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ABSTRACT
The observed retreat and anticipated further decline in Arctic sea ice holds strong climate, environ
mental, and societal implications. In predicting climate evolution, ensembles of coupled climate 
models have demonstrated appreciable accuracy in simulating sea-ice area trends throughout the 
historical period, yet individual climate models still show significant differences in accurately repre
senting the sea-ice thickness distribution. To better understand individual model performance in sea- 
ice simulation, nine climate models were evaluated in comparison with Arctic satellite and reanalysis- 
derived sea-ice thickness data, sea-ice area records, and atmospheric reanalysis data of surface wind 
and air temperature. This assessment found that the simulated spatial distribution of historical sea-ice 
thickness varies greatly between models and that several key limitations persist among models. 
Primarily, most models do not capture the thickest regimes of multiyear ice present in the Wandel and 
Lincoln seas; those that do often possess erroneous positive bias in other regions such as the Laptev 
Sea or along the Eurasian Arctic Shelf. This analysis provides enhanced understanding of individual 
model historical simulation performance, which is critical in informing the selection of coupled 
climate model projections for dependent future modeling efforts.
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Introduction

Arctic sea ice has declined dramatically over the previous 
century, foremost demonstrated by a persistent negative 
trend in sea-ice area observed from 1979 to the present 
(Laxon et al. 2013; Doscher, Vihma, and Maksimovich 
2014; Stroeve and Notz 2018). Thinning of sea-ice 
regimes has also been confirmed, as the prevalence of 
perennial multiyear ice has diminished, being replaced 
by seasonal first-year ice (Maslanik et al. 2007; Kwok 
2018; Stroeve and Notz 2018). This first-year sea ice is 
(1) thinner than perennial sea ice (Tschudi, Stroeve, and 
Stewart 2016), (2) more dynamic (Kwok, Spreen, and 
Pang 2013; Olason and Notz 2014; DeRepentigny et al. 
2020b), and (3) further responsive to atmospheric and 
oceanic forcing (Newton et al. 2017; Kwok 2018; 
Overland 2020). Sea ice plays a critical role in Arctic 
atmosphere and ocean processes; modifying the thermal 
energy budget through high surface albedo and suppres
sing air–sea heat, moisture, and momentum fluxes 
(Førland et al. 2004; Karlsson and Svensson 2013; 

Thomson and Rogers 2014; Haine et al. 2015; Goosse et 
al. 2018; Mioduszewski, Vavrus, and Wang 2018; Stroeve 
and Notz 2018; Casas-Prat and Wang 2020; Timmermans 
and Marshall 2020). Beyond geophysical effects, reduced 
Arctic sea-ice cover is anticipated to have considerable 
societal effects, with potential increases in Arctic mari
time activity (Aksenov et al., 2017; J. Chen et al. 2020; 
Sibul and Jin 2021), growing regional development 
(Harsem et al. 2015), and greater risk of coastal hazards 
to impact Arctic communities (Barnhart, Overeem, and 
Anderson 2014; Mioduszewski, Vavrus, and Wang 2018; 
Williams and Erikson 2021). Because the reality of an 
“ice-free” summer (sea-ice area less than 1 × 106 km2) is 
predicted to occur before 2050 (J. Chen et al. 2020; SIMIP 
Community 2020; Wei et al. 2020; Vavrus and Holland 
2021), accurate forecasting of sea ice is crucial to facilitate 
understanding and preparedness for future impacts.

Climate models participating in the Coupled Model 
Intercomparison Project’s sixth phase (CMIP6) have 
shown marked improvement in simulating sea-ice 
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cover in comparison to prior phases. The multimodel 
mean of sea-ice extent generally captures the seasonal 
amplitude between March peak sea-ice area and the 
September low. Yet, most models underestimate the 
observed downward trend of sea-ice extent, and there 
is a wide inter-model spread during the summer 
months when the greatest negative trend occurs (Shu 
et al. 2020; SIMIP Community 2020; Long et al. 2021; 
Shen et al. 2021). Even models shown to best follow 
the observed seasonal sea-ice area and volume still 
experience numerous challenges in simulating the spa
tial distribution of sea-ice thickness (Davy and Outten 
2020; Watts et al. 2021).

This research seeks to assess CMIP6 climate mod
els’ ability to simulate historic sea-ice thickness, area, 
and related surface climate variables to provide a 
comprehensive understanding of areas, variables, 
and seasons, which these models may excel at simu
lating or fail to simulate. Intensive effort has been 
directed toward analyzing CMIP6 models’ sea-ice 
cover simulation in the interest of improving climate 
projection (Shu et al. 2020; SIMIP Community 2020; 
Shen et al. 2021; Watts et al. 2021). This research has 
found that the newest generation of models generally 
represents the seasonal cycle of ice and multimodel 
ensemble captures the historical trend in pan-Arctic 
sea-ice loss. Yet there are substantial differences in 
the regional and seasonal biases between different 
models’ estimations of sea ice. In the Arctic, climate 
model forecasts are crucial to stakeholders impacted 
by changing sea-ice conditions and dependent Arctic 
research efforts such as wave climate simulations 
(Casas-Prat, Wang, and Swart 2018), Arctic maritime 
transportation studies (Melia, Haines, and Hawkins 
2016; J. Chen et al. 2020), and even future wildlife 
habitat projections (Hamilton et al. 2014). For exam
ple, research attempting to simulate and assess the 
future Arctic Ocean wave climate could potentially 
utilize multiple climate model projections of variables 
as forcings, including surface winds, sea-ice concen
tration and thickness, and even air and ocean tem
peratures. This application and others cannot utilize 
robust ensemble climate projections as inputs and are 
themselves computationally expensive to produce. 
Given the aforementioned large differences in regio
nal and seasonal bias between models and that many 
research efforts do not have the computational power 
to employ a large multimodel ensemble, it is crucial 
that research making use of climate model data con
sider model projection characteristics and select the 
appropriate model for the given application 
(Wyburn-Powell, Jahn, and England 2022). Thus, by 
enhancing understanding of model simulation of sea 

ice and related surface climate variables (wind speed 
and surface air temperature), this research is 
intended to provide a broad resource for future 
Arctic research reliant on the accuracy of climate 
model projections. It should be recognized, however, 
that accurate simulation of historic conditions does 
not guarantee future projection accuracy. The 
inverse, consistent bias in simulating historical con
ditions, does imply model shortcomings, and thus the 
process of model selection using historical perfor
mance criteria is necessary and has been shown to 
significantly influence the trajectory of future projec
tions (Knutti et al. 2017; Docquier and Koenigk 
2021).

