NUMERICAL ANALYSIS FOR CONVERGENCE OF A SAMPLE-WISE
BACKPROPAGATION METHOD FOR TRAINING STOCHASTIC NEURAL
NETWORKS

RICHARD ARCHIBALD*, FENG BAOf, YANZHAO CAO ¥, AND HUI SUN §

Abstract. The aim of this paper is to carry out convergence analysis and algorithm implementation of a novel sample-
wise backpropagation method for training a class of stochastic neural networks (SNNs). The preliminary discussion on such
an SNN framework was first introduced in [2]. The structure of the SNN is formulated as a discretization of a stochastic
differential equation (SDE). A stochastic optimal control framework is introduced to model the training procedure, and
a sample-wise approximation scheme for the adjoint backward SDE is applied to improve the efficiency of the stochastic
optimal control solver, which is equivalent to the backpropagation for training the SNN. The convergence analysis is
derived by introducing a novel joint conditional expectation for the gradient process. Under the convexity assumption,
our result indicates that the number of SNN training steps should be proportional to the square of the number of layers
in the convex optimization case. In the implementation of the sample-based SNN algorithm with the benchmark MNIST
data set, we adopt the convolution neural network (CNN) architecture and demonstrated that our sample-based SNN
algorithm is more robust than the conventional CNN.

Keywords. Probabilistic learning, stochastic neural networks, convergence analysis, backward
stochastic differential equations, stochastic gradient descent

AMS subject classifications.

1. Introduction. Deep neural network (DNN) based machine learning techniques are positioned
to fundamentally change many sectors of society by offering decision making capabilities, which match
and often exceed that of human experts [1,14,29-32,35]. Despite of dramatic success that DNNs
achieved, a closer examination reveals inherent challenges of applying such approaches broadly to science
and engineering. A major challenge is that DNN models are sensitive to noises in data. A recent study [4]
shows that effectiveness of different DNN models are affected by inaccurate data in the datasets, and
science and engineering solutions typically need to be able to quantify the uncertainty of DNN outputs
and to provide effective operating ranges and risks.

One successful effort to address the challenge of uncertainty quantification for DNN is probabilistic
learning, which aims to incorporate randomness to DNN models and produce random output. Then, one
can use the statistical behaviors of DNN’s random output to study the uncertainty of data. The state-of-
the-art probabilistic learning approach is the Bayesian neural network (BNN) [10,11,18,24,27,34,36,37],
which treats parameters in a DNN as random variables and approximates their distributions through
Bayesian inference. Instead of searching for the optimal parameters by deterministic optimization, the
BNN utilizes Bayesian optimization to derive parameter distributions. As a result, the estimated random
parameters generate random output, which characterizes the target model’s uncertainty. Although the
BNN approach provides a principled conceptual framework to quantify the uncertainty in probabilistic
machine learning, carrying out Bayesian optimization to estimate a massive number of parameters in
the BNN often renders the exact inference of parameter posteriors intractable. Moreover, the large
size of the parameter set leads to uninterpretable parameter priors. Some of the existing Non-Bayesian
methods, such as [9,19], are simple to implement but either ad hoc or computationally prohibitive.

In this work, we consider a type of stochastic neural networks that models uncertainty in some of
the well known DNN structures (e.g., residual neural networks, convolutional neural networks) through
discretized stochastic (ordinary) differential equations (SDEs). Recently, an ordinary differential equa-
tion (ODE) interpretation for DNNs (named Neural-ODE) has been introduced and studied [5-7,12,13].
The central idea of the Neural-ODE is to formulate the evolution of potentially huge hidden layers in
the DNN as a discretized ODE system. To characterize the randomness caused by the uncertainty of
models and noises of data, we add an additive Brownian motion noise to the ODE to count for the

* Computational Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
(archibaldrk@ornl.gov);

T Department of Mathematics, Florida State University, Tallahassee, Florida, (bao@math.fsu.edu);

¥ Department of Mathematics, Auburn University, Auburn, Alabama, (yzc0009@auburn. edu)

§ Department of Mathematics, Florida State University, Tallahassee, Florida;

1

model uncertainty of the DNN. This changes the ODE to an SDE, and the deterministic DNN be-
comes a stochastic neural network (SNN) [17,22,33]. In the SNN model, the drift parameters serve as
the prediction of the network, and the stochastic diffusion governs the randomness of network output,
which serves to quantify the uncertainty of deep learning. In comparison with the BNN, which needs
to calibrate a tremendous amount of random parameters through Bayesian inference, the SNN only
uses one noise term (i.e., the diffusion term) to control the amount of uncertainty at each layer. The
computational cost for evaluating the diffusion coefficient is much lower than high-dimensional Bayesian
inference for many unknown random parameters. On the other hand, for an SNN with multiple hidden
layers, by stacking (controlled) diffusion terms together through the multi-layer structure, we would
still be able to characterize sufficient probabilistic behavior of the neural network.

The bottleneck of the SNN is constructing an efficient numerical solver for the backpropagation.
This process propagates the total loss back into the neural network and updates the parameters accord-
ingly to minimize the loss. It is the essence of neural network training. For Neural-ODE, backpropaga-
tion is equivalent to solving the adjoint of the ODE, which is a backward ODE. Since its structure is
no different from that of a forward ODE, backpropagation can be achieved by means of a deterministic
adjoint ODE solver [5]. For SNNs, the backpropagation is equivalent to solving the adjoint of the SDE,
which is a backward SDE. Because of the martingale nature of the backward SDE [8], one must create a
separate backward SDE solver, which is completely different from and far more computationally inten-
sive than forward SDE solvers. Thus the backpropagation by completely solving the backward SDE has
been deemed unfeasible [33]. Several alternatives have been proposed [17,22,33]. But they either fail to
consider the Ito’s nature of stochastic differentiation or lack scalability. Thus these training frameworks
have been deemed inefficient [21].

In a recent study [2], we formulated the training procedure for SNN as a stochastic optimal control
problem. The central idea is to treat the random samples of the backward SDE as “pseudo data”,
and only solve the backward SDE partially on randomly selected pseudo data. In this way, only a tiny
fraction of the computing cost of solving the entire backward SDE is required to complete one training
iteration. Therefore, our novel sample-wise backpropagation method for SNNs will be a feasible tool
for the uncertainty quantification of deep learning. In [2], following a standard analysis for SGD,
the convergence of the continuous SNN model was proved before the sample-wised backpropagation
algorithm was proved. In other words, no numerical analysis was provided. Also, the algorithm was
tested only for simple one-dimensional problems.

The contribution of this work has a numerical analysis aspect and an algorithm implementation
aspect. On the numerical analysis aspect, we will focus on deriving the convergence and an error
estimate for the sample-wise backpropagation algorithm. For a conventional SGD, it is assumed that
the adjoint equation, which is a backward SDE, is solved in the entire state space [39]. The key
challenge in the convergence analysis of our sample-wise backpropagation method is that our sample-
wise approximation only solves the backward SDE at a sample point in each SDG iteration, which does
not carry enough information to deduce convergence of the numerical solver for the backward SDE with
a standard argument for SGD convergence. Our strategy for addressing this issue is to introduce an
augmented o-algebra that contains the uncertainty information in both the SNN model and the training
data. We shall show that the stochastic approximation for the gradient conditioning on the augmented
o-algebra is an unbiased estimator. This enables us to obtain the desired convergence results without
the convergence of numerical solvers for backward SDEs. Under the convexity assumption, we show
that the error estimate of the sample-wise backpropagation algorithm contains two terms: the first is
a half-order term with respect to the depth of neural networks; the second is a quotient between the
depth of SNN and the number of training steps. While the first term reflects the error of discretizing
the continuous SDE formulation of probabilistic learning, the second term provides an inherent relation
between the depth of a neural network and the number of iterations needed in the training procedure,
which is a novelty of our numerical analysis. Without the convexity assumption, we will show that,
for an SNN with a fixed depth, our sample-wise backpropagation algorithm converges with respect to
training steps.

