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We present a supervised learning framework of training generative models for density estimation.
Generative models, including generative adversarial networks (GANs), normalizing flows, and vari-
ational auto-encoders (VAEs), are usually considered as unsupervised learning models, because la-
beled data are usually unavailable for training. Despite the success of the generative models, there
are several issues with the unsupervised training, e.g., requirement of reversible architectures, van-
ishing gradients, and training instability. To enable supervised learning in generative models, we
utilize the score-based diffusion model to generate labeled data. Unlike existing diffusion models
that train neural networks to learn the score function, we develop a training-free score estimation
method. This approach uses mini-batch-based Monte Carlo estimators to directly approximate the
score function at any spatial-temporal location in solving an ordinary differential equation (ODE),
corresponding to the reverse-time stochastic differential equation (SDE). This approach can offer
both high accuracy and substantial time savings in neural network training. Once the labeled data
are generated, we can train a simple, fully connected neural network to learn the generative model
in the supervised manner. Compared with existing normalizing flow models, our method does not
require the use of reversible neural networks and avoids the computation of the Jacobian matrix.
Compared with existing diffusion models, our method does not need to solve the reverse-time SDE
to generate new samples. As a result, the sampling efficiency is significantly improved. We demon-
strate the performance of our method by applying it to a set of 2D datasets as well as real data from
the University of California Irvine (UCI) repository.
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1. INTRODUCTION

Density estimation involves the approximation of the probability density function (PDF) of a
given set of observation data points. The overarching goal is to characterize the underlying struc-
ture of the observation data. Generative models belong to a class of machine learning models
designed to model the underlying probability distribution of a given dataset, enabling the genera-
tion of new samples that are statistically similar to the original data. Many methods for generative
models have been proposed over the past decade, including variational auto-encoders (VAEs)
(Kingma and Welling, 2014), generative adversarial networks (GANs) (Goodfellow et al., 2014),
normalizing flows (Kobyzev et al., 2020), and diffusion models (Yang et al., 2023). Generative
models have been successfully used in a variety of applications, including image synthesis (Cai
et al., 2020; Goodfellow et al., 2014; Ho et al., 2022; Meng et al., 2022; Song and Ermon, 2019),
image denoising (Ho et al., 2020; Ledig et al., 2017; Luo and Hu, 2021; Sohl-Dickstein et al.,
2015), anomaly detection (Papamakarios et al., 2017; Schlegl et al., 2017), and natural language
processing (Austin et al., 2021; Hoogeboom et al., 2021; Li et al., 2022; Ma et al., 2019; Savi-
nov et al., 2022; Yu et al., 2022). The key idea behind recent generative models is to exploit
the superior expressive power and flexibility of deep neural networks to detect and characterize
complicated geometries embedded in the possibly high-dimensional observational data.

Generative models for density estimation are usually considered as unsupervised learning,
primarily due to the absence of labeled data. Various unsupervised loss functions have been
defined to train the underlying neural network models in generative models, including adver-
sarial loss for GANs (Goodfellow et al., 2014), the maximum likelihood loss for normalizing
flows (Kobyzev et al., 2020), and the score matching losses for diffusion models (Hyvérinen,
2005; Song et al., 2019; Vincent, 2011). Despite the success of the generative models, there are
several issues resulting from the unsupervised training approach. For example, the training of
GANSs may suffer from mode collapse, vanishing gradients, and training instability (Salimans
et al., 2016). The maximum likelihood loss used in normalizing flows requires efficient compu-
tation of the determinant of the Jacobian matrix, which places severe restrictions on networks’
architectures. If labeled data can be created based on the observational data without compli-
cated training, the generator in the generative models, e.g., the decoder in VAEs or normalizing
flows, can be trained in a supervised manner, which can circumvent the issues in unsupervised
training.

