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Abstract
Statistics and artificial intelligence (AI) are distinct yet closely interconnected disci-
plines, each characterized by its own historical roots and methodological approaches. 
This paper explores their collaborative potential, seeking to answer a pivotal ques-
tion: How can statistics and AI collaborate to extract valuable insights from complex 
data? Within this context, we present three compelling case studies that showcase 
the harmonious integration of statistics and AI for the analysis of high-resolution 
pathology images, an emerging type of medical image that provides rich cellular-
level information and serves as the gold standard for cancer diagnosis. Furthermore, 
recent advancements in spatial transcriptomics, which typically yield paired digi-
tal pathology images from the same tissue sample, introduce a new dimension to 
pathology images. This evolving landscape extends the horizons of the proposed AI-
statistics framework, holding a promise of propelling biomedical research into new 
territories and delivering breakthroughs in our understanding of complex diseases.

Keywords  Artificial intelligence · Bayesian statistics · Spatial analysis · Shape 
analysis · Pathology image

1  Introduction

Statistics is not a new discipline of science or technology. The term statistics was 
introduced by an Italian writer, Girolamo Ghilini, in 1589 [1, 2]. As a branch of 
mathematics, statistics began evolving about three centuries ago in response to the 
novel needs during the First Industrial Revolution. Statistical inferences are made 
under the framework of probability, another branch of mathematics dealing with 
random phenomena analysis, dating back to earlier times. For instance, Bayesian sta-
tistics, one of the pivotal branches of statistics, is named after Thomas Bayes, who 
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was the first to use probability inductively and formulate a specific case of Bayes’ 
theorem, a fundamental theorem in probability. The foundations of modern statistics 
were further fortified by Karl Pearson, who also established the world’s first univer-
sity statistics department at University College London in 1911. His seminal work in 
the early 20th century underpins many of the classical statistical methods that are in 
common use today, such as correlation coefficient, p-value, Chi-squared test, princi-
pal component analysis (PCA), etc.

In contrast, artificial intelligence (AI) is a new academic discipline. The 
term machine learning (ML) was coined in 1959 by Arthur Samuel [3], an IBM 
employee and pioneer in computer gaming and AI. ML has been recognized as an 
integral component of AI, as AI studies how machines can imitate the intelligence 
or behavioral pattern of humans or any other living entity, and ML refers to any AI 
technique by which a machine can learn from data without using a complex set of 
different rules. In the late 2000s, deep learning, a type of ML technique inspired by 
the human brain’s network of neurons, started to outperform other methods in ML 
competitions. The breakthroughs of deep learning have motivated people to rethink 
how to integrate information, analyze big data, and improve decision-making. AI is 
revolutionizing various industries because of its huge impact on every walk of life. 
While AI, ML, and deep learning are technically different, the three terms will be 
used interchangeably throughout this paper.

The major difference between statistics and AI are three-fold. First and foremost, 
statistics is a mathematical body of science based on probability theorems, seeking 
to objectively explain the data of nature in a reproducible way, while AI is an engi-
neering that applies natural science or mathematics to solve real-world problems. 
Machine learning also has intimate ties to optimization, which has been widely used 
in engineering. For instance, many ML problems can be formulated as minimiza-
tion of some loss function on training data. Secondly, although both statistics and 
ML is the mathematical study of data, their overarching objectives diverge signifi-
cantly. Statisticians typically focus on building a generalized model to fit all kinds 
of data and studying the goodness of fit, while ML engineers aim to discover com-
plex patterns in data. Lastly, they are two opposite approaches [4]. Statistical meth-
ods are typically top-down approaches. We assume the model that generates the 
observed data is known and the probabilistic dependency between the model and 
data build upon predetermined equations with simple assumption. ML methods, in 
contrast, are bottom-up approaches. No particular predetermined model or equation 
is assumed, but one begins with the data and an algorithm develops a method to 
perform better in a specific supervised or unsupervised learning task (e.g., classifi-
cation or clustering).