It is well known that implementation plays a key role in building a practical deep neural network.
Our implementation effort for the SNN involves the selection of both activation functions and network

2

structures. In order for the SNN to solve high-dimensional problems, we will use a combined sigmoid
activation function in place of a single sigmoid activation function. This allows the forward propagation
procedure to produce rich activation behavior, which will improve the representation capability of
SNN. Moreover, to implement the SNN in accomplishing benchmark machine learning tasks, we will
incorporate the convolution blocks [20] into the SNN model. With such an implementation we will solve
the benchmark classification problem with MNIST handwritten dataset and Fashion-MNIST dataset.
This benchmark problem demonstrates the robustness advantage of SNN compared to the deterministic
convolution neural network. We want to mention that other DNN structures such as the recurrent neural
network can also be adopted in our algorithm similarly to solve machine learning problems in different
scenarios.

The rest of this paper is organized as follows: In Section 2, we formulate the training procedure
for SNNs as a stochastic optimal control problem and introduce our sample-wise backpropagation
method. The main convergence theorems and their proofs will be provided in Section 3. In Section 4,
we will validate our analysis results and examine the performance of SNNs through several numerical
experiments.

2. A sample-wise backpropagation method for stochastic neural networks. In this sec-
tion, we briefly review the sample-wise backpropagation method for training stochastic neural networks
introduced in [2]. The basic idea is to first formulate the training procedure for the continuous formu-
lation of a stochastic neural network as a stochastic optimal control problem, then solve the stochastic
optimal control problem via a generalized stochastic gradient descent algorithm.

Consider the following dynamical system for a stochastic version of a deep neural network (DNN):

(2.1) Xpi1=Xn+0f(Xn,un) +Vhg(up)wn, n=01,2,--- N—1,

where X, :=[z} 22 .- .xL] €RL is a vector containing L neurons at the n-th layer in a DNN, f is an
activation function, u,, denotes the set of DNN parameters at the n-th layer, h is a positive constant
that stabilizes the DNN, w,, is a standard L-dimensional Gaussian random variable that counts for
uncertainty in the neural network, and g is a coefficient function that determines the size of uncertainty
in the DNN. The initial state Xy of the dynamical system (2.1) represents the input, and Xy is the
output. In this paper, we call the noise perturbed DNN model (2.1) a stochastic neural network (SNN).

If we choose a positive constant T' (as a terminal time) and let N — o0 or h—0 with h=2%, the
dynamics of SNN (2.1) becomes the stochastic differential equation (SDE) which, in the integral form,
is given by

T T
(22) XT:X0+/ f(Xt,ut)dt—i-/ g(ut)dWh
0 0

where W :={W,}o<i<r is a standard Brownian motion corresponding to the i.i.d. Gaussian random

variable sequence {wy, }, in (2.1), fOT g(u)dWy is an Ito integral, and X corresponds to the output.

Let I be the random variable that generates the training data to be compared with X7 and define
a loss function ®(X7,T):=|| X1 —T|;0ss corresponding to a loss error norm ||-||;pss- In this paper, we
shall treat the training procedure for deep learning as a stochastic optimal control problem and the
parameter u; in (2.2) as a control process. To this end, we define the cost functional J as

(2.3) J(u)=E

/TT(Xt,Ut)dt+®(XT,F)] 3
0

where the integral fOTr(Xt,ut)dt represents the running cost in a control problem. This way, the loss
function becomes the terminal cost in the stochastic optimal control problem. Note that the stochastic
process X is the “state process” for the stochastic optimal control problem, which depends on the
control u. The goal of deep learning is to solve the stochastic optimal control problem, i.e., find the
optimal control u* such that
(2.4) J(u*)= uell/ﬂg,T] J(u),

3

where U[0,T]:={ue L?([0,T];R?)} is a p-dimensional admissible control set.
To determine the optimal control, one can derive the following gradient process [23, 38]:

(2.5) VJu(u) =E[fu(Xe,u) Yy + g0 () " Zo+ 10 (Xeoue) T,

where f,, g, and r, are partial derivatives with respect to the control u. Here the stochastic processes
Y; and Z; in (2.5) are the adapted solutions of the following backward SDE:

(2.6) AYy = (—fo(Xeow) "Ye =10 (Xpyu) V) dt+ Z,dWy, Yy =@ (Xp,T),

where f,., r, are partial derivatives with respect to the state X, Y is the adjoint process of the state
SDE X, and Z is the martingale representation of Y with respect to W. An important property of
solutions of the backward SDE is that values of Y and Z depend on X, and (Y;,Z;) € F}V, where
FYV :=0(W,,0<s<t). In this paper, we use the notation V.J, to denote the gradient of the cost J
with respect to the control process u, and the control at time ¢, i.e., us, in V.J,(+) indicates that we are
considering the gradient process at time t.

Having the gradient of J in hand, one can carry out gradient descent optimization to determine
the optimal control as follows:

(27) uf+1zpu(uffnkVJu(uf))’ k:O71725"'7 OStSTa
where 4° is an initial guess for the optimal control, n; is the step-size of gradient descent in the k-th
iteration step, and Py, is a projection operator onto the admissible control set U. For the stochastic
gradient descent method, one chooses samples XF, ZF of X; and Z; and modifies (2.7) as follows.

(28) uf—‘rl:Pu(uf_nk[fu(Xf7uf)T}/t+gu(uf)TZtk+T’U«(th’u§)—r:|)7 k:051a277 OStST

In [2], following a standard procedure [3], we proved the convergence of the SGD iteration (2.8) under
certain smoothness assumptions on the input functions.

Numerical implementation of the stochastic gradient descent scheme (2.8) requires numerical ap-
proximations to the SDE (2.2) and backward SDE (2.6). We solve the backward SDE (2.6) over a
uniform temporal partition Iy :={0=1tg<t; <te <---<ty=T}. Denote by h the stepsize of the par-
tition. We adopt the classic numerical schemes for solving forward and backward SDEs (see [16,39,40])

(2.9) Xoly = X+ hf(XY e,)+ g(ue,) AW,

(210) YnN = E;)z{[yn]\il]—i_h]Ef [fr(XTJz\;lvuthrl)TYn]Ykl +TI(X711V+17utn+1)TL
YN AW,

(2.11) zy = Eff[i"“h t"},

where X2, YV and Z) are numerical approximations for X, ,,,Y;, and Z,, respectively.

To approximate the stochastic gradient of J appeared in (2.8) with schemes (2.9)—(2.11), we need
to evaluate the conditional expectation EX[-] appeared in (2.10) and (2.11) which typically involved
high dimensional integrations. This is a very challenging task due to the “curse of dimensionality”. To
address this challenge, we adopt the stochastic approximation method to approximate gradient V.J,.
Specifically, at the k-th iteration with an estimated optimal control u*, we simulate the state process
by choosing a sample w”* ~ N (0,h) and evaluate E;X[-] only at this sample point. Then the sample-wise
numerical solutions X* of X, and (Y,¥, Z¥) of (Y, Z) are given by
(212) X) = XE+Hhf(X)uf) +gluy)ws

n’

ke

k k
YL+1w7l
h

(2.13) Y: = Yf+1 +h(fm(XS+1,ufn+1)TYf+l +TI(X§+1ann+1)T)a Zf,:
With (2.12) and (2.13), we approximate the gradient V.J,, by

(2.14) Vi () = Fu(Xp) Y+ gu () T 25+ ru (X un)
4

and derive the sample-wise stochastic gradient descent (SGD) scheme as follows.
(2.15) uy T =Py (uf —neVik@f)), k=0,1,2,---, 0<n<N,

where Uy :=UNCx with a piece-wise constant approximation set Cy := {u\uzzggol anli, t,1):0n €
RP} for the control process. The above schemes (2.12) - (2.15) provide a modified SGD algorithm for
solving the stochastic optimal control problem and constitute a sample-wise backpropagation framework
for training the SNN. It’s worth mentioning that in machine learning practice, the above sample-wise
backpropagation scheme is often implemented by using a mini-batch of samples instead of a single-

realization of the sample to represent the state variable.

3. Convergence Analysis. In this section, we conduct the convergence analysis for the SGD
algorithm (2.12) - (2.15), and we have the following standard assumptions for backward SDEs and
the stochastic optimal control problem (see page 38: HG(ii) in [26], page 26: Eq.(1.24) in [26], and
Assumption 4.0.1 in [39]):

ASSUMPTION 3.1.

(a) both f and g are deterministic and f € CE’Q(Rd xR™:RY) and g€ CZ(R™;R?).

(b) fyfesfusg;re,ru are all uniformly lipschitz in x,u and uniformly bounded.

(¢) g satisfies the uniform elliptic condition.