To assess model simulation, historic Arctic sea ice 
and related surface climate variables were evaluated 
from the beginning of the satellite era to the end of the 
CMIP6 historical experiment (1979–2014). The sea ice 
variables assessed included sea-ice thickness (SIT) and 
sea-ice area (SIA), and the surface climate variables 
assessed included surface wind speed (SWS) and surface 
air temperature (SAT). SWS and SAT were selected for 
analysis because they are important sea ice drivers and 
have pan-Arctic availability and reasonable accuracy 
from atmospheric reanalysis products. These variables 
were compared monthly with remote sensing derived 
data, reanalysis sea ice products, and atmospheric rea
nalysis products. SIT simulation was evaluated in com
parison to both the Pan-Arctic Ice Ocean Modeling and 
Assimilation System (PIOMAS) SIT reanalysis and 
merged CryoSat-2-SMOS SIT measurements for 2011 
to 2014. The National Snow and Ice Data Center 
(NSIDC) Sea Ice Index (SII) was used to assess model 
simulation of average monthly SIA and trends. Finally, 
ERA5 atmospheric reanalysis was used in assessing 
model simulation of both SAT and SWS variables. 
Supplementing the pan-Arctic analysis, model simula
tion of SIT within the Canadian Archipelago and the 
nearby Baffin Bay was analyzed.

Data and methods

Model selection

Models selected for evaluation were identified from a 
previous assessment that identified models that forecast 
a realistic amount of sea-ice loss while concurrently simu
lating a plausible global mean temperature change 
(SIMIP Community 2020). From these previously identi
fied models, only those that provided both SIT fields (for 
spatial analysis) and the necessary variables for SIA 
assessment were analyzed. The nominal horizontal reso
lution of the analyzed climate models differs substantially. 
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Model resolution has been found to influence the accu
racy of models, with higher resolution models tending to 
exhibit better simulation of oceanic heat transfer 
(Docquier et al. 2019). The CMIP6 historical experiment 
provides historical simulation data in varying temporal 
resolution; in this research, monthly averages of simu
lated variables were assessed. Multiple simulation realiza
tions (ranging up to ten) are available for all but two of 
the models evaluated, as shown in Table 1. The use of 
multiple realizations ideally reduces the effects of internal 
variability, leaving only the mean state of the simulated 
variable. However, the number of ensemble members 
needed to accomplish this can be substantial and varies 
considerably depending on the internal variability within 
the variable of interest and the acceptable level of error in 
estimating said variable (Milinski, Maher, and 
Olonscheck 2020). This analysis is outside the scope of 
the study and thus robust conclusions pertaining to the 
models’ physics are indeterminate. However, previous 
analysis has shown that large climate model ensembles 
generally fall within the interannual variability present in 
pan-Arctic sea ice, yet different models may diverge sig
nificantly in simulating the regional and seasonal mean 
state of sea ice (Wyburn-Powell, Jahn, and England 2022), 
thus warranting the performed analysis.

Sea ice evaluation

SIT accuracy is assessed through comparison with the 
Alfred Wegner Institute’s combined CryoSat-SMOS 
(CS2SMOS) Merged Sea Ice Thickness data product 
(Ricker et al. 2017) and PIOMAS sea-ice reanalysis data 
set. The merged satellite data product utilizes both 
CryoSat-2- and SMOS-derived SIT measurements. The 
combined analysis SIT product is enhanced to measure a 
greater range of SIT regimes, most notably, thin ice from 
SMOS (Kwok and Cunningham 2015; X. Wang et al. 
2016). The CS2SMOS SIT product provides monthly 
coverage from October through April. However, full 
monthly data for October and April are incomplete, 

with the data set beginning in late October and terminat
ing in early April; this may potentially introduce both 
positive and negative biases for both monthly means. The 
overlap between complete CS2SMOS data and the 
CMIP6 historical experiment begins in 2011 and ends in 
2014. Given the brevity in this period of assessment and 
the inclusion of 2012—an anomaly, with lowest summer 
sea-ice extent on record—an additional basis of assess
ment was needed to evaluate the mean distribution of sea 
ice. For this purpose, the PIOMAS SIT reanalysis was 
used for SIT comparison monthly from 1979 to 2014 
(Zhang and Rothrock 2003; Schweiger et al. 2011). 
PIOMAS provides monthly full-year coverage and allows 
for the annual sea-ice minimum occurring in September 
to be analyzed. Though CS2SMOS and PIOMAS are 
viable and recognized sources of data for SIT analysis, 
there are still considerable sources of uncertainty in both 
data sets that require further explanation. These limita
tions and uncertainties are expanded upon in the 
Discussion and conclusion section.