In this work, we propose a supervised learning framework of training generative models for
density estimation. The key idea is to use the score-based diffusion model to generate labeled
data and then use the simple mean squared error (MSE) loss to train the generative model. A
diffusion model can transport the standard Gaussian distribution to a complex target data distri-
bution through a reverse-time diffusion process in the form of a stochastic differential equation
(SDE), and the score function in the drift term guides the reverse-time SDE towards the data
distribution. Since the standard Gaussian distribution is independent of the target data distri-
bution, the information of the data distribution is fully stored in the score function. Thus, we
use the reverse-time SDE to generate the labeled data. Unlike existing diffusion models that
train neural networks to learn the score function (Bao et al., 2023; Shi et al., 2022; Song et al.,
2021), we develop a training-free score estimation that uses mini-batch-based Monte Carlo es-
timators to directly approximate the score function at any spatial-temporal location in solving
the reverse-time SDE. Numerical examples in Section 4 demonstrate that the training-free score
estimation approach offers sufficient accuracy and saves significant computing cost on training
neural networks in the meantime. Once the labeled data are generated, we can train a simple
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fully connected neural network to learn the generator in the supervised manner. Compared with
existing normalizing flow models, our method does not require the use of reversible neural net-
works and avoids the computation of the Jacobian matrix. Compared with existing diffusion
models, our method does not need to solve the reverse-time SDE to generate new samples. This
way, the sampling efficiency is significantly improved.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the density
estimation problem under consideration. In Section 3, we provide a comprehensive discussion
of the proposed method. Finally in Section 4, we demonstrate the performance of our method by
applying it to a set of 2D datasets as well as real data from the University of California Irvine
(UCI) repository.

2. PROBLEM SETTING

We are interested in learning how to generate an unrestricted number of samples of a target
d-dimensional random variable, denoted by

X eR%and X ~ p(z), (1)

where p is the PDF of X. We aim to achieve this from a given dataset, denoted by X =
{x1,22,...,25} C R% and from its PDF p. To this end, we aim at building a parameterized
generative model, denoted by

X = F(Y;0) with Y € R%, )

which is a transport model that maps a reference variable Y (usually following a standard Gaus-
sian distribution) to the target random variable X. Once the optimal value for the parameter 0
is obtained by training the model, we can generate samples of X by drawing samples of Y and
pushing them through the trained generative model.

This problem has been extensively studied in the machine learning community using normal-
izing flow models (Creswell et al., 2018; Dinh et al., 2016; Grathwohl et al., 2018; Guo et al.,
2022; Kobyzev et al., 2020; Papamakarios et al., 2017; Rezende and Mohamed, 2015), where
F(y; 0) is defined as a bijective function. One major challenge for training the generative model
F(y; 0) is the lack of labeled training data; i.e., there is no corresponding sample of Y for each
sample z; € X. As a result, the model F'(y;0) cannot be trained via the simplest supervised
learning using the MSE loss. Instead, an indirect loss defined by the change of variables formula,
ie, p(r) = p(F~!(x))| det D(F~!(x))|, is extensively used to train normalizing flow models
in an unsupervised manner. The drawback of this training approach is that specially designed re-
versible architectures for F'(y; 0) need to be used to efficiently perform backpropagation through
the computation of | det D(F~!(x))]|. In this paper, we address this challenge by using score-
based diffusion models to generate labeled data such that the generative model F'(y; 6) can be
trained in a supervised manner and F~! is no longer needed in the training.

3. METHODOLOGY

In this section, we present in detail the proposed method. We briefly review the score-based
diffusion model in Section 3.1. In Section 3.2, we introduce the training-free score estimation
approach that is needed for generating the labeled data. The main algorithm for the supervised
learning of the generative model F'(y; 0) is presented in Section 3.3.
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3.1 The Score-Based Diffusion Model

