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Abstract

A splitting scheme for backward doubly stochastic differential equa-
tions is proposed. The main idea is to decompose a backward dou-
bly stochastic differential equation into a backward stochastic differential
equation and a stochastic differential equation. The backward stochas-
tic differential equation and the stochastic differential equation are then
approximated by first order finite difference schemes, which results in a
first order scheme for the backward doubly stochastic differential equa-
tion. Numerical experiments are conducted to illustrate the convergence
rate of the proposed scheme.
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1 Introduction

The aim of this paper is to introduce a splitting algorithm for the following
backward doubly stochastic differential equation (BDSDE):

T T T
Y, = §+/ f(s,Xs,Ys,Zs)ds—/ ZSdVVS—I—/ g(s,Xs,YS)dE, (1.1)
t t t

where 0 <t < T, W = {W; }4>0, B := {B:}+>0 are two independent Brownian
motions and the stochastic process X; is defined by X; = Xy + W;, where Xj is
an initial random variable independent of W and B. The notation d% stands
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for the backward It6 integral (see [32]), which is an Itd integral with backward
propagation direction. The solution of the BDSDE (1.1) is a pair of stochastic
processes (Y, Z;). Here “doubly” refers to the fact that the equation is driven by
two independent Brownian motions. Without the d B, integral, the BDSDE is
reduced to a standard backward stochastic differential equation (BSDE), which
has been extensively studied [28, 29, 33, 39, 40].

The theory of BDSDEs was first studied in [34] to give a probabilistic inter-
pretation for the solutions of the following class of semilinear stochastic partial
differential equations (SPDEs)

T
u(t,z) =0(z) + / (Eu(s,:z:) + f(s,z,u(s, ), (Vua)(s,:c))) ds
¢ (1.2)

+/t g(s,z,u(s, ) dB,, (t,z) € [0,T] x R¢

through the relation
}/1-5 = 'LL(t7Xt), Zt = Vu(t, Xt)O'(Xt). (13)

The SPDE system (1.2) provides a stochastic version of parabolic type PDEs
which could decribe uncertainties in modeling physical and engineering prob-
lems. For example, in the case that f is a linear function, the above SPDE solves
the optimal filtering problem which aims to obtain the best estimate for the state
of some stochastic dynamical system based on noisy partial observational data
[5]. The optimal filtering problem is the key mission in data assimilation and it
has been widely used in target tracking, weather forecasting, image processing,
parameter estimation, etc.. In an optimal filtering problem, we need to obtain
the conditional expectation for the target dynamical system given the observa-
tional information. It was proved ([37]) that the solution of the SPDE system
(1.2) (in the linear case) is the conditional probability density for the dynamical
system in the optimal filtering problem, which is used to calculate the desired
conditional expectation. In the connection of the equivalence relation (1.3),
the BDSDE (1.1) also provides solution for the optimal filtering problem. In
a recent study ([2, 3, 4, 6]), we established a direct link between BDSDEs and
optimal filtering problems. The main advantage of solving application problems
via BDSDEs instead of SPDEs is twofold. First, solving BDSDEs is mesh free,
thus unstructured methods such as Monte Carlo methods and stochastic mesh-
free approximations can be applied [10]. Moreover, scalable parallel numerical
algorithms for BSDEs and BDSDEs enable us to benefit from recent advances
in high performance parallel computing and even the deep learning techniques
([16, 18, 24]). Second, while it is very difficult to construct higher order methods
to solve SPDEs, high order schemes for BDSDESs are relatively easy to construct
(7, 8,9]).



In this paper we introduce a numerical scheme for the BDSDE eq. (1.1) using
the splitting up method. Our work is inspired by the studies of splitting up
method for linear SPDEs. The application of the splitting up methods to linear
SPDEs was initiated by A. Bensoussan et al [11] where the SPDE is decomposed
into a PDE and an SDE. Bensoussan’s method was further developed in [12,
13, 25]. In particular, Gyongy and Krylov [20], proved the convergence in the
maximum norm.

