Statistics in Biosciences
https://doi.org/10.1007/512561-023-09400-x

®

Check for
updates

Al-Powered Bayesian Statistics in Biomedicine

Qiwei Li’

Received: 10 September 2023 / Revised: 10 September 2023 / Accepted: 5 October 2023
© The Author(s) under exclusive licence to International Chinese Statistical Association 2023

Abstract

Statistics and artificial intelligence (AI) are distinct yet closely interconnected disci-
plines, each characterized by its own historical roots and methodological approaches.
This paper explores their collaborative potential, seeking to answer a pivotal ques-
tion: How can statistics and Al collaborate to extract valuable insights from complex
data? Within this context, we present three compelling case studies that showcase
the harmonious integration of statistics and Al for the analysis of high-resolution
pathology images, an emerging type of medical image that provides rich cellular-
level information and serves as the gold standard for cancer diagnosis. Furthermore,
recent advancements in spatial transcriptomics, which typically yield paired digi-
tal pathology images from the same tissue sample, introduce a new dimension to
pathology images. This evolving landscape extends the horizons of the proposed Al-
statistics framework, holding a promise of propelling biomedical research into new
territories and delivering breakthroughs in our understanding of complex diseases.

Keywords Artificial intelligence - Bayesian statistics - Spatial analysis - Shape
analysis - Pathology image

1 Introduction

Statistics is not a new discipline of science or technology. The term statistics was
introduced by an Italian writer, Girolamo Ghilini, in 1589 [1, 2]. As a branch of
mathematics, statistics began evolving about three centuries ago in response to the
novel needs during the First Industrial Revolution. Statistical inferences are made
under the framework of probability, another branch of mathematics dealing with
random phenomena analysis, dating back to earlier times. For instance, Bayesian sta-
tistics, one of the pivotal branches of statistics, is named after Thomas Bayes, who
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was the first to use probability inductively and formulate a specific case of Bayes’
theorem, a fundamental theorem in probability. The foundations of modern statistics
were further fortified by Karl Pearson, who also established the world’s first univer-
sity statistics department at University College London in 1911. His seminal work in
the early 20th century underpins many of the classical statistical methods that are in
common use today, such as correlation coefficient, p-value, Chi-squared test, princi-
pal component analysis (PCA), etc.

In contrast, artificial intelligence (AI) is a new academic discipline. The
term machine learning (ML) was coined in 1959 by Arthur Samuel [3], an IBM
employee and pioneer in computer gaming and Al. ML has been recognized as an
integral component of Al, as Al studies how machines can imitate the intelligence
or behavioral pattern of humans or any other living entity, and ML refers to any Al
technique by which a machine can learn from data without using a complex set of
different rules. In the late 2000s, deep learning, a type of ML technique inspired by
the human brain’s network of neurons, started to outperform other methods in ML
competitions. The breakthroughs of deep learning have motivated people to rethink
how to integrate information, analyze big data, and improve decision-making. Al is
revolutionizing various industries because of its huge impact on every walk of life.
While AI, ML, and deep learning are technically different, the three terms will be
used interchangeably throughout this paper.

The major difference between statistics and Al are three-fold. First and foremost,
statistics is a mathematical body of science based on probability theorems, seeking
to objectively explain the data of nature in a reproducible way, while Al is an engi-
neering that applies natural science or mathematics to solve real-world problems.
Machine learning also has intimate ties to optimization, which has been widely used
in engineering. For instance, many ML problems can be formulated as minimiza-
tion of some loss function on training data. Secondly, although both statistics and
ML is the mathematical study of data, their overarching objectives diverge signifi-
cantly. Statisticians typically focus on building a generalized model to fit all kinds
of data and studying the goodness of fit, while ML engineers aim to discover com-
plex patterns in data. Lastly, they are two opposite approaches [4]. Statistical meth-
ods are typically top-down approaches. We assume the model that generates the
observed data is known and the probabilistic dependency between the model and
data build upon predetermined equations with simple assumption. ML methods, in
contrast, are bottom-up approaches. No particular predetermined model or equation
is assumed, but one begins with the data and an algorithm develops a method to
perform better in a specific supervised or unsupervised learning task (e.g., classifi-
cation or clustering).

