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ABSTRACT
Medical imaging is a form of technology that has revolutionized the medical field over the past decades.
Digital pathology imaging, which captures histological details at the cellular level, is rapidly becoming a
routine clinical procedure for cancer diagnosis support and treatment planning. Recent developments in
deep-learningmethods have facilitated tumor region segmentation frompathology images. The traditional
shape descriptors that characterize tumor boundary roughness at the anatomical level are no longer
suitable. New statistical approaches to model tumor shapes are in urgent need. In this article, we consider
the problem of modeling a tumor boundary as a closed polygonal chain. A Bayesian landmark-based shape
analysis model is proposed. The model partitions the polygonal chain into mutually exclusive segments,
accounting for boundary roughness. Our Bayesian inference framework provides uncertainty estimations
on both the number and locations of landmarks, while outputting metrics that can be used to quantify
boundary roughness. The performance of our model is comparable with that of a recently developed
landmark detection model for planar elastic curves. In a case study of 143 consecutive patients with stage
I to IV lung cancer, we demonstrated the heterogeneity of tumor boundary roughness derived from our
model effectively predicted patient prognosis (p-value<0.001). Supplementary materials for this article are
available online.
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1. Introduction

Statistical shape analysis is an emerging field due to the necessity
of making inferences on shapes, which is an important phys-
ical property of objects. It directly impacts medical imaging,
computer vision, geographical profiling, and many other fields.
Quantitatively describing the shape of an object, such as the
tumor tissue from a medical image, has been a long-standing
and fundamental challenge in medical imaging.

Since the emergence of radiology imaging technologies, a
myriad of shape descriptors have been proposed for analyzing
X-ray, computerized tomography (CT) scan, magnetic reso-
nance imaging (MRI), and positron emission tomography (PET)
images. These shape descriptors play a vital role in disease
screening/staging/surveillance and treatment planning (Kijima
et al. 2014; Mohammadzadeh et al. 2015), along with mor-
phological texture descriptors (see. e.g., Haralick, Shanmugam,
and Dinstein 1973; Larroza, Bodí, and Moratal 2016). With
current advancements in imaging technology, hematoxylin and
eosin (H&E)-stained pathology imaging (see an example in
Figure 1(a)) is rapidly becoming a routine procedure in clin-
ical diagnosis and prognosis of various malignancies (Niazi,
Parwani, and Gurcan 2019). Compared to radiology images,
pathology images can capture histological details inmuchhigher
resolution. Current pathology image analysis only builds upon
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morphological texture features (see. e.g., Tabesh et al. 2007; Yuan
et al. 2012; Luo et al. 2016; Yu et al. 2016). There is a lack of
shape descriptors to characterize tumors in high-resolution and
complex medical images.

Recent technology breakthroughs in digital pathology imag-
ing and machine learning have enabled comprehensive and
detailed shape characterization of tumors on a large scale. Wang
et al. (2018) have developed a deep convolutional neural net-
work to classify image patches in a pathology image into three
categories: normal, tumor, and empty (see Figure 1(b)), resulting
in an artificial intelligence (AI)-reconstructed image (see Fig-
ure 1(c)). Consequently, the tumor boundary can be extracted
and represented as a sequence of densely sampled pixel points
(see the black solid line in Figure 1(d)). This boundary extrac-
tion can be achieved using tools like the R package SAFARI
(Fernández et al. 2022).

Based on a case study analyzingAI-reconstructed lung cancer
pathology images (detailed in Section 5.2), we found that most
traditional shape descriptors based on radial distance, such as
the zero-crossing count (ZCC) and tumor boundary roughness
(TBR) (Kilday, Palmieri, and Fox 1993), developed for analysis
of radiology images at the anatomical level performed poorly to
characterize tumor boundaries extracted frompathology images
at the cellular level. This implies that novel shape descriptors
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Figure 1. (a)–(c) an illustration of the pipeline developed byWang et al. (2018): (a) The whole pathological imaging slide from a lung cancer patient (themedian size of the
slides analyzed in this article is 24,244 × 19,261 pixels); (b) The deep convolutional neural network that classifies each 300 × 300 pixels image patch into three categories:
normal, tumor, and empty; (c) The AI-reconstructed image corresponding to the raw pathology image as shown in (a); (d) the tumor boundary extracted from the main
tumor region as shown in (c) by Fernández et al. (2022) with the identified landmarks by BayesLASA (in red).

are needed for analyzing new high-resolution medical images,
which usually exhibit substantial heterogeneity (Sadimin and
Foran 2012). One motivation of this article is to develop a
novel landmark identification model to enrich the family of
tumor boundary descriptors. The identified landmarks, which
approximately reconstruct the tumor shape, such as the red
dots in Figure 1(d), partition the whole boundary into mutu-
ally exclusive pieces. The distribution of piecewise roughness
measurements provides insight into the heterogeneity of tumor
boundary roughness. For instance, a histogram with a sharp
peak has a low kurtosis value, suggesting a constant roughness
along the boundary. In contrast, a flat histogram featuring high
kurtosis points to a greater degree of heterogeneity, indicating
varied roughness across the tumor boundary.

The fundamental step in quantifying the heterogeneity of
tumor boundary roughness is the selection of landmarks that
effectively partition the entire boundary into pieces (i.e., seg-
ments) based on roughness. Landmark identification problem
has been a primary focus in shape analysis. Several methods
were developed based on global convexity (Subburaj, Ravi, and
Agarwal 2008; Zulqarnain Gilani, Shafait, and Mian 2015) or
local curvature (Liu et al. 2012). However, they have been chal-
lenged by low robustness and infeasible uncertainty assessment
due to a lack of underlying statistical models. In contrast, Domi-
jan andWilson (2005) presented a model-based approach with-
out considering shape-preserving transformations, while Strait,
Chkrebtii, and Kurtek (2019) proposed a Bayesian model to
detect the number and locations of landmarks using square-
root velocity function (SRVF) representation under the elastic
curve paradigm. Functional data are infinite-dimensional. The
potential computational challengesmay hinder its application in
analyzing complex tumor shapes in high-resolution pathology
images.

In this article, we consider using a closed polygonal
chain to represent the boundary of an object. We develop
a Bayesian LAndmark-based Shape Analysis (BayesLASA)
model that can quantify the uncertainties of the number and
locations of landmarks in a polygonal chain simultaneously.
Our landmark estimation is naturally invariant to rotating,
translating, reflecting, and scaling polygonal chains. BayesLASA
is more efficient in practice compared to alternative approaches.
Compared to existing landmark detectionmethods, BayesLASA
also characterizes boundary smoothness through auxiliary
parameters. We conduct a case study on a large cohort of

lung cancer pathology images. The result shows that the
heterogeneity of tumor boundary roughness, based on either
the traditional surface profiling or hidden Markov modeling
approach, is significantly associated with patient prognosis
(p-value < 0.001). This statistical methodology not only
presents a new perspective to represent a digitized object’s shape
by using its landmarks, but also provides a new insight for
understanding the role of tumor boundary roughness in cancer
progression.