We are living in the era of big data. Which one is better for modern big data ana-
lytics, statistics or AI? Although there are some debates between the two options, 
the answer depends on the study goal. ML is probably the best pick to achieve 
peak performance in a supervised learning task where well-trained data are avail-
able. Conversely, when the objective is to establish relationships among variables 
or extract meaningful interpretations from data with a small sample size, statistical 
models rise to the fore. This is because statistics and AI have opposite strengths 
and weaknesses. AI shines at discovering complex patterns from data, but lacks 
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interpretability and reproducibility to some extent. In contrast, statistical inference 
delivers clear and interpretable results but tends to rely on assumptions that could 
oversimplify complex data structures. In many instances, these two choices need not 
stand in opposition; they can harmoniously coexist. This is especially true when the 
interpretation of noisy and complex data is in great need to advance new scientific 
discovery. Indeed, statistics and AI stand as closely related fields. As suggested by 
some leading statisticians, we need a term such as data science or statistical learn-
ing as a placeholder to call the overall area [5, 6].

In this review paper, we introduce three examples of combining statistics and AI 
to seamlessly analyze pathology images, a type of high-resolution medical image 
that captures histological details and serves as the golden standard in cancer diag-
nosis and prognosis. A tumor pathology image, also known as a whole slide image 
(WSI), harbors a large amount of information at the cellular level, such as inter-
actions between tumor cells and the surrounding micro-environment. This routine 
clinical procedure produces massive digital pathology images on a daily basis. How-
ever, the exhaustive and time-consuming process of manual pathological exami-
nation, reliant on human expertise, has, until now, imposed limitations on the sys-
tematic and comprehensive exploration of these high-resolution images. Moreover, 
recent breakthroughs in spatial transcriptomics (ST) have enabled the molecular 
and spatial characterizations of single cells. As this cutting-edge technique typically 
yields paired pathology images from the same tissue sample, we can view the spatial 
molecular profiling data as a new dimension to the pathology image. Because of the 
complexity of the data and the emerging need for data interpretation, neither AI-
based nor statistical methods can face the great challenges alone in this field.

To this end, we proposed a unified AI-statistics framework, as depicted in 
Fig. 1(a) to analyze pathology images, leveraging the strengths of AI and statistics. 
Our idea is first to tailor the deep learning method to denoise complex imaging data 
in a specific task and abstract its simple representation. Subsequently, we formulate 
statistical models to fit the AI-processed data and use the estimated model param-
eters to make interpretations and perform further association studies with other data-
sets of interest. Within this framework, we express a strong preference for Bayesian 
statistics. On one hand, Bayesian inference has shown great success in analyzing 
biomedical data [7–14]. On the other hand, it is able to make more inferences and 
utilize the existing prior information, especially in high-dimensional settings where 
large samples are unachievable. Although the proposed project is rooted in analyz-
ing pathology images, we can apply the proposed AI-statistics framework to analyze 
complex data in a broad range of disciplines.

The remainder of the paper is organized as follows: Sect. 2 illustrates an exam-
ple of quantifying cell–cell interaction from pathology images using a model-based 
approach [13]. Section 3 presents a case study that applies a novel statistical shape 
analysis method to characterize tumor boundaries [15]. In Sect. 4, we demonstrate 
that fully exploiting the morphological features present in pathology images and the 
molecular features measured by ST can enhance the accuracy and interpretability 
of spatial domain identification [16], a central challenge for ST data analysis. We 
follow the order below to illustrate each of the three examples: (1) a high-level sum-
mary of the project with research goals; (2) a summary of the AI-process data; (3) a 
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discussion of current methods and challenges; (4) a brief presentation of the Bayes-
ian model and its key highlights; and (5) an overview of the outcomes. Our intention 
is to provide a snapshot of the depth and breadth of our AI-statistics framework. We 
encourage interested readers to read the original papers for a more profound explo-
ration of our research endeavors. Section 5 concludes the paper with some remarks.

2 � Example I: Quantifying Cell–Cell Interaction

The primary goal of this study is to quantify the interactions between different 
types of cells within tumor regions of a WSI. To extract the cell information, we 
first developed a deep learning-based pipeline to identify individual cells and clas-
sify their types into different categories. Then, we consider such an AI-reconstructed 
image as multi-type point pattern data. A novel model-based approach through a 
Bayesian framework, was proposed to analyze spatial correlations of cell types con-
ditional on their locations. Figure 1b illustrates the workflow of this project.