The process of model SIT comparison is described as 
follows: (1) the average was taken across ensemble mem
bers; (2) monthly sea-ice grids were linearly interpolated 
onto either the CS2SMOS or PIOMAS grid; (3) months 
were averaged across the entire analysis period, estab
lishing a monthly SIT mean; and (4) model and refer
ence grids were subtracted to create error maps and 
derive statistical measures. Grid cells where both 
model and reference agree on open water conditions 
were excluded from the derivation of statistical measures 
to reduce the effect of large open water areas during 
summer months. Following pan-Arctic analysis, regio
nal analysis for the Canadian Archipelago was per
formed, and summary statistics were derived for the 
area. Regional analysis limits assessment to the coordi
nates between latitudes 60° N to 80° N and longitudes 
50° W to 130° W, which effectively encompasses the 
Canadian Archipelago and Baffin Bay.

Evaluation of climate model SIA is assessed with 
monthly SIA values reported from the NSIDC’s SII 
(Peng et al. 2013; Meier et al. 2017). Arctic SIA is derived 
by multiplying sea-ice concentration (SIC) by the 
respective area of the climate model grid cell and then 
taking the sum of all climate model grid cells within the 
Arctic. In the event that SIA was not provided as output 
variable for the model, SIA was derived using the mod
el’s SIC grid and matching ocean area grid. For all 
climate models, the average of all realizations was 
taken to create the ensemble mean SIA time series. 
These values were then compared with the NSIDC’s 
SII value to determine bias. In calculating SIA, the SII 
monthly values omit the “pole hole” where satellite- 
imaged SIC was historically unavailable. To allow for 

Table 1. Climate models evaluated within the study, individual 
ocean grid resolution, affiliated institution, and the number of 
ensemble members available/used.

Climate model
Sea ice grid 
resolution Institution ID

Ensemble 
members

ACCESS-CM2 360 × 300 CSIRO-ARCCSS 5
CESM2-WACCM 384 × 324 NCAR 3
CNRM-CM6-1-HR 1,442 × 1,050 CNRM-CERFACS 1
GFDL-ESM4 720 × 576 NOAA-GFDL 1
GISS-E2-1-G 90 × 144 NASA-GISS 10
MPI-ESM-1-2-HAM 256 × 220 MPI-M 3
MPI-ESM-1-2-HR 404 × 802 HAMMOZ-Consortium 10
MRI-ESM2-0 363 × 360 MRI 10
NorESM2-MM 360 × 384 NCC 3

ARCTIC, ANTARCTIC, AND ALPINE RESEARCH 3



comparison, we assume that the SIC within the pole hole 
is 100 percent and add the missing area onto the 
monthly SIA total. Though this induces some degree of 
uncertainty into our analysis, this is assumed to be 
acceptable because the greatest pole hole values present 
before 1987 occur above 84° N where the ice pack is 
assumed to be largely consolidated at the pole and by 
2007 the pole hole area is nearly negligible at the scale of 
our analysis at 0.029 × 106 km2.

Surface climate evaluation

The European Center for Medium Range Forecasts’ 
ERA5 atmospheric reanalysis provides reference for 
SAT and SWS simulation analysis. Both SAT and SWS 
were analyzed in comparison to ERA5 historical atmo
spheric climate reanalysis data product. In a study of 
atmospheric reanalysis products within the Arctic, 
ERA5 or ERA-interim (predecessor to ERA5) simulated 
SAT and SWS were found to have high correlation and 
low error in comparison to the observed Arctic surface 
climate, thus qualifying the reanalysis for use in com
parison (Lindsay et al. 2014; Graham et al. 2019; 
Demchev et al. 2020). However, it should be noted that 
ERA5 possesses a warm bias under extremely cold win
ter conditions (Graham et al. 2019; C. Wang et al. 2019; 
Davy and Outten 2020; Demchev et al. 2020).

Results

Sea-ice thickness

Comparison of model-simulated monthly SIT and aver
aged CS2SMOS observations for October and March 
over the four-year period 2011 to 2014 yields bias plots 
for October (Figure 1a) and March (Figure 1b). The 
summary statistics for both months are presented in 
Table 2 along with the overall statistics averaged over 
October through April. CS2SMOS data are unavailable 
for the annual sea-ice minimum month (September) and 
does not start until the latter half of the month of 
October. This potentially introduces a positive SIT bias 
into the month’s average used for comparison. Despite 
this, over half of the models exhibit a positive bias for 
October, ranging from 16 cm to over 1 m. For most 
models, this stems from an erroneous region of thick sea 
ice in East Siberian and Chukchi seas, most pronounced 
in the ACCESS-CM2, CESM2-WACCM, MPI-ESM-1- 
2-HAM, and NorESM2-MM models. This phenomenon 
has been previously observed as common to the majority 
of CMIP5 models analyzed (Stroeve et al. 2014), and it is 
notable that several models do not possess this feature. 
The three models with the highest mean positive bias for 

October are CESM2-WACCM, MPI-ESM-1-2-HAM, 
and NorESM2-MM, with mean bias values of 0.31, 
0.44, and 1.06 m, respectively. CESM2-WACCM calcu
lates a region of very thick ice (>2 m) at the outer edge of 
the sea-ice area for October in the Beaufort, Chukchi, an 
East Siberian seas (an anomalous feature not observed in 
other configurations of the model; DeRepentigny et al. 
2020a), which results in the significant bias shown in 
these regions (see Figure 1a). It also simulates extremely 
thick ice (>6 m) at several locations within the Canadian 
Archipelago. MPI-ESM-1-2-HAM shows positive bias 
(>1 m) near the Laptev Sea, and the NorESM2-MM 
model has significant positive bias throughout the 
Arctic.