The remainder of this article is organized as follows. Section 2
introduces the proposed BayesLASA and discusses the parame-
ter structure and prior specification. Section 3 briefly describes
the Markov chain Monte Carlo (MCMC) algorithm and the
resulting posterior inference for the landmark indicators. In
Section 4, we evaluate BayesLASAon simulated data, comparing
it with two alternative approaches. Section 5 analyzes one bench-
mark dataset in computer vision and a large cohort of pathology
images in a lung cancer case study. Section 6 concludes the article
with remarks on future extensions of the model.

2. The BayesLASAModel

2.1. Observed Data: A Polygonal Chain

Although the outline of a planar object is an absolutely con-
tinuous curve, it can also be represented as a sequence of dis-
cretization points (i.e., a closed polygonal chain). In geometry,
a polygonal chain is a connected series of line segments (i.e.,
edges), each of which is a part of a line bounded by two distinct
endpoints. Mathematically, a polygonal chain P is a discretized
curve specified by a sequence of vertices {V1, . . . ,Vn} in a two-
dimensional Cartesian plane. We use the ordered pair (xi, yi) ∈
R2 to denote the coordinates of each vertex Vi, i = 1, . . . , n
(see an example in Figure 1(d)). This article only focuses on
planar polygonal chains. However, the proposed method can be
extended to a general case of Rk, k ≥ 3. A simple polygonal
chain is one inwhich only consecutive segments intersect at their
endpoints, while its opposite is a self-intersecting polygonal chain.
For any simple polygonal chain, if the first vertex coincides with
the last one V1 = Vn (i.e., their coordinates (x1, y1) = (xn, yn)),
then it is a closed polygonal chain (CPC); otherwise, it is an open
polygonal chain (OPC). In a simple polygon, two line segments
meeting at a corner are usually required to form an angle that is
not straight. However, we relax this constraint in the proposed
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Figure 2. (a)–(c): examples of different types of polygonal chains: (a) an open polygonal chain (OPC); (b) a self-intersecting polygonal chain; (c) a closed polygonal chain
(CPC); (d) a landmark chain (the red dashed line) of the CPC as shown in (c) with its three parameterizations: the landmark indicator vector γ , the cluster allocation vector
z, and the collection of landmark indices {L1, . . . , Lk}.

model. Figure 2 shows examples of open, self-intersecting, and
closed polygonal chains, respectively.

We mainly consider modeling a CPC in this article, although
this approach can also model an OPC with minor adjustments.
The length of a CPC is defined as the sum of all line segments’

lengths, while the center is defined as the arithmetic mean
position of all vertices.Without loss of generality, we assume that
theCPChas a unit length and is centered at the origin (0, 0). This
can be done by scaling and translating the polygon by altering
each coordinate (xi, yi) as

⎧
⎨

⎩

(
xi − 1

n−1
∑n−1

i=1 xi
)
/
∑n−1

i=1
√
(xi+1 − xi)2 + (yi+1 − yi)2 %→ xi(

yi − 1
n−1

∑n−1
i=1 yi

)
/
∑n−1

i=1
√
(xi+1 − xi)2 + (yi+1 − yi)2 %→ yi

. (1)

2.2. Parameter Structure: A Gaussian Process

BayesLASA depends on two parameters. The first parameter,
denoted as γ , indicates the landmark locations. The second
parameter, denoted as d(γ ), characterizes the discrepancy
between the original CPC and the CPC formed by the
landmarks.

2.2.1. Identifying the Landmarks
We define landmarks as those mathematically or structurally
meaningful vertices in the boundary of a simple polygon, ignor-
ing the remaining outline information. As the set of landmarks
is a subset of {V1, . . . ,Vn−1}, we use a latent binary vector
γ = (γ1, . . . , γn−1)⊤ to indicate which vertices are landmarks,
with γi = 1, i = 1, . . . , n − 1 if vertex i is a landmark and
γi = 0 otherwise. The number of ones in γ is the number
of landmarks, denoted by K = ∑n−1

i=1 γi. Those K landmarks
form a polygonal chain; namely, the landmark chain. We use
P(γ ) = {VL1 , . . . ,VLk , . . . ,VLK ,VL1} to represent the landmark
chain with Lk being the index of the kth landmark in P. Once γ
is specified, we can calculate each Lk as

Lk =
n−1∑

i=1
δ

( i∑

i′=1
γi′ = k

)

δ(γi = 1), (2)

where δ(·) is the indicator function. This formulation leads us
to represent the landmark chain as P(γ ), with the superscript
(γ ) denoting the indices of the landmarks characterized by
γi = 1. Figure 2(d) shows an example of P(γ ), along with
different parameterizations. It is important to note that each
configuration of γ corresponds to a specific landmark chain
P(γ ), provided P is defined with a known starting vertex and
the direction. Consequently, this clarity in definition ensures the
absence of identifiability issues.

To complete our model specification, we impose a product
Bernoulli prior on γ as γ |ω ∼ ∏n−1

i=1 Bern(ωi), where ω =
(ω1, . . . ,ωn−1)⊤ and ωi ∈ (0, 1) for i = 1, . . . , n − 1. If no
prior information is available, we could choose ω1 = · · · =
ωn−1 = ω0 (e.g., a considerably small value), where ω0 is
interpreted as the probability of any vertex being a landmark a
priori. For preferential landmarking of certain regions, we could
consider a relatively large value of ωi for those vertices within.
Alternatively, we can model the uncertainty of ωi by assuming
ωi ∼ Beta(aω, bω). Consequently, we have

π(γ ) =
n−1∏

i=1
π(γi) =

n−1∏

i=1

∫
π(γi|ωi)π(ωi)dωi

= %(aω + bω)

%(aω)%(bω)

%(aω + K)%(bω + n − 1 − K)
%(aω + bω + n − 1)

. (3)

In practice, we suggest a constraint of aω + bω = 2 for
a vague setting (Tadesse, Sha, and Vannucci 2005). Since the
number of landmarks K equals to the sum of ones in γ , we
have K ∼ BetaBin(n − 1, aω, bω) with an expected mean of
(n− 1)aω/(aω + bω) = (n− 1)aω/2. Therefore, if there are KE
landmarks expected, then we suggest setting aω = 2KE/(n −
1) and bω = 2[1 − KE/(n − 1)]. However, our sensitivity
analysis in Section S4.2 of the supplementary materials shows
that KE has a minimal impact on posterior inference of γ .
Finally, we require that the landmark chain P(γ ) be a CPC.
This can be achieved by forcing π(γ ) = 0 if there are fewer
than three landmarks or if P(γ ) is a self-intersecting polygonal
chain.