2.1 � AI‑Processed Data

We first used a convolutional neural network (CNN)-based method, ConvPath [17], 
to locate each cell and predict its cell types (i.e., lymphocyte, stromal, and tumor 

Fig. 1   a The workflow of combining statistics and AI to analyze complex data. b The illustration of 
Example I, applying the workflow to quantify cell–cell interaction. c The illustration of Example II, 
applying the workflow to characterize tumor boundary. d The illustration of Example III, applying the 
workflow to identify histology-based spatial domains
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cells) from a 5000 × 5000 pixel window, namely, a sample image, in the tumor 
region of a given WSI. This study includes 1585 sample images from 188 lung can-
cer patients’ WSI (with a median size of 24,244 × 19,261 pixels) in the National 
Lung Screening Trial (NLST) study. As a result, each sample image was abstracted 
into a spatial map of marked points, where each point indexed by i = 1,… , n refers 
to a cell at location (xi, yi) ∈ ℝ

2 and its qualitative mark denoted by zi ∈ {1,… ,Q} . 
In spatial point pattern analysis, such data are considered as multi-type point pattern 
data. Here, the number of cells per sample image, denoted by n, ranges from 2, 876 
to 26, 463, and the number of cell types Q = 3.

2.2 � Current Methods and Challenges

The study of interactions between qualitative or quantitative marks, which results in 
the spatial correlation of marks, has been a primary focus in spatial statistics. Illian 
et al. [18] discussed in detail a large variety of numerical, functional, and second-
order summary characteristics, which can be used to describe the spatial depend-
ency between different types of points in a planar region. However, model-based 
analysis, which may sharpen inferences about the spatial correlation, is lagging. 
Using the same dataset described above, Li et al. [19] and Li et al. [20] modified 
the Potts model, a model of interacting spins on a lattice, to indirectly quantify the 
cell–cell interaction. However, the main issues are that these approximate methods 
relies on selecting an ad hoc lattice and do not directly model the spatial correlation 
of cell types at the cellular level.

2.3 � Methods

To this end, we developed a novel Bayesian mark interaction model to study the 
mark formulation at a finite known set of points through a Bayesian framework [13]. 
The key idea is to propose a well-defined energy function that minimizes the overall 
energy of the cell–cell interaction network,

where z = [zi ∈ {1,… ,Q}]n×1 records n cells’ types, dii� ∈ ℝ
+ is the distance 

between cell i and i′ , � ∈ ℝ
+ is the parameter that mimics the exponential decay of 

pairwise interaction energy with distance, I(⋅) denotes the indicator function, and 
c ∈ ℝ

+ is the desired threshold meaning that any cell can only interact with its 
nearby cells within a certain range. Parameters � = [�q ∈ ℝ]Q×1 and 
� = [�qq� ∈ ℝ]Q×Q are the first and second-order intensities, indicating the enrich-
ment of different types of cells and the spatial correlation among different types of 
cells, respectively. According to the Hammersley-Clifford theorem  

(1)

H(z|�,�, 𝜆) =

Q∑

q=1

𝜔q

n∑

i=1

I(zi = q)

+

Q∑
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Q∑
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[21], such a local-defined energy leads to the data likelihood f (z
1

,… , zn|�,�, �)

= H(z��,�, �)∕
∑

z� H(z���,�, �) . Note that an exact calculation of the denominator 
needs to sum over the entire space of z consisting of Qn states. To overcome this chal-
lenge, we employed the double Metropolis-Hastings (DMH) algorithm [22] to make 
inference on the model parameters � , � , and � . We showed that Equation (1) can be 
directly linked to the conditional distribution as Pr(zi = q|zi� = q�) ∝ exp(−�qq� ) in 
the simplest scenario, implying the spatial correlations among marks can be easily 
interpreted by the probability matrix � = [�qq� ∈ [0, 1]]Q×Q with 
�qq� = exp

�
−�qq�

�
∕
∑Q

q=1
exp

�
−�qq�

�
.

2.4 � Results

The real data analysis shows that the spatial correlation between tumor and stromal 
cells is associated with patient prognosis (p-value=0.007) through a Cox propor-
tional hazards model [23]. Although the morphological features of stroma in tumor 
regions have been discovered to be associated with patient survival [24], there is 
no strong quantitative evidence to support this, due to a lack of rigorous statistical 
methodology. The Bayesian mark interaction model delivers a new perspective for 
understanding how marks (i.e. cell types in AI-reconstructed pathology images) for-
mulate. This estimated spatial corrections in terms of � could be translated into real 
clinical tools at low cost because it is based only on tumor pathology slides, which 
are available in standard clinical care.

