk groups of the Cox proportional hazards (CoxPH)
and functional Cox proportional hazards (FCoxPH) models of the lung adenocarcinoma patients.

4.1.3. Prediction using cross-validation. We predict the risk scores using the LOOCV
for the CoxPH and FCoxPH models. For a given pathology image I € {1, 2, ..., 230}, the
models are trained for the rest 229 images. The risk score of [ is predicted using the trained
model. We repeat it for all 230 images, and the predicted risk scores are averaged for each
patient. We assign 133 patients into two groups of 66 high-risk patients and 67 low-risk
patients using the median patientwise risk score.

The proposed FCoxPH model shows a better separation between the two groups over the
CoxPH model. The Kaplan—Meier plots of the high- and low-risk groups predicted by the two
models are presented in Figure 6. The p-value of the log-rank test of the FCoxPH model is
4 x 10~7 which is smaller than that of the CoxPH model 6 x 1073. The hazard ratios between
the predicted high-risk and low-risk groups of the FCoxPH and CoxPH models are 5.381 and
3.682, respectively.

4.1.4. Prediction under false shape information. A simulation study is conducted to ex-
amine whether our method detects false shape information. We create new images by ran-
domly arranging the tumor and normal pixels from the existing three-class images. The re-
arranged image retains the same proportions of the tumor, normal, and empty regions as the
original image but loses original shape information. Figure S10 in the Supplementary Mate-
rial (Moon, Li and Xiao (2023)) shows the three-class pathology image and rearranged image.
We generate a total of 100 datasets, each with 230 rearranged images. Persistent homology
is computed, and computation outputs are represented as a persistence surface function using
the same setting. For each dataset we predict the risk scores using the LOOCYV, assign high-
and low-risk groups, and compute the p-values of the log-rank tests.

The prediction results imply that the proposed FCoxPH model detects false shape infor-
mation. The false shape functional predictors are not selected in the FCoxPH model by the
AIC among 94.43% of the 23,000 models. Also, most p-values of the log-rank tests of the
FCoxPH models with rearranged images are similar to the p-value of the CoxPH model; 77
out of 100 p-values are the same as that of the CoxPH model (6 x 107>), and only six out
of 100 p-values differ from the CoxPH model’s p-value by more than 4 x 10~*. Figure S11
in the Supplementary Material (Moon, Li and Xiao (2023)) shows the distribution of the p-
values of the log-rank tests of the FCoxPH models with rearranged images. This suggests
that the false shape information has a limited impact on the FCoxPH model.

4.2. Application to GBM MRI images. GBM is the most common malignant grade IV
brain tumor (Surawicz et al. (1999)). GBM is distinguished from lower-grade astrocytomas
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FI1G. 7. The T1-weighted contrast-enhanced MRI image of GBM patient (left), segmented binary image (middle),
and signed distance transformed image (right). In the binary image, the green and purple pixels are the tumor
and nontumor regions, respectively. In the signed distance transformed image, the tumor regions are colored from
blue to green and the normal regions are colored yellow to red.

(grades II and III) by its accelerated growth rate. The rapid outward growth of GBM develops
necrosis which is considered a hallmark of GBM. On T1-weighted contrast-enhanced imag-
ing MRI, most GBM cases show a ring-shaped enhancement made of hypervascular tissues
with a necrotic region at the center (Henson, Gaviani and Gonzalez (2005), Zhu et al. (2000)).
Figure 7(a) shows the MRI image of the GBM patient with a ring-enhancing mass. The pres-
ence of necrosis is a significant prognosis factor (Nelson et al. (1983)), and clinical studies
show that the degree of necrosis is negatively associated with a survival rate (Hammoud et al.
(1996), Raza et al. (2002)). However, due to its irregular shape, multifocal enhancement, and
the existence of multiple small lesions, evaluation of GBM shapes using MRI images could
be difficult (Eisenhauer et al. (2009), Upadhyay and Waldman (2011)).

We use 77 GBM patients’ MRI scans obtained from The Cancer Imaging Archive (TCIA)
(Scarpace et al. (2016)) and their clinical data retrieved from The Cancer Genome Atlas
(TCGA) (The Cancer Genome Atlas Research Network (2008)). The MRI images are seg-
mented into two classes of the tumor and nontumor regions using the Medical Imaging In-
teraction Toolkit with augmented tools for segmentation (Chen and Rabadan (2017)). Each
patient has approximately 23 to 25 segmented MRI images, and the spaces between the MRI
images are not the same. The size of images is either 256 x 256 or 512 x 512. We only use
1190 MRI images that have more than 100 tumor pixels because some images do not include
tumor regions that are not large enough. The segmented binary images are transformed by
the SEDT-2. We note that 2D MRI images are used because the vertical spaces between the
MRI images are not the same. However, our method can easily be extended to 3D images.
Figures 7(b) and 7(c) show the segmented binary image and distance transformed by the
SEDT-2.

