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ABSTRACT

The observed retreat and anticipated further decline in Arctic sea ice holds strong climate, environ-
mental, and societal implications. In predicting climate evolution, ensembles of coupled climate
models have demonstrated appreciable accuracy in simulating sea-ice area trends throughout the
historical period, yet individual climate models still show significant differences in accurately repre-
senting the sea-ice thickness distribution. To better understand individual model performance in sea-
ice simulation, nine climate models were evaluated in comparison with Arctic satellite and reanalysis-
derived sea-ice thickness data, sea-ice area records, and atmospheric reanalysis data of surface wind
and air temperature. This assessment found that the simulated spatial distribution of historical sea-ice
thickness varies greatly between models and that several key limitations persist among models.
Primarily, most models do not capture the thickest regimes of multiyear ice present in the Wandel and
Lincoln seas; those that do often possess erroneous positive bias in other regions such as the Laptev
Sea or along the Eurasian Arctic Shelf. This analysis provides enhanced understanding of individual
model historical simulation performance, which is critical in informing the selection of coupled
climate model projections for dependent future modeling efforts.
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Introduction

Arctic sea ice has declined dramatically over the previous
century, foremost demonstrated by a persistent negative
trend in sea-ice area observed from 1979 to the present
(Laxon et al. 2013; Doscher, Vihma, and Maksimovich
2014; Stroeve and Notz 2018). Thinning of sea-ice
regimes has also been confirmed, as the prevalence of
perennial multiyear ice has diminished, being replaced
by seasonal first-year ice (Maslanik et al. 2007; Kwok
2018; Stroeve and Notz 2018). This first-year sea ice is
(1) thinner than perennial sea ice (Tschudi, Stroeve, and
Stewart 2016), (2) more dynamic (Kwok, Spreen, and
Pang 2013; Olason and Notz 2014; DeRepentigny et al.
2020b), and (3) further responsive to atmospheric and
oceanic forcing (Newton et al. 2017; Kwok 2018;
Overland 2020). Sea ice plays a critical role in Arctic
atmosphere and ocean processes; modifying the thermal
energy budget through high surface albedo and suppres-
sing air-sea heat, moisture, and momentum fluxes
(Forland et al. 2004; Karlsson and Svensson 2013;

Thomson and Rogers 2014; Haine et al. 2015; Goosse et
al. 2018; Mioduszewski, Vavrus, and Wang 2018; Stroeve
and Notz 2018; Casas-Prat and Wang 2020; Timmermans
and Marshall 2020). Beyond geophysical effects, reduced
Arctic sea-ice cover is anticipated to have considerable
societal effects, with potential increases in Arctic mari-
time activity (Aksenov et al., 2017; J. Chen et al. 2020;
Sibul and Jin 2021), growing regional development
(Harsem et al. 2015), and greater risk of coastal hazards
to impact Arctic communities (Barnhart, Overeem, and
Anderson 2014; Mioduszewski, Vavrus, and Wang 2018;
Williams and Erikson 2021). Because the reality of an
“ice-free” summer (sea-ice area less than 1 x 10° km?) is
predicted to occur before 2050 (J. Chen et al. 2020; SIMIP
Community 2020; Wei et al. 2020; Vavrus and Holland
2021), accurate forecasting of sea ice is crucial to facilitate
understanding and preparedness for future impacts.
Climate models participating in the Coupled Model
Intercomparison Project’s sixth phase (CMIP6) have
shown marked improvement in simulating sea-ice
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cover in comparison to prior phases. The multimodel
mean of sea-ice extent generally captures the seasonal
amplitude between March peak sea-ice area and the
September low. Yet, most models underestimate the
observed downward trend of sea-ice extent, and there
is a wide inter-model spread during the summer
months when the greatest negative trend occurs (Shu
et al. 2020; SIMIP Community 2020; Long et al. 2021;
Shen et al. 2021). Even models shown to best follow
the observed seasonal sea-ice area and volume still
experience numerous challenges in simulating the spa-
tial distribution of sea-ice thickness (Davy and Outten
2020; Watts et al. 2021).

This research seeks to assess CMIP6 climate mod-
els’ ability to simulate historic sea-ice thickness, area,
and related surface climate variables to provide a
comprehensive understanding of areas, variables,
and seasons, which these models may excel at simu-
lating or fail to simulate. Intensive effort has been
directed toward analyzing CMIP6 models’ sea-ice
cover simulation in the interest of improving climate
projection (Shu et al. 2020; SIMIP Community 2020;
Shen et al. 2021; Watts et al. 2021). This research has
found that the newest generation of models generally
represents the seasonal cycle of ice and multimodel
ensemble captures the historical trend in pan-Arctic
sea-ice loss. Yet there are substantial differences in
the regional and seasonal biases between different
models’ estimations of sea ice. In the Arctic, climate
model forecasts are crucial to stakeholders impacted
by changing sea-ice conditions and dependent Arctic
research efforts such as wave climate simulations
(Casas-Prat, Wang, and Swart 2018), Arctic maritime
transportation studies (Melia, Haines, and Hawkins
2016; J. Chen et al. 2020), and even future wildlife
habitat projections (Hamilton et al. 2014). For exam-
ple, research attempting to simulate and assess the
future Arctic Ocean wave climate could potentially
utilize multiple climate model projections of variables
as forcings, including surface winds, sea-ice concen-
tration and thickness, and even air and ocean tem-
peratures. This application and others cannot utilize
robust ensemble climate projections as inputs and are
themselves computationally expensive to produce.
Given the aforementioned large differences in regio-
nal and seasonal bias between models and that many
research efforts do not have the computational power
to employ a large multimodel ensemble, it is crucial
that research making use of climate model data con-
sider model projection characteristics and select the
appropriate model for the given application
(Wyburn-Powell, Jahn, and England 2022). Thus, by
enhancing understanding of model simulation of sea

ice and related surface climate variables (wind speed
and surface air temperature), this research is
intended to provide a broad resource for future
Arctic research reliant on the accuracy of climate
model projections. It should be recognized, however,
that accurate simulation of historic conditions does
not guarantee future projection accuracy. The
inverse, consistent bias in simulating historical con-
ditions, does imply model shortcomings, and thus the
process of model selection using historical perfor-
mance criteria is necessary and has been shown to
significantly influence the trajectory of future projec-
tions (Knutti et al. 2017; Docquier and Koenigk
2021).