3 � Example II: Characterizing Tumor Boundary

This study aims to characterize the heterogeneous boundary roughness of tumor 
regions in a WSI. An automated tumor region recognition system based on deep 
CNN was developed. Then, we extracted the tumor boundary from the AI-recon-
structed image. Considering the tumor boundary, a sequence of pixel points, as a 
simple closed polygonal chain (SCPC), we developed a Bayesian landmark-based 
shape analysis to estimate the number and locations of its landmarks, which helps to 
summarize the heterogeneous tumor boundary roughness. Figure 1(c) illustrates this 
study’s workflow.

3.1 � AI‑Processed Data

We collected 246 WSI from 143 lung cancer patients in the NLST study. We first 
developed a CNN-based method [25] to perform tumor segmentation for each WSI. 
This approach classifies each 300 × 300 pixels image patch in a WSI into three catego-
ries: normal, tumor, or background. The median size of the resulting three-class AI-
reconstructed images is 1011 × 806 pixels. Then, we enlarged each image three times 
(to avoid single-pixel boundary lines or singularities) and used the R package SAFARI 
[26] to extract the largest connected tumor region and its boundary from each image. 
The tumor boundary was abstracted into a sequence of m discretization points denoted 
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by P = {V1,… ,Vm} , forming an SCPC. The coordinates of Vi is (xi, yi) ∈ ℝ
2 . In this 

study, the number of SCPC vertices ranges from n − 1 = 360 to 15, 931 across all the 
246 WSI, with a median of 3836.

3.2 � Current Methods and Challenges

Traditional shape features that characterize an object’s boundary roughness are based 
on radial lengths, which have improved clinical diagnosis [27–30] and prognosis [31, 
32]. However, they have been recently proven to be no longer suitable for high-resolu-
tion pathology images at the cellular level [26], which exhibit substantial heterogeneity. 
To overcome this challenge, our idea is to identify a set of landmarks to partition the 
entire boundary into pieces based on roughness. Landmark identification has been a 
primary focus in shape analysis. Recently, a Bayesian model has been proposed under 
the elastic curve paradigm [33]. Functional data are infinite-dimensional, which raise 
computational concern in analyzing complex tumor shapes in high-resolution pathol-
ogy images.

3.3 � Methods

To characterize detailed and heterogeneous tumor boundary structures, we developed a 
novel Bayesian model, namely BayesLASA, to partition the entire boundary by a set of 
landmarks based on both the global geometry and local roughness [15]. To begin with, 
we use a latent binary vector � = [�i ∈ {0, 1}]m×1 to indicate which vertices are land-
marks, with �i = 1 if vertex i is a landmark. Those landmarks constitute another SCPC 
named the landmark chain P(�) = {VL1

,… ,VLK
} , where we use Lk to denote the loca-

tion of landmark k and K =
∑m

i=1
�i is the number of landmarks. Since � is independent 

of the vertex locations, it is naturally invariant to rotation, scaling, translation, and other 
shape-preserving transformations. From another point of view, those non-landmark 
vertices can be assigned into pieces bounded by two adjacent landmarks. Thus we use 
� = [�i ∈ {1,… ,K}]m×1 to reparameterize � , where �i = k if vertex i is between land-
marks VLk

 and VLk+1
 . The objective is to find the landmark chain P(�) via inferring � or � , 

which are identical. To enable the model to identify landmarks based on local rough-
ness, we assume the vertex-wise deviation between P and P(�) is from a mixture zero-
mean stationary Gaussian Process. In particular, let di denote the shortest distance 
between Vi and the line segment between VL�i

 and VL�i+1
 in P(�) , then we have,

where �2
k
 is a piecewise scaling factor, indicating the average deviation between P 

and P(�) in piece k and �k is a covariance function of the pairwise distances. Note 
that we integrate out �2

k
 ’s so that the number of landmarks K can be automatically 

quantified through � . For the sake of simplicity, we chose the white noise kernel, 
where �k is an identity matrix. The identified landmarks, which approximately 
reconstruct the tumor shape, partition the whole boundary into mutually exclusive 

(2)d1,… , dm|�, 𝜎2

1
,… , 𝜎2

K
∼

K∏

k=1

N((dLk+1,… , dL(k+1)−1)
⊤;0, 𝜎2

k
�k),
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pieces. Summary statistics of the piecewise roughness measurements can then be 
used to characterize the heterogeneity of boundary roughness.