Previous climate model evaluations have shown that 
models typically underestimate especially thick sea-ice 
regimes. This holds true with the majority of models 
evaluated, which undercalculated the thick multiyear 
ice observed at the Wandel Sea, at the Lincoln Sea, and 
north of the Canadian Archipelago. CESM2-WACCM 
is able to simulate part of the sea-ice regime occurring 
along the northern coast of Greenland, yet it under
estimates the continuation of the field toward the pole. 
MPI-ESM-1-2-HAM shows only slight underestima
tion (≈ −0.5 m) of the thickest sea-ice region during 
October, with bias growing into March. The only 
model to overrepresent ice in this region is the 
NorESM2-MM model, which shows significant posi
tive bias throughout the Arctic. Recent research has 
shown the multiyear ice dominant in this region is 
more vulnerable to climate change than previously 
thought (Schweiger et al. 2021) and thus may be more 
responsive to climatic forcing (Overland 2020). In 
March, nearly all models show improved spatial corre
lation in comparison to October, because models typi
cally struggle to capture the annual sea-ice minimum. 
Conversely, GISS-E2-1-G spatial correlation drops sig
nificantly from 0.72 to 0.51 from October to March; 
this is primarily attributed to significant overestimation 
of March sea-ice area far into southern Bering Sea and 
extending into the Pacific Ocean. All models show 
positive bias of varying magnitude and extent in the 
Laptev Sea and commonly extending into the East 
Siberian Sea. Models maintaining a correlation of r ≥ 
0.8 overall are CNRM-CM6-1-HR, GFDL-ESM4, MPI- 
ESM-1-2-HAM, and MPI-ESM-1-2-HR. Of these, 
MPI-ESM-1-2-HR shows the lowest mean bias and 
the highest correlation coefficient.

Supplementing the comparison via CS2SMOS data, 
climate models were evaluated using the extended 
PIOMAS sea-ice reanalysis for 1979 to 2014. Differing 
in this step of assessment, September monthly averages 
are compared rather than October, which is used for 
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Figure 1. Sea-ice thickness bias (m) between model ensemble mean and CS2SMOS for (a) October and (b) March over the period 2011 
to 2014.
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Figure 2. Sea-ice thickness bias (m) between model ensemble mean and PIOMAS for (a) October and (b) March over the period 2011 to 
2014.
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CS2SMOS. Figure 2 shows almost all models possess 
increased agreement with PIOMAS; suspected drivers 
of this result include the lengthened time series and the 
fact that PIOMAS itself exhibits bias in several regions 
common to climate models, including the aforemen
tioned positive bias in the East Siberian and Chukchi 
seas (Stroeve et al. 2014). Three models (ACCESS-CM2, 
CESM2-WACCM, MPI-ESM-1-2-HAM) simulate the 
thick sea ice north of Greenland, with negative bias less 
than >1 m in both March and September; all other 
models underestimate SIT in this region with the excep
tion of NorESM2-MM, which has a pan-Arctic positive 
bias. Similar to the CS2SMOS comparison for October, 
CESM2-WACCM again has erroneously high SIT at the 
outer edge of the September sea-ice area, which drives 
the low correlation and high bias. Though MPI-ESM-1- 
2-HR performed best in comparison to CS2SMOS over
all, MPI-ESM-1-2-HAM and GISS-E2-1-G performed 
markedly better in comparison to PIOMAS. The 
improved correlation coefficient of GISS-E2-1-G listed 
in Table 3 is notable, because this model exhibited the 
lowest correlation with CS2SMOS data. Further inspec
tion of this result showed that this model exhibited 
negative bias in comparison to PIOMAS and large 

positive bias in comparison to the CS2SMOS data, sug
gesting that the model may not capture the thinning of 
sea-ice regimes in later years.

Canadian Archipelago sea-ice thickness

CMIP6 climate models have demonstrated positive biases 
for SIT within the Canadian Archipelago (Davy and 
Outten 2020). Investigating the performance of individual 
models in this region is relevant to understanding future 
development and maritime travel along Arctic sea routes 
such as the Northwest Passage. Our analysis in compar
ison to PIOMAS and the localized summary statistics in 
this area defined by latitudes 60° N to 80° N and long
itudes 50° W to 130° W are provided in Table 4. CNRM- 
CM6-1-HR, GFDL-ESM4, GISS-E2-1-G, and MPI-ESM- 
1-2-HAM models had a correlation coefficient of r ≥ 0.8, 
with MPI-ESM-1-2-HAM having the lowest root mean 
square error (RMSE; as it did for the pan-Arctic assess
ment). The majority of models showed positive bias 
through most of the Canadian Archipelago, yet the 
three models with highest resolution (CNRM-CM6-1- 
HR, GFDL-ESM4, MPI-ESM-1-2-HR) trended toward 
negative bias for most of the region. These three models 

Table 2. Statistics of error between each model’s ensemble average and the reference CS2SMOS Analysis sea-ice thickness (SIT) for the 
individual months of October and March and an average of winter months (October through April) 2011 to 2014.

Model ACCESS-CM2 CESM2-WACCM CNRM-CM6-1-HR GFDL-ESM4 GISS-E2-1-G MPI-ESM-1-2-HAM MPI-ESM-1-2-HR MRI-ESM2-0 NORESM2-MM

October
RMSE 0.62 0.93 0.68 0.52 0.35 0.72 0.46 0.53 1.41
Mean bias 0.27 0.31 −0.34 −0.19 0.17 0.44 −0.09 −0.10 1.06
R 0.66 0.28 0.77 0.80 0.72 0.72 0.85 0.74 0.65

March
RMSE 0.68 0.77 0.57 0.57 0.90 0.66 0.55 0.58 1.16
Mean bias 0.34 0.22 −0.13 −0.09 0.66 0.29 0.08 0.08 0.80
R 0.79 0.67 0.83 0.81 0.51 0.83 0.82 0.79 0.76

Average (October–April)
RMSE 0.64 0.76 0.58 0.53 0.72 0.64 0.51 0.54 1.18
Mean bias 0.28 0.15 −0.20 −0.12 0.48 0.30 0.01 −0.03 0.81
R 0.77 0.61 0.80 0.80 0.54 0.81 0.82 0.78 0.74

Note. RMSE and mean bias in meters.