We are living in the era of big data. Which one is better for modern big data ana-
lytics, statistics or AI? Although there are some debates between the two options,
the answer depends on the study goal. ML is probably the best pick to achieve
peak performance in a supervised learning task where well-trained data are avail-
able. Conversely, when the objective is to establish relationships among variables
or extract meaningful interpretations from data with a small sample size, statistical
models rise to the fore. This is because statistics and Al have opposite strengths
and weaknesses. Al shines at discovering complex patterns from data, but lacks
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interpretability and reproducibility to some extent. In contrast, statistical inference
delivers clear and interpretable results but tends to rely on assumptions that could
oversimplify complex data structures. In many instances, these two choices need not
stand in opposition; they can harmoniously coexist. This is especially true when the
interpretation of noisy and complex data is in great need to advance new scientific
discovery. Indeed, statistics and Al stand as closely related fields. As suggested by
some leading statisticians, we need a term such as data science or statistical learn-
ing as a placeholder to call the overall area [, 6].

In this review paper, we introduce three examples of combining statistics and Al
to seamlessly analyze pathology images, a type of high-resolution medical image
that captures histological details and serves as the golden standard in cancer diag-
nosis and prognosis. A tumor pathology image, also known as a whole slide image
(WSI), harbors a large amount of information at the cellular level, such as inter-
actions between tumor cells and the surrounding micro-environment. This routine
clinical procedure produces massive digital pathology images on a daily basis. How-
ever, the exhaustive and time-consuming process of manual pathological exami-
nation, reliant on human expertise, has, until now, imposed limitations on the sys-
tematic and comprehensive exploration of these high-resolution images. Moreover,
recent breakthroughs in spatial transcriptomics (ST) have enabled the molecular
and spatial characterizations of single cells. As this cutting-edge technique typically
yields paired pathology images from the same tissue sample, we can view the spatial
molecular profiling data as a new dimension to the pathology image. Because of the
complexity of the data and the emerging need for data interpretation, neither Al-
based nor statistical methods can face the great challenges alone in this field.

To this end, we proposed a unified Al-statistics framework, as depicted in
Fig. 1(a) to analyze pathology images, leveraging the strengths of Al and statistics.
Our idea is first to tailor the deep learning method to denoise complex imaging data
in a specific task and abstract its simple representation. Subsequently, we formulate
statistical models to fit the Al-processed data and use the estimated model param-
eters to make interpretations and perform further association studies with other data-
sets of interest. Within this framework, we express a strong preference for Bayesian
statistics. On one hand, Bayesian inference has shown great success in analyzing
biomedical data [7-14]. On the other hand, it is able to make more inferences and
utilize the existing prior information, especially in high-dimensional settings where
large samples are unachievable. Although the proposed project is rooted in analyz-
ing pathology images, we can apply the proposed Al-statistics framework to analyze
complex data in a broad range of disciplines.

The remainder of the paper is organized as follows: Sect. 2 illustrates an exam-
ple of quantifying cell—cell interaction from pathology images using a model-based
approach [13]. Section 3 presents a case study that applies a novel statistical shape
analysis method to characterize tumor boundaries [15]. In Sect. 4, we demonstrate
that fully exploiting the morphological features present in pathology images and the
molecular features measured by ST can enhance the accuracy and interpretability
of spatial domain identification [16], a central challenge for ST data analysis. We
follow the order below to illustrate each of the three examples: (1) a high-level sum-
mary of the project with research goals; (2) a summary of the Al-process data; (3) a
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Fig. 1 a The workflow of combining statistics and Al to analyze complex data. b The illustration of
Example I, applying the workflow to quantify cell-cell interaction. ¢ The illustration of Example II,
applying the workflow to characterize tumor boundary. d The illustration of Example III, applying the
workflow to identify histology-based spatial domains

discussion of current methods and challenges; (4) a brief presentation of the Bayes-
ian model and its key highlights; and (5) an overview of the outcomes. Our intention
is to provide a snapshot of the depth and breadth of our Al-statistics framework. We
encourage interested readers to read the original papers for a more profound explo-
ration of our research endeavors. Section 5 concludes the paper with some remarks.