(d) The initial condition Xy € L*(Fo).

(e) The terminal (Loss) function ® is C' and positive, and ®, has at most linear growth at infinity.

We define the standard inner product of u,v € L?([0,T]) by (u,v) :fOT uy -vidt and the standard L2
norm ||-|l2 by [Jull2:=+/{u,u). When there is no danger of ambiguity, we use the same notation to
denote the inner product of two piece-wise constant representations u”, v e RV of u, v: (uN N)=
hzﬁfgol ul - vN. Also, we use |-| to denote the Euclidean norm or Frobenius norm.

Our analysis in this paper focuses on the convergence of the sample-wise SGD iteration (2.15) with
respect to the temporal partition IIy. Under the assumption that the cost functional for the optimal
control is convex, we will derive a half-order convergence rate for our algorithm in the mean square sense.
Without the convexity assumption, we will prove the convergence of iteration (2.15). We remark that
convergence analysis regarding the number of neurons, i.e., the dimension of the state X in SDE (2.2),
may require more complicated discussions on spatial dimension approximation and representability of
neural networks, which is out of the scope of this paper.

3.1. Sample-wise numerical solution of the BSDE as an unbiased estimation. The foun-
dation of the convergence analysis is based on the fact that the sample-wise solutions Y,* and Z*
introduced in (2.13) are equivalent to the classic numerical solutions Y, and Z2 introduced in (2.10)—
(2.11) under conditional expectation E:X[-]. Specifically, we have the following proposition.

PROPOSITION 3.2. For given estimated control u* €Uy, let YN and ZFN be the numerical
solutions defined in (2.10) driven by u¥. Then the following identities hold:

(3.1) B Y=Y5 e o EX[Z]=27", . 0<n<N-1,

and therefore we have E[Y,F]=E[Y,"N] and E[ZF]=E[ZFN].

Proof. Note that the random variable w® in scheme (2.12) has the same distribution of AW;,
appeared in (2.9). Hence, the random variable wF is equivalent to AW, under expectation. More
generally, for any function ¢({wk},) of the random sample path {wF},, we have E[p({wF},)]=
E[6({AW,, 1)

To obtain the desired results in the proposition, we first consider the case n=N —1 (i.e. take one
step back from the terminal time), and we have

YENAW,, e N
Ex_1[Zx_1]=Ex_; % =Z5N"1ley ox-

h

k, k
Yywi_q X
— | =E&N—1

5

Following the same argument, we also have
EN YA 2] =EN - [YN A (fa (KR up) YR +ra (KR upy))]

Since Y =&, =Y and EX | [XK]=EX_,[XEN], where X5 is the approximated solution intro-
duced in (2.9) with the given control u*, the above equation becomes
(32) BN VA =EXL, YA (LN b) TYRY + (XN b)T | = YA

YVt N N |XN71:X'

Then, by repeatedly applying the equality (3.2) and the tower property, we obtain the desired result
(3.1). O

Next, we show that the gradient of the cost functional J has a similar unbiased property at random
samples. To this end, let Gy :=0c(w’7",0<I<k—1) be an augmented c-algebra generated by the
Gaussian random variables w?, which we use to generate state sample path X* in the sample-wise scheme
(2.12), and the data sample v* generated by the training data I'. Based on the above proposition, we
see that the stochastic approximation Vj¥(uf) introduced in (2.14) is an unbiased estimator for the
gradient VJY (uf) given Gy, i.e. E[Vj&(uf)Tgk] =VJY (uf). From scheme (2.15), we observe that
the estimated optimal control u* is G, measurable. Denote E*[]:=E[-|Gk] in the rest of this paper for
convenience of presentation. Following a similar argument in the proof of Proposition 3.2, we have

E* [V (up,)] = E* [fu(XN,un) Y+ gu(uf,)T Z0 (X ug,)]
= B [Lu (XN uf)TV 4 gu(uf)T ZEN 4 (XN up)T
=vJy (u,’fn)
The following lemma is about the boundedness of the sample-wise solution Y* and the linear growth

property for Z* with any approximate control u* €Uy .
LEMMA 3.3. Under Assumptions (a)-(e), for any u* €Un, we have

sup E[(Y))?]<C, sup E[(ZF)?]<CN
0<n<N 0<n<N

for some positive constant C.
Proof. We square both sides of the scheme for Y;* defined in (2.13) and then take expectation to
obtain

1
BV < B[(1R 1 +hfa(Xh b,) D)Vk)?] + (04 3B [(re(XEuf,)R
<(1+CHE[(V}1)?) +Ch,
where we have used Young’s inequality. Then, by the discrete Gronwall’s inequality, we have

sup E[(Y,))*] <CE[(Y)?]+C.
0<n<N

Due to Assumption 3.1 (e) for the loss function ®, we have that supg<, <y E[(Y¥)?] <C as desired.
Next, we square both sides of the scheme for Z* and take the expectation. Based on the boundedness

for V¥, we have that
YEkwk\ 2
()
which is the desired boundedness for Z*. O

In addition, we have the following classic boundedness property for solutions of backward SDEs
(see Theorem 4.2.1 in [39]):
T
/ | Z,|?dt
0

E[(Z})’]<E <CN,

(3.3) sup E[|Y;[*]+E
0<t<T

<C,

6

which will provide the following boundedness result

(3.4) sup E[|Y/[*]+E
0<t<T

<C

T
| 1zt
0

for the analytic solutions Y, and ZF driven by a control u* € Uy, where the constant C'is independent
of u*. Following the above estimates, one can also show that supy«;<7E[|ZF|?] < C under Assumption
3.1 (a)-(e). o

Note that the boundedness of the sample-wise solution Z¥ in the estimate of Lemma 3.3 is not as
strong as the true solution ZF due to the loss of regularity caused by the sample-wise representation of
expectation introduced in (2.13).

The next proposition is about the convergence of the numerical solutions to backward SDEs intro-
duced in (2.10) also holds:

PROPOSITION 3.4. Under Assumption 3.1, for small enough step-size h, there exists C >0 inde-
pendent of uF €Uy such that

N-—1 tnt1
(3.5) Oin&xN]E[stuprk—Yf’NF]+Z]E[/t |ZE — Z8N 2dt| <C(14|X0)?)h.

n=1

Proof. The inequality (3.5) is a standard extension of the regularity property, and the proof of the
theorem can be derived following the proof for Theorem 5.3.3 in [39]. The fact that C' does not depend
on u” is due to the uniform boundedness and the Lipschitz assumptions of f, g and 7.

0

The boundedness property of solutions of backward SDEs gives us the boundedness of V.J,,. Also,

the convergence result (3.5) gives the boundedness of (Y,*V, ZFN) which makes V.J» bounded, i.e.

(3.6) sup ||VJ1]LV(uk) |l <C.
ukelUn

As a consequence of the above discussions, we have the following lemma.

LEMMA 3.5. Under Assumption 3.1, for any piece-wise constant estimated control u* €Uy, the
following estimation holds

(3.7) E [V (u") = VI (u)[|3] <ON.

Proof. Due to Lemma 3.3 and the boundedness assumptions for f,, g, and r,, we have that
(3.8) Via(ut, P <C (VP +123]) <CN.
Then, we can obtain

E[|Vjs(u") = VI (@)3] < 2E[[| Vg (u®) 3] +2E [V I (u®)]3]
N—-1
< CN+ChY B[fulXpN uf) TYEN P gu (XN uf)T Z0N P ey (XN uf)]
n=0
N-1
<SCN+ChY sup E[YFVP+|ZENP]+C

0 0<n<N-1

< CN+C,

where C' >0 is a generic constant independent of N. Hence we can get the desired result of the lemma
from the above analysis. O

3.2. Convergence analysis: strongly convex cost functional. We assume that the cost
functional J defined in (2.3) is strongly convex in the following sense: there exists some constant A >0
such that for any control terms u,v €U,

(3.9 (VJu(u) =V, (v),u—0) > Nu—uv]3.

By Assumption 3.1, we have the following smoothness result for J: There exists a positive constant Cp,
such that

T T
/|VJu(ut)—VJu(vt)|2dt§C’L/ ug — v 2dt,
0 0

or equivalently,

(3.10) IV T (1) = VJu(0) |3 < Crlu—v]3.

Before stating the main convergence theorem, we need an estimate of the error between the true
gradient V.J, and its piecewise approximation VJX .