To obtain a splitting up approximation for the BDSDE eq. (1.1), we decom-
pose it into two equations, a BSDE which serves as a predictor or a pre-solving
procedure, and an SDE which serves as an update procedure. Both can be
solved using highly efficient numerical schemes ([19, 23, 38, 40]). In this paper,
we construct a first order scheme by using the Milstein scheme on the SDE
and a simple first order scheme on the BSDE. One of the advantages of our
splitting up schemes, in comparison with the existing numerical schemes for
BDSDE:s ([1, 9]), is that it avoids the solve of Z; in eq. (1.1), which significantly
reduces the computing cost. It’s also worthy to point out that the conventional
splitting up methods under the SPDEs framework are focused on the case that
both f and g in eq. (1.2) are linear functions while our methodology applies to
more general nonlinear equations. In addition, the significance our splitting up
method is boosted by some recent work of E, Han and Jentzen ([16, 21]), where
a deep learning technique is used to solve fairly high dimensional BSDEs. Such
a method can be applied to solve the BSDE, which is the most computational
expensive component in our splitting up algorithm, thus can help solve high
dimensional BDSDEs through our splitting up process.

The rest of this paper is organized as follows. In Section 2, we introduce
some notations, assumptions and concepts as well as some known theoretical
results of BDSDEs. In Section 3, we first present the splitting up method where
the BDSDE is split into a BSDE and an SDE, and then prove the first order
convergence. The numerical schemes with the corresponding numerical analysis
are presented in Section 4, followed by three numerical examples in Section 5.

2 Preliminaries

Let T > 0 be a fixed terminal time, (2, F, P) a probability space, and W and
B two mutually independent Brownian motions on this space, with values in R?
and R!, respectively. For each ¢ € [0, T, define two collections {F;}o<;<r and
{G:i}o<t<T by

Fio=Foy v FPp, and Gy == F) vV Foor,

where F% and F2Z, are the completion of o{W, — Wy;s <r <t} and o{B, —
Bg;s <r <t} respectively. Here {F; }o<i<7 is neither increasing nor decreas-
ing, while {G;}o<t<7 is an increasing filtration. To simplify the presentation



and make our analysis more readable, we assume throughout the paper that
d = | = 1. The results obtained in this paper can be extended to multi-
dimensional cases through similar procedures.

Denote by M2([0,T];R) the set of all R-valued, F;-measurable processes
{p(t)}o<t<r such that EfOT lo()?dt < oo, by S%([0,T];R) the set of all R-

valued, Fi-measurable processes {¢(t) }o<i<r such that E[ sup |<p(t)|2} < o0,
0<t<T

and by L?(Q, Fr, P;R) the set of all Fr-measurable random variable ¢ such
that E|¢]? < oo.

We assume that ®, f and g satisfy the following regularity assumptions:

(H1) ® € C3(R,R), f € C3([0,T] x R x R x R,R), and g € C3([0,T] x
R x R,R). Here C*(A, B) denotes the set of functions of class C* from A to B
whose partial derivatives of order less than or equal to k£ are bounded.

H2) f: Ox[0,T]xRxRxR—=>Rand g: 2% [0,7] x RxR — R are
jointly measurable. For any z,y, z € R,

fC 2y,2) € MP*([0,T];R), and g(-,z,y) € M*([0,T];R). (2.1)

(H3) f and g satisfy the Lipschitz conditions. For all w € Q, t,s €
[0, 7], z,z € R, y,5 € R, 2,z € R, there exists a constant L > 0 such that

|f(t,x,y,z) _f(sa‘fagv'?”? < L(‘t_3| + ‘.I‘—i‘|2+ |y_27|2+ |Z_2‘2)7

PR I (2.2)
l9(t, 2, y) = g(s, T, 9)” < Lt = s| + |z — 2" + |y — g[%).

Moreover,
sup {|f(t,0,0,0)]" +g(t,0,0)[} < L. (2.3)
0<t<T

The following theorem is a collection of well posedness and regularity results
on BDSDEs which will be used throughout the rest of the paper.

Theorem 2.1 Let (H1)-(H3) hold.

(1) (Theorem 1.1 in [34]) For any ®(Xr) € L*(Q, Fr, P;R), BDSDE (1.1)
has a unique solution (Y, Z) € §?([0,T];R) x M?([0,T]; R).