To assess model simulation, historic Arctic sea ice
and related surface climate variables were evaluated
from the beginning of the satellite era to the end of the
CMIP6 historical experiment (1979-2014). The sea ice
variables assessed included sea-ice thickness (SIT) and
sea-ice area (SIA), and the surface climate variables
assessed included surface wind speed (SWS) and surface
air temperature (SAT). SWS and SAT were selected for
analysis because they are important sea ice drivers and
have pan-Arctic availability and reasonable accuracy
from atmospheric reanalysis products. These variables
were compared monthly with remote sensing derived
data, reanalysis sea ice products, and atmospheric rea-
nalysis products. SIT simulation was evaluated in com-
parison to both the Pan-Arctic Ice Ocean Modeling and
Assimilation System (PIOMAS) SIT reanalysis and
merged CryoSat-2-SMOS SIT measurements for 2011
to 2014. The National Snow and Ice Data Center
(NSIDC) Sea Ice Index (SII) was used to assess model
simulation of average monthly SIA and trends. Finally,
ERA5 atmospheric reanalysis was used in assessing
model simulation of both SAT and SWS variables.
Supplementing the pan-Arctic analysis, model simula-
tion of SIT within the Canadian Archipelago and the
nearby Baffin Bay was analyzed.

Data and methods
Model selection

Models selected for evaluation were identified from a
previous assessment that identified models that forecast
a realistic amount of sea-ice loss while concurrently simu-
lating a plausible global mean temperature change
(SIMIP Community 2020). From these previously identi-
fied models, only those that provided both SIT fields (for
spatial analysis) and the necessary variables for SIA
assessment were analyzed. The nominal horizontal reso-
lution of the analyzed climate models differs substantially.



Model resolution has been found to influence the accu-
racy of models, with higher resolution models tending to
exhibit better simulation of oceanic heat transfer
(Docquier et al. 2019). The CMIP6 historical experiment
provides historical simulation data in varying temporal
resolution; in this research, monthly averages of simu-
lated variables were assessed. Multiple simulation realiza-
tions (ranging up to ten) are available for all but two of
the models evaluated, as shown in Table 1. The use of
multiple realizations ideally reduces the effects of internal
variability, leaving only the mean state of the simulated
variable. However, the number of ensemble members
needed to accomplish this can be substantial and varies
considerably depending on the internal variability within
the variable of interest and the acceptable level of error in
estimating said variable (Milinski, Maher, and
Olonscheck 2020). This analysis is outside the scope of
the study and thus robust conclusions pertaining to the
models’ physics are indeterminate. However, previous
analysis has shown that large climate model ensembles
generally fall within the interannual variability present in
pan-Arctic sea ice, yet different models may diverge sig-
nificantly in simulating the regional and seasonal mean
state of sea ice (Wyburn-Powell, Jahn, and England 2022),
thus warranting the performed analysis.

Sea ice evaluation

SIT accuracy is assessed through comparison with the
Alfred Wegner Institute’s combined CryoSat-SMOS
(CS2SMOS) Merged Sea Ice Thickness data product
(Ricker et al. 2017) and PIOMAS sea-ice reanalysis data
set. The merged satellite data product utilizes both
CryoSat-2- and SMOS-derived SIT measurements. The
combined analysis SIT product is enhanced to measure a
greater range of SIT regimes, most notably, thin ice from
SMOS (Kwok and Cunningham 2015; X. Wang et al.
2016). The CS2SMOS SIT product provides monthly
coverage from October through April. However, full
monthly data for October and April are incomplete,

Table 1. Climate models evaluated within the study, individual
ocean grid resolution, affiliated institution, and the number of
ensemble members available/used.

Sea ice grid Ensemble
Climate model resolution Institution ID members
ACCESS-CM2 360 x 300  CSIRO-ARCCSS 5
CESM2-WACCM 384 x 324  NCAR 3
CNRM-CM6-1-HR 1,442 x 1,050 CNRM-CERFACS 1
GFDL-ESM4 720 x 576 NOAA-GFDL 1
GISS-E2-1-G 90 x 144 NASA-GISS 10
MPI-ESM-1-2-HAM 256 x 220  MPI-M 3
MPI-ESM-1-2-HR 404 x 802  HAMMOZ-Consortium 10
MRI-ESM2-0 363 X360 MRI 10
NorESM2-MM 360 x 384  NCC 3
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with the data set beginning in late October and terminat-
ing in early April; this may potentially introduce both
positive and negative biases for both monthly means. The
overlap between complete CS2SMOS data and the
CMIP6 historical experiment begins in 2011 and ends in
2014. Given the brevity in this period of assessment and
the inclusion of 2012—an anomaly, with lowest summer
sea-ice extent on record—an additional basis of assess-
ment was needed to evaluate the mean distribution of sea
ice. For this purpose, the PIOMAS SIT reanalysis was
used for SIT comparison monthly from 1979 to 2014
(Zhang and Rothrock 2003; Schweiger et al. 2011).
PIOMAS provides monthly full-year coverage and allows
for the annual sea-ice minimum occurring in September
to be analyzed. Though CS2SMOS and PIOMAS are
viable and recognized sources of data for SIT analysis,
there are still considerable sources of uncertainty in both
data sets that require further explanation. These limita-
tions and uncertainties are expanded upon in the
Discussion and conclusion section.