The topological shape features in the MRI images are obtained by computing persistent
homology of the cubical complex based on the SEDT-2 values. Especially the ring-shaped
enhancements of the GBM patients’ MRI images are recorded as dimension-one topologi-
cal shape features. As illustrated in Figure 2(b), the broken-ring- and unbroken-ring-shaped
masses appear in quadrant I and II of the dimension-one persistence diagram, respectively.

For the GBM images, the number of topological shape features is much smaller than that of
the lung cancer pathology images. The median of the number of computed persistent homol-
ogy features per image slice is 16 for dimension-zero and 17 for dimension-one, respectively.
This is because MRI images are scanned in lower resolution than pathology images, and
GBM tumors are smaller and simpler than lung cancer regions. Also, the persistent homol-
ogy features obtained from the images of size 512 x 512 are divided by two for a consistent
comparison with the images of size 256 x 256. The ranges of persistent homology shape
summaries are (—22, 26) for dimension-zero and (—6, 32) for dimension-one. We represent
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TABLE 2
The outputs of the Cox proportional hazards (CoxPH) model and functional Cox proportional hazards models
using the smooth Euler characteristic transform (FCoxPH-SECT) and persistent homology topological feature
(FCoxPH) of glioblastoma multiforme patients. The “PH” is the abbreviation of persistent homology

CoxPH model FCoxPH-SECT model FCoxPH model
Coef. p-value Coef. p-value Coef. p-value

Age 0.037 0.002 0.048 <0.001 0.040 0.002
Male vs. female —0.204 0.465 —0.659 0.044 —0.270 0.328
Karnofsky performance score —0.019 0.034 —0.028 0.013 —0.012 0.240
Tumor size <0.001 0.178 <0.001 0.078 <0.001 0.985
SECT, 1%t FPC - - 0.001 0.301 - -
SECT, 2™ FpC - - —0.010 0.320 - -
SECT, 34 FpC - - —0.033 0.022 - -
SECT, 4th FPC - - 0.018 0.194 - -
SECT, 5th FPC - - 0.013 0.310 - -
SECT, 6th FPC - - 0.033 0.032 - -
SECT, 7t FPC - - 0.038 0.013 - -
PH dimension 1, 15t FPC - - - - 0.037 0.050
PH dimension 1, 2"d FPC - - - - —0.023 0.310
PH dimension 1, 3" FPC - - - - —0.012 0.659
PH dimension 1, 4th ppC - - - - 0.082 0.014

the topological shape features as persistence surface functions using the smoothing parame-
ters op = 1.6 and o1 = 0.4. The mean persistence surface function is used to represent each
patient’s tumor shape information.

4.2.1. Model estimation. We fit the CoxPH and FCoxPH models to predict the over-
all survival of the GBM patients. We also compare the proposed topological shape fea-
tures with the SECT of Crawford et al. (2020). Although the GP model is proposed to
predict survival outcomes using the SECT in Crawford et al. (2020), we implement it as
a functional predictor in the FCoxPH model (FCoxPH-SECT) for a direct comparison.
Let XSECT be the SECT functional predictor. Then the FCoxPH-SECT model becomes
h(t) = ho(t)exp(ZTy + [ XSECT(u)w (1) du). By implementing the SECT to the FCoxPH
model, its coefficients can also be interpreted using the invertibility of the Euler character-
istic (Wang et al. (2021)). However, a complete interpretation of the tumor shape pattern is
not possible because the mean SECT is used to represent shape information. For all models
four clinical predictors are used: age, gender, Karnofsky performance score (KPS), and tumor
size. The size of the tumor is calculated by the median of the number of tumor pixels in each
patient’s images. In the FCoxPH model, four dimension-one FPCs are selected by AIC.

Table 2 summarizes the results of the CoxPH, FCoxPH-SECT, and FCoxPH models. Age
has small p-values in all models. The p-values of the Wald tests are 0.001, 3 x 10~*, and
7 x 10~ for the CoxPH, FCoxPH-SECT, and FCoxPH models, respectively.