LEMMA 3.6. Assume that Assumption 3.1 holds and f,g € Cy, u* €EUn. Then there exists a constant
C >0 such that

(3.11) sup [[VJ (u*) = VI (uF) 3 <

ukeln

=k

Proof. Denote

¢t' fu(XtICv“t)TYk+gu(Xf7ut) Zk+TU(Xt]€uut))
gbﬁ:: fu(Xﬁ’N)TykN+gu(XkN Ut) ZkN+T (XkN ut)T_
We have that

/T(VJ(kY —VIN (uk))2at

| /\

N=1 .4
E:/T () = VT (e)P+ (V ()~ VT2 (b)]

1

==Z/W @@nﬁHZ/m (0f, — ok ar <

O

2|0

|

Let u*" be the optimal control for the stochastic optimal control problem (2.4) found in the subset
Up of the admissible control set /. Then, we have the following estimate.

LEMMA 3.7. The following inequality holds:

C

(3.12) [V T (u™N) = VT (u¥)]3 < ¥

Proof. Let @ be the projection of u* onto U, i.e. @Y =Py, (u*)=argmin,~ ¢y, [u™ —u*||2. Due
to the boundedness of u*, we have

@™ — 2 <

N.
Since the solutions of the backward SDEs are bounded, V.J, is also bounded. Thus

J@N) = J(u*) = /O (VT (@ —ut)),a —u*))de

— * — * C
< sup [V (u)|[2]|a” — |l <Cl|a —u*|| <N
ueL?

8

Hence

J(N) = J(u*) < J (@) = J(u) <

20

By the strong convexity assumption, we have
* * * A * * * *
(V) u N =)+ Zlu =[5 < J (™) = T (u"),
Since VJ,, (uf) =0, the above inequality leads to

c
.1 *,Nﬁ * 2< —.
(3.13) s w3 <

The desired result of the lemma is obtained by the above estimate and the convexity assumption (3.10). O

Since VJ,,(uf) =0, as a direct consequence of (3.12), we have

C
N
Now we are ready to prove the main convergence result under the convexity assumption. First we

estimate the error between the exact solution of the optimal control and the optimal control in the
piece-wise constant subset Uy of the admissible set U.

(3.14) IV Ju (w3 <

THEOREM 3.8. Assume all the assumptions in Lemma 3.6 and the convezity assumption are true.
Let nk:kJrLM for some constants 0 and M such that N0 —4CL6?/(1+M)>2. Also, let {u*}; be the
sequence of estimated optimal control obtained by the SGD optimization scheme (2.15). Then, for large
enough K, the following inequality holds

N 1
1 E K+1 *,IN |12 <)
(3.15) [Hu —u HQ]_C ——|——N

Proof. Recall that u*% is the optimal control found in control set Uy . Hence

(3.16) ut N =Py (u) =Py (w0 =V T (") iV T ().
Subtracting (3.16) both sides of (2.15), we have

=B = [Pug (0 =) = (V) = V™)) =m0 (™)) 3

Taking conditional expectation EF[] to the above equation and then applying Young’s inequality, we
obtain

B [t V]

< (L4 OB [l (uh —u™N) =i (V5 (uF) = VT (u™N)) 3] + (1 + %)niE’“Hlm(u*’N)II%J
B0 < (10 (I =) = 200 (B [V () = VT (0] =)
PR V5) VTN) + VTN () =V T (V) B)) + (4 DmZER 9 7, () 3]

From the convexity assumption (3.9) and Lemma 3.6, we deduce, from Young’s inequality with A/2,
and the fact that u* is G, measurable, that

— (EF [Vjﬁ(uk) —VJu(u*’N)] P —uNy = —(VIN (uF) =V I, (), 0 —utN)
= —(VIN (W) = VI, (uP),u* —u*N) = (VI (uF) =V I, (u*N),u? —u™)

(3.18) L2Vt ut) = V(w3 L2
- A 2

[e R (T

<20 A
“AN 2

k= V3.

Moreover, from Lemma 3.5, Lemma 3.6 and the convexity assumption (3.10), we have
BF [975 (u) — VI () + VI (u") = V.l () 3]
< 2BV (u*) = VI (w3 +CN
(3.19) < 4(EF VY (h) = VI, () B +EF |V () = VI (w V) [3]) +-ON

c
< 4(N +Cp||lu* —u*NH%) +CN,

where we use C' to denote a generic constant independent of k, IV, and controls.
Inserting Eqgs. (3.18)-(3.19) in (3.17) and applying (3.14), we obtain

o |

. 1 C .
< (1+6)(H(uk7u MG+ 5wy — Nl — w3

1

(3.20) C
a4 (5 +Couf =V [3) +4nfCN) + (14)

?i/l\i
2|Q
N——
|
=
+
I
=4
=219

N 4
= (14+6) (L= came) [u* =" [F+4nECN + (S + 4

where ¢ :=A—4CL .
Let 7 = ﬁ We can find 6 and M such that
2

2022)\9—4CL1+M

>2,

and we have that, when k is large enough, 2cij; > cpnr for ng = HLM. Choosing e=crj, in (3.20), we
have

BF ([l — V3]

_ _ . _ i o C
< (Ueip) (1= 26 uf —u"V [+ C N + %)) + (1+ —)it

< (1 —ciie) uf —u N3+ CREN + O L.

Next, we take expectation E[-] to both sides of the above estimate and apply it recursively from k=0
to k=K to get

K K K C
B[—u= N3] < T] (- i) B[flu® —u=Nj3] + (Z iim-1 || <1—cﬁk)> N
k=0 m=1 k=m
ey 2 ﬁ(l—a) CN
N m=1nm71k:m 77k

14+ M)t
S(K+M)_Cuo—u*’N||§+C’N((K+M)_1—(+) >+C

(K+M)) N

Since ¢>1 and Hkl,(:m(l —cijr) ~O((K/m)™°), the above estimate gives us

E K+1_ *,N 12 < 7<C s -
L 1 N TR G

CN C (N 1 >
0

Note that the estimate (3.15) provides the convergence between the estimated control u**1 and the
optimal control found in the subspace Uy. The next theorem, which is the main result of this section,
gives the convergence between v 1 and the exact optimal control u* €.

10

THEOREM 3.9. Assume that all the assumptions hold in Theorem 3.8 and assume the optimal
control u* is bounded. Then, for large enough K, we have the following convergence result:

N 1
.21]E K+1 o * 2 < - _ .
(3.21) [k 3 <0 (4+
Proof. From the estimate (3.15) obtained in Theorem 3.8 and the fact (3.13), we have

E[flu”* —u 3] < 2E[Ju"*" —u V3] + 2B [— 3]

<c (N 1) e C
K N N’
as desired. O
REMARK 3.10. The error estimate (3.21) reveals the interplay between the number of the sample-
wise SGD iterations and the depth of the corresponding stochastic neural network and the error of
approzimating the SDE and the backward SDE. In particular, by choosing K = N?, we recover the half
order convergence (O(ﬁ)) the numerical algorithms (2.9) and (2.10) for the SDE and the correspond-

ing backward SDE. On the other hand, by choosing N =+ K, we obtain i order convergence in K,
which is half of that for conventional SGD iterations. Such order reduction is expected for stochastic
computing involving SDFEs.

3.3. Convergence analysis for non-convex cost functional. We now study the convergence
of the same algorithm without the convexity assumption. In addition to the boundedness assumptions
in Assumption 3.1, we assume that the running cost only depends on control w, and we let R(u):=

Ty uy)dt, which is uniformly bounded from below by C||ul|2, i.e.
0
(3.22) R?(u) > C|ull3,

where C' is a constant that satisfies Lemma 3.6. Also, we assume that learning rates 7y, satisfy the
Robbins-Monro condition:

oo o0
(3.23) an:oo, an<oo.
k=1 k=1
To proceed, we denote JVV as the cost function corresponding to the fully calculated approximate
gradient VJY i.e.,

lim N(u+6v) —JN (u)

_ N
550 5 _<VJu (U),U>, U,UEZ/{N,

Note that for any ug, u €Uy,

IV (u) = TN (ug) / o JN u0+e(u uo)))de
(3.24)

/ < u0+6(u uo)),u—u0>de.
Then, we can show that JV is bounded from below based on the boundedness assumption for the
running cost R, i.e.,

IN (k) = J(u®) = T (uo) + TN (uo) _/0 (VJu(uo+e(uf —ug)) = VI (uo +e(u” —ug)), (u" —ug))de

> J(u¥)=Co—C sup [V (u¥) = VIY (u¥)[|o[[u* —uoll2
ukcln
= ®(X7) —Co+ R(u*) = C sup ||V, (u*) = VI (u)2]|u* = uolla,
ukclUn
11

where X7 is the solution of the state equation (2.2) driven by the control u*. We choose ug=0 in the
above estimate. Then, it follows from Lemma 3.6 that

JN (k) > ®(XE) - Co+ R(uF) — /C/N||u¥| > ®(X%) - Co,
>0

which indicates that J» is bounded from below.