In this subsection, we will provide a brief overview of score-based diffusion models [see Song
et al. (2019, 2021) for more details]. The model under consideration consists of a forward SDE
and a reverse-time SDE defined in a standard temporal domain [0, 1]. The forward SDE, defined
by

dZ; = b(t) Zydt + o(t)dW; with Zyp= X and Z, =Y, 3)

is used to map the target random variable X (i.e., the initial state Zj) to the standard Gaussian
random variable Y ~ A/(0,1;) (i.e., the terminal state Z;). There is a number of choices for the
drift and diffusion coefficients in Eq. (3) to ensure that the terminal state Z; follows N(0,1,)
[see Song et al. (2021), Vincent (2011), Ho et al. (2020), and Lu et al. (2022) for details]. In this
work, we choose b(t) and o(t) in Eq. (3) as

d(log o) 2 dp? d(log o)
== = Tt _ Vo 4
b(t) 7 and 0°(t) 7 2 7 B, 4)
where the two processes «; and [3; are defined by

o« =1—t pi=t for telo,1]. 5)

Because the forward SDE in Eq. (3) is linear and driven by an additive noise, the conditional
PDF Q(Z;|Z,) for any fixed Z, is a Gaussian. In fact, the choice of the b(t) and o2(t) ensures
the conditional distribution

Q(Zi| Zo) = N (o Zo, B214), (6)

is also a Gaussian distribution. More importantly, we have Q(Z,|Zy) = N(0,1,) for any fixed
Zy, which means the forward SDE in Eq. (3) equipped with b(t) and 0% (#) in Eq. (4) can transport
any distribution of Z; to the standard normal distribution within the time interval [0, 1]. The
corresponding reverse-time SDE is defined by

dZ; = [b(t)Z; — > (£)S(Zy, 1) dt + o(t)dW, with Z = X and Z; =Y, (7)

where 1, is the backward Brownian motion and S (Z4,t) is the score function. If the score
function is defined by

S(Ztvt) = vz IOgQ(Zt)7 (8)

where Q(Z;) is the PDF of Z; in Eq. (3), then the reverse-time SDE maps the standard Gaus-
sian random variable Y to the target random variable X . Therefore, if we can evaluate the score
function for any (Z;,t), then we can directly generate samples of X by pushing samples of
Y through the reverse-time SDE. Thus, the central task in training diffusion models is appro-
priately approximating the score function. There are several established approaches, including
score matching (Hyvérinen, 2005), denoising score matching (Vincent, 2011), and sliced score
matching (Song et al., 2019), etc. Recent advances in diffusion models focus on explorations
of using neural networks to approximate the score function. Compared to the normalizing flow
models, a notable drawback of learning the score function is its inefficiency in sampling since
generating one sample of X requires solving the reverse-time SDE. To alleviate this challenge,
we use the score-based diffusion model as a data labeling approach, which will enable supervised
learning of the generative model of interest.
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3.2 Training-Free Score Estimation

We now derive the analytical formula of the score function and its approximation scheme. Sub-
stituting Q(Zy) = [ Q(Zs, Z0)dZy = [pa Q(Z4] Z0)Q(Zy)dZy into Eq. (8) and exploiting the
fact in Eq. (6), we can rewrite the score function as

S(Zit) = V. log ( /R d Q(Zt|Zo)Q(Zo)dZo>

1 Zy — 4 Zy
= - Q(Z4120)Q(Zo)dZy
| ezizyezaz, fF ®

7 7,
=/ ! th Swi(Zs, Zo)Q(Z0)dZ,,
]Rd

where the weight function w¢(Z;, Z) is defined by
Q(Z: |Zo)

/ Q Zt|ZO )dZO

satisfying that [, wy(Z, Zo)Q(Zo)dZy = 1.

The integrals/expectations in Eq. (9) can be approximated by Monte Carlo estimators using
the available samples in X = {,1,,...,2;} C R% According to the definition of the reverse-
time SDE in Eq. (7), the samples in X are also samples from Q(Z). Thus, the integral in Eq. (9)
can be estimated by

wy(Zy, Zo) - (10)

N
_ Ly — 04
S(Zy,t) = §(Zy,t) ::Z—%* W(Zi,x5,), (11)
n=1 t
using a mini-batch of the dataset X with batch size N < J, denoted by {z,n}n 1» where the
weight w,(Zy, x;, ) is calculated by
Zlx;
wy(Zy, x5,) = W2y, x5,) = M, (12)
Z Q(Zi|zj,,)
m=1

and Q(Z;|z;,) is the Gaussian distribution given in Eq. (6). This means w,(Z;, Z;) can be
estimated by the normalized probability density values {Q(Z;|x;, )}2_,. In practice, the size of
the mini-batch {z;, }2V_| can be flexibly adjusted to balance the efﬁmency and accuracy.