Table 3. Statistics of error between each model’s ensemble average and the reference PIOMAS reanalysis sea-ice thickness (SIT) for the 
individual months of September and March; and an average of all months 1979 through 2014.

Model ACCESS-CM2 CESM2-WACCM CNRM-CM6-1-HR GFDL-ESM4 GISS-E2-1-G MPI-ESM-1-2-HAM MPI-ESM-1-2-HR MRI-ESM2-0 NORESM2-MM

September
RMSE 1.04 1.57 1.02 0.90 0.68 0.66 0.64 0.70 2.01
Mean bias 0.68 1.05 −0.68 −0.59 −0.30 0.31 −0.30 0.07 1.65
R 0.72 0.45 0.82 0.75 0.87 0.84 0.87 0.76 0.67

March
RMSE 0.76 0.89 0.93 0.84 0.67 0.60 0.67 0.69 1.31
Mean bias 0.27 0.15 −0.60 −0.53 −0.23 0.01 −0.24 −0.42 0.77
R 0.83 0.73 0.87 0.86 0.89 0.87 0.88 0.93 0.78

Annual
RMSE 0.91 1.13 0.96 0.83 0.66 0.60 0.65 0.73 1.61
Mean bias 0.46 0.44 −0.63 −0.51 −0.23 0.12 −0.24 −0.21 1.11
R 0.78 0.62 0.85 0.84 0.89 0.87 0.87 0.82 0.73

Note. RMSE and mean bias in meters.
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have similar SIT spatial distributions, as seen in Figure 3, 
and possess a strong negative bias in the Queen Elizabeth 
Islands in the northern part of the archipelago. GISS-E2- 
1-G trends toward overestimation of SIT throughout the 
region, with several isolated locations of intense SIT along 
the western part of Baffin Bay. As the model with coarsest 
spatial resolution, GISS-E2-1-G’s high correlation coeffi
cient, comparable to that of the high-resolution models 
(CNRM-CM6-1-HR, MPI-ESM-1-2-HR) is unexpected, 
because model resolution would be expected to be a key 
factor in simulating sea-ice dynamics within the region 
(Docquier et al. 2019). Within the northern part of the 
Canadian Archipelago, CESM2-WACCM simulates loca
lized extreme SIT values exceeding 10 m; this in part 

drives the poor spatial correlation and high error statistics 
for this model. By applying an SIT cutoff at 6 m (such as 
that applied by Watts et al. 2021), the model performance 
is improved markedly, because the correlation coefficient 
rises to 0.52 and the RMSE and mean bias fall to 1.3 m 
and 44 cm, respectively.

Sea-ice area

Sea ice coverage within the Arctic is a critical parameter in 
governing Arctic surface exchange of heat, mass, and 
momentum and thus has been the topic of several 
CMIP6 and CMIP5 studies (Shu et al. 2020; Shen et al. 
2021). The current generation of CMIP6 climate models 

Figure 3. Sea-ice thickness bias (m) between model ensemble mean and PIOMAS for September within the Canadian Archipelago 
1979 to 2014. The delineation boundary is shown for selection of data used in deriving statistical measures.

Table 4. Regional summary statistics of error for the Canadian Archipelago and Baffin Bay between each climate model and the reference 
PIOMAS sea-ice thickness (SIT) comparison for September 1979 to 2014.

Model ACCESS-CM2 CESM2-WACCM CNRM-CM6-1-HR GFDL-ESM4 GISS-E2-1-G MPI-ESM-1-2-HAM MPI-ESM-1-2-HR MRI-ESM2-0 NORESM2-MM

September
RMSE 0.93 1.70 0.90 0.98 0.72 0.62 0.74 0.69 1.81
Mean bias −0.01 0.53 −0.62 −0.75 −0.29 −0.07 −0.34 −0.09 0.95
R 0.61 0.45 0.80 0.80 0.80 0.82 0.78 0.77 0.64

Note. RMSE and mean bias in meters.

8 M. HENKE ET AL.



typically overrepresents SIA during both the seasonal 
maximum during March and the annual minimum dur
ing September (Shu et al. 2020). In this analysis, the 
majority of models overestimate SIA throughout the 
year with the exception of MPI-ESM-1-2-HR and MRI- 
ESM2-0, which both underestimate SIA in summer and 
fall months, as seen in Figure 4. GISS-E2-1-G shows 
considerably large positive bias through all months and 
largely exceeds the bounds of the bias plot shown on the 
left side of Figure 4. Examining the percentage error 
statistics shown in Table 5, the only models to achieve a 
mean absolute percentage error <5 percent over the 
annual cycle are CESM2-WACCM, GFDL-ESM4, and 
MPI-ESM-1-2-HAM. In comparison to winter months, 
models are observed to struggle in capturing the 
September SIA low, because all models’ percentage errors 
for this month rise significantly, with the exception of 

CESM2-WACCM at −0.04 percent. The observed and 
simulated linear trends in SIA loss for the month of 
September from 1979 to 2014 are shown in Figure 4b, 
and corresponding statistics are provided in Table 5. The 
best-fit line to observed SII September SIA has a slope of 
−0.79 × 106 km2/decade, which is well captured by the 
model ACCESS-CM2 despite overrepresenting SIA for 
this month on average by approximately 0.6 × 106 km2. 
All models except for this one and CESM2-WACCM 
underestimate the rate of SIA decline for this period, 
which may contribute to the observed overestimation of 
SIA the majority of models show in this month.