(2) (Theorem 1.4 in [34]) There exists a positive constant M, independent
of t, such that

T
E[ sup |Y}\2+/ |Zt2dt} <M.
0<t<T 0

(2) (Lemma 4.2 in [9]) For 0 < s < t < T, there exists some positive

constant C, independent of t, such that

El(Y; - Y.’ < Clt—s), |EY; - Y]] < C(t - s).



(8) (Lemma 2.3 in [34]) For any t < s < T, (VYs,VZ;) is the unique
solution of the following variational equation

T T T
VY;=<1>’(XT)VXT+/ Vf(r,X,.,Y,.,ZT)dr—/ vZ, dW,.+/ Vy(r, X,,Y,)dB,,
(2.4)

where V s the gradient operator with respect to Xy (Xo denoting the initial
condition for Xy),

Vf(57 Xsa }/57 Zs‘) = fr(sa X, st Zs)VXe + fy(sv Xs, Y:w Ze)vys + fz(57 Xsa }/37 ZS)VZ87
VQ(S, XS7 5/5) = g-’E(Sa Xsa Y;)VXS + gy(s’ XS7 K)VYS

Here we use subscripts to indicate partial differentiations.
(4) (Lemma 4.4 in [1]) {Z;}o<i<r has an a.s. continuous version which is
given by
Z;y = VY.

Furthermore, with the assumptions of the theorem and through similar estima-
tion techniques for the variation equation for Y, we have

E[(Z — Z,)*| < C(t—s), |E[Zi— Z]| <C(t—s), (2.5)

for some positive constant C, independent of t.

3 Splitting up method and convergence analysis

In this section, we introduce the splitting up framework for BDSDE (1.1) and
show that our splitting up system provides a first order approximation for the
original BDSDE.

3.1 Splitting up method

Let 0 =ty <t <--- <ty =T be an uniform partition of [0, 7] with partition

size At := %, where IV is a positive integer. Denote AW, := W;, , — Wy, and
AB; := By, ., — By,. The approximation Y;(t) to the solution Y; of BDSDE (1.1)
is defined recursively on each time interval [¢;,t;41),4 = 1,--- , N — 1 as follows.

Set Yy (T) = ®(X7). First define Yj(t),t; <t < t;11, to be the solution of the
BSDE:

Vilt) = Yoo (b11) + /t " s, X0, Vils), Zi(s)) ds — /t " Zi(s)dW., (BSDE)
(3.1)



Then Y;(t) is defined as the solution of the SDE:
B tit1
Yi(t) = Yi(t) +/ g(s, X,,Yi(s)) dB,. (SDE) (3.2)
¢

In this way, the approximation of BDSDE (1.1) on subinterval [¢;,¢;4+1) is split
into two steps. In the first step, we solve the BSDE (3.1). In the second step, we
use the solution f@(tl) of the BSDE at time ¢; as the terminal value at time ¢;,
and solve the SDE (3.2) on [t;,t;4+1). These implicit equations are solved using
iterative techniques. Here, the solution (}7“22) of the BSDE (3.1) plays the
role of the intermediate solution before we incorporate the d B integral. Hence
(Yi(t), Zi(t)) is Fh v FE., ¢ measurable for any t € [t;,#iy1). On the other
hand, the solution Y;(t) of the SDE is Fg',  V FPp measurable. We let Z; be
our approximation for the solution Z; for t € [t;,t;+1). It’s worthy noting that
Y, incorporates the d B integral as a solution for SDE, and Z; incorporates the
d B integral only through the variation relationship with Y;;1(¢;+1) at temporal
grid points. Moreover, letting ¢ — ¢;.1 — 0, we have
lim  Yi(t) = Yip1(tiv1)-

t—=t;41—0

_ N-1
Therefore the approximate process Y; := > Yi(t) 1y, 1,,,)(t) +®(X7) 17(t) has
i=0

continuous trajectories.