3.4 � Results

The real data result shows that the heterogeneity (in terms of skewness and kurto-
sis) of tumor boundary roughness is significantly associated with patient prognosis 
(p-value < 0.001 ) through a Cox proportional hazards model [23]. These results are 
consistent with the biology literature in that high spatial heterogeneity is a pivotal 
feature of cancer at both the cellular and histological levels resulting from the dis-
tinct patterns of different cancer cell subpopulations in terms of dysregulation of 
proliferation, mobility, and metabolism pathways [34, 35]. Analyzing the same data-
sets, Moon et  al. [36] developed a functional representation of tumor topological 
structure, pairing those topological features with the surrounding environment using 
the persistent homology. The results show that the topological features also predict 
survival prognosis.

4 � Example III: Identifying Spatial Domains

Examples I and II focus on analyzing AI-reconstructed pathology images only, while 
Example III introduces an integrative model to enhance ST clustering analysis, an 
essential task in this emerging field, by fully exploiting the morphological features 
in pathology images. Firstly, we developed a mask regional CNN (Mask R-CNN)-
based algorithm to identify all individual cells in a WSI and classify their types. We 
then summarized this large-scale multi-type point pattern data at the same spatial 
resolution as the paired ST data. Lastly, a Bayesian finite mixture model (FMM) was 
proposed to integrate these two modalities of a tissue sample and partition all spots 
into mutually exclusive clusters, namely spatial domains.

4.1 � AI‑Processed Data

ST captures RNA molecules via spatially arrayed barcoded probes, namely spots, 
which cover a group of cells and are arrayed on a two-dimensional grid. In general, 
the molecular profile of ST data can be represented by Y = [yij ∈ ℕ]n×p with yij is the 
read count for gene j measured at spot i. Let (xi, yi) ∈ ℝ

2 be the coordinates of spot i. 
Since ST spots are on a lattice grid, a convenient way to define the geospatial profile 
is via a binary adjacent matrix G = [gii� ∈ {0, 1}]n×n with gii� = 1 if spot i are i′ are 
neighbors in the grid and gii� = 0 otherwise. To construct the image profile, we applied 
a nuclei segmentation and identification algorithm, the histology-based digital (HD)-
staining model [37], to extract the location and type of each cell from the paired WSI. 
The HD-staining model was trained using the pathology images in the NLST study and 
implemented by the Mask R-CNN architecture. To match the molecular profile at the 
spot level, we count cells with different types within each spot and create a cell abun-
dance table, denoted by V = [viq ∈ ℕ]n×Q , where each entry viq is the number of cells 
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with type q observed at spot i. Our first case study is to apply our method to a human 
breast cancer dataset, which includes n = 2, 518 spots and p = 17,651 genes. There are 
156, 235 cells identified by HD-staining in Q = 7 categories (i.e., macrophage, ductal 
epithelium, karyorrhexis, tumor, lymphocyte, red blood, and stromal cells).

4.2 � Current Methods and Challenges

A central challenge for ST data analysis is to define clinically or biologically mean-
ingful spatial domains by partitioning regions with similar molecular and/or his-
tological characteristics, because the spatial domain identification serves as the 
foundation for several important downstream analyses [38, 39]. However, current 
state-of-the-art methods typically focus on achieving this goal solely by analyzing 
molecular profiles [40, 41]. There are several recently developed methods integrat-
ing spatial information and various features extracted from the histology image into 
the clustering analysis of ST data [42–45]. However, those image features, such as 
RGB color values, do not explicitly reveal detailed morphological information, and 
therefore, fail to provide biologically relevant insights. Different from molecular 
information, pathology images characterize cellular structures and tissue micro-
environment, which have been proven valuable in clinical diagnosis and progno-
sis [37, 46]. Thus, integrating molecular profiles and AI-reconstructed pathology 
images could enhance the spatial domain identification.