We aim to show that for a given depth N, limy_,o [|VJy(u¥)||2 — 0 a.s.. To this end, we first state
two propositions that can be derived following the same proofs as in Theorem 5.3.1 and Theorem 5.3.3
of [39].

PROPOSITION 3.11. Assume the assumptions (a), (b), (d) in Assumption 3.1 hold. Let XN:v
and XNV be approzimate solutions introduced in (2.9) driven by two controls u,v €Uy, and we denote
AnXEv = XNuw — XNv Then, we have

max |[AnyXY
0<n<N

PROPOSITION 3.12. Assume that Assumption 3.1 hold and let ANY,»V:=YNv_yYNv gnd
ANZEY = ZNw — ZNv for numerical solutions YN and ZN with controls u,v €Uy. We have the fol-
lowmg estimate

N-—1
S E[ANY P 40 Y EANZE P < Clu—of.
0<n<N n=0

With the above propositions, we can derive the following lemma:
LEMMA 3.13. Let w,v €Uy. Under Assumption 3.1, there exists a positive constant C such that

IV (w) = VI ()3 < Cllw—v]3.

Proof. Since w,v €Uy, we can write w = (wp, w1, ", Wy, ,wxn) and v=(Vg,v1, " ,Vp, **,UN).
Then, it follows from Proposition 3.11, Proposition 3.12 and Assumption 3.1 that

IV ()= V1Y ()13
Shz< [) TV = Fu(X0) YN g (XN) T 200 = gu (X0 0a) T 20
T T 2
ra(wn) T =ru(vn))

N-1
< ChY B[V, =YV P 4|z —
n=0

,XTJLV,v|2+ |wn *”Un|2]

N-1
<Ch Z |wn7vn|2.

n=0

The following lemma mimics Lemma 4.4 of [3].
LEMMA 3.14. Let {u*} be the sequence of approzimate controls obtained by (2.15). Under As-
sumption 3.1 and the bounded from below assumption (3.22), we have the following estimate

(3.25) EMTN @] < TN (u) =V I ()13 + O N

Proof. From the definition of JV and (3.24), we have that

u

1
TN (W) — TN (k) — (VTN (uF) ub T — o) :/ (VIN (W + et —u?)) = VI (W), "t —uF)de.
0

12

Applying Lemma 3.13 to the right-hand side of the above equation, we get
TN = IV () = (T ()0 k) < b = b

Hence we can rewrite the above inequality to get the following estimate

(3.26) TN (M) < TN (uF) =i (VI (W), Vi3 (u®) + C i) [V 5 (u®) 13-

Next, we take the conditional expectation E¥[-] on both sides of (3.26). Similar to the argument in
proving Proposition 3.2, we have

EM (VI (uF), Vi ()] =V I3 (M]3,
which, together with the estimate (3.8), gives us
EF [TV (u")] < TV (ub) =i | VI (uP) |13+ O N

as desired. O
The following lemma gives the final preparation for the main theorem of this subsection.
LEMMA 3.15. Under Assumption 3.1 and the bounded from below assumption (3.22), suppose that

(3.27) > B[V (uF)]13] < o
k=0

Then we have

lim [|[VJY (u®)]2=0, a.s.
k—o0
Proof. We first show that
(3.28) liminf |VJY (u®)3=0, a.s.
k—o0

If (3.28) is not true, there exists constants K >0 and a>0 such that for all k> K, ||[VJYN (u)||3 > a.
As a result, we have from our assumption in (3.23) that

Yo mlIVIY@HE>a Y me=oo,
k=K+1 k=K+1

which contradicts the assumption (3.27) in this lemma.
On the other hand, suppose

(3.29) limsup || VJY (u*)]|2 >0, a.s..
k—o0

Then, we can find two sequences of stopping times {my}r and {ns}; defined inductively as follows:
given € >0, let

mo :=inf{k:||VJN (u*)||3 > 2¢},
ng =inf{k>my: | VJIY (uF)|3 <€},

Mpy1 = inf{k>ng: | VIV (u)|3 > 2¢}.

Hence, we have

[e%s} co np—1 oo np—1
00>y VN (@h)3=D 0 > mllVIY (w)5=eY Y m
k=0 k=0i=my k=0i=my,

13

lel

Therefore, limg 00) ;5. 7:=0, a.s.. By (3.8) in the proof of Lemma 3.5, we have
E*[[lu** —u®||3] = niEX (|| Vg (u®)[|3] < CN .

By the triangle inequality, the above estimate gives

nE—1
[u —u™[ly <VEN Y i —0, as k— oo,
1=my
Then, by Lemma 3.13 we obtain
(3.30) Jim IVIN (u™) =V IN (u™)||3 —0, a.s..
—00

By definition of stopping times {my }x and {ng}r, we have
e <V (@™)5 = VI (@) 3= VI (™) = VI (u™) + VI (u™) 3= IV I3 (u™)]I3
< (1+2)||VJiV(um’“)—VJiV(U”"’)H%Jr(H%)HVJ&V(U"’“)H%—||VJiV(U"’°)H§
< 3\|VJqﬂv(umk)—VJiV(U"’“)H%Jr%HVJiV(U"’“)H%
< BV () - VTN)3+ g

However, letting k£ — oo in the above inequality will result a contradiction due to (3.30).

Therefore, we have limsupy_, .. [|[VJY (uF)||2=0, a.s.. Together with (3.28), we obtain the desired
convergence result in the lemma. O

We are ready to prove the main convergence theorem that shows our sample-wise backpropagation
method convergences in training a N-layer SNN.

THEOREM 3.16. Under Assumption 3.1 and the bounded from below assumption (3.22), we have
the following result for a given integer N € N:

lim [|[VJY (u®)]2=0, a.s.
k—o0
Proof. Let By =nx||[VJY (u¥)||3. We proceed to prove Y= E[B)] < oo, which is the condition (3.27)

in Lemma 3.15 that will give the desired result of this theorem.
Define

e =JN (ub) —l—CNZmQ,
i=k
where C' is a constant that satisfies (3.25) in Lemma 3.14. Then, we apply (3.25) to get
(o) o0
(3.31) EF A a] =EF[TN @F]+CON Y pf <TNWF)+CNY 07 = Br= Ak — B < i
i=k+1 i=k

Since JV is bounded from below, as discussed above, E[Ax] is also bounded below. Moreover, we
know from (3.31) that {\x}x is a super-martingale bounded from below. Therefore, by the martingale
convergence theorem, we obtain

lim E[A;] < oo
k—o0

Then, we apply (3.31) to get

ZE Bl < Y B A —EFAxpa]]
= k=0

= Z)\k+1]) < 00.

Then, the desired result of this theorem holds by using the conclusion in Lemma 3.15. O
14

4. SNN implementation and numerical experiments . In this section, we verify the conver-
gence results obtained in Section 3 and discuss the implementation issues of the sample-wise numerical
algorithm for the SNN through three numerical experiments. In the first experiment, we solve a linear-
quadratic stochastic optimal control problem that satisfies the convexity assumption, and the exact
solution of the optimal control is known. We want to use this classic stochastic optimal control example
to examine the convergence rate obtained in Theorem 3.9. In the second experiment, we learn a noise
perturbed 8D function by using the SNN to demonstrate the capability of our sample-wise backprop-
agation method in learning high dimensional functions. We also want to use this experiment to verify
the boundedness/differentiability assumption of the activation function in the convergence analysis and
confirm that the ReLU activation function is not suitable to implement the SNN with sample-wise
backward propagation. In the last experiment, we implement the SNN by incorporating convolutional
blocks [15,20,28] and solve the benchmark classification problem using the MNIST handwritten dataset
and the Fashion-MNIST dataset. We want to use this experiment to show that our method works
well for classic machine learning tasks and has a robustness advantage compared with the conventional
deterministic convolution neural network. The CPU we use to run the numerical experiments in this
section is an M1 Pro Chip with 3.2GHz and 16 GB memory.