Figure 8 presents the estimated coefficient of dimension-one persistence surface function
/§ of the GBM patients. The blue-colored areas indicate that a larger number of small- and
large-sized broken-ring-shaped features are associated with higher risks. These patterns are
most likely to correspond to the large necrotic center and heterogeneous enhancement outside
of the rim.

4.2.2. Validity test. 'We conduct the chi-square test to examine the validity of functional
topological shape features obtained from the brain tumor MRI images. We use the variability
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FI1G. 8. Estimated coefficient function ﬁ(v) of the functional Cox proportional hazards model of the glioblas-
toma multiforme patients. The estimated coefficient function is plotted on the space of the dimension-one persis-
tence surface function. The example tumor shape patterns that correspond to the nonzero coefficients are pre-
sented.

threshold C = 90%, and three dimension-zero FPCs and 10 dimension-one FPCs are selected.
The p-value of the chi-square test with degrees of freedom of 13 is 1 x 1076, This implies that
the proposed topological shape features are informative for predicting the survival outcomes
of the GBM patients after adjusting the clinical variables.

4.2.3. Prediction using cross-validation. We compare the prediction results of three
models: CoxPH, FCoxPH-SECT, and FCoxPH. We obtain the predicted risk scores by us-
ing the LOOCYV and designate high- and low-risk groups of 38 and 39 patients, respectively.

Figure 9 shows the Kaplan—Meier plots of the high- and low-risk groups of the three mod-
els. The p-values of the log-rank tests are 1 x 1072,6 x 1073, and 6 x 10~ for the CoxPH,
FCoxPH-SECT, and FCoxPH models, respectively. Both FCoxPH-SECT and FCoxPH mod-
els outperform the CoxPH model. Also, the FCoxPH model provides better separation than
the FCoxPH-SECT model. The log-rank tests imply that the proposed persistent homology
shape features provide additional information in predicting the overall survival prognosis
of the GBM patients after taking into account the clinical predictors. The hazard ratios be-
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FI1G. 9. The Kaplan—Meier plots for the high- and low-risk groups of the Cox proportional hazards (CoxPH)
model and functional Cox proportional hazards models using SECT (FCoxPH-SECT) and persistent homology
(FCoxPH) of glioblastoma multiforme patients.
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tween the predicted high-risk and low-risk groups are 1.846, 1.917, and 2.176 for the CoxPH,
FCoxPH-SECT, and FCoxPH models, respectively.

We note that the simulation study under false shape information similar to Section 4.1.4
is not conducted for the GBM application. The pixel-rearranged images have tumor pixels in
an empty region because the 2D MRI images do not have information about the edges of the
brain.

5. Conclusion. In this article we propose a new summary statistic that uses topologi-
cal features to represent tumor shape patterns in medical images. We develop the distance
transform for three-class pathology and two-class radiology images that reveal various tu-
mor patterns. Persistent homology is applied to quantify tumor shape patterns, and the topo-
logical persistence information is represented as a function. The FCoxPH model is used to
predict survival outcomes and enables potential clinical interpretation of topological shape
features. The proposed topological shape features summarize tumor aggressiveness and im-
prove prediction accuracy in the applications to lung adenocarcinoma and GBM images. The
simulation studies suggest that the proposed approach is robust to false shape information.

Our study leads to several future research topics. First, while we found a relationship be-
tween the topological shape features and survival prognosis, a complex relationship between
the shape features, clinical variables, and genetic features is largely unknown. Similar to re-
cent studies that investigate the relationships between imaging features and gene expressions
(Li et al. (2019), Moon et al. (2015)), one can explore the association with the topological
shape features. Second, one of the drawbacks of the proposed persistent homology approach
is that it loses tumor location information. This is suitable for the lung adenocarcinoma ap-
plication because the pathology images do not have a predetermined direction. However, the
tumor spatial information could be important in some cancer image analyses, such as brain
tumor (Bondy et al. (2008)). In the future it would be useful to pair spatial information with
the topological features computed by persistent homology. Lastly, our method can easily be
applied to 3D medical images. In 3D image applications, zero-, one-, and two-dimensional
topological shape features will be obtained, and their size is measured by the radius of the
largest sphere.

SUPPLEMENTARY MATERIAL

Additional details and figures (DOI: 10.1214/22-A0AS1714SUPPA; .pdf). This file con-
tains supplementary sections and figures.

Data and code (DOI: 10.1214/22-A0AS1714SUPPB; .zip). This file contains R and
Python code to reproduce results. They can also be downloaded from the public repository:
https://github.com/chulmoon/Topological TumorShape.
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