4.3 � Method

A Bayesian FMM, namely iIMPACT, was developed to tackle this problem. Gener-
ally, an FMM generates random variables from a weighted sum of K independent 
distributions that belong to the same parametric family. Since there are two modali-
ties Y and V , we decomposed the mixture component into two sub-components,

where z = [zi ∈ {1,… ,K}]n×1 denotes the latent variables specifying the spatial 
domain with zi = k indicating spot i belongs to spatial domain k. The multivariate 
normal sub-component models the low-dimensional gene expression ỹi at spot i. In 
particular, we performed PCA to obtain ỹi to avoid using complex FNNs with fea-
ture selection based on cumbersome multivariate Poisson distribution. This mode-
ling approach is similar in spirit to the recent proposal by Zhao et al. [44]. The mul-
tinational sub-component models the number of cells with different types, where 
mi =

∑Q

q=1
viq is the total number of cells observed within spot i and 

�k = [�kq ∈ [0, 1]]Q×1 , defined on a Q-dimensional simplex, representing the under-
lying relative abundance of cell types in spatial domain k, which can be used to 
interpret or define the identified spatial domains. To utilize the geospatial profile, 
iIMPACT employs a Markov random field (MRF) prior on the domain indicator z , 
encouraging neighboring spots to be clustered into the same spatial domain. Of par-
ticular note is that w ∈ [0, 1] controls the image profile’s contribution to the cluster-
ing process, with respect to that of the molecular profile. Uncertainty quantification 

(3)ỹi, vi|zi = k,�k,�k,�k ∼ N( ỹi;�k,�k)Multi(vi;mi,�k)
w,
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is one advantage of the proposed Bayesian FFN. We define the spot as the boundary 
spot if the marginal probabilities Pr(zi = k|⋅) is small for any k, and the resulting 
connected area as the interactive zone.

4.4 � Results

Compared with alternative methods, we found that iIMPACT achieved the high-
est consistency with the manual annotation, with an adjusted Rand index of 0.634. 
Moreover, iIMPACT is able to define each spatial domain k through its underly-
ing relative abundance of cell types �k . In contrast, other methods currently lack 
the ability to effectively integrate cell type information and interpret the identified 
domains in a biologically meaningful way. We also demonstrated iIMPACT’s supe-
riority in a human prostate case study and a human ovarian case study, confirmed 
by ground truth biological knowledge. These findings underscore the accuracy and 
interpretability of iIMPACT as a new ST clustering approach, providing valuable 
insights into the cellular spatial organization.

5 � Conclusion

Recent advancements in deep learning have enabled us to identify and classify indi-
vidual cells or regions from digital pathology images on a large scale. This break-
through paves the way for clarifying the many roles of cell–cell interaction, tumor 
shapes, and molecular features from these complex and rich data. Furthermore, it 
creates a unique opportunity for statisticians to foster statistical spatial and shape 
analysis rooted in model-driven research.

In this paper, we embark on a journey through three illustrative examples that 
showcase how the marriage between statistics and AI leads to more explainable and 
predictable paths from raw pathology images to conclusions. Example 1 concerns 
the spatial modeling of AI-reconstructed pathology images. The randomly distrib-
uted cells can be considered from a marked point process. A novel Bayesian model 
for characterizing spatial correlations in a multi-type spatial point pattern is pre-
sented. Example 2 concerns the statistical shape analysis. From the identified tumor 
regions in an AI-reconstructed pathology image, the tumor boundary is considered 
an SCPC. A novel Bayesian model is delivered to identify landmark points of the 
SCPC to provide descriptive statistics and characterize tumor boundary roughness. 
These two novel methodologies offer a unique perspective for comprehending the 
roles of cell–cell interactions and tumor growth patterns in the context of cancer 
progression. Example 3 concerns the integrative modeling of the emerging ST data, 
which comprehensively characterizes the molecular and morphological contexts at a 
high spatial resolution. In summary, these three examples collectively demonstrate 
how biomedical research can benefit from both statistics and AI.

Nowadays, statistics relies more on human analyses with computer aids, while 
AI relies more on computer algorithms with aids from humans. Nevertheless, 
expanding the statistics concourse at each milestone provides new avenues for AI 
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and creates new insides in statistics. This paper incubates the findings initiated from 
either side of statistics or AI and benefits the other. We envision that the proposed 
framework uniting statistics and AI in the analysis of complex data, will find appli-
cations across a myriad of disciplines, catalyzing innovation and insight.

Funding  This study was supported by National Science Foundation (Grant Nos. 2113674, 2210912) and 
National Institutes of Health (Grant No. 1R01GM141519-01).
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