4.1. Numerical verification of convergence rate. In this experiment, we consider the following
state process on the temporal interval [0,77:

(41) dXt:(Ut*at)dt+(7Utth7

where X and u are 8D state and control. The vector function a; is defined by

—t? —sint —0.5exp(1—t) —t3 —In(1+t) —cos2mt —tant 1—t T
at= |55) s on 0))))
L2 B B 36:" B B B T20%(1-t)+2
where ;= (1+02)+02(1—t). The cost functional is defined by
1 ! *|2 1 ! 2 ! 2
(4.2) Jw)== | E[|X:—X;|"|dt+= | |u]?dt+=|X7]°,
2/, 2/, 2
where |-| is the Euclidean norm in R®, and X} is defined by
(1) : (2) (3) (4)
0.5— 1- 1-1¢ 0.5— 1/3—
X/ = t—i—atixT,cost—&—atsm Ir 7_exp()—l—at 7 A2+ oy /3—or ,
o? o? 2 o? o?
1 ln2—x§§) . 27Tcos1—3:g?) 9 tanl—x(T7) t 1 1+02 T
1+t+at > ,—27Ts1nt+atT,sec t+at7’§+l_ﬁ nm] ,
2
14952 In(1+ -2
where atzln#. or D:= (1+U22 , T = [a:(Tl),~~~ ,x(T7)] in the above are defined as
o2(2—-t)+1 02+ln(1+1j:7)

7
T = [D/Z,D-sinl,D/Q,D,D-ln2,DcosZ7r,D-tan1] . Since the stochastic optimal control problem

(4.1)-(4.2) is a linear-quadratic problem, we can find the analytic expression for the optimal control as

. 7t2/2+T2/27x¥) *Siﬁf‘#Sil’ll*(ﬂf(ﬁ) 71/Qexp(Tft)+1/27x(Tg) 7t3+T373x$)
! '_[B ’ Be ’ Be 7 30t ’
—ln(1+t)+ln(1+T)—x(T5) —cos27rt+cos27r—m¥3) —tant+tan1—x(T7) T—t T

Bt 7 B , B ’Uz(T_t)"‘l}

We choose T=1, 0 =0.5, Xo=0, and N =20,30,40,---,100 with iteration steps K =0.2 x N2 for
each N. In the convergence analysis (3.21) proved in Theorem 3.9, we can see that when choosing
K ~O(N?), the approximation error |[u®*!—u*||; has half-order convergence rate. To verify this

15

Error Decay N=60, Error Decay in K

i \: 1t
@ Error .
—lar —Slope 05 \\
—) —_ _2 [
O-16+ <)
L ° L
=3 . o -
S-18+ S3t
N —]
. @ u-u| o
-20+ 5 —slope=0.5
. -4
3.0 35 4.0 45 6 8 10 12
log Steps log Steps
(a) Convergence with respect to N (K =0.2N?). (b) Convergence with respect to K.

Fig. 1: Example 1. Convergence results.

result, we solve the stochastic optimal control problem (4.1)-(4.2) 50 times and plot the root mean
square errors (RMSEs) in Figure 1 (a). The blue dots give the RMSEs corresponding to N (presented
by log N on the x-axis), and the red straight line shows the slope of half-order convergence. From
this figure, we can see that our algorithm does provide a half-order convergence rate when the relation
K ~O(N?) is satisfied.

In Figure 1 (b), we further investigate the convergence with respect to K, and we let N =60 be a
fixed partition number. The blue dots show the RMSEs corresponding to different K values (presented
by log K on the z-axis), and the red straight line indicates the slope of half-order convergence. From
this figure, we can see that the convergence rate of our algorithm is well-aligned with the half-order
slope while the number of iterations K is relatively small. However, when K values become larger, the
accuracy of our algorithm does not always improve accordingly. This verifies the existence of the %
term in the analysis (3.21), which becomes the bottleneck in convergence with large iteration number
K. In other words, a fixed partition number N limits the algorithm’s convergence no matter how many
iteration steps we implement in the optimization procedure.

4.2. Implementation with combined-sigmoid activation functions. We aim to use the SNN
model (2.1) to learn random noise perturbed functions by using discrete function values as data and
demonstrate the performance of our method in both function approximation and uncertainty quan-
tification. We let h=1 and choose the activation function in the SNN as a combination of sigmoid
functions, which is defined as follows:

L
(4.3) b(X)=> aic(WX+V),
=1

where o(x) = 1—5-%’ {a;}£_, take values in [—4.5,4.5], which is a set of weights of different sigmoid
functions, W is the weight matrix for the state of neurons, and V is a bias vector.

Now we apply the SNN with the combined sigmoid activation function to approximate the following
noise perturbed 8 dimensional function:

f(xy1,...,x8) :=exp(x1) cos(2mas) +8x3(x4 —0.5) + x5 +log(2+x6) + 22 + 215 +0.05¢, £~ N(0,1).

The training data are collected on 6% spatial mesh points in the hypercube [0,1]%. Since this is a
high dimensional function, we use an SNN with N =15 layer and put 40 neurons in each layer. The
number of optimization iterations for training the SNN is 1.5 x 107, and the CPU time for this training
procedure is 1508 seconds. It’s worth mentioning that each data sample contains only a limited amount
of information about the perturbation noise, and a significant amount of computational effort in this
8-dimensional approximation example would contribute to finding the confidence band of the function,

16

which is also the main challenge in uncertainty quantification for deep learning. Although by collecting
data on some sophisticatedly selected high dimensional sample points, such like Latin Hypercube points,
would make the data more effectively represent the target function. The main reason that we choose
the uniform grid in this example is for the convenience of presentation. When plotting the predicted
functions, which will be presented in Figure 3, it’s easier to demonstrate the approximated function on
fixed uniform mesh-grid points in one direction while fixing others. On the other hand, the challenge
of high-dimensional approximation still remains in the current framework with limited data on uniform
mesh-grid points.

Exact Value Estimated Value
275 275
250 250
225 225
200 200
175 i
150 150
125 125
10 100 B 10 1.00
08 08
02 04 08 o7 a o
04 06 08 50z X5 06 08 1002 X5
X2 X2
a) Exact surface: Xo-X b) Approximate surface: Xo-X
2 5 2 5
Exact Value Estimated Value

10 10

08 1

086

04
o4 06 08 1002 X7 £ 08 1002 X7
X4 X4

(c) Exact surface: X4-X7 (d) Approximate surface: X4-Xr7

Fig. 2: Example 2. 8D Function approximation — surface views.

In Figure 2, we compare the real marginal surface of function f (presented in mean values) with
our estimated surface using the trained SNN. In Figure 2 (a), we present the exact X5-X5 marginal
surface of function f, and Figure 2 (b) shows the SNN learned X5-X5 marginal surface; In Figure 2 (c),
we present the exact X4-X7 marginal surface of function f, and Figure 2 (d) shows the SNN learned
X4-X7 marginal surface. From this figure, we can see that training the SNN 1.5 x 107 steps with our
sample-wise backpropagation algorithm can give a very good approximation for the original function.

To show more details of the SNN’s performance in function approximation, we present section
views of each direction in Figure 3, where the exact function mean values are plotted by red dots, the
SNN estimated function mean values are plotted by blue crosses, the true 95% uncertainty bands are
presented by green dashed lines, and the SNN estimated 95% confidence bands are shown by red dashed
lines. From this figure, we can see that the trained SNN can accurately approximate the function’s mean
values and the uncertainty caused by the random variable £.