As vertices between two adjacent landmarks can be viewed
as belonging to the same cluster or segment, the landmark
identification is equivalent to a clustering or segmentation prob-
lem (i.e., partitioning n − 1 vertices into K mutually exclusive
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segments). To that end, we introduce an auxiliary set of cluster
allocation variables z = (z1, . . . , zn−1)⊤, zi ∈ {1, . . . ,K} to
reparameterize γ , where zi = k if vertex i is between the k
and (k + 1)th landmarks. Note that the index arithmetic of
k will be taken modulo K if it is greater than K throughout
the article, implying a cyclic ordering of landmarks with the
first landmark following the last one. Mathematically, z is the
cumulative sumof γ , where zi =

∑i
i=1 γi, with all zeros replaced

byK, while γ is the lag-one difference of z, where γi = zi−zi−1,
with all negative entries replaced by one. Figure 2(d) shows
the z induced by γ in the given example. It is worth noting

that γ and z are interchangeable in that both reveal the same
information about landmark locations. Our goal is to find the
landmark chain P(γ ) defined by γ or z, given the observed
CPC P.

2.2.2. Modeling the Discrepancy between the Polygonal and
Landmark Chains

Here we discuss the probabilistic dependency between the
observed P and its latent landmark chain P(γ ). We write the
full likelihood of P = {V1, . . . ,Vn−1} as a product over the K
segments defined by its underlying landmarks,

f (V1, . . . ,Vn−1|γ , ·) = f (V1, . . . ,Vn−1|z, ·) =
K∏

k=1
f (P∗

k |·), where

P∗
k =

⎧
⎪⎨

⎪⎩

{VLk , . . . ,VLk+1−1} if k < K
{VLK , . . . ,Vn−1,V1, . . . ,VL1−1} if k = K and L1 ̸= 1
{VLK , . . . ,Vn−1} if k = K and L1 = 1

.

(4)

Note that although both the k and (k + 1)th landmarks define
segment k, we only place the former into segment k while the
latter into the following segment by default. Next, we discuss
how to specify f (P∗

k |·) in (6).
A non-landmark vertex whose γi = 0 should not be distant

from the line segment defined by its two landmarks; otherwise,
it might be considered a landmark itself. Therefore, we assume
the shortest distance, denoted by d(γ )i , between vertex Vi and
its associated line segment in P(γ ) follows a distribution whose
pdf is a monotonically decreasing function. Figure 2(d) shows
the d(γ )i (i.e., the blue solid line) of the given example. Section
S2.1 and Figure S1 of the supplement describe how to derive
d(γ )i in detail. In particular, suppose vertex Vi at location (xi, yi)
belongs to the kth segment (i.e., zi = k), then the line passes
through the k and (k + 1)th landmarks at locations (xLk , yLk)
and (xLk+1 , yLk+1), respectively. We can compute the point-to-
line distance as

d(γ )i = ±|(xLk+1 − xLk)
(
yLk − yi

)
− (xLk − xi)(yLk+1 − yLk)|√

(xLk+1 − xLk)2 + (yLk+1 − yLk)2
.

(5)

The numerator is twice the area of the triangle with verticesVLk ,
VLk+1 , and Vi, while the denominator is the length of the line
segment between VLk and VLk+1 . If we view d(γ )i as the height
of the triangle, then (5) is just a rearrangement of the standard
formula for the area of a triangle. We further define the sign of
d(γ )i as follows. The positive sign indicates that Vi is outside of
the boundary of the landmark polygon P(γ ), while the negative
sign suggests the opposite. We could use the crossing number
algorithm (Shimrat 1962) to find whether a point is inside or
outside a simple polygon. In practice, we use the topology-based
dimensionally extended nine-intersection model implemented
by the function st_within in the R package sf (Pebesma
2018).

Given the landmark locations defined by γ or z, we assume
that the shortest distances d(γ )i ’s that belong to the same segment
are generated from a zero-mean stationary Gaussian process
(GP). The spatial dependency among local vertices is mod-
eled through the covariance structure in a multivariate normal
(MVN) distribution,

f (P∗
k |σ 2

k , ·) = MVN
(
d∗
k ; 0, σ 2

kG
)
, where

d∗
k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
d(γ )Lk , . . . , d(γ )Lk+1−1

)⊤
if k < K

(
d(γ )LK , . . . , d(γ )n−1, d

(γ )
1 , . . . , d(γ )L1−1

)⊤
if k = K and L1 ̸= 1

(
d(γ )LK , . . . , d(γ )n−1

)⊤
if k = K and L1 = 1

.
(6)

Here d∗
k is the distance vector of all non-landmark vertices

assigned to segment k, 0 is a nk-by-1 all zero column vector,
σ 2
k is the scaling factor, and the kernel G is a nk-by-nk pos-

itive definite matrix with each diagonal entry being one and
each off-diagonal entry being a function of the relative posi-
tion (i.e., Euclidean distance) between each pair of those non-

landmark vertices in segment k. Here nk = ∑n−1
i=1 δ(zi =

k) − 1 is defined as the number of non-landmark vertices
between the k and (k + 1)th landmarks. For the sake of sim-
plicity, we use the white-noise kernel G = I, where I is a nk-
by-nk identity matrix that assumes each pair of di’s is uncor-
related. Generalization of G to incorporate a certain spatial
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dependence structure or desired smoothness is left as future
work.

Employing a conjugate Bayesian approach, we impose an
inverse-gamma (IG) hyperprior on each σ 2

k , which is expressed
as σ 2

k ∼ IG(aσ , bσ ). This parameterization is standard in most
Bayesian normalmodels. It allows for creating a computationally
efficient algorithm by integrating out the variance component,
which is usually a nuisance parameter. The integration leads
to a marginal non-standardized t-distribution on each di (i.e.,
d(γ )i ∼ t2aσ (0,

√
bσ /aσ )with 2aσ degrees of freedom and a scale

parameter of
√
bσ /aσ ), and

f
(
P∗
k
)
=

∫
f
(
P∗
k |σ 2

k
)
π

(
σ 2
k
)
dσ 2

k

= (2π)−nk/2% (aσ + nk/2)
%(aσ )

baσ
σ

(
bσ + d∗

k
⊤d∗

k/2
)aσ+nk/2

.