The process of model SIT comparison is described as
follows: (1) the average was taken across ensemble mem-
bers; (2) monthly sea-ice grids were linearly interpolated
onto either the CS2SMOS or PIOMAS grid; (3) months
were averaged across the entire analysis period, estab-
lishing a monthly SIT mean; and (4) model and refer-
ence grids were subtracted to create error maps and
derive statistical measures. Grid cells where both
model and reference agree on open water conditions
were excluded from the derivation of statistical measures
to reduce the effect of large open water areas during
summer months. Following pan-Arctic analysis, regio-
nal analysis for the Canadian Archipelago was per-
formed, and summary statistics were derived for the
area. Regional analysis limits assessment to the coordi-
nates between latitudes 60° N to 80° N and longitudes
50° W to 130° W, which effectively encompasses the
Canadian Archipelago and Baffin Bay.

Evaluation of climate model SIA is assessed with
monthly SIA values reported from the NSIDC’s SII
(Peng et al. 2013; Meier et al. 2017). Arctic SIA is derived
by multiplying sea-ice concentration (SIC) by the
respective area of the climate model grid cell and then
taking the sum of all climate model grid cells within the
Arctic. In the event that SIA was not provided as output
variable for the model, SIA was derived using the mod-
el’s SIC grid and matching ocean area grid. For all
climate models, the average of all realizations was
taken to create the ensemble mean SIA time series.
These values were then compared with the NSIDC’s
SII value to determine bias. In calculating SIA, the SII
monthly values omit the “pole hole” where satellite-
imaged SIC was historically unavailable. To allow for
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comparison, we assume that the SIC within the pole hole
is 100 percent and add the missing area onto the
monthly SIA total. Though this induces some degree of
uncertainty into our analysis, this is assumed to be
acceptable because the greatest pole hole values present
before 1987 occur above 84° N where the ice pack is
assumed to be largely consolidated at the pole and by
2007 the pole hole area is nearly negligible at the scale of
our analysis at 0.029 x 10° km®.

Surface climate evaluation

The European Center for Medium Range Forecasts’
ERA5 atmospheric reanalysis provides reference for
SAT and SWS simulation analysis. Both SAT and SWS
were analyzed in comparison to ERA5 historical atmo-
spheric climate reanalysis data product. In a study of
atmospheric reanalysis products within the Arctic,
ERAS5 or ERA-interim (predecessor to ERA5) simulated
SAT and SWS were found to have high correlation and
low error in comparison to the observed Arctic surface
climate, thus qualifying the reanalysis for use in com-
parison (Lindsay et al. 2014; Graham et al. 2019;
Demchev et al. 2020). However, it should be noted that
ERA5 possesses a warm bias under extremely cold win-
ter conditions (Graham et al. 2019; C. Wang et al. 2019;
Davy and Outten 2020; Demchev et al. 2020).

Results
Sea-ice thickness

Comparison of model-simulated monthly SIT and aver-
aged CS2SMOS observations for October and March
over the four-year period 2011 to 2014 yields bias plots
for October (Figure la) and March (Figure 1b). The
summary statistics for both months are presented in
Table 2 along with the overall statistics averaged over
October through April. CS2SMOS data are unavailable
for the annual sea-ice minimum month (September) and
does not start until the latter half of the month of
October. This potentially introduces a positive SIT bias
into the month’s average used for comparison. Despite
this, over half of the models exhibit a positive bias for
October, ranging from 16 cm to over 1 m. For most
models, this stems from an erroneous region of thick sea
ice in East Siberian and Chukchi seas, most pronounced
in the ACCESS-CM2, CESM2-WACCM, MPI-ESM-1-
2-HAM, and NorESM2-MM models. This phenomenon
has been previously observed as common to the majority
of CMIP5 models analyzed (Stroeve et al. 2014), and it is
notable that several models do not possess this feature.
The three models with the highest mean positive bias for

October are CESM2-WACCM, MPI-ESM-1-2-HAM,
and NorESM2-MM, with mean bias values of 0.31,
0.44, and 1.06 m, respectively. CESM2-WACCM calcu-
lates a region of very thick ice (>2 m) at the outer edge of
the sea-ice area for October in the Beaufort, Chukchi, an
East Siberian seas (an anomalous feature not observed in
other configurations of the model; DeRepentigny et al.
2020a), which results in the significant bias shown in
these regions (see Figure 1a). It also simulates extremely
thick ice (>6 m) at several locations within the Canadian
Archipelago. MPI-ESM-1-2-HAM shows positive bias
(>1 m) near the Laptev Sea, and the NorESM2-MM
model has significant positive bias throughout the
Arctic.