3.2 Convergence analysis

We now turn to the convergence analysis for the proposed splitting up system
(3.1)-(3.2) in approximating the BDSDE eq. (1.1). We first state the main
result of our analysis which shows that our splitting up system provides a first
order mean square approximation for solution Y; and half order mean square
approximation for solution Z;.

Theorem 3.1 Assume that (H1)-(H3) hold. Then for sufficiently large N,
there exists a positive constant C, independent of At and Xg, such that

2 ad 2
max (B[E,Yi(t)] - Yi]") <CA2, max (E[Zi(t) - 2,]%) < CAt,
(3.3)

where Ey,[-] denotes the conditional expectation over the o-algebra Gy 4, = .7:3"2 \%
For.

To prove the theorem, we need several estimations concerning the intermediate
approximation Y; and Z; given by eq. (3.1).



Lemma 3.2 Under the assumptions (H1)-(HS3), for any given interval [t;, t;11),
there is a constant C, independent of At and Xg, such that

sup  E[(Yi(t) = Yisr(ti1))?] < CAL, |y, [Yi(t) = Yiga(tia)]| < CAt,

te(ti,tit1)

sup  E[(Zi(t) — Zi(t:))?] < CAt, |BEy,[Zi(t) — Zi(t;)]] < CAL.

te€[ti,tiv1)

Proof: The estimations in the lemma follow directly from Theorem 2.1 with
the special case g = 0. O

Lemma 3.3 Under the assumptions (H1)-(H3), for any given interval [t;, ti+1),
there is a constant C, independent of At and X, such that
sup (E[(Y/’L(t) - Y;f)2]) < OE[(EM+1 [}/i+1(ti+1)] - }/ti+1)2] + CAt.

tE[ti,tigr)

Proof: Subtracting eq. (1.1) for ¢ € [t;,t;41) from eq. (3.1), and taking the
conditional expectation E[-|Gos,, ] gives

t
Vi(t) = Vi = By, Vi (tig1)] — Vs, — / (Zi(s) — ZJ) AW,
t

+ / U5 X i), Z4(9) — (51X Ve Z)) s / ol XY B,
(3.4)

Note that fﬁ(t) is }“gz vV ffﬁj measurable for ¢t < ¢; 1, thus it is f(}’z Vv ffT
measurable, i.e. G; measurable. Applying the generalized Itd’s Lemma (see

Lemma 1.3 in [34]) to |Y;(t) — Y;|?> and taking the expectation, we have, using
1

57> and assumption (H3),

Young’s inequality with € =

- bigr
E|§g(t)—m|2+/ E\Zi(s) — Z,|*ds
t

tiy1
t

< B|Er, [Yir(tip)] — Y|P 42 / L(EIX.J + E|Yi[?) ds

tit1 1 tiv1
+2/ E|g(s,0,0)|2ds+(2L+§)/ E|Y;(s) — Ys|*ds
t t
1 tit1 B
+§/ E|Zi(s) — Z|* ds.
t

The desired result follows from Gronwall’s inequality, assumption (H3), and
Theorem 2.1. O

Lemma 3.4 Under assumptions (H1)-(H3), for any given interval [t;,ti+1),
there exists a constant C, independent of At and Xg, such that

sup  (E[(Yi(t) = Y0)?]) < CE[(By,, [Yie1(tigr)] = Yiio))?] + CAL. (3.5)

tetitiv1)



Proof: Note that
Yi(t) =Y, = Yi(t) = Yi(t) + Yi(t) - Vi

This result is then a direct consequence of Lemma 3.3, It6’s isometry, and the
assumption (H3). O

Combining Theorem 2.1 and Lemma 3.2, using Young’s inequality, we arrive
an estimate on E[(Z;(t) — Z;)?].

Lemma 3.5 Under the assumptions (H1)-(HS3), for any given interval [t;, t;11),
there exits constant a C, independent of At and Xg, such that

sup  (B[(Zi(t) = Z)%)) < (1 + e0)E[(Zi(tis1 — 0) = Zy,1,)*] + OAL,

tEti,tit1)
for some suitable eq > 0.

Proof of Theorem 3.1: The main ingredients of the proof are the estimations
for the errors Y;(t;) — Yz, and Zi(t;) — Z;,. Once these estimations are obtained,
the desired result of the theorem is the consequence of application of the discrete
Gronwall inequality.