To validate the convergence of our algorithm, we train SNNs with N =2,5,9,12,15, and present the
accuracy of function approximation and uncertainty quantification with different numbers of training
steps in Figure 4 and Figure 5. We can see from those figures that the SNN can achieve higher accuracy
in estimating both function values and uncertainty bands by using more layers. For a fixed SNN depth,
we can see a clear convergence trend when implementing more iteration steps. However, an accuracy
barrier appears in each experiment due to the fixed SNN depth, which typically results in limited

17

A section of function Value in the 1st dimension

A section of function Value in the 2nd dimension

N > Estimated value 2
L) - @ True value y
20F ~ 5F Estimated 95% confidence band
’ - RN 95% confidence band for true function d
~ ~ % A
-~ - \
“~ N\ /7
15+ 4r \) /
N ~, a N \ /
~ \ /
- \'\ il
" F ey
L0 ¢ Estimeted valve ~ 3 AN 7
@ Truevalie ~ ~ s
Estimated 95% confidence band g
95% confidence band for true function ¥ 2t b
05
02 04 06 038 10 02 04 06 08 10
X X
(a) X7 section (b) X2 section
A section of function Value in the 3rd dimension A section of function Value in the 4th dimension
45 H X Estimated value P X Estimated value
@ True value S 60} @ Tuevale x
Estimated 95% confidence band . - B Estimated 95% confidence band
95% confidence band for true function 3 95% confidence band for true function
40 -
55
~ p
R /
“ 35} “" 50 A “uy
- P N ’
L 450 N ‘.
30F - - ST ./
. 40 ~ *
02 04 06 038 10 02 04 06 038 10
X X
(¢) X3 section (d) X4 section
A section of function Value in the 5th dimension A section of function Value in the 6th dimension
> Estimated value
@ True value
36 Estimated 95% confidence band - - ‘ 4.0 =
95% confidence band for true function - i
341 = 39 %
. } M
“—32F + 38
- * *
30} _ - 37 M
. X 24 Estimated value
36r° @ True value
28 1% Estimated 95% confidence band
35 95% confidence band for true function
02 04 06 038 10 02 04 06 038 10
X X
(e) X5 section (f) X¢ section
A section of function Value in the 7th dimension A section of function Value in the 8th dimension
% Estimated value 5.0 < Estimated value %
275 @ True value e @ True value ’
Estimated 95% confidence band Estimated 95% confidence band
95% confidence band for true function e 95% confidence band for true function
250 45 ¥
A 7
e el
w2257 - 4.0 -
2 % -
~
2,00+ - % -
- 35 T
175+, s
- ¥
30
02 04 06 08 1.0 02 04 06 08 10
X X

(g) X7 section

(h) Xg section

Fig. 3: Example 2. 8D Function approximation — section views

representation capability by using neural network models.

REMARK 4.1. In the convergence analysis, we require boundedness for the activation function in
the SNN (see Lemma 3.6). To verify this requirement, we repeat the above experiment by replacing the

18

Loss

%
015+
—— N=:
| —— N=5
012} | L
| N=12
N=15
0.09 |
006}
0,03 | ."-‘_,_7__7 e . i

20x10° 4.0x10° 60x10° 80x10° 10x10" 12x10" 14x10’
Number of Iterations

Fig. 4: Example 2. Convergence in function approximation.

Confidence band error

20x10° 40x10° 60x10° 80x10° 1.0x107 12x10" 14x10°
Number of Iterations

Fig. 5: Example 2. Convergence in uncertainty quantification.

sigmoid function o in (4.3) with a ReLU function. It turns out that ReL U-activated SNN does not even
produce convergent results, which confirms the necessity of boundedness for the activation function'.

4.3. Implementation with convolutional blocks. We implement the SNN with convolution
blocks and examine its performance in solving benchmark machine learning problems and confirm the
robustness advantage of SNN over deterministic deep neural networks. Specifically, we solve the image
classification problem with the MNIST handwritten digit dataset and the Fashion-MNIST dataset. In
each dataset, we have 60,000 training data samples and 10,000 testing data samples. Here, instead
of using a single-realization sample to represent the state variable, we use a mini-batch of samples to
approximate expectations in our SNN algorithm? .

In Figure 6, we present the training accuracy and testing accuracy of our SNN algorithm in solving
the classification problem over the MINST handwritten dataset with different batch sizes, and in Figure
7, we present the training accuracy and testing accuracy of our SNN algorithm in solving the classifica-
tion problem over the Fashion-MINST dataset with different batch sizes. We can see from those figures
that our SNN algorithm can generate accurate classification results fairly fast (with various batch sizes)
in both training and testing for bench-mark classification tasks.

!The numerical implementation about the ReLU activation experiment can be found on github at
https://github.com/Huisun317/SNN

?Detailed formulation of the SNN structure and our specific numerical implementation can be found on github at
https://github.com/Huisun317/SNN

19

10°

9.95 x 107!

9.9x 107

9.85x 10

9.8x107t

975x10°!

97 <107

Tain_accuracy

— Batch50

Batch100
= Batch200
— Batch500

1 3 5 7 9 1 1B 5 7 B 2

Epochs

(a) Training accuracy

Train_accuracy

9.6x 107"

9.4x 107"

92x107"

9x107!

BBx1071

B6x 107"

—— Batch50

Batch100
—— Batch200
— Batchsp0

B4x 1071

1 3 5 7 9 lI]. 13 s 17 19 21
Epochs

(a) Training accuracy

9.9x 10~

9.85x 107

9.8x 10"

975x 10"

97 =10~

92x107!

9.1x107t |

9x 107!
B9x 1071
BBx1071

B7x107?

BEx 1071 T

B5x 107!

B4x 1077

Bst_accuracy

1

1

1

— Batch50

Batch100
= Batchz00
— Batch500

5 S

1

T
1 3 5 7 9 11
Epochs

T T T
3 15 17 19 21

(b) Testing accuracy

Fig. 6: Example 3. Performance of SNN: MINST handwritten dataset.

Test_accuracy

— Batch50
Batch100

= Batch200

— Batch500

1 3 5 7 9 lI]. I 1 17 19 21
Epochs

(b) Testing accuracy

Fig. 7: Example 3. Performance of SNN: Fashion-MINST dataset.

Comparisen of accuracy achieved between Classical structure and SNN

1000

0985

0.990

0.985

0.980

0475

0970

—— Tain_accuracy classical o
Tain_accuracy_SNN - —

00 25 50 75

In addition, we compare the performance of our SNN algorithm with the classical (deterministic)
conventional convolution neural network (CNN), where both methods utilize the same network architec-
ture (except for the noise term introduced in the SNN method) with the batch size 200. The comparison
of training and testing accuracy of each method is presented in Figure 8 and Figure 9. As we can see

wa 125

Epochs

(a) Training accuracy

Comparisen of accuracy achieved between Classical structure and SNN

09875

09850

09825

0.9800

09775

09750

09725

09700

—— st accuracy classical
Est_accuracy_SNN

wo 125 180 175

Epachs

00 25 50 75

(b) Testing accuracy

Fig. 8: Example 3. Comparison: MINST handwritten dataset.

Comparisen of accuracy achieved between Classical structure and SNN Comparisen of accuracy achieved between Classical structure and SNN

096 { — Tain_accuracy classical —— st accuracy classical
Tain_accuracy_SNN Test_accuracy_SHN

090

084

082

00 25 50 75 0.0 125 150 175 00 25 50 75 0.0 125 150 175
Epochs Epochs

(a) Training accuracy (b) Testing accuracy

Fig. 9: Example 3. Comparison: Fashion-MINST dataset.

from those figures, the SNN constantly outperforms the CNN in terms of both training accuracy and
testing accuracy with respect to the number of training epochs. However, we need to point out that
the SNN method is more time consuming in each training epoch due to the complexity of the SNN
formulation, and people can further improve the efficiency of the current SNN algorithm by applying
accelerated SGD techniques.

To present the necessity of applying SNN as a probabilistic learning tool, we consider an adversarial
game scenario in which some “attacker” attacks the data (through Fast Gradient Sign Attack (FGSM))
and try to fool the neural network (pre-trained on the clean dataset). At the same time, the model
retrains itself along the way by using the attacked dataset to play an adversarial game against the
attacker. We want to use this experiment to show that our SNN algorithm is more robust than the
deterministic CNN in handling unexpected noises in the data.

Test accuracy MMIST game

100 4

095

090

085

00

075 4

070

0.0 01 0.2 0.3 0.4 0.5
Epsilon

Fig. 10: Example 3. Attacked model accuracy with different levels of noise (MNIST).