2 Example I: Quantifying Cell-Cell Interaction

The primary goal of this study is to quantify the interactions between different
types of cells within tumor regions of a WSI. To extract the cell information, we
first developed a deep learning-based pipeline to identify individual cells and clas-
sify their types into different categories. Then, we consider such an Al-reconstructed
image as multi-type point pattern data. A novel model-based approach through a
Bayesian framework, was proposed to analyze spatial correlations of cell types con-
ditional on their locations. Figure 1b illustrates the workflow of this project.

2.1 Al-Processed Data

We first used a convolutional neural network (CNN)-based method, ConvPath [17],
to locate each cell and predict its cell types (i.e., lymphocyte, stromal, and tumor
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cells) from a 5000 x 5000 pixel window, namely, a sample image, in the tumor
region of a given WSI. This study includes 1585 sample images from 188 lung can-
cer patients’ WSI (with a median size of 24,244 x 19,261 pixels) in the National
Lung Screening Trial (NLST) study. As a result, each sample image was abstracted
into a spatial map of marked points, where each point indexed by i = 1, ..., n refers
to a cell at location (x;,y;) € R? and its qualitative mark denoted by z; € {1,...,Q}.
In spatial point pattern analysis, such data are considered as multi-type point pattern
data. Here, the number of cells per sample image, denoted by n, ranges from 2, 876
to 26, 463, and the number of cell types Q = 3.

2.2 Current Methods and Challenges

The study of interactions between qualitative or quantitative marks, which results in
the spatial correlation of marks, has been a primary focus in spatial statistics. Illian
et al. [18] discussed in detail a large variety of numerical, functional, and second-
order summary characteristics, which can be used to describe the spatial depend-
ency between different types of points in a planar region. However, model-based
analysis, which may sharpen inferences about the spatial correlation, is lagging.
Using the same dataset described above, Li et al. [19] and Li et al. [20] modified
the Potts model, a model of interacting spins on a lattice, to indirectly quantify the
cell—cell interaction. However, the main issues are that these approximate methods
relies on selecting an ad hoc lattice and do not directly model the spatial correlation
of cell types at the cellular level.

2.3 Methods

To this end, we developed a novel Bayesian mark interaction model to study the
mark formulation at a finite known set of points through a Bayesian framework [13].
The key idea is to propose a well-defined energy function that minimizes the overall
energy of the cell—cell interaction network,

(0] n

0 0 ey
+ DD Oy DG = q.25 = ) exp(=Ad;)(dyy < c),
g=1q¢'=1 i<i’
where z=[z; € {1,...,0}],, records n cells’ types, d; € R is the distance
between cell i and I/, A € R™ is the parameter that mimics the exponential decay of
pairwise interaction energy with distance, /(-) denotes the indicator function, and
¢ € Rt is the desired threshold meaning that any cell can only interact with its
nearby cells within a certain range. Parameters  =[w, € R]y,; and
0= [qu, € R]yyp are the first and second-order intensities, indicating the enrich-
ment of different types of cells and the spatial correlation among different types of
cells, respectively. According to the Hammersley-Clifford theorem
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[21], such a local-defined energy leads to the data likelihood f(z,...,z,|®,©, 1)
= H(z|lw,0, 1)/ Y, HZ |, ®, 2). Note that an exact calculation of the denominator
needs to sum over the entire space of z consisting of Q" states. To overcome this chal-
lenge, we employed the double Metropolis-Hastings (DMH) algorithm [22] to make
inference on the model parameters @, @, and 1. We showed that Equation (1) can be
directly linked to the conditional distribution as Pr(z; = glz; = ¢') « exp(—6,,) in
the simplest scenario, implying the spatial correlations among marks can be easily
interpreted by  the  probability matrix ®=[¢,, €[0,1]ly,, With
— _ 0 _
boy = exp ( qu,)/ Zq:l exp ( O )

2.4 Results

The real data analysis shows that the spatial correlation between tumor and stromal
cells is associated with patient prognosis (p-value=0.007) through a Cox propor-
tional hazards model [23]. Although the morphological features of stroma in tumor
regions have been discovered to be associated with patient survival [24], there is
no strong quantitative evidence to support this, due to a lack of rigorous statistical
methodology. The Bayesian mark interaction model delivers a new perspective for
understanding how marks (i.e. cell types in Al-reconstructed pathology images) for-
mulate. This estimated spatial corrections in terms of ® could be translated into real
clinical tools at low cost because it is based only on tumor pathology slides, which
are available in standard clinical care.