Estimation for the error Y;(¢;) — Y3,.

Subtracting eq. (1.1) for ¢ € [t;,t;+1) from eq. (3.2) and substituting eq. (3.4)
with result we have that for t = ¢;

Yi(ti) = Yy, = By, [Yira (tiv1)] — Yapy + /t " [9(s, X5, Yi(s)) — g(s, X4, Y3)] dgs
; / X i) Zi(0) ~ F X Y 20 ds = [ Zi(s) - Zi .
(3.6)

i

To simplify notation in subsequent derivations, we shall use the following short-
hand notation:

= Eti [Y;(tl)] - Y;fﬂ e?—l = Zi(ti+1 - O) - th‘+17

of (s) = f (5, X4, Yi(s), Zi(s)) — f(5, X, Vs, Zo),
g (5) = g(Svavn(S)) _g(S7X3a}/S)'

Taking the conditional expectation Fy,[] on both sides of the above yields
Ey, [K(tl)] -V, = Ey, [Eti+1 [}/H‘l(ti-i-l)] - ni{»l]
tit1 ] tit1 ] (3_7)
[ Bl [ Blegi(s) B
t t

Here we have used Fubini’s theorem and the fact that Y3, is .7-'&‘; \Y ]-'(fT mea-
surable, i.e. Gy, measurable.



Next we consider the mean square estimation for e;. Square and then take
the expectation on both sides of eq. (3.7) to obtain

Bl(e)?] = El(E,1e5)?) + B / B ) ds + / " B log'(s))45,)’]

t; t;

28 [(E €51]) - ( / B 5F ()] ds+ [ Ful69'(5) d‘ES)} .

(3.8)
Using the elementary inequality (a + b)? < 2(a® + b%) on eq. (3.8), we have
El(e)?’] <Ii+ I+ I3+ I + I, (3.9)
where

Iy := E[(E,[e57Y])?),

I = QE{( /t H By (6 (s)] ds)z},
Iy = 2E[(/j"“ E,.[64(5)] dEf}

Iy = 2E[(Eti e51]) - (/tw B [6f(s)] dS)},

Iy 1= 2B (B, [e1) - (/t+ By [66°(s)] db_s)]

By Cauchy’s inequality, Jensen’s inequality, and the assumptions (H1)-(H3),
we have

I < 2AtE[ /t tiH(Eti 16 £1(s)]) ds}

< 9At /tt+ L(BI(Yi(s) = Yo + B[(Zi(s) - Z,)%] ) ds.

Then, from Lemma 3.3 and Lemma 3.5, we get
I, < C(A)?E[(e))?] 4+ 2L(1 + e0) (At)*E[(e2T1)*] + O(AL?). (3.10)

Next we estimate I3. To simplify the presentation, we use abbreviated notations
0, = (r,X,,Y,) and ©, = (r, X,,, Y;(r)), and use subscripts of function g to
indicate partial differentiations. We also use d[X], to denote the quadratic
variation of X,, and d[X,Y], the quadratic covariation of X, and Y;.. In order
to derive an estimation for I3, we first apply the It6-Taylor expansions for g(©;)



1 tit1 1 tita tita1
b [ @)X, 45 [ gp@) Al [ (@) dx Y,

(3.11)

~ tit1 ~ tit1 _ tit1 _
9(61,,,) = 9(6.) + / 0(0,)dr + / 0:(6,)dX, + / 0,(6,) dYi(r)

1 [ti+r 5 1 [li+r - tit1 -
b5 [ @)X 5 [ @)W+ [ 0B AV,

(3.12)

Note that dX, = dW,., it then follows from the generalized Itd’s Lemma (see
Lemma 1.3 in [34]) that

d[X], = dr, d[Y], = —¢*(©,)dr + (Z,)*dr, d[X,Y], = Z.dr
dlY;], = —g%(6,) dr + (Z;(r))?dr, d[X,Yi], = Z;(r)dr.