(7)

In the case of σ 2
k being considered a parameter of interest, we can

easily sample this parameter from an IG distribution, σ 2
k |P∗

k ∼
IG

(
aσ + nk/2, bσ + d∗

k
⊤d∗

k/2
)
because of conjugacy.

To specify the IG hyperparameters, we first suggest setting
aσ = 3, which is the minimum integer value defining the IG
variance. Then, we have d(γ )i ∼ t6(0,

√
bσ /3), indicating that

95% of the point-to-line distances |d(γ )i |’s should be less than
t6,0.975

√
bσ /3 ≈ 1.4

√
bσ a priori. If bσ is set to be small, then this

setting places high mass on small values of |d(γ )i |, encouraging
“smoother” piecewise boundaries formed by more landmarks.
Through our sensitivity analysis in Section S4.2 of the supple-
mentary materials, we found that bσ played a more important
role than other hyperparameters on posterior inference of γ .
Therefore, we consider bσ the main regularization parameter
in our model. As shown in the deer example in Section 5.1 and
the U.S. state shape examples in Section S5.1 of the supplement,
we found that decreasing bσ usually yielded more landmarks to
capture fine-scale boundary structures. To avoid over-fitting, we
suggest setting bσ = 1/(n − 1) once the CPC has been scaled
to have a unit length. With this setting, 95% of |d(γ )i |’s are less
than 6%–14% of the unit length a priori, when the number of
verticesn−1 ranges from100 to 500 in the simulation study. This
choice performedwell on those scaled CPCs from simulated and
various real datasets. However, it is noteworthy that we should
choose bσ with some degree of caution for unscaled CPCs or
irregularly and sparsely-spaced CPCs.

2.3. Landmark Shape-Preserving Transformations

The proposed distance d(γ )i is invariant to shape-preserving
transformations such as rotation, translation, and reflection.
Here we define the rotation of a polygon as multiplying each

vertex (xi, yi) by the rotationmatrix
(

cos θ − sin θ

sin θ cos θ

)
, where

θ ∈ [−π ,π ] is the rotation angle with respect to the positive
x-axis. Translation is defined as the addition of a fixed vector,
termed the translation vector, (x0, y0) ∈ R2 to each vertex
(xi, yi). This operation shifts all vertices by x0 and y0 units along

the x and y-direction, respectively. The reflection across the x
and y-axis is defined as multiplying each vertex (xi, yi) by the

matrix
(

1 0
0 −1

)
and

( −1 0
0 1

)
, respectively. The distance

metric d(γ )i (conditional on γ ) will remain the same if we alter
each coordinate in (5) based on any of the above transforma-
tions or their combinations. Thus, our landmark estimation is
invariant to those transformations.

As for the scaling, it is defined as multiplying each vertex

(xi, yi) by the uniform scaling matrix
(

s 0
0 s

)
, where s ∈

(0,∞) is the normalizing factor. Accordingly, the distance d(γ )i
can be enlarged (s > 1) or shrunk (s < 1). To ensure that
the estimation on γ or z is invariant to changes in the scale, we
should modify the prior setting of the model. In particular, if we
assume σ 2

k ∼ IG(aσ , bσ ) before the scaling, then we need to set
σ 2
k ∼ IG(aσ , s2bσ ) to preserve the distribution of f

(
P∗
k
)
in (7).

Another important shape transformation iswarping (Charpiat,
Faugeras, and Keriven 2003; Kneip and Ramsay 2008), which
is the continuous deformation of a given shape into another.
A warping function is defined on functional representations
of shape such as SRVF where the underlying shape spaces are
infinite-dimensional. In this article, we represent the outline
of a shape using a discretized curve. Unfortunately, warping
is not achievable unless we create an approximating function
that attempts to capture important patterns, while leaving out
thosefine-scale structures that are substantially present in tumor
pathology images. Furthermore, warping is mainly used to
analyze shapes that have similar underlying structures.However,
tumor shapes from pathology images do not have similar
structures and cannot be registered. Therefore, accounting for
warping is undesirable under our framework.

3. Model Fitting

3.1. MCMCAlgorithm

We now briefly describe the MCMC algorithm for posterior
inference, while a detailed description is provided in Section
S3.1 of the supplement. Our inferential strategy, which is based
on Metropolis search variable selection algorithms (George and
McCulloch 1997), allows us to simultaneously infer the number
and locations of landmarks via γ .

3.2. Posterior Estimation

We explore posterior inference of the landmark indicator γ
or z by summarizing the set of MCMC samples after burn-
in, denoted by {γ (1), . . . , γ (T)} and {z(1), . . . , z(T)}, respectively,
where T denotes the number of iterations after burn-in. We
could choose the γ corresponding to themaximum-a-posteriori
(MAP), that is, γ̂MAP = argmax

t
π

(
γ (t)). Note that ẑMAP can be

obtained by taking the cumulative sum of γ̂MAP. An alternative
estimate relies on the computation of the pairwise probability
matrix (PPM), which is a (n − 1)-by-(n − 1) symmetric matrix
denoted by C. Each entry indicates the posterior probability of
each pair of vertices i and i′ being in the same segment and
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can be estimated by cii′ = 1
T

∑T
t=1 δ

(
z(t)i = z(t)i′

)
. This estimate

uses the information from all MCMC samples after burn-in. A
point estimate of z can be approximated by minimizing the sum
of squared deviations of its association matrix from the PPM
(Dahl 2006), ẑPPM = argmin

z

∑
i<i′ (δ(zi = zi′) − cii′)2. Note

that γ̂ PPM can be obtained by differencing consecutive entries
in ẑPPM.

Once γ̂MAP or γ̂ PPM is determined, we can immediately
obtain the landmark indices, {L1, . . . , LK}, via (2). We follow
Jiang et al. (2021) to construct a credible interval for each
landmark, using the local dependency structure from allMCMC
samples on γ (see details in Section S3.2 of the supplement or a
brief illustration in Figure S2).

4. Simulation

We used simulated data to demonstrate the performance of
BayesLASA. We also conducted a sensitivity analysis on the
choice of hyperparameters. The full details of the sensitivity
analysis and scalability test can be found in Section S4.2 (includ-
ing Figures S6–S8) and S4.3 of the supplement, respectively.