Previous climate model evaluations have shown that
models typically underestimate especially thick sea-ice
regimes. This holds true with the majority of models
evaluated, which undercalculated the thick multiyear
ice observed at the Wandel Sea, at the Lincoln Sea, and
north of the Canadian Archipelago. CESM2-WACCM
is able to simulate part of the sea-ice regime occurring
along the northern coast of Greenland, yet it under-
estimates the continuation of the field toward the pole.
MPI-ESM-1-2-HAM shows only slight underestima-
tion (= —0.5 m) of the thickest sea-ice region during
October, with bias growing into March. The only
model to overrepresent ice in this region is the
NorESM2-MM model, which shows significant posi-
tive bias throughout the Arctic. Recent research has
shown the multiyear ice dominant in this region is
more vulnerable to climate change than previously
thought (Schweiger et al. 2021) and thus may be more
responsive to climatic forcing (Overland 2020). In
March, nearly all models show improved spatial corre-
lation in comparison to October, because models typi-
cally struggle to capture the annual sea-ice minimum.
Conversely, GISS-E2-1-G spatial correlation drops sig-
nificantly from 0.72 to 0.51 from October to March;
this is primarily attributed to significant overestimation
of March sea-ice area far into southern Bering Sea and
extending into the Pacific Ocean. All models show
positive bias of varying magnitude and extent in the
Laptev Sea and commonly extending into the East
Siberian Sea. Models maintaining a correlation of r >
0.8 overall are CNRM-CM6-1-HR, GFDL-ESM4, MPI-
ESM-1-2-HAM, and MPI-ESM-1-2-HR. Of these,
MPI-ESM-1-2-HR shows the lowest mean bias and
the highest correlation coefficient.

Supplementing the comparison via CS2SMOS data,
climate models were evaluated using the extended
PIOMAS sea-ice reanalysis for 1979 to 2014. Differing
in this step of assessment, September monthly averages
are compared rather than October, which is used for
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ACCESS-CM2 CESM2- WACCM CNRM-CM6-1-HR

(@)

ACCESS CM2

r

(b)

Figure 1. Sea-ice thickness bias (m) between model ensemble mean and CS2SMOS for (a) October and (b) March over the period 2011
to 2014.
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ACCESS- CM2 CESM2-WACCM CNRM-CMé6-1-HR

(@)

(b)

Figure 2. Sea-ice thickness bias (m) between model ensemble mean and PIOMAS for (a) October and (b) March over the period 2011 to
2014.
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Table 2. Statistics of error between each model's ensemble average and the reference CS2SMOS Analysis sea-ice thickness (SIT) for the
individual months of October and March and an average of winter months (October through April) 2011 to 2014.

Model ACCESS-CM2  CESM2-WACCM CNRM-CM6-1-HR  GFDL-ESM4  GISS-E2-1-G  MPI-ESM-1-2-HAM  MPI-ESM-1-2-HR  MRI-ESM2-0 NORESM2-MM
October
RMSE 0.62 0.93 0.68 0.52 0.35 0.72 0.46 0.53 1.41
Mean bias 0.27 0.31 —0.34 -0.19 0.17 0.44 —0.09 -0.10 1.06
R 0.66 0.28 0.77 0.80 0.72 0.72 0.85 0.74 0.65
March
RMSE 0.68 0.77 0.57 0.57 0.90 0.66 0.55 0.58 1.16
Mean bias 0.34 0.22 -0.13 -0.09 0.66 0.29 0.08 0.08 0.80
R 0.79 0.67 0.83 0.81 0.51 0.83 0.82 0.79 0.76
Average (October—April)
RMSE 0.64 0.76 0.58 0.53 0.72 0.64 0.51 0.54 1.18
Mean bias 0.28 0.15 -0.20 -0.12 0.48 0.30 0.01 -0.03 0.81
R 0.77 0.61 0.80 0.80 0.54 0.81 0.82 0.78 0.74

Note. RMSE and mean bias in meters.

CS2SMOS. Figure 2 shows almost all models possess
increased agreement with PIOMAS; suspected drivers
of this result include the lengthened time series and the
fact that PIOMAS itself exhibits bias in several regions
common to climate models, including the aforemen-
tioned positive bias in the East Siberian and Chukchi
seas (Stroeve et al. 2014). Three models (ACCESS-CM2,
CESM2-WACCM, MPI-ESM-1-2-HAM) simulate the
thick sea ice north of Greenland, with negative bias less
than >1 m in both March and September; all other
models underestimate SIT in this region with the excep-
tion of NorESM2-MM, which has a pan-Arctic positive
bias. Similar to the CS2SMOS comparison for October,
CESM2-WACCM again has erroneously high SIT at the
outer edge of the September sea-ice area, which drives
the low correlation and high bias. Though MPI-ESM-1-
2-HR performed best in comparison to CS2SMOS over-
all, MPI-ESM-1-2-HAM and GISS-E2-1-G performed
markedly better in comparison to PIOMAS. The
improved correlation coefficient of GISS-E2-1-G listed
in Table 3 is notable, because this model exhibited the
lowest correlation with CS2SMOS data. Further inspec-
tion of this result showed that this model exhibited
negative bias in comparison to PIOMAS and large

positive bias in comparison to the CS2SMOS data, sug-
gesting that the model may not capture the thinning of
sea-ice regimes in later years.

Canadian Archipelago sea-ice thickness

CMIP6 climate models have demonstrated positive biases
for SIT within the Canadian Archipelago (Davy and
Outten 2020). Investigating the performance of individual
models in this region is relevant to understanding future
development and maritime travel along Arctic sea routes
such as the Northwest Passage. Our analysis in compar-
ison to PIOMAS and the localized summary statistics in
this area defined by latitudes 60° N to 80° N and long-
itudes 50° W to 130° W are provided in Table 4. CNRM-
CM6-1-HR, GFDL-ESM4, GISS-E2-1-G, and MPI-ESM-
1-2-HAM models had a correlation coefficient of r > 0.8,
with MPI-ESM-1-2-HAM having the lowest root mean
square error (RMSE; as it did for the pan-Arctic assess-
ment). The majority of models showed positive bias
through most of the Canadian Archipelago, yet the
three models with highest resolution (CNRM-CM6-1-
HR, GFDL-ESM4, MPI-ESM-1-2-HR) trended toward
negative bias for most of the region. These three models

Table 3. Statistics of error between each model’s ensemble average and the reference PIOMAS reanalysis sea-ice thickness (SIT) for the
individual months of September and March; and an average of all months 1979 through 2014.