3.3 Supervised Learning of the Generative Model

In this subsection, we describe how to use the score approximation scheme given in Section
3.2 to generate labeled data and use such data to train the generative model of interest. Due
to the stochastic nature of the reverse-time SDE in Eq. (7), the relationship between the initial
state Zy and the terminal state Z; is not deterministic or smooth, as shown in Fig. 1. Thus, we
cannot directly use Eq. (7) to generate labeled data. Instead, we use the corresponding ordinary
differential equation (ODE), defined by
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The ODE transport The SDE transport

/\The target/\ /\The target/\

The standard Gaussian The standard Gaussian

FIG. 1: Illustration of the trajectories of the ODE model in Eq. (13) and the SDE in Eq. (7) using a simple
one-dimensional example. We observe that the ODE model creates a much smoother function relationship
between the initial state and the terminal state, which indicates that the ODE model is more suitable for
generating the labeled data for supervised learning of the generative model of interest.

1
dZ; = |b(t)Z; — Eaz(t)S(Zt,t) dt with Zy = X and Z; =Y, (13)

whose trajectories share the same marginal PDFs as the reverse-time SDE in Eq. (7). An illustra-
tion of the trajectories of the SDE and the ODE is given in Fig. 1. We observe that ODE defines
a much smoother function relationship between the initial state and the terminal state than that
defined by the SDE. Thus, we use the ODE in Eq. (13) to generate labeled data.

Specifically, we first draw M random samples of Y, denoted by Y = {y1,...,ya} from
the standard Gaussian distribution. Form = 1, ..., M, we solve the ODE in Eq. (13) from ¢t =
1 to ¢ = 0 and collect the state Zy|y,,, where the score function is computed using Egs. (11)
and (12), and the dataset X = {z1,..., 2 }. The labeled training dataset is denoted by

Diain := {(Ym>Tm) : T = Zo|ym, for m=1,..., M}, (14)

where ,,, is obtained by solving the ODE in Eq. (13). We remark that the {x,,, }*?_, in the
generated labeled training set Dy.,;, is not a subset of the original training set X, but {xm}i\n/’:l
follows the same distribution as the target random variable X when both the number of time
steps for solving the reverse-time SDE and the number of training samples in X go to infinity.
An illustration comparing X’ and Dy, is given in Fig. 2. Moreover, the number of samples in
Dirain can be much larger than the size of X', which could help improve the stability and alleviate
overfitting in training the final generator F'(; 0). After obtaining Dy,;, we can use it to train the
generative model F'(y; 0) in Eq. (2) using supervised learning with the MSE loss.

Our method is summarized in Algorithm 1. Compared to the existing normalizing flow mod-
els and diffusion models, our method has two significant advantages in performing density es-
timation tasks. First, it does not require one to know F~!(z;0); hence it does not require the
computation of | det D(F~!(x))] in the training process. This enables us to use simpler neural
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FIG. 2: Results on four 2D toy datasets. The left column shows the ground-truth distribution, i.e., the
dataset X'; the middle column shows the generated labeled data by solving the ODE in Eq. (13); and the
right column shows the samples generated by the trained generative model F'(y; 0). The cross entropy is
computed using a density function obtained by kernel density estimation with another 2000 samples.

network architectures to define F(y; 0), resulting in a more straightforward training procedure
compared to the training of a normalizing flow model. Second, after F'(y;0) is trained, our
method does not require solving the reverse-time SDE or ODE to generate samples of X. As a
result, it significantly enhances the sampling efficiency in comparison with the diffusion model.