3 Example II: Characterizing Tumor Boundary

This study aims to characterize the heterogeneous boundary roughness of tumor
regions in a WSI. An automated tumor region recognition system based on deep
CNN was developed. Then, we extracted the tumor boundary from the Al-recon-
structed image. Considering the tumor boundary, a sequence of pixel points, as a
simple closed polygonal chain (SCPC), we developed a Bayesian landmark-based
shape analysis to estimate the number and locations of its landmarks, which helps to
summarize the heterogeneous tumor boundary roughness. Figure 1(c) illustrates this
study’s workflow.

3.1 Al-Processed Data

We collected 246 WSI from 143 lung cancer patients in the NLST study. We first
developed a CNN-based method [25] to perform tumor segmentation for each WSIL
This approach classifies each 300 x 300 pixels image patch in a WSI into three catego-
ries: normal, tumor, or background. The median size of the resulting three-class Al-
reconstructed images is 1011 x 806 pixels. Then, we enlarged each image three times
(to avoid single-pixel boundary lines or singularities) and used the R package SAFART
[26] to extract the largest connected tumor region and its boundary from each image.
The tumor boundary was abstracted into a sequence of m discretization points denoted
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by P ={V,,...,V,}, forming an SCPC. The coordinates of V; is (x;,y;) € R% In this
study, the number of SCPC vertices ranges from n — 1 = 360 to 15, 931 across all the
246 WSI, with a median of 3836.

3.2 Current Methods and Challenges

Traditional shape features that characterize an object’s boundary roughness are based
on radial lengths, which have improved clinical diagnosis [27-30] and prognosis [31,
32]. However, they have been recently proven to be no longer suitable for high-resolu-
tion pathology images at the cellular level [26], which exhibit substantial heterogeneity.
To overcome this challenge, our idea is to identify a set of landmarks to partition the
entire boundary into pieces based on roughness. Landmark identification has been a
primary focus in shape analysis. Recently, a Bayesian model has been proposed under
the elastic curve paradigm [33]. Functional data are infinite-dimensional, which raise
computational concern in analyzing complex tumor shapes in high-resolution pathol-
ogy images.

3.3 Methods

To characterize detailed and heterogeneous tumor boundary structures, we developed a
novel Bayesian model, namely BayesLLASA, to partition the entire boundary by a set of
landmarks based on both the global geometry and local roughness [15]. To begin with,
we use a latent binary vector y = [y; € {0, 1}],,,, to indicate which vertices are land-
marks, with y; = 1if vertex i is a landmark. Those landmarks constitute another SCPC
named the landmark chain P%) = {VL, ey VL,( }, where we use L, to denote the loca-

tion of landmark k and K = )" | 7; is the number of landmarks. Since y is independent
of the vertex locations, it is naturally invariant to rotation, scaling, translation, and other
shape-preserving transformations. From another point of view, those non-landmark
vertices can be assigned into pieces bounded by two adjacent landmarks. Thus we use
E=1[& € {1,...,K}],, to reparameterize y, where &; = k if vertex i is between land-
marks V; and V. The objective is to find the landmark chain PY) via inferring y or &,
which are identical. To enable the model to identify landmarks based on local rough-
ness, we assume the vertex-wise deviation between P and P is from a mixture zero-
mean stationary Gaussian Process. In particular, let d; denote the shortest distance
between V; and the line segment between VL;i and VLE,»+1 in P, then we have,

K
dy,....d,|E 07, op ~ [[ Ny oondy, T30, 002, 2)
k=1

where o-lf

and P in piece k and X, is a covariance function of the pairwise distances. Note
that we integrate out a,f’s so that the number of landmarks K can be automatically
quantified through y. For the sake of simplicity, we chose the white noise kernel,
where X, is an identity matrix. The identified landmarks, which approximately
reconstruct the tumor shape, partition the whole boundary into mutually exclusive

is a piecewise scaling factor, indicating the average deviation between P
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pieces. Summary statistics of the piecewise roughness measurements can then be
used to characterize the heterogeneity of boundary roughness.