Model ACCESS-CM2 CESM2-WACCM CNRM-CM6-1-HR GFDL-ESM4  GISS-E2-1-G MPI-ESM-1-2-HAM  MPI-ESM-1-2-HR  MRI-ESM2-0 NORESM2-MM
September

RMSE 1.04 1.57 1.02 0.90 0.68 0.66 0.64 0.70 2.01
Mean bias 0.68 1.05 —-0.68 —-0.59 -0.30 0.31 -0.30 0.07 1.65
R 0.72 0.45 0.82 0.75 0.87 0.84 0.87 0.76 0.67
March

RMSE 0.76 0.89 0.93 0.84 0.67 0.60 0.67 0.69 1.31
Mean bias 0.27 0.15 —-0.60 —-0.53 -0.23 0.01 -0.24 -0.42 0.77
R 0.83 0.73 0.87 0.86 0.89 0.87 0.88 0.93 0.78
Annual

RMSE 0.91 113 0.96 0.83 0.66 0.60 0.65 0.73 1.61
Mean bias 0.46 0.44 -0.63 -0.51 -0.23 0.12 —0.24 -0.21 1.1
R 0.78 0.62 0.85 0.84 0.89 0.87 0.87 0.82 0.73

Note. RMSE and mean bias in meters.
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Table 4. Regional summary statistics of error for the Canadian Archipelago and Baffin Bay between each climate model and the reference
PIOMAS sea-ice thickness (SIT) comparison for September 1979 to 2014.

Model ACCESS-CM2 CESM2-WACCM  CNRM-CM6-1-HR  GFDL-ESM4  GISS-E2-1-G  MPI-ESM-1-2-HAM  MPI-ESM-1-2-HR  MRI-ESM2-0 NORESM2-MM
September

RMSE 0.93 1.70 0.90 0.98 0.72 0.62 0.74 0.69 1.81
Mean bias —0.01 0.53 —0.62 —0.75 -0.29 —0.07 —0.34 —0.09 0.95

R 0.61 0.45 0.80 0.80 0.80 0.82 0.78 0.77 0.64

Note. RMSE and mean bias in meters.

have similar SIT spatial distributions, as seen in Figure 3,
and possess a strong negative bias in the Queen Elizabeth
Islands in the northern part of the archipelago. GISS-E2-
1-G trends toward overestimation of SIT throughout the
region, with several isolated locations of intense SIT along
the western part of Baffin Bay. As the model with coarsest
spatial resolution, GISS-E2-1-G’s high correlation coeffi-
cient, comparable to that of the high-resolution models
(CNRM-CM6-1-HR, MPI-ESM-1-2-HR) is unexpected,
because model resolution would be expected to be a key
factor in simulating sea-ice dynamics within the region
(Docquier et al. 2019). Within the northern part of the
Canadian Archipelago, CESM2-WACCM simulates loca-
lized extreme SIT values exceeding 10 m; this in part

ACCESS-CM2

CESM2-WACCM

drives the poor spatial correlation and high error statistics
for this model. By applying an SIT cutoff at 6 m (such as
that applied by Watts et al. 2021), the model performance
is improved markedly, because the correlation coefficient
rises to 0.52 and the RMSE and mean bias fall to 1.3 m
and 44 cm, respectively.

Sea-ice area

Sea ice coverage within the Arctic is a critical parameter in
governing Arctic surface exchange of heat, mass, and
momentum and thus has been the topic of several
CMIP6 and CMIP5 studies (Shu et al. 2020; Shen et al.
2021). The current generation of CMIP6 climate models

CNRM-CM6-1-HR

2
~—_

Figure 3. Sea-ice thickness bias (m) between model ensemble mean and PIOMAS for September within the Canadian Archipelago
1979 to 2014. The delineation boundary is shown for selection of data used in deriving statistical measures.
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Figure 4. Average monthly sea-ice area (SIA) bias for each climate model over the period 1979 to 2014. (b) Observed and simulated
September SIA linear trend compared to the NSIDC record. GISS-E2-1-G is only shown in plot (a) for fall months, because error for this

model exceeds +2.6 x 10° km? for all other months and exceeds plot bounds.

typically overrepresents SIA during both the seasonal
maximum during March and the annual minimum dur-
ing September (Shu et al. 2020). In this analysis, the
majority of models overestimate SIA throughout the
year with the exception of MPI-ESM-1-2-HR and MRI-
ESM2-0, which both underestimate SIA in summer and
fall months, as seen in Figure 4. GISS-E2-1-G shows
considerably large positive bias through all months and
largely exceeds the bounds of the bias plot shown on the
left side of Figure 4. Examining the percentage error
statistics shown in Table 5, the only models to achieve a
mean absolute percentage error <5 percent over the
annual cycle are CESM2-WACCM, GFDL-ESM4, and
MPI-ESM-1-2-HAM. In comparison to winter months,
models are observed to struggle in capturing the
September SIA low, because all models’ percentage errors
for this month rise significantly, with the exception of

CESM2-WACCM at —0.04 percent. The observed and
simulated linear trends in SIA loss for the month of
September from 1979 to 2014 are shown in Figure 4b,
and corresponding statistics are provided in Table 5. The
best-fit line to observed SII September SIA has a slope of
-0.79 x 10° km*/decade, which is well captured by the
model ACCESS-CM2 despite overrepresenting SIA for
this month on average by approximately 0.6 x 10° km?.
All models except for this one and CESM2-WACCM
underestimate the rate of SIA decline for this period,
which may contribute to the observed overestimation of
SIA the majority of models show in this month.