Simulated data were generated via the following steps. We
first randomly generated an equilateral or non-equilateral sim-
ple polygon with K = 4, 5, or 6 vertices (considered as true
landmarks) in a planar space, corresponding to a quadrilateral,
pentagon, or hexagon, respectively. The perimeter of simple
polygon uniformly ranged from 50K to 100K. Next, we “binned”
the landmark chain into a series of n−1 = 100, 150, 200, 300, or
500 equally sized intervals. Then, for each underlying interval,
a non-landmark vertex was generated with its perpendicular
distance to the interval sampled from N(0, σ 2), where σ was
chosen from {0.5, 1, 2} with equal probability. We sequentially
connected all vertices, including the K landmarks, to form a
CPC. Last, we scaled and translated the generated CPC so that
it had a unit length and was centered at (0, 0), according to (1).
Since we had three choices of K and five choices of n, there were
3× 5 = 15 scenarios in total. For each scenario, we repeated the
above steps to generate 100 replicated datasets.

For the beta prior on the landmark selection parameter ω,
we set the two hyperparameters aω = 2KE/(n − 1) and bω =
2[1 − KE/(n − 1)] as discussed in Section 2.2.1, where KE = 3
indicates that three landmarks were expected. For the IG prior
on the variance component σ 2

k , we set aσ = 3 and bσ = 1/(n−
1) as discussed in Section 2.2.2. We ran 200nMCMC iterations
with the first half treated as burn-in (i.e., T = 100n). Each chain
was started from a model with three randomly chosen vertices
as initial landmarks.

We evaluated model performance using two well-known
metrics, both of which are given in Section S4.1 of the
supplement. We first evaluated the landmark identification
accuracy via the landmark indicator vector γ . Since landmark
and non-landmark vertices are usually of very different sizes
(i.e., landmarks are assumed to be a small fraction of all vertices),
most binary classification metrics are not suitable. We chose
the Matthews correlation coefficient (MCC) (Matthews 1975).
The MCC value ranges from −1 to 1. Larger values of MCC
indicate better accuracy in landmark identification. Next, we

chose the adjusted Rand index (ARI) (Hubert and Arabie 1985)
to further evaluate model performance through the cluster
allocation vector z. The ARI is the corrected-for-chance version
of the Rand index (Rand 1971), which is a similarity measure
between two cluster allocation vectors. The ARI usually yields
values between 0 and 1, although it can yield negative values
(Santos and Embrechts 2009). Larger values of ARI indicate
more similarities between z and ẑ; thus, the identification of
landmarks is more accurate as well.

To conduct a comparison study, we considered a recently
developed algorithm named automatic landmark detection
model for planar shape data (ALDUQ) (Strait, Chkrebtii, and
Kurtek 2019). ALDUQ detects the number and locations of
landmarks using SRVF representation under the elastic curve
paradigm. It is, thus, necessary to convert the discrete polygonal
chain into a continuously differentiable curve using theGaussian
kernel smoother with an appropriate length scale parameter.
The ALDUQoutput includes the relative locations of landmarks
and their credible intervals represented as arcs. In some of our
simulated datasets, we found that the reported credible interval
covered more than half of the whole boundary. To make a
feasible comparison, we considered a landmark as correctly
identified if its estimated location was within a local window
of the true position. In particular, let Lk denote the index of
the kth true landmark. If the index of the landmark identified
by BayesLASA was within {Lk − 5, . . . , Lk, . . . , Lk + 5}, or the
location of a landmark detected by ALDUQ was on the curve
bounded between VLk−5 and VLk+5, then we regarded that
the identified landmark hit the kth true landmark. We chose a
window size of 11 vertices because the average number of non-
landmark vertices between two true landmarks ranges from 17
to 125 in the simulated datasets. Note that the coverage needs to
be customized based on the total number of vertices and their
density for analyzing other datasets. As for the ALDUQ’s setting,
we used the default number of MCMC iterations (i.e., 100,000)
and the default choice of λ = 0.0001 (i.e., a key regularization
parameter in ALDUQ) since, according to the original paper,
a smaller value of λ works better for simpler shapes. Some
applications considered using the vertices of the convex hull of
a shape as its landmarks. Thus, we also included this curvature-
based approach implemented by the R function chull.

We first present the identified landmarks and their uncer-
tainties by each method on one randomly selected dataset from
three scenarios where K varied from 4 to 6 and n − 1 =
150. Figure 3 shows that BayesLASA successfully detected
all true landmarks, while ALDUQ performed similarly but
with some false positives and the convex hull approach had
too many false positives. We also explored the posterior
inference of the variance component σ 2

k on the above three
datasets. Although BayesLASA integrates each σ 2

k out, we could
reconstruct their posterior distributions on the original scale by

sampling σ
(t)
k

2|· ∼ IG
(
aσ + n(t)k /2, bσ /s2 + d(t)k

∗⊤
d(t)k

∗
/2

)

at each MCMC iteration t, integrating the discussions in
Sections 2.2.2 and 2.3. Here s is the normalizing factor and
equal to the total length of the CPC on the original scale (i.e.,
s = ∑n−1

i=1
√
(xi+1 − xi)2 + (yi+1 − yi)2). Figure S3 of the

supplement shows the 95% credible intervals σ̂ 2
k against the
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Figure 3. Simulation study: the identified landmarks by BayesLASA, ALDUQ, and convex hull on three randomly selected datasets under different scenarios in terms of the
number of true landmarks K . For BayesLASA and ALDUQ, 95% credible intervals are provided, depicted as shaded regions, to indicate the level of uncertainty in landmark
identification.

vertex indices. All true values were within their corresponding
intervals. Furthermore, we performed a more comprehensive
evaluation on all simulated datasets. Figures S4–S5 of the
supplement exhibit theMCC and ARI distribution, respectively,
under each scenario in terms of K and n. Regardless of the
choice between γ̂MAP and γ̂ PPM, BayesLASA had a notable
advantage over the competing methods in all scenarios. We
also note that the performance of all methods decreased
as either K or n increased. It is noteworthy that ALDUQ
was mainly developed for landmarking multiple curves. It
is expected to notice improved performance if multiple
samples from the same shape are provided. Additionally,
Figure S9 of the supplement shows that the computational
cost of BayesLASA was significant lower than ALDUQ and it
increased approximately linearly in the number of vertices of
the CPC.

5. Applications

In this section, we first evaluated the performance of our
methodology using a benchmark dataset in computer vision.
Then, we applied the model to the AI-reconstructed pathology
images from a large cohort of lung cancer patients. The results
revealed novel potential tumor shape-based imaging biomarkers

for lung cancer prognosis. Note that in the above two case
studies, the vertices of each CPC were regularly and densely
sampled from the related image. To show that BayesLASA
is applicable to irregularly and sparsely sampled discretized
curves, we demonstrated an additional case study on the
contiguous 48 U.S. state shapes in Section S5.1 and Figures S11–
S16 of the supplementary material.