4. NUMERICAL EXPERIMENTS

We demonstrate the performance of the proposed method on several benchmark problems for
density estimation. To solve the reverse-time ODE for generating the labeled data, we use the
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Algorithm 1: Supervised learning of generative models

1: Input: the observation data X', the diffusion coefficient o(t), the drift coefficient b(¢);
2: Output: the trained generative model F'(y; 0);

3: Draw M samples ) = {y1, ...,y } from the standard Gaussian distribution;

4: form=1,... M

5: Solve the ODE in Eq. (13) with the score function estimated by Egs. (11) and (12);
6: Define a pair of labeled data (y,,,, 2, ) where y,,, = Z; and x,,, = Z in Eq. (13);
7: end

8: Train the generative model z = F'(y; 0) with the MSE loss.

explicit Euler scheme. The generative model F'(y;0) is defined by a fully-connected feed-
forward neural network. Our method is implemented in Pytorch with GPU acceleration enabled.
The source code is publicly available at https://github.com/mlmathphy/supervised_generative_
model. The numerical results in this section can be precisely reproduced using the code on
Github.

4.1 Density Estimation on Toy 2D Data

We use four two-dimensional datasets (Grathwohl et al., 2018) to demonstrate and visualize the
performance of the proposed method. Each dataset has 1000 data, referred to as the ground truth
in Fig. 2. We use a fully-connected neural network with four hidden layers to define F'(y;0),
each of which has 100 neurons. One hundred times steps are used to discretize the reverse-time
ODE in Eq. (13) to generate 1000 labeled data. The neural network is then trained with the MSE
loss for 5000 epochs using the Adam optimizer with the learning rate chosen as 0.005.

The results are shown in Fig. 2. We observe that the labeled samples are not the same as the
ground truth, but they accurately approximate the distribution of the ground truth. In fact, the
reverse-time ODE in Eq. (13) can be viewed as a training-free version of the neural-ODE-based
normalizing flow (Grathwohl et al., 2018), which can capture multimodal and discontinuous
distributions. The samples generated by F'(y; 0) also provide an accurate approximation to the
ground truth, even though the accuracy is lower than the distribution of the labeled training
data. There are scattered samples generated by F'(y; 0) because the used neural networks cannot
perfectly approximate the discontinuity among different modes of the target distribution.

4.2 Density Estimation on Real Data

We demonstrate the performance of our method using density estimation on four UCI datasets.
The UCI Machine Learning Repository is a well-known resource for machine learning practi-
tioners and researchers. It provides a collection of databases, domain theories, and data genera-
tors that are used by the machine learning community for empirical analysis of machine learning
algorithms. In this work, we use four UCI datasets (that are commonly used to test density
estimation algorithms) including POWER (six-dimensional, available at http://archive.ics.uci.
edu/ml/datasets/Individual+household+electrictpower+consumption), GAS (eight-dimensio-
nal, available at http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+
mixtures), HEPMASS (11-dimensional, available at http://archive.ics.uci.edu/ml/datasets/
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HEPMASS), and MINIBOONE (43-dimensional, available at http://archive.ics.uci.edu/ml/
datasets/MiniBooNE+particle+identification). These datasets are taken from the UCI Machine
Learning Repository. We follow the approach in Papamakarios et al. (2017) to preprocess each
dataset. We normalize each dimension of the data by subtracting its mean and dividing its stan-
dard deviation, such that all the datasets used to test our method have zero mean and unit standard
deviation. Discrete-valued dimensions and every attribute with a Pearson correlation coefficient
greater than 0.98 were eliminated.

The reverse-time ODE in Eq. (13) is solved using the explicit Euler scheme with 500 time
steps. All training data split into mini-batches of size N = 5000. We use a fully-connected neural
network with one hidden layer to define F'(y; 0). Specifically, the network for POWER has 256
hidden neurons, the network for GAS has 512 hidden neurons, the network for HEPMASS has
1024 neurons, and the network for MINIBOONE has 1400 hidden neurons. The number of
hidden neurons is determined by a simple grid search using the MSE on a validation set (10% of
the training set). The neural networks are trained using the Adam optimizer with 20,000 epochs
with the learning rate being 0.01.