Subtracting eq. (3.11) from eq. (3.12), we have
96~ 9(0.) = 9(81.) ~9(8e) + [ llay 9)®)) - (5, 9@,

_ / h [(gz(ér) + gy(ér)Zz(T')) - (gx(c"')r) + gy(@r)ZT)] AW, + R;vY(S)’
(3.13)

where R} - contains all the [ fett

S

-dr integrals:
, bipr
Ryy(®)i=— [ 0i80) - gi(0)))dr

+ / " 10,@0) 1 (r, X0 Vi), Zi(r)) — 9y(©0)f(r, Xy, Yo, Z,)] dr

and it’s easy to see that  sup  E[(R] y(s))*] = O(At?).
s€[ti,tiy1)

10



Taking the conditional expectation E},[-] on both sides of eq. (3.13), we have
. , tit . ,
B39/ (9)] = Bulog o)) + B | [ (0,0)'0) 4B | + By 0,
S

where 8(g,9)"(r) == (9y - 9)(©,) — (gy - 9)(©,). By the above estimation, Itd’s
isometry, the elementary inequality (a + b+ ¢)? < 3(a? + b? + ¢?), and Jensen’s
inequality, we obtain

=i /tt (B, g’ (o)) ds )
<6 [ (BlE )]+ [ BB B0 O+ BIR ()7 s
(3.14)

Using Lemma 3.4, the assumptions (H1)-(H3) and Jensen’s inequality, we have
I3 < 6lgy |2 AtE[(e)t)?] + CALE[(ef1)?] + O(A?). (3.15)

We now turn to the estimation of I. First we decompose §f*(s), which is
the abbreviation for f(s, X, Yi(s), Zi(s)) — f(s, Xs,Ys, Zs), into three parts to
write I as

f=28| B [ (B B0+ Bulof ) as),

where
6fi,a = f(Svavffi(S)v Zl(s)) - f(ti+17Xti+1’Y;'+1(ti+1)7 Zi(ti-‘rl - 0))7
6f1,b = f(ti+17 Xti+1;}/v7;+1(ti+1>7 Zi(ti+1 - 0)) - f(ti+17 Xti+1 ) )QH»I ) Zti+1)7
6.]“’6 = f(ti+17Xti+17}/;fi+1a Zti+1) - f(stsv 1/87 Zs)

By It6-Taylor expansion and Lemma 3.2, we see that Ey, [ %] = O(At). Hence

, tita , At ,
2F |:Eti [e;-i-l] . ‘/t E,, [5]&,@] ds] < ?E[(ely'i‘l)ﬂ + O(At3).
On the other hand, by Theorem 2.1, we have E[6f"¢] = O(At). Therefore, it
follows from the properties of conditional expectations and Youngs inequality
that

tit1

28[Eaie ) [ B as] = 2e[Elmig [ @b alF,

i t;

=2E[e}] /:M E[6f"“]ds < %E[(eiy“)?] +O(A).

i

(3.16)

11



Putting the above estimates together, then using the assumptions (H1)-(H3)
and Youngs inequality, we obtain

I < AE[(By [ei))?] + 6/f, % AE[(ei)?] + 6. 2 ALE[(Ey, [e£1))%] + O(AF)
— (14 61f, 2 ALE[(e5 1)) + 6| £ 2 ALE[(By, [H1])?] + O(AF). .
3.17

To estimate the last term, we use an argument similar to (3.16).

, tita ,
b =2B (B [ BB, ]
t;

+2E[B[B, )] / (B0 () — St () ABIED, ]

ti

= 2B (B, (e, 69" (1)) EIAB,] + 28[ej ™) E{ /t | B 0g'(s) — 6g°(tian)]) dB| = 0.

Substituting the above estimations egs. (3.10), (3.15) and (3.17) into eq. (3.9),
we have

Bl(e})?] <EI(Ey[¢51)%] + CLALB[(e51)?] + 61 . 2 ALE (B, [e£1])?]

+ CAPE[(e57)?) + 2L(1 + e0) APE[(Ey, [e671])%] + O(AL?),
(3.18)

where C,, := 1+ 6|f,[2, + 6|gy|2, is a constant.

Estimation for the error Zi(ti) — Zy,.