5.1. Case Study on a Complex Shape in Computer Vision

Thewell-knownMPEG-7 dataset1 is commonly used for bench-
marking shape matching algorithms. The dataset includes 1400
binary images of 70 objects, all of which involve closed curves.
To demonstrate how BayesLASA can lead to sharper inferences,
we focus on complex shapes such as deer, which were also ana-
lyzed in Strait, Chkrebtii, andKurtek (2019), because it is unclear
where or how the landmarks should be selected. It is, thus, more
prudent to apply BayesLASA on those complex objects.

The CPC representing the deer outline contains evenly
spaced n − 1 = 100 vertices. Figure S10 of the supplement
illustrates the beta-binomial prior distributions of the number
of landmarks K under various prior configuration. We applied

1https://dabi.temple.edu/external/shape/MPEG7/dataset.html

https://dabi.temple.edu/external/shape/MPEG7/dataset.html
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Figure 4. Computer vision case study: the marginal posterior distribution of the number of landmarks π(K|·) and the estimated landmark chain P(γ ) based on γ̂MAP and
γ̂ PPM under different prior choices by (a) BayesLASA and (b) ALDUQ.

BayesLASA with a constant KE = 1 (refer to the red line in
Figure S10) and different values of bσ ∈ { 1n , 1

10n ,
1

100n ,
1

1000n },
while the remaining prior settings were kept the same as
described in Section 4. Notably, sensitivity analysis on simulated
data revealed that BayesLASA’s performance is considerably
insensitive to the choice of KE. For each setting, we ran four
independent MCMC chains. We checked MCMC algorithm
convergence based on the (n − 1)-dimensional marginal

posterior probabilities of inclusion (PPI) vectors, where the
ith entry is

∑T
t=1 δ

(
γ
(t)
i = 1

)
/T that indicates the marginal

posterior probability of vertex i being a landmark.We calculated
the PPIs for all four chains and found that their pairwise Pearson
correlation coefficients ranged from 0.954 to 0.964 across all
settings, which suggested good MCMC convergence. We then
aggregated the outputs of all chains.
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Figure 4(a) shows the marginal posterior distribution of the
number of landmarks and the landmark chains estimated by
both MAP and PPM under the four choices of bσ . The plot
clearly illustrates how the prior information influenced land-
mark selection. More landmarks were identified when bσ is
small, which results in a finer reconstruction of the original
shape. The “elbow” points did not become clearly evident until
K ≈ 20. In comparison, we also applied ALDUQ to the deer
shape after converting the discrete polygonal chain into a contin-
uously differentiable curve using the Gaussian kernel smoother.
Similar to bσ in BayesLASA, ALDUQ also has a parameter λ

that acts as a tuning parameter for regularization. The results
are summarized in Figure 4(b). We found that larger values of
λ increased the posterior mean of K resulting in better shape
reconstructions for substantially small values of K. Both meth-
ods allow users to control the number of landmarks selected on
the shape of interest through the prior setting. Both methods
performed similarly on the deer example when their resulting K
values were close.

5.2. Case Study on Lung Cancer Pathology Images

Lung cancer has been ranked as the leading cause of death from
cancer, with non-small-cell lung cancer (NSCLC) accounting for
about 85%of lung cancer deaths. Current guidelines for diagnos-
ing and treating cancer are largely based on pathological exam-
ination of tissue section slides. A deep-learning approach has
been developed to perform the tumor segmentation of pathol-
ogy images (Wang et al. 2018). Specifically, a convolutional
neural network (CNN)-based classifier was trained using a large
cohort of lung cancer pathology images. This approach classifies
each 300 × 300 pixels image patch at 40× magnification into
one of the three categories: normal, tumor, or background. It
is required that at least 20 cells were within each image patch.
Tumor and non-tumor image patches were randomly extracted
from tumor regions and nonmalignant regions labeled by a well-
experienced pathologist. The patches were classified as back-
ground if the mean intensity of all pixel values was larger than
a threshold. After the three-class AI-reconstructed image was
generated, we used a recently developed R package SAFARI
(Fernández et al. 2022) to extract the connected tumor regions
and their boundaries.

In this case study, we used 246 H&E-stained pathology
imaging slides from 143 consecutive patients with stage I to
IV NSCLC in the National Lung Screening Trial (NLST). All
patients had undergone surgical procedures for treatment. The
median size of the pathology slides is 24,244 × 19,261 pixels.
Tumor segmentation was done by the CNN classifier. Each AI-
reconstructed image was further enlarged three times to avoid
single-pixel boundary lines or singularities. The median size
of the resulting three-class images used for tumor boundary
tracing (i.e., CPC generation by SAFARI) is 1011 × 806 pixels.
Only the tumor region with the largest area in each image was
considered. The number of CPC vertices (in pixels) ranges from
n − 1 = 360 to 15,931, with a median of 3836. Note that we did
not scale CPCs to have a unit length in this case study because
we need to characterize tumor boundary roughness at the same
spatial resolution across all images so that comparable image-
wise analysis and patient-wise survival analysis are achievable.

We applied BayesLASA to each of the 246 CPCs indepen-
dently with the same setting described in Section 4 except for
choosing a standardized bσ = 500. This choice makes 95%
of |d(γ )i |’s (i.e., the shortest distances between non-landmark
vertices and their associated line segments in the landmark chain
P(γ )) are less than 1.4

√
bσ ≈ 30 pixels a priori (see the deriva-

tion in Section 2.2.2), corresponding to approximately 30/360 =
8% of the smallest CPC’s length. Such a setting ensured fine
and proper boundary roughness characterization even for the
smallest CPC in this study and generated satisfactory land-
marking results. A total of four MCMC chains were run and
averaged. ẑPPM or γ̂ PPM was used to determine the landmarks.
We performed the same convergence diagnosis as described in
Section 5.1. Figure 5(a) and (b) shows two examples of tumor
boundaries and their identified landmarks by BayesLASA from
a patient with good prognosis (i.e., alive over 2537 days after
the surgery) and another patient with poor prognosis (i.e., died
on the 29th day after the surgery). Notably, the tumor from the
patient with shorter survival time exhibited a more spiculated
shape compared to the patient with good prognosis, indicating
the invasion of tumor cells into surrounding tissues. Although
the two tumor regions had distinctive boundaries, the roughness
and its heterogeneity were much more subtle in many other
examples. Thus, BayesLASA can play a role in supplementing
human visual inspection.