3.4 Results

The real data result shows that the heterogeneity (in terms of skewness and kurto-
sis) of tumor boundary roughness is significantly associated with patient prognosis
(p-value < 0.001) through a Cox proportional hazards model [23]. These results are
consistent with the biology literature in that high spatial heterogeneity is a pivotal
feature of cancer at both the cellular and histological levels resulting from the dis-
tinct patterns of different cancer cell subpopulations in terms of dysregulation of
proliferation, mobility, and metabolism pathways [34, 35]. Analyzing the same data-
sets, Moon et al. [36] developed a functional representation of tumor topological
structure, pairing those topological features with the surrounding environment using
the persistent homology. The results show that the topological features also predict
survival prognosis.

4 Example llI: Identifying Spatial Domains

Examples I and II focus on analyzing Al-reconstructed pathology images only, while
Example III introduces an integrative model to enhance ST clustering analysis, an
essential task in this emerging field, by fully exploiting the morphological features
in pathology images. Firstly, we developed a mask regional CNN (Mask R-CNN)-
based algorithm to identify all individual cells in a WSI and classify their types. We
then summarized this large-scale multi-type point pattern data at the same spatial
resolution as the paired ST data. Lastly, a Bayesian finite mixture model (FMM) was
proposed to integrate these two modalities of a tissue sample and partition all spots
into mutually exclusive clusters, namely spatial domains.

4.1 Al-Processed Data

ST captures RNA molecules via spatially arrayed barcoded probes, namely spots,
which cover a group of cells and are arrayed on a two-dimensional grid. In general,

the molecular profile of ST data can be represented by ¥ = [y; € NJ,,,, with y;; is the

read count for gene j measured at spot i. Let (x;,y;) € R? be the coordinates of spot i.
Since ST spots are on a lattice grid, a convenient way to define the geospatial profile
is via a binary adjacent matrix G = [g;; € {0, 1}],,, with g;; = 1if spot i are i’ are
neighbors in the grid and g;, = 0 otherwise. To construct the image profile, we applied
a nuclei segmentation and identification algorithm, the histology-based digital (HD)-
staining model [37], to extract the location and type of each cell from the paired WSIL.
The HD-staining model was trained using the pathology images in the NLST study and
implemented by the Mask R-CNN architecture. To match the molecular profile at the
spot level, we count cells with different types within each spot and create a cell abun-
dance table, denoted by V = [v;, € N],, o, where each entry v, is the number of cells
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with type g observed at spot i. Our first case study is to apply our method to a human
breast cancer dataset, which includes n = 2,518 spots and p = 17,651 genes. There are
156, 235 cells identified by HD-staining in Q = 7 categories (i.e., macrophage, ductal
epithelium, karyorrhexis, tumor, lymphocyte, red blood, and stromal cells).

4.2 Current Methods and Challenges

A central challenge for ST data analysis is to define clinically or biologically mean-
ingful spatial domains by partitioning regions with similar molecular and/or his-
tological characteristics, because the spatial domain identification serves as the
foundation for several important downstream analyses [38, 39]. However, current
state-of-the-art methods typically focus on achieving this goal solely by analyzing
molecular profiles [40, 41]. There are several recently developed methods integrat-
ing spatial information and various features extracted from the histology image into
the clustering analysis of ST data [42-45]. However, those image features, such as
RGB color values, do not explicitly reveal detailed morphological information, and
therefore, fail to provide biologically relevant insights. Different from molecular
information, pathology images characterize cellular structures and tissue micro-
environment, which have been proven valuable in clinical diagnosis and progno-
sis [37, 46]. Thus, integrating molecular profiles and Al-reconstructed pathology
images could enhance the spatial domain identification.