Surface air temperature

The summary statistics derived from SAT analysis are
presented in Table 6. Correlation coefficients are

Table 5. Model percentage error in comparison to the NSIDC observations in the September sea-ice area (SIA) linear trend (10° km?%/

decade) for the period 1979 to 2014.

Model ACCESS-CM2 CESM2-WACCM CNRM-CM6-1-HR GFDL-ESM4  GISS-E2-1-G  MPI-ESM-1-2-HAM  MPI-ESM-1-2-HR  MRI-ESM2-0 NORESM2-MM
March 15 3 7 1 24 4 2 2 4

September 14 0 15 1 62 7 -20 -19 42
Mean absolute 12 4 9 4 36 3 8 7 16
percentage error

September SIA -0.79 -1.15 —0.44 —-0.57 -0.57 —-0.59 —-0.61 —-0.72 -0.37
linear trend

(10°km?/decade)
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omitted from the statistical measure, because all
models maintain annual correlation 20.97 when com-
pared with ERA5 data. Examining mean error, all
models except for MRI-ESM2-0 have negative annual
bias. As previously mentioned, this is most likely
driven by a previously acknowledged positive bias
in ERA5 Arctic temperatures during the coldest win-
ter months and further evidenced by the large nega-
tive mean bias values for the month of March shown
in Table 6. Considering the potential effect this bias
may have during colder months, assessment should
prioritize September SAT performance where the
ERAS5 negative bias is not present and climate
model mean bias values are more evenly distributed.

Temperature bias contour maps for the month of
September can be seen in Figure 5. For September,
the model with the lowest RMSE and mean bias is
MPI-ESM-1-2-HR, at 1.0°C and —-0.1°C, respectively.
Examining the spatial bias of this model in Figure 5,
it overestimates temperature for most of the seas
surrounding Greenland and within the Canadian
Archipelago (a feature observed in the majority of
models) yet has minimal underestimation for the
remainder of the Arcticc. CNRM-CM6-1-HR, GFDL-
ESM4, MPI-ESM-1-2-HAM, MPI-ESM-1-2-HR, and
MRI-ESM2-0 all exhibit similar trends in high posi-
tive bias through the Canadian Archipelago, Baffin
Bay, and Greenland Sea. GISS-E2-1 G, ACCESS-
CM2, and MPI-ESM-1-2-HAM have consistent pan-
Arctic negative bias, and ACCESS-CM2 and MPI-
ESM-1-2-HAM also have large areas of negative
bias reaching from the North Pole through the East
Siberian Sea and into the Bearing Sea. MRI-ESM2-0
has the lowest mean annual bias of 0.2°C and is even
with MPI-ESM-1-2-HR, with the lowest annual
RMSE of 1.9°C. Investigating this result, the model
shows minimal error during winter months (a result
potentially driven by positive bias in ERA5 winter
temperatures which are expanded wupon the
Discussion and Conclusion section) as shown for
the month of March in Table 6. The previously

discussed SAT positive bias within ERA5 under
extreme cold weather may have had a significant
influence in this result and thus demands future
investigation and confirmation.

Surface wind speed

Analysis of SWS yields the summary statistics shown in
Table 7. The spread in annual RMSE between models is
less than 0.7 m/s and the range in annual bias values
does not exceed 2 m/s. MPI-ESM-1-2-HR maintains
the lowest RMSE out of all the models for September,
March, and annually. Most models show improved
correlation for March in comparison to September,
with GFDL-ESM4 experiencing the largest improve-
ment. Despite this, five out of the nine models show
an increase in RMSE for this month. Because the ERA5
average of wind speeds for this month is approximately
0.5 m/s greater than September, this explains why cer-
tain models might show improved correlation for
March while simultaneously exhibiting increased bias
or RMSE.

In Figure 6, the spatial bias contours can be used to
elucidate the September statistics provided in Table 7.
CNRM-CM6-1-HR and MRI-ESM2-0 immediately
stand out as exhibiting pervasive positive bias not only
for oceanic regions but also within coastal areas. A
common feature in many of the models shown is a
tendency for coastal areas to have considerable negative
bias. This can be observed for the majority of models in
the Beaufort Sea or along the southeast coast of
Greenland. MPI-ESM-1-2-HR noticeably shows little
bias exceeding 0.5 m/s.

Analyzing the March wind field bias shown in Figure
7, many models show areas of intense negative or posi-
tive bias in certain regions that were not observed in
September. For example, the Fram Strait reaching
toward the Greenland Sea is underestimated by almost
all models, with bias exceeding —2 m/s for certain mod-
els. Conversely, most models show strong localized

Table 6. Summary statistics for each climate model’s surface air temperature (°C) compared with ERA5 monthly surface air temperature

within the region from 1979 to 2014.