Figure 5. Lung cancer case study: two examples of the extracted tumor boundaries and their landmarks (in red) identified by BayesLASA in the NLST dataset, where (a)
was from a patient who was still alive over 2537 days after the surgery and (c) was from a patient who died on the 29th day after the surgery; (b) and (d): The density plots
of distance-based roughness measurement Ra corresponding to (a) and (c).
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Next, we demonstrate how to characterize the heterogeneity
of boundary roughness based on the landmarks. The landmark
chain P(γ ) can be considered as a skeleton reference of the
object outline P. The distance vector d(γ ) = (d(γ )1 , . . . , d(γ )n−1)

⊤

reveals boundary roughness. We now introduce two types of
boundary roughness measurements: distance and model-based.
The piecewise boundary roughness is represented by a K × 1
vector with the kth entry being the distance or model-based
roughness measurement calculated or estimated by all d(γ )i in
the same segment k.

Distance-based roughness measurements: Surface roughness
measurements computed by simple math equations were
adopted to quantify the irregularity of tumor boundary. For
instance, the arithmetical mean deviation (denoted by Ra) of
each segment is defined as

∑
i:zi=k |d

(γ )
i |/nk while the other

seven measurements, including Rq, Rv, Rp, Rz, Rsk, Rku, and
RzJIS, are summarized in Table S1 of the supplement.

Model-based roughness measurements: Since the distances
d(γ )i ’s are sequentially indexed, their changing frequencies indi-
cates the fluctuation degree of surface roughness. A hidden
Markov model (HMM) was fitted. In particular, we assumed
d(γ )i ’s for those vertices from the same segment were from a
two-component Gaussian mixture model. Two hidden states
corresponding to the two components, were defined to illustrate
the negative ‘−’ (inside of the landmark chain) and positive ‘+’
(outside of the landmark chain) sign of each d(γ )i . The transition
probabilities control the way that the hidden state of d(γ )i+1 is
chosen given the hidden state of d(γ )i within each segment in
z, reflecting the segment-specified roughness. The transition
probabilities, denoted by q++, q+−, q−+, and q−−, respectively,
were estimated for each segment by using the related functions
in the R package depmixS4.

5.2.1. Association Study
With the identified landmarks for all tumor regions, we
conducted a downstream analysis to scrutinize tumor shape-
related prognostic factors that predict survival, where the
survival status of the patients was monitored from the time of
the surgery to the end of the clinical trial. Specifically, a Cox
proportional hazard (CoxPH) model (Cox 1972) was fitted
with the summary statistics such as the mean (X1), standard
deviation (X2), skewness (X3), and kurtosis (X4), whichmeasure
the center, spread, asymmetry, and tailedness, respectively,
of the distribution of piecewise roughness measurements
after adjusting for the number of identified landmarks (X5),
tumor size (in pixels, X6), cancer stage (X7,X8,X9 for stages
II, III, IV vs. stage I, respectively), gender (X10) and tobacco
history (X11),

h(t) = h0(t) exp

⎛

⎝
11∑

j=1
βjXj

⎞

⎠ , (8)

where h(t) is the expected hazard at time t and h0(t) is the
baseline hazard when all predictors are equal to zero or ref-
erence level. Multiple sample images from the same patient
were modeled as correlated observations in the CoxPH model

Table 1. Lung cancer case study: the output of the CoxPHmodel with the distance-
based roughness measurement Ra.

Notation Predictor Coef exp(Coef) SE p-value

X1 Mean of Ra’s −0.757 0.469 0.604 0.210
X2 Standard deviation of Ra’s −0.428 0.652 0.627 0.494
X3 Kurtosis of Ra’s −0.368 0.692 0.106 5.4 × 10−4

X4 Skewness of Ra’s 1.675 5.336 0.469 1.8 × 10−4
X5 Number of landmarks K 0.014 1.014 0.007 0.047
X6 Tumor size 0.000 1.000 0.000 0.828
X7 Cancer stage II vs. I 0.343 1.410 0.619 0.579
X8 Cancer stage III vs. I 1.168 3.214 0.371 0.002
X9 Cancer stage IV vs. I 1.802 6.064 0.463 9.9 × 10−5
X10 Smoking vs. nonsmoking −0.119 0.888 0.330 0.718
X11 Female vs. male −0.127 0.881 0.322 0.694

p-values below the significance threshold of 0.05 are highlighted in bold.

to compute a robust variance for each coefficient using the R
package survival.

The output of the CoxPH model using one of the distance-
based roughness measurements, Ra, is shown in Table 1.
Advanced stage lung cancer is significantly correlated with
poorer prognosis, which is in agreement with previous knowl-
edge. It is noteworthy that kurtosis and skewness had significant
negative and positive effects, respectively. The same result were
observed for the other choices of distance-based roughness
measurements including Rq, Rp, Rv, Rx, and RzJIS (shown in the
Tables S2–S6 of the supplement). The CoxPH model fitted with
Ra obtained an overall p-value of 0.0001 by the Wald test. The
CoxPHmodel fitted with themoments of Ra found that kurtosis
and skewness were significant prognostic factors (both p-values
< 0.001), which measure the peakedness and asymmetry of the
probability distribution, respectively. The negative coefficient
of kurtosis and positive coefficient of skewness suggested
that tumor with smaller kurtosis (flat spreading) and larger
skewness (left-centered) are more heterogeneous in surface
roughness and, thus, indicate a worse prognosis (as illustrated
in Figure 5(e) and (f)). These results are consistent with the
biology literature in that high spatial heterogeneity is a pivotal
feature of cancer at both the cellular and histological levels
resulting from the distinct patterns of different cancer cell
subpopulations in terms of dysregulation of proliferation,
mobility, and metabolism pathways (Meacham and Morrison
2013; Dagogo-Jack and Shaw 2018). The underlying biological
mechanism of a heterogeneous tumor boundary could be
attributed to heterogeneous regulation of gene expression by
abnormally activated Rho GTPase pathways among cancer cell
subpopulations and consequent dissimilarity in the downstream
actin cytoskeleton and stress fibers (Pascual-Vargas et al. 2017).

To validate that our landmark-based shape analysis is robust
to different roughness measurements, we repeated the above
steps to fit another CoxPH model with HMM-based rough-
ness measurements as predictors. The overall p-value of CoxPH
model fitted with moments of negative to positive transition
probability q−+ is 0.0008 (Wald test) and the coefficients and
p-values for each variable are shown in Table 2. The CoxPH
model for the transition probability q+− was summarized in
Table S7 of the supplement, showing a similar result. Again, kur-
tosis and skewness are significant factors associated with patient
prognosis. Furthermore, standard deviation of q−+’s had a p-
value = 0.0009 and a large positive coefficient, which indicates
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Figure 6. Lung cancer case study: the Kaplan-Meier plots for the low and high-risk groups predicted by the LOOCV via the CoxPH model with the (a) distance-based and
(b) HMM-based roughness measurements.

Table 2. Lung cancer case study: the output of the CoxPH model with the HMM-
based roughness measurement q−+ .