Surface air temperature

The summary statistics derived from SAT analysis are 
presented in Table 6. Correlation coefficients are 

Figure 4. Average monthly sea-ice area (SIA) bias for each climate model over the period 1979 to 2014. (b) Observed and simulated 
September SIA linear trend compared to the NSIDC record. GISS-E2-1-G is only shown in plot (a) for fall months, because error for this 
model exceeds +2.6 × 106 km2 for all other months and exceeds plot bounds.

Table 5. Model percentage error in comparison to the NSIDC observations in the September sea-ice area (SIA) linear trend (106 km2/ 
decade) for the period 1979 to 2014.

Model ACCESS-CM2 CESM2-WACCM CNRM-CM6-1-HR GFDL-ESM4 GISS-E2-1-G MPI-ESM-1-2-HAM MPI-ESM-1-2-HR MRI-ESM2-0 NORESM2-MM

March 15 3 7 1 24 4 2 2 4
September 14 0 15 11 62 7 −20 −19 42
Mean absolute  

percentage error
12 4 9 4 36 3 8 7 16

September SIA  
linear trend  
(106km2/decade)

−0.79 −1.15 −0.44 −0.57 −0.57 −0.59 −0.61 −0.72 −0.37
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omitted from the statistical measure, because all 
models maintain annual correlation ≥0.97 when com
pared with ERA5 data. Examining mean error, all 
models except for MRI-ESM2-0 have negative annual 
bias. As previously mentioned, this is most likely 
driven by a previously acknowledged positive bias 
in ERA5 Arctic temperatures during the coldest win
ter months and further evidenced by the large nega
tive mean bias values for the month of March shown 
in Table 6. Considering the potential effect this bias 
may have during colder months, assessment should 
prioritize September SAT performance where the 
ERA5 negative bias is not present and climate 
model mean bias values are more evenly distributed.

Temperature bias contour maps for the month of 
September can be seen in Figure 5. For September, 
the model with the lowest RMSE and mean bias is 
MPI-ESM-1-2-HR, at 1.0°C and −0.1°C, respectively. 
Examining the spatial bias of this model in Figure 5, 
it overestimates temperature for most of the seas 
surrounding Greenland and within the Canadian 
Archipelago (a feature observed in the majority of 
models) yet has minimal underestimation for the 
remainder of the Arctic. CNRM-CM6-1-HR, GFDL- 
ESM4, MPI-ESM-1-2-HAM, MPI-ESM-1-2-HR, and 
MRI-ESM2-0 all exhibit similar trends in high posi
tive bias through the Canadian Archipelago, Baffin 
Bay, and Greenland Sea. GISS-E2-1 G, ACCESS- 
CM2, and MPI-ESM-1-2-HAM have consistent pan- 
Arctic negative bias, and ACCESS-CM2 and MPI- 
ESM-1-2-HAM also have large areas of negative 
bias reaching from the North Pole through the East 
Siberian Sea and into the Bearing Sea. MRI-ESM2-0 
has the lowest mean annual bias of 0.2°C and is even 
with MPI-ESM-1-2-HR, with the lowest annual 
RMSE of 1.9°C. Investigating this result, the model 
shows minimal error during winter months (a result 
potentially driven by positive bias in ERA5 winter 
temperatures which are expanded upon the 
Discussion and Conclusion section) as shown for 
the month of March in Table 6. The previously 

discussed SAT positive bias within ERA5 under 
extreme cold weather may have had a significant 
influence in this result and thus demands future 
investigation and confirmation.

Surface wind speed

Analysis of SWS yields the summary statistics shown in 
Table 7. The spread in annual RMSE between models is 
less than 0.7 m/s and the range in annual bias values 
does not exceed 2 m/s. MPI-ESM-1-2-HR maintains 
the lowest RMSE out of all the models for September, 
March, and annually. Most models show improved 
correlation for March in comparison to September, 
with GFDL-ESM4 experiencing the largest improve
ment. Despite this, five out of the nine models show 
an increase in RMSE for this month. Because the ERA5 
average of wind speeds for this month is approximately 
0.5 m/s greater than September, this explains why cer
tain models might show improved correlation for 
March while simultaneously exhibiting increased bias 
or RMSE.

In Figure 6, the spatial bias contours can be used to 
elucidate the September statistics provided in Table 7. 
CNRM-CM6-1-HR and MRI-ESM2-0 immediately 
stand out as exhibiting pervasive positive bias not only 
for oceanic regions but also within coastal areas. A 
common feature in many of the models shown is a 
tendency for coastal areas to have considerable negative 
bias. This can be observed for the majority of models in 
the Beaufort Sea or along the southeast coast of 
Greenland. MPI-ESM-1-2-HR noticeably shows little 
bias exceeding 0.5 m/s.

Analyzing the March wind field bias shown in Figure 
7, many models show areas of intense negative or posi
tive bias in certain regions that were not observed in 
September. For example, the Fram Strait reaching 
toward the Greenland Sea is underestimated by almost 
all models, with bias exceeding −2 m/s for certain mod
els. Conversely, most models show strong localized 

Table 6. Summary statistics for each climate model’s surface air temperature (°C) compared with ERA5 monthly surface air temperature 
within the region from 1979 to 2014.