Model ACCESS-CM2 CESM2-WACCM CNRM-CM6-1-HR  GFDL-ESM4  GISS-E2-1-G = MPI-ESM-1-2-HAM  MPI-ESM-1-2-HR  MRI-ESM2-0 NorESM2-MM
September
RMSE 25 1.5 1.7 1.2 4.1 24 1.0 1.6 1.6
Mean bias =22 0.6 -1.2 0.7 -39 -2.0 -0.1 1.4 -1.2
March
RMSE 7.2 3.0 6.6 6.1 8.7 5.8 24 1.6 5.8
Mean bias -6.8 -2.0 -5.9 -5.2 -7.8 -5.0 -1.7 -0.4 -5.3
Annual
RMSE 5.1 2.2 4.7 39 58 3.8 1.9 1.9 4.4
Mean bias —4.1 -0.8 3.7 2.4 —-4.8 -29 -0.6 0.2 -3.5

Note. RMSE and mean bias in °C.
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Figure 5. Surface air temperature bias for the month of September averaged over 1979 to 2014. Temperatures over land were excluded

from analysis and masked over for mapping.

positive bias for SWS in Baffin Bay while showing mini-
mal or even negative bias in the surrounding areas.
Despite this, four models show reduced RMSE for
March in comparison to September even with several
of these models demonstrating the observed intensified
areas of bias. Moreover, all models show equal or greater

correlation coefficients for this month in comparison to
the fall. These results highlight the importance of under-
standing model seasonal and regional bias in estimating
the mean state of a variable specific to an application
because pan-Arctic or annual metrics may not capture
regional or seasonal bias.

Table 7. Summary statistics for each climate model’s surface wind speed simulation with ERA5 monthly surface wind speed within the

region north of 60° N from 1979 to 2014.

Model ACCESS-CM2  CESM2-WACCM  CNRM-CM6-1-HR  GFDL-ESM4  GISS-E2-1-G MPI-ESM-1-2-HAM  MPI-ESM-1-2-HR  MRI-ESM2-0 NORESM2-MM
September
RMSE 0.79 0.33 0.68 0.63 0.49 0.70 0.29 1.02 0.51
Mean bias —-0.63 —-0.08 0.62 0.35 —-0.24 —-0.60 —-0.05 0.99 -0.41
R 0.90 0.93 0.93 0.75 0.84 0.91 0.93 0.95 0.95
March
RMSE 0.69 0.68 0.46 0.51 0.74 0.57 0.44 1.27 1.03
Mean bias —-0.40 -0.42 0.21 0.13 -0.37 —0.40 -0.19 1.22 —-0.92
R 0.91 0.94 0.96 0.93 0.88 0.96 0.96 0.97 0.95
Annual
RMSE 0.75 0.63 0.56 0.54 0.62 0.69 0.41 1.07 0.94
Mean bias —-0.51 -0.39 0.37 0.13 -0.23 —-0.54 -0.16 0.99 -0.73
R 0.90 0.93 0.94 0.90 0.88 0.95 0.95 0.96 0.89

Note. RMSE and mean bias in meters per second.
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Figure 6. Monthly surface wind speed bias averaged for September 1979 through 2014. Only surface winds corresponding to oceanic

grid cells were considered for analysis.

Discussion and conclusion

Assessment of climate model historical simulation of SIT
shows that the spatial distribution diverges greatly between
models. Mean annual SIT bias derived from comparison to
PIOMAS ranges from —0.63 to 1.11 m, and the comparison
from CS2SMOS vyields winter SIT bias ranging from —0.2
to 0.81 m. Models have improved spatial correlation with
PIOMAS compared to CS2SMOS; these results are par-
tially expected, because PIOMAS shares several regions of
inaccurate simulated SIT common to the climate models
(Stroeve et al. 2014). Yet this may also stem from the
brevity of the CS2SMOS time series used to establish the
mean monthly SIT distribution and the inclusion of the
anomalous 2012 September sea-ice minimum. Despite the
considerable inter-model variance observed, there are sev-
eral trends common to the majority of models. Foremost,
many of the models that otherwise show minimal error
throughout most of the Arctic fail to simulate the thickest
sea-ice regimes at the Lincoln Sea and extending toward
north of the Canadian Archipelago. This strong negative

bias (<-1 m) is present year-round for more than half the
models. Notably, however, this bias is reduced for
CS2SMOS in comparison to PIOMAS; suggesting that
the models are perhaps more capable of simulating thinner
ice (more sensitive to climate and oceanic forcing;
Overland 2020) in the latter part of the time series.

SIA evaluation shows that all models are capable of
simulating the basic timing of the seasonal cycle, with
maximum SIA occurring in March and the minimum
occurring in September. However, our analysis demon-
strates that the majority of models consistently over-
estimate Arctic SIA throughout the year, with all
models showing positive bias during winter months
and the majority of models continuing to overestimate
SIA into the summer and fall. In particular, models
struggle to capture September SIA, because the inter-
model average absolute percentage error exceeds 20
percent for this month. Two models that defy this
trend and show single-digit percentage error values for
September are CESM2-WACCM at 0 percent and MPI-
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Figure 7. Monthly surface wind speed bias averaged for March 1979 through 2014. Only surface winds corresponding to oceanic grid

cells were considered for analysis.

ESM-1-2-HAM at +7 percent. Examining trends in
September SIA, all models except for two (ACCESS-
CM2 and CESM2-WACCM) underestimate the rate of
sea-ice decline. This in part contributes to the observed
positive bias many models show for September SIA,
because it can be observed in Figure 4b that GFDL-
ESM4, CNRM-CM6-1-HR, and MPI-ESM-1-2-HAM
begin the time series close to the SII yet diverge over
time because they underrepresent the trend in SIA loss.