Figures 3—6 show the comparison among the ground truth data, the labeled data [from the
ODE in Eq. (13)] and the generated samples from F'(y; 0) using the following metrics:

e The 1D marginal PDF of a randomly selected dimension;

e The K-L divergences of all the 1D marginal distributions;

e The mean values of all the 1D marginal distributions;

e The standard deviations of all the 1D marginal distributions.

—— Ground truth —&— Labeled data
Labeled data 0.04 { @~ Generated samples
—— Generated sample

Probability density function
KL divergence
g

-1 0 1 2 3 4 1 2 3 4 5 6
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0.100 1.100
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1 2 3 4 5 s 0900 1 2 3 2 5 6
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(c) (d)

FIG. 3: Results on the POWER dataset. (a) The 1D marginal PDF of a randomly selected dimension;
(b) the K-L divergences of all the 1D marginal distributions; (c) the mean values of all the 1D marginal
distributions; (d) the standard deviations of all the 1D marginal distributions.
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FIG. 4: Results on the GAS dataset. (a) The 1D marginal PDF of a randomly selected dimension; (b) the K-
L divergences of all the 1D marginal distributions; (c) the mean values of all the 1D marginal distributions;

(d) the standard deviations of all the 1D marginal distributions.
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FIG. 5: Results on the HEPMASS dataset. (a) The 1D marginal PDF of a randomly selected dimension;
(b) the K-L divergences of all the 1D marginal distributions; (c) the mean values of all the 1D marginal
distributions; (d) the standard deviations of all the 1D marginal distributions.
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FIG. 6: Results on the MINIBOONE dataset. (a) The 1D marginal PDF of a randomly selected dimension;

(b) the K-L divergences of all the 1D marginal distributions; (c) the mean values of all the 1D marginal
distributions; (d) the standard deviations of all the 1D marginal distributions.

As expected, the labeled data and the generated samples can accurately approximate the distri-
bution of the ground truth. Table 1 shows the computing costs of generating the labeled data,
training the neural network F'(y;0), and using F'(y; 0) to generate samples. The computational
time is obtained by running our code on a workstation with Nvidia RTX A5000 GPU.

5. CONCLUSION

We introduced a supervised learning framework for training generative models for density esti-
mation. Within this framework, we utilize the score-based diffusion model to generate labeled

TABLE 1: Wall-clock time of different stages of our method. Data labeling refers to the stage of
solving the reverse-time ODE in Eq. (13); training F’ refers to the stage of using the labeled data
to train the generative model F'(y;0); synthesizing 100K samples refers to using the trained
model F'(y;0) to generate 100K new samples of X. We observe that our method features a
promising efficiency in generating a large number of samples

Dataset Data Labeling Training F’ Synthesizing 100K Samples
POWER 64.83 sec 182.51 sec 0.10 sec
GAS 85.78 sec 426.61 sec 0.23 sec
HEPMASS 109.12 sec 1940.87 sec 0.51 sec
MINIBOONE 408.36 sec 2220.79 sec 0.66 sec
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data and employ simple, fully-connected neural networks to learn the generative model of in-
terest. The key ingredient is the training-free score estimation that enables data labeling without
training the score function. It is important to note that the current algorithm has only been suc-
cessfully tested using a tabular dataset, and its performance in image/signal synthesis remains
to be explored. Due to the slow convergence of the Monte Carlo estimation of the score func-
tion, the accuracy of the score estimation will become increasingly difficult as the dimension
increases. On the other hand, this algorithm can be applied to a variety of Bayesian sampling
problems in scientific and engineering applications, including parameter estimation of physical
models, state estimation of dynamical systems (e.g., chemical reactions), and surrogate models
for particle simulation in physics, all of which will be our future work on this topic.
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