Model ACCESS-CM2 CESM2-WACCM CNRM-CM6-1-HR GFDL-ESM4 GISS-E2-1-G MPI-ESM-1-2-HAM MPI-ESM-1-2-HR MRI-ESM2-0 NorESM2-MM

September
RMSE 2.5 1.5 1.7 1.2 4.1 2.4 1.0 1.6 1.6
Mean bias −2.2 0.6 −1.2 0.7 −3.9 −2.0 −0.1 1.4 −1.2

March
RMSE 7.2 3.0 6.6 6.1 8.7 5.8 2.4 1.6 5.8
Mean bias −6.8 −2.0 −5.9 −5.2 −7.8 −5.0 −1.7 −0.4 −5.3

Annual
RMSE 5.1 2.2 4.7 3.9 5.8 3.8 1.9 1.9 4.4
Mean bias −4.1 −0.8 −3.7 −2.4 −4.8 −2.9 −0.6 0.2 −3.5

Note. RMSE and mean bias in °C.
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positive bias for SWS in Baffin Bay while showing mini
mal or even negative bias in the surrounding areas. 
Despite this, four models show reduced RMSE for 
March in comparison to September even with several 
of these models demonstrating the observed intensified 
areas of bias. Moreover, all models show equal or greater 

correlation coefficients for this month in comparison to 
the fall. These results highlight the importance of under
standing model seasonal and regional bias in estimating 
the mean state of a variable specific to an application 
because pan-Arctic or annual metrics may not capture 
regional or seasonal bias.

Table 7. Summary statistics for each climate model’s surface wind speed simulation with ERA5 monthly surface wind speed within the 
region north of 60° N from 1979 to 2014.

Model ACCESS-CM2 CESM2-WACCM CNRM-CM6-1-HR GFDL-ESM4 GISS-E2-1-G MPI-ESM-1-2-HAM MPI-ESM-1-2-HR MRI-ESM2-0 NORESM2-MM

September
RMSE 0.79 0.33 0.68 0.63 0.49 0.70 0.29 1.02 0.51
Mean bias −0.63 −0.08 0.62 0.35 −0.24 −0.60 −0.05 0.99 −0.41
R 0.90 0.93 0.93 0.75 0.84 0.91 0.93 0.95 0.95

March
RMSE 0.69 0.68 0.46 0.51 0.74 0.57 0.44 1.27 1.03
Mean bias −0.40 −0.42 0.21 0.13 −0.37 −0.40 −0.19 1.22 −0.92
R 0.91 0.94 0.96 0.93 0.88 0.96 0.96 0.97 0.95

Annual
RMSE 0.75 0.63 0.56 0.54 0.62 0.69 0.41 1.07 0.94
Mean bias −0.51 −0.39 0.37 0.13 −0.23 −0.54 −0.16 0.99 −0.73
R 0.90 0.93 0.94 0.90 0.88 0.95 0.95 0.96 0.89

Note. RMSE and mean bias in meters per second.

Figure 5. Surface air temperature bias for the month of September averaged over 1979 to 2014. Temperatures over land were excluded 
from analysis and masked over for mapping.
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Discussion and conclusion

Assessment of climate model historical simulation of SIT 
shows that the spatial distribution diverges greatly between 
models. Mean annual SIT bias derived from comparison to 
PIOMAS ranges from −0.63 to 1.11 m, and the comparison 
from CS2SMOS yields winter SIT bias ranging from −0.2 
to 0.81 m. Models have improved spatial correlation with 
PIOMAS compared to CS2SMOS; these results are par
tially expected, because PIOMAS shares several regions of 
inaccurate simulated SIT common to the climate models 
(Stroeve et al. 2014). Yet this may also stem from the 
brevity of the CS2SMOS time series used to establish the 
mean monthly SIT distribution and the inclusion of the 
anomalous 2012 September sea-ice minimum. Despite the 
considerable inter-model variance observed, there are sev
eral trends common to the majority of models. Foremost, 
many of the models that otherwise show minimal error 
throughout most of the Arctic fail to simulate the thickest 
sea-ice regimes at the Lincoln Sea and extending toward 
north of the Canadian Archipelago. This strong negative 

bias (≤−1 m) is present year-round for more than half the 
models. Notably, however, this bias is reduced for 
CS2SMOS in comparison to PIOMAS; suggesting that 
the models are perhaps more capable of simulating thinner 
ice (more sensitive to climate and oceanic forcing; 
Overland 2020) in the latter part of the time series.

SIA evaluation shows that all models are capable of 
simulating the basic timing of the seasonal cycle, with 
maximum SIA occurring in March and the minimum 
occurring in September. However, our analysis demon
strates that the majority of models consistently over
estimate Arctic SIA throughout the year, with all 
models showing positive bias during winter months 
and the majority of models continuing to overestimate 
SIA into the summer and fall. In particular, models 
struggle to capture September SIA, because the inter- 
model average absolute percentage error exceeds 20 
percent for this month. Two models that defy this 
trend and show single-digit percentage error values for 
September are CESM2-WACCM at 0 percent and MPI- 

Figure 6. Monthly surface wind speed bias averaged for September 1979 through 2014. Only surface winds corresponding to oceanic 
grid cells were considered for analysis.
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ESM-1-2-HAM at +7 percent. Examining trends in 
September SIA, all models except for two (ACCESS- 
CM2 and CESM2-WACCM) underestimate the rate of 
sea-ice decline. This in part contributes to the observed 
positive bias many models show for September SIA, 
because it can be observed in Figure 4b that GFDL- 
ESM4, CNRM-CM6-1-HR, and MPI-ESM-1-2-HAM 
begin the time series close to the SII yet diverge over 
time because they underrepresent the trend in SIA loss.

There are considerable uncertainties associated with sea- 
ice analysis. Despite nearly uninterrupted monthly satellite 
SIC measurements since 1978, the retrieval algorithms and 
processing can result in considerable spread between sea-ice 
extent estimates, which may vary by as much as 1 × 106 km2 

(well within the mean derived bias for several models) during 
the summer season (Chevallier et al. 2017; Meier and Stewart 
2019). Pan-Arctic satellite SIT observations are only available 
during winter months and experience further issues with 
algorithms relying on estimates of snow depth (Bunzel, 
Notz, and Pedersen 2018) and other spatially varying para
meters contributing to significant uncertainty. Though 

PIOMAS is commonly used in place of SIT measurements 
due to its ability to provide year-round estimates of SIT, it 
should be noted that this model assimilates SIC and climate 
variables, inheriting uncertainty from both and fully simulat
ing SIT (Schweiger et al. 2011; Chevallier et al. 2017). Despite 
the limitations inherent to comparison data sets, our assess
ment makes use of recognized data products that are com
monly employed within this research application (Watts et 
al. 2021; Zhou, Wang, and Huang 2022; L. Chen et al. 2023).