There are considerable uncertainties associated with sea-
ice analysis. Despite nearly uninterrupted monthly satellite
SIC measurements since 1978, the retrieval algorithms and
processing can result in considerable spread between sea-ice
extent estimates, which may vary by as much as 1 x 10° km*
(well within the mean derived bias for several models) during
the summer season (Chevallier et al. 2017; Meier and Stewart
2019). Pan-Arctic satellite SIT observations are only available
during winter months and experience further issues with
algorithms relying on estimates of snow depth (Bunzel,
Notz, and Pedersen 2018) and other spatially varying para-
meters contributing to significant uncertainty. Though

PIOMAS is commonly used in place of SIT measurements
due to its ability to provide year-round estimates of SIT, it
should be noted that this model assimilates SIC and climate
variables, inheriting uncertainty from both and fully simulat-
ing SIT (Schweiger et al. 2011; Chevallier et al. 2017). Despite
the limitations inherent to comparison data sets, our assess-
ment makes use of recognized data products that are com-
monly employed within this research application (Watts et
al. 2021; Zhou, Wang, and Huang 2022; L. Chen et al. 2023).

SAT comparison between climate models and ERA5
shows that nearly all models have an annual cold bias and
an especially strong negative bias during March, where
the inter-model bias ranges from -0.4°C to -7.8°C,
although this result is believed to be driven in part by
warm bias present in the ERA5 data set used in climate
model assessment. Several studies have confirmed that
ERA5 or ERA-Interim (predecessor to ERA5) possesses
an Arctic SAT warm bias (+3.9°C to +5.4°C) during the
winter months in extreme cold weather conditions (e.g.,
Graham et al. 2019; C. Wang et al. 2019; Demchev et al.
2020). The exact spatial and temporal characteristics of
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this warm bias are unclear and thus cannot be corrected,
yet it is clear that the warm bias grows as air temperatures
become colder, peaking in winter months at high lati-
tudes. For this reason, emphasis in assessment should be
placed on warmer months, such as the metrics derived for
September. For September, the range of bias spans from
-3.9°C to 1.4°C for the models GISS-E2-1-G and MRI-
ESM2-0, respectively. Model simulations of wind show
that most models have reliably high correlation values and
annual bias not exceeding 1 m/s. Most models commonly
underestimate SWS in coastal areas, and only two models
exhibit a pervasive positive bias. MPI-ESM-1-2-HR has
the lowest RMSE through all seasons and the highest
annual correlation. Contrasting September and March,
the latter commonly showed localized areas of intense
bias in comparison to the former, even for models that
performed better during March. Model representation of
wind is an important aspect to consider for regional
stakeholders, because in the absence of sea ice, surface
wind primarily determines wave climate. Though SWS
was analyzed within this study, changing storm climatol-
ogy and wind direction are important considerations in
the full evaluation of a regional wind climate but are
beyond the scope of this study with pan-Arctic focus.

It is important to note that this assessment compared
ensemble-averaged climate models but did not provide
assessment of ensemble spread, because the majority of
climate models analyzed did not possess more than three
available realizations. The climate model ensemble spread
of both sea-ice extent and volume variables has been pre-
viously provided by Notz and SIMIP Community (2020).
In this analysis, models with a higher number of realizations
should provide a more balanced representation of the mean
Arctic climate and thus perform better with diminished
internal variability within the ensemble mean. Conversely,
this consideration is also key in contextualizing the perfor-
mance of models with few or only one realization, because
model performance may largely be a result of quasi-random
internal climate variability. Nonetheless, analysis of models
with limited ensemble members is still valuable because
such models may be included within multimodel frame-
works to create robust future estimates of sea ice-change
(Frankcombe et al. 2018). Additionally, many utilizations of
climate model output such as dynamic downscaling
(Bieniek, Erikson, and Kasper 2022) or ocean modeling
(Erikson et al. 2020) cannot make use of ensemble means
as inputs or lack the computational power to form large
ensembles. In this context, careful selection of models that
do not contain significant biases in the variables or region of
interest is crucial, and thus evaluations of models with even
a single realization is still valuable, particularly when con-
sidering that high-resolution configurations of climate
models frequently do not provide large ensembles.

Climate model simulation of historical Arctic SIT, area,
SWS, and temperature were analyzed against satellite, sea-
ice reanalysis, and atmospheric reanalysis data to derive
skill metric statistic and bias contour maps. Coupled cli-
mate models represent an invaluable source of future cli-
mate data for regional modeling and research efforts.
Individual climate models participating within CMIP6
may diverge substantially in ability to simulate historical
sea ice and related climate variables, thus contributing to
the uncertainty in projecting the future sea-ice decline. By
this rationale, the evaluation and understanding of indivi-
dual model historical simulation is essential to model selec-
tion. Models were shown to present considerable
differences in simulating the spatial distribution of SIT
within the Arctic, and no one model could be identified
as reliably presenting a totally resolved sea-ice distribution
representing observed conditions. Nonetheless, results and
conclusions of this study contribute to the body of knowl-
edge on climate model performance and may be used to
inform model selection for Arctic research. In comparison
to CS2SMOS satellite data, MPI-ESM-1-2-HR led in all
performance metrics overall and presented competitive
performance in comparison to PIOMAS. In addition, this
model’s SWS ensemble mean demonstrates the lowest
overal RMSE and the lowest mean bias during the
September sea-ice minimum, with very few regions show-
ing absolute bias over 1 m/s. For SAT, MRI-ESM2-0 pre-
sents the lowest annual mean bias and RMSE, an outcome
largely resulting from the significant biases most models
show during March and other winter months. In
September SAT, the MPI-ESM-1-2-HR ensemble mean
again excels in capturing the mean SAT climate, showing
the lowest mean bias and RMSE at —0.1°C and 1°C, respec-
tively. Considering the rapid climate change in the Arctic,
the ability to accurately predict the evolution and decline of
sea ice within this region is crucial to predicting the time-
line and scope of effects that will be felt worldwide. The
findings in this study are thus presented with the intention
of aiding regional Arctic research reliant on climate model
forecasting data.
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