In Figure 10, we compare the accuracy between our SNN with CNN with respect to the level of
noises added to the MNIST handwritten dataset, where the same CNN structure is adopted to our SNN
model in the drift term. We can see that without noise in the dataset, both SNN and CNN provide
very accurate classification results. Then, SNN and CNN suffer lower accuracy due to the errors added
to the dataset by the “attacker”. However, our SNN algorithm started outperforming the CNN while
more noises were added. In Table 1, we present the accuracy comparison between SNN and CNN under
adversarial attacks. We can see from this table that with 50% of noise added to the data that causes

21

Table 1: Classification accuracy with different levels of noise: MNIST

€ 0.0 0.05 0.1 0.15 0.2 0.3 0.4 0.5
Attacked CNN | 0.996 | 0.9773 | 0.952 | 0.9217 | 0.89 | 0.826 | 0.762 | 0.701
Attacked SNN | 0.995 | 0.9782 | 0.957 | 0.938 | 0.917 | 0.866 | 0.818 | 0.770

Table 2: Classification accuracy with different levels of noise: Fashion-MNIST

€ 0.0 0.05 0.1 0.15 0.2 0.3 0.4 0.5
Attacked CNN | 0.915 | 0.760 | 0.668 | 0.639 | 0.596 | 0.550 | 0.531 | 0.499
Attacked SNN | 0.910 | 0.796 | 0.745 | 0.698 | 0.662 | 0.633 | 0.607 | 0.583

misclassification, the SNN could still reach 77% of accuracy, which is 7% higher than the conventional
CNN method.

In Figure 11, we compare the accuracy between our SNN with CNN with respect to the level of
noise added to the Fashion-MNIST dataset. We can see that without noise in the dataset, both SNN
and CNN provide very accurate classification results. Then, SNN and CNN suffer lower accuracy due
to the errors added to the dataset by the “attacker”, and our SNN algorithm increasingly outperforms
CNN while more and more noises are added. In Table 2, we present the accuracy comparison between

Test accuracy FASHION MNIST game

030 1§ —— CNN
085
0.80
075
070
065

0.0 01 0.2 0.3 0.4 0.5
Epsilon

Fig. 11: Example 3. Classification accuracy with different levels of noise (Fashion-MNIST).

SNN and CNN under adversarial attacks. We can see from this table that with 50% of noise added to
the data that causes misclassification, the SNN could still reach 58% of accuracy, which is 8% higher
than the conventional CNN method.

5. Conclusions. In this paper, we carried out rigorous numerical analysis to prove the conver-
gence of a novel sample-wise backpropagation algorithm for training a class of stochastic neural networks
(SNNs). Under the convexity assumption, we derived a half-order convergence rate for our algorithm
in the mean square sense. Without the convexity assumption, we proved the convergence of stochastic
gradient descent iteration in the algorithm. Numerical experiments are conducted with appropriately
designed neural network architecture under the SNN framework, and the results of the numerical ex-
periments validated the convergence of the algorithm as well as the advantageous performance of the
SNN algorithm for probabilistic machine learning.

REFERENCES

22

[20]

(21]

Adria Puigdomenech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, and
Charles Blundell. Agent57: Outperforming the atari human benchmark, 2020.

F. Bao, Y. Cao, R. Archibald, and H. Zhang. A backward sde method for uncertainty quantification in deep learning.
arXw:2011.14145, 2021.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. SIAM
Rev., 60(2):223-311, 2018.

A. Athalye C. G. Northcutt and J. Mueller. Pervasive label errors in test sets destabilize machine learning bench-
marks. arXiw:2103.14749, 2021.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equa-
tions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 31, pages 6571-6583. Curran Associates, Inc., 2018.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32, pages 3140-3150. Curran Associates, Inc., 2019.

Weinan E. A proposal on machine learning via dynamical systems. Commun. Math. Stat., 5(1):1-11, 2017.

N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations in finance. Math. Finance,
7(1):1-71, 1997.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep
learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 1050—-1059,
New York, New York, USA, 20-22 Jun 2016. PMLR.

Nicholas Geneva and Nicholas Zabaras. Quantifying model form uncertainty in Reynolds-averaged turbulence models
with Bayesian deep neural networks. J. Comput. Phys., 383:125-147, 2019.

Nicholas Geneva and Nicholas Zabaras. Modeling the dynamics of PDE systems with physics-constrained deep
auto-regressive networks. J. Comput. Phys., 403:109056, 32, 2020.

R. Gerstberger and P. Rentrop. Feedforward neural nets as discretization schemes for ODEs and DAEs. volume 82,
pages 117-128. 1997. 7th ICCAM 96 Congress (Leuven).

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1):014004,
22, 2018.

M. Miremadi J. Bughin K. George P. Willmott J. Manyika, M. Chui and M. Dewhurst. A future that works:
Automation, employment, and productivity. Technical report, McKinsey Global Institute, 2017.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,
and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM
International Conference on Multimedia, pages 675678, New York, NY, USA, 2014. ACM.

Peter E. Kloeden and Eckhard Platen. Numerical solution of stochastic differential equations, volume 23 of Appli-
cations of Mathematics (New York). Springer-Verlag, Berlin, 1992.

Lingkai Kong, Jimeng Sun, and Chao Zhang. Sde-net: Equipping deep neural networks with uncertainty estimates,
2020.

Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho Paik. Uncertainty quantification using
Bayesian neural networks in classification: application to biomedical image segmentation. Comput. Statist.
Data Anal., 142:106816, 17, 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30, pages 6402-6413.
Curran Associates, Inc., 2017.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, Nov 1998.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients for stochastic
differential equations. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third In-
ternational Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pages 3870-3882, Online, 26-28 Aug 2020. PMLR.

Xuanging Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. How does noise help robustness?
explanation and exploration under the neural sde framework. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

Jin Ma and Jiongmin Yong. Forward-backward stochastic differential equations and their applications, volume 1702
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999.

Patrick L. McDermott and Christopher K. Wikle. Bayesian recurrent neural network models for forecasting and
quantifying uncertainty in spatial-temporal data. Entropy, 21(2):Paper No. 184, 25, 2019.

A.Nemirovski, A.Juditsky, G.Lan, A.Shapiro. Robust Stochastic Approximation Approach to Stochastic Program-
ming. STAM J. OPTIM. Vol 19, No. 4, pp.1574-1609.

Huyén Pham. Continuous-time Stochastic Control and Optimization with Financial Applications Stochastic Mod-
elling and Applied Probability 61. Springer.

Andrey V. Savchenko. Probabilistic neural network with complex exponential activation functions in image recog-
nition. IEEE Trans. Neural Netw. Learn. Syst., 31(2):651-660, 2020.

Pierre Sermanet, David Eigen, Xiang Zhang, Michaél Mathieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated
recognition, localization and detection using convolutional networks. CoRR, abs/1312.6229, 2013.

23

29]

(30]

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
L Robert Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George
van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of go without human knowledge.
Nature, 550:354-359, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George
van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of go without human knowledge.
550:354—, October 2017.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of deep neural networks: A
tutorial and survey. Proceedings of the IEEE, 105:2295-2329, 2017.

G. Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level play. Neural Computation,
6(2):215-219, 1994.

Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent gaussian models in the
diffusion limit. CoRR, abs/1905.09883, 2019.

Ling Wu, Kepa Zulueta, Zoltan Major, Aitor Arriaga, and Ludovic Noels. Bayesian inference of non-linear multiscale
model parameters accelerated by a deep neural network. Comput. Methods Appl. Mech. Engrg., 360:112693,
17, 2020.

Y. Bengio Y. LeCun and G. Hinton. Deep learning. Nature, 512(7553):436-444, 2015.

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-PINNs: Bayesian physics-informed neural networks for
forward and inverse PDE problems with noisy data. J. Comput. Phys., 425:109913, 2021.

Jiayu Yao, Weiwei Pan, Soumya Ghosh, and Finale Doshi-Velez. Quality of uncertainty quantification for bayesian
neural network inference, 2019.

Jiongmin Yong and Xun Yu Zhou. Stochastic controls, volume 43 of Applications of Mathematics (New York).
Springer-Verlag, New York, 1999. Hamiltonian systems and HJB equations.

J. Zhang. Backward Stochastic Differential Equations - From Linear to Fully Nonlinear Theory. Probability Theory
and Stochastic Modelling. Springer, New York, NY, 2017.

Weidong Zhao, Lifeng Chen, and Shige Peng. A new kind of accurate numerical method for backward stochastic
differential equations. SIAM J. Sci. Comput., 28(4):1563-1581, 2006.

24