SAT comparison between climate models and ERA5 
shows that nearly all models have an annual cold bias and 
an especially strong negative bias during March, where 
the inter-model bias ranges from −0.4°C to −7.8°C, 
although this result is believed to be driven in part by 
warm bias present in the ERA5 data set used in climate 
model assessment. Several studies have confirmed that 
ERA5 or ERA-Interim (predecessor to ERA5) possesses 
an Arctic SAT warm bias (+3.9°C to +5.4°C) during the 
winter months in extreme cold weather conditions (e.g., 
Graham et al. 2019; C. Wang et al. 2019; Demchev et al. 
2020). The exact spatial and temporal characteristics of 

Figure 7. Monthly surface wind speed bias averaged for March 1979 through 2014. Only surface winds corresponding to oceanic grid 
cells were considered for analysis.
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this warm bias are unclear and thus cannot be corrected, 
yet it is clear that the warm bias grows as air temperatures 
become colder, peaking in winter months at high lati
tudes. For this reason, emphasis in assessment should be 
placed on warmer months, such as the metrics derived for 
September. For September, the range of bias spans from 
−3.9°C to 1.4°C for the models GISS-E2-1-G and MRI- 
ESM2-0, respectively. Model simulations of wind show 
that most models have reliably high correlation values and 
annual bias not exceeding 1 m/s. Most models commonly 
underestimate SWS in coastal areas, and only two models 
exhibit a pervasive positive bias. MPI-ESM-1-2-HR has 
the lowest RMSE through all seasons and the highest 
annual correlation. Contrasting September and March, 
the latter commonly showed localized areas of intense 
bias in comparison to the former, even for models that 
performed better during March. Model representation of 
wind is an important aspect to consider for regional 
stakeholders, because in the absence of sea ice, surface 
wind primarily determines wave climate. Though SWS 
was analyzed within this study, changing storm climatol
ogy and wind direction are important considerations in 
the full evaluation of a regional wind climate but are 
beyond the scope of this study with pan-Arctic focus.

It is important to note that this assessment compared 
ensemble-averaged climate models but did not provide 
assessment of ensemble spread, because the majority of 
climate models analyzed did not possess more than three 
available realizations. The climate model ensemble spread 
of both sea-ice extent and volume variables has been pre
viously provided by Notz and SIMIP Community (2020). 
In this analysis, models with a higher number of realizations 
should provide a more balanced representation of the mean 
Arctic climate and thus perform better with diminished 
internal variability within the ensemble mean. Conversely, 
this consideration is also key in contextualizing the perfor
mance of models with few or only one realization, because 
model performance may largely be a result of quasi-random 
internal climate variability. Nonetheless, analysis of models 
with limited ensemble members is still valuable because 
such models may be included within multimodel frame
works to create robust future estimates of sea ice-change 
(Frankcombe et al. 2018). Additionally, many utilizations of 
climate model output such as dynamic downscaling 
(Bieniek, Erikson, and Kasper 2022) or ocean modeling 
(Erikson et al. 2020) cannot make use of ensemble means 
as inputs or lack the computational power to form large 
ensembles. In this context, careful selection of models that 
do not contain significant biases in the variables or region of 
interest is crucial, and thus evaluations of models with even 
a single realization is still valuable, particularly when con
sidering that high-resolution configurations of climate 
models frequently do not provide large ensembles.

Climate model simulation of historical Arctic SIT, area, 
SWS, and temperature were analyzed against satellite, sea- 
ice reanalysis, and atmospheric reanalysis data to derive 
skill metric statistic and bias contour maps. Coupled cli
mate models represent an invaluable source of future cli
mate data for regional modeling and research efforts. 
Individual climate models participating within CMIP6 
may diverge substantially in ability to simulate historical 
sea ice and related climate variables, thus contributing to 
the uncertainty in projecting the future sea-ice decline. By 
this rationale, the evaluation and understanding of indivi
dual model historical simulation is essential to model selec
tion. Models were shown to present considerable 
differences in simulating the spatial distribution of SIT 
within the Arctic, and no one model could be identified 
as reliably presenting a totally resolved sea-ice distribution 
representing observed conditions. Nonetheless, results and 
conclusions of this study contribute to the body of knowl
edge on climate model performance and may be used to 
inform model selection for Arctic research. In comparison 
to CS2SMOS satellite data, MPI-ESM-1-2-HR led in all 
performance metrics overall and presented competitive 
performance in comparison to PIOMAS. In addition, this 
model’s SWS ensemble mean demonstrates the lowest 
overall RMSE and the lowest mean bias during the 
September sea-ice minimum, with very few regions show
ing absolute bias over 1 m/s. For SAT, MRI-ESM2-0 pre
sents the lowest annual mean bias and RMSE, an outcome 
largely resulting from the significant biases most models 
show during March and other winter months. In 
September SAT, the MPI-ESM-1-2-HR ensemble mean 
again excels in capturing the mean SAT climate, showing 
the lowest mean bias and RMSE at −0.1°C and 1°C, respec
tively. Considering the rapid climate change in the Arctic, 
the ability to accurately predict the evolution and decline of 
sea ice within this region is crucial to predicting the time
line and scope of effects that will be felt worldwide. The 
findings in this study are thus presented with the intention 
of aiding regional Arctic research reliant on climate model 
forecasting data.
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