Notation Predictor Coef exp(Coef) SE p-value

X1 Mean of q−+ ’s 5.797 329.4 9.541 0.543
X2 Standard deviation of q−+ ’s 18.10 7.3 × 107 6.915 0.009
X3 Kurtosis of q−+ ’s 0.091 1.096 0.046 0.046
X4 Skewness of q−+ ’s −0.958 0.384 0.369 0.009
X5 Number of landmarks K 0.014 1.014 0.008 0.088
X6 Tumor size 0.000 1.000 0.000 0.783
X7 Cancer stage II vs. I 0.502 1.651 0.593 0.397
X8 Cancer stage III vs. I 1.195 3.303 0.393 0.002
X9 Cancer stage IV vs. I 1.791 5.997 0.490 2.6 × 10−4
X10 Smoking vs. nonsmoking −0.042 0.959 0.322 0.896
X11 Female vs. male −0.122 0.885 0.307 0.692

p-values below the significance threshold of 0.05 are highlighted in bold.

that patient prognosis worsens as tumor boundary roughness
heterogeneity increases.

In contrast, we fitted a similar CoxPH model using the
radial distance-based shape features as predictors, including
the aforementioned ZCC and TBR (Kilday, Palmieri, and Fox
1993). We first introduce the radial length ri between vertex
i and the polygon center at location (x̄, ȳ) = (

∑n−1
i=1 xi/(n −

1),
∑n−1

i=1 yi/(n − 1))), defined as ri =
√
(xi − x̄)2 + (yi − ȳ)2.

Let r = (r1, . . . , rn−1)⊤ denote the radial length of all vertices.
The ZCC is the number of times that radial length crosses
the mean value r̄ = ∑n−1

i=1 ri/(n − 1), that is, ZCC(r) =∑n−1
i=1 δ ((ri − r̄)(ri+1 − r̄) < 0). The TBR is calculated by aver-

aging the roughness index (RI) for a window with length L over
the entire tumor boundary where the RI for window j is defined
as RIj(r) =

∑jL−1
i=(j−1)L+1 |ri+1 − ri| for j = 1, . . . , ⌈(n − 1)/L⌉,

and so TBR(r) = ∑⌈(n−1)/L⌉
j=1 RIj(r)/ ⌈(n − 1)/L⌉. Here ⌈·⌉

denotes the ceiling function. The results imply an insignificant
association between the ZCC and clinical outcomes (p-value
= 0.128). For the TBR, we attempted to vary the window
size L from 5 to 200. Figure S17 of the supplement shows
the TBR p-values against L. The obtained p-values ranged
from 0.142 to 0.925. Unfortunately, we could not identify any
association between these two radial distance-based roughness
measurements and the patient survival outcome from the NLST
dataset. The comparison demonstrates that the proposedmodel-

based shape analysis can lead to enhanced statistical power on
tumor boundary roughness with a more robust detection of
associations than ordinary exploratory analyses.

5.2.2. Predictive Performance by Cross-Validation
Finally, we employed the leave-one-out cross-validation
(LOOCV) to evaluate the predictive performance of the above
two CoxPH models. In particular, we first trained a CoxPH
model using all images from all patients excluding the left-
out one. Next, we obtained a survival risk score for each test
image from the left-out patient. The survival risk score for this
patient was then calculated as the average survival risk score
over all test images. After repeating these steps for each of the
143 NSCLC patients, we divided the patients into two equally
sized groups (i.e., low and high-risk), choosing the median of
patient-specific risk scores as the cutoff. Their corresponding
Kaplan-Meier survival curves are displayed in Figure 6(a) and
(b), where the predictors were the summary statistics of Ra’s
and q−+’s, respectively. Both log-rank tests showed a significant
difference between the two groups (i.e., p-value = 3.0 × 10−6

and 4.7 × 10−4, respectively).

6. Conclusion

A large amount of complex and comprehensive information
about tumor aggressiveness and malignancy is harbored in
the tumor shapes captured by pathology imaging. Recent
advances in deep-learning methods have provided plausible
approaches for automatic tumor segmentation in medical
images on a large scale. Shape features are provenwith success in
radiomics, however, they are no longer satisfactory in pathology
imaging. To discover more clinically meaningful biomarkers
in high-resolution medical images, we propose BayesLASA to
better characterize tumor shapes and boundaries. The primary
contribution of this work is the development of a more accurate
and efficient landmark detection method under the discrete
polygonal chain paradigm, in contrast to methods based on
elastic curves. BayesLASA can also be extended to applications
in various scenarios where a sequence of discretization points
could represent the outline of a shape. Furthermore, we propose
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several types of new landmark-based features to characterize
boundary roughness. Our study demonstrates the prognostic
value of those features in two downstream analyses of lung
cancer pathology images. The results show that boundary
roughness heterogeneity was significantly associated with
patient prognosis. The boundary roughness can be easily
measured through BayesLASA and be used as a potential
biomarker for patient prognosis. This novel imaging biomarker
can be conceived as a real clinical tool at low cost because it is
based only on tumor pathology slides, which are available in
standard clinical care.

For our future research, several extensions of our model
are worth investigating. First, we could generalize the kernel
used to measure the discrepancy between a polygonal chain
and its landmark chain. For instance, using a squared expo-
nential, Matérn, or rational quadratic kernel will help us incor-
porate spatial dependence or desired smoothness. Landmark
identification and smoothness quantification could be jointly
inferred. Moreover, we would like to extend our framework to
high-resolution pathology images of other cancer types, which
would be a promising direction in clinical science research.
Lastly, our work only focuses on landmark detection for a sin-
gle polygonal chain. Landmarking of boundaries from multiple
polygonal chains is greatly needed to increase the accuracy and
decrease the uncertainty of landmark estimation. It could help
in estimating the scaling factors σk’s, especially for irregularly
and sparsely sampled discretized curves. Strait, Chkrebtii, and
Kurtek (2019) have studied landmarking of multiple shapes
when their boundaries are treated as elastic curves. However, a
modeling approach under the polygonal chain paradigm is still
a work in progress. Our future direction includes each of the
aforementioned extensions.

Supplementary Materials

The supplementary materials for Sections 2–5 are available online, includ-
ing the derivation of the point-to-line distance, a detailed description of
the MCMC algorithms, explicit definitions of evaluation metrics, reports
on sensitivity analysis and scalability test, supplementary tables and figures
from the lung case study, and an additional U.S. state shape case study. We
provide software in the formof R/C++ code onGitHub (https://github.com/
bougetsu/BayesLASA). To reproduce the figures presented in the paper, refer
to the correspondingR scripts in the ‘manuscript_reproducibility’ directory
at the same repository.
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