4.3 Method

A Bayesian FMM, namely iIMPACT, was developed to tackle this problem. Gener-
ally, an FMM generates random variables from a weighted sum of K independent
distributions that belong to the same parametric family. Since there are two modali-
ties Y and V, we decomposed the mixture component into two sub-components,

y~,«, V,-|Z,~ =k, His Ek, @y ~ N(j’,ﬁﬂk, Ek)MUIti(Vﬁmia mk)w’ 3)

where z = [z; € {1,...,K}],,; denotes the latent variables specifying the spatial
domain with z; = k indicating spot i belongs to spatial domain k. The multivariate
normal sub-component models the low-dimensional gene expression j; at spot i. In
particular, we performed PCA to obtain ¥, to avoid using complex FNNs with fea-
ture selection based on cumbersome multivariate Poisson distribution. This mode-
ling approach is similar in spirit to the recent proposal by Zhao et al. [44]. The mul-
tinational sub-component models the number of cells with different types, where
m; = Z§=1 Vi, is the total number of cells observed within spot i and
@, = [a)kq e [0,1]] ox1s defined on a Q-dimensional simplex, representing the under-
lying relative abundance of cell types in spatial domain k, which can be used to
interpret or define the identified spatial domains. To utilize the geospatial profile,
iIMPACT employs a Markov random field (MRF) prior on the domain indicator z,
encouraging neighboring spots to be clustered into the same spatial domain. Of par-
ticular note is that w € [0, 1] controls the image profile’s contribution to the cluster-
ing process, with respect to that of the molecular profile. Uncertainty quantification
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is one advantage of the proposed Bayesian FFN. We define the spot as the boundary
spot if the marginal probabilities Pr(z; = k|-) is small for any k, and the resulting
connected area as the interactive zone.

4.4 Results

Compared with alternative methods, we found that iIMPACT achieved the high-
est consistency with the manual annotation, with an adjusted Rand index of 0.634.
Moreover, iIMPACT is able to define each spatial domain k through its underly-
ing relative abundance of cell types @,. In contrast, other methods currently lack
the ability to effectively integrate cell type information and interpret the identified
domains in a biologically meaningful way. We also demonstrated iIMPACT’s supe-
riority in a human prostate case study and a human ovarian case study, confirmed
by ground truth biological knowledge. These findings underscore the accuracy and
interpretability of iIMPACT as a new ST clustering approach, providing valuable
insights into the cellular spatial organization.

5 Conclusion

Recent advancements in deep learning have enabled us to identify and classify indi-
vidual cells or regions from digital pathology images on a large scale. This break-
through paves the way for clarifying the many roles of cell—cell interaction, tumor
shapes, and molecular features from these complex and rich data. Furthermore, it
creates a unique opportunity for statisticians to foster statistical spatial and shape
analysis rooted in model-driven research.

In this paper, we embark on a journey through three illustrative examples that
showcase how the marriage between statistics and Al leads to more explainable and
predictable paths from raw pathology images to conclusions. Example 1 concerns
the spatial modeling of Al-reconstructed pathology images. The randomly distrib-
uted cells can be considered from a marked point process. A novel Bayesian model
for characterizing spatial correlations in a multi-type spatial point pattern is pre-
sented. Example 2 concerns the statistical shape analysis. From the identified tumor
regions in an Al-reconstructed pathology image, the tumor boundary is considered
an SCPC. A novel Bayesian model is delivered to identify landmark points of the
SCPC to provide descriptive statistics and characterize tumor boundary roughness.
These two novel methodologies offer a unique perspective for comprehending the
roles of cell-cell interactions and tumor growth patterns in the context of cancer
progression. Example 3 concerns the integrative modeling of the emerging ST data,
which comprehensively characterizes the molecular and morphological contexts at a
high spatial resolution. In summary, these three examples collectively demonstrate
how biomedical research can benefit from both statistics and Al

Nowadays, statistics relies more on human analyses with computer aids, while
Al relies more on computer algorithms with aids from humans. Nevertheless,
expanding the statistics concourse at each milestone provides new avenues for Al
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and creates new insides in statistics. This paper incubates the findings initiated from
either side of statistics or Al and benefits the other. We envision that the proposed
framework uniting statistics and Al in the analysis of complex data, will find appli-
cations across a myriad of disciplines, catalyzing innovation and insight.

Funding This study was supported by National Science Foundation (Grant Nos. 2113674, 2210912) and
National Institutes of Health (Grant No. IROIGM141519-01).
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