In order to derive an estimation for Z;(t;) — Z;,, we subtract eq. (1.1) for t €
[ti, tiv1) from eq. (3.4), let ¢ = t;, multiply both sides of the resulting equation
by AW;, and then take the conditional expectation Ej,[-] to obtain

tit1 . ' tiia '
/ E[Z2(s) — Z]ds = Ey, [e;flAWi] +/ Ey,[0f'(s)AW;]ds
" t " (3.19)
i+1
- / Eti [Q(Sastn)AWl] dE,
t

i

where we have used the Fubini’s theorem and the fact that Ey, [(Y;(¢;)—Y:,) AW;] =
0. Rewrite Ey,[Z%(s) — Z4] as

Ey[Zi(s) = Zi(tisr — 0)] + By, [Zi(tixr — 0) — Zu )| + B, [Ze,,, — Zs.

i+1
Using Theorem 2.1 (4), we have
. . ti+1 .
AtE; el = By lelT'AW;] + / E.,[5f (s)AW;] ds
ti
tit1 tiv1  ptigr
- [ meoswiaB+ [ [T B g8 a5+ 0a),
t t s

i i

(3.20)

12



where ©, = (r, X,.,Y,.) . Similar to the argument in eq. (3.11) ( notice that here
we apply the Itd formula on interval [t;, s] instead of [s,t,11] in eq. (3.11) ), we
obtain

9(95) = g(Gti) + ‘/tvs (gm(gr) +gy(®)ZT)dWr - /t‘s(gy g)(@,«) dE + R;a

where all the f: -dr terms are included in R;. The above equation leads to

tit1 tit1
/ E, [ /Et 92(0,) + 9,(0,)2,] dr dB,
t;
/M/ E;,[(g, - 9)(©,)AW]] d§d§ /M RZAW}d‘E

Here we have used the fact Fy,[g(©,)AW;] = 0. Decompose the second term
on the right hand side of the above equation into two terms

/tt [ Bulto, - afaf,
+/tvi+1 /t Evl((9,-9)(O,) — (g5 - 9)(00,)) AW, d B, d B

By properties of conditional expectations, the first part is 0. Therefore

/tm E, { (O, )AW dif;_ tm/t Ev [9:(6,) +9,(0,)2,] drdB,
/ / Ev1((9,- 9)(O,) - <y-g><®ti>)AWild<§rdE+[i+lEtf[RZAWi} d5.

Putting this into eq. (3.20), and noting that Vg(0,) = ¢,(0,) + 9,(0,)Z, (as
defined in Theorem 2.1), we obtain
. tit , .
ALE, [i+1] = B, [t AW + / B0 (s)AW,] ds + R, (3.21)
t;

where

= / / B, [Vg(©,) - Vg(©,)] drdB,
/m/ 0,) — (g, - 9)(©1,)) AW;] dB, dB, — /”1 RzAW} ab.
/”r1 /twl )_Vg(Gti)]dEds_i_O(Aﬁ).

13



It is easy to check that E[(R{T1)?] = O(At*). Similar to the discussions for the

ey error, we square eq. (3.21), and take expectation to get

AP BB < B((8 e aw))) +28[ ([ B srwam) ) |

tita , , .
n zE[ REARIN AR / B, [0 (s)AW;] ds] 4 E [Eti [e;“AWi]R;H} L O(AY).
ti

(3.22)

For the cross product terms in the above equation, we use Young’s inequality
to get

QE[ REARNTA /t H B, [0f(s)AW;] ds}

< S E((E e aw) 4 B[ ([ B eam)as) |
< L2 Bl Y] 4 @ ARE (OB, [ + 1+ ) (B )] + 0(ar)
and

E[Eti [e;“AWi]Rg“} < eQE{( REARINUA) } +O(AY).

From the assumption (H3), Lemma 3.3 and Lemma 3.5, and the above estima-
tions, we have

APE[(E,[ei7)?] < E[(EuleiT' AW;))*] + CABE[(€21)?] + 2L(1 + o) ABE[(Er, [e0t1]) ]
LA
+

+eB|(Bule) ' AWi])’] + o(ath.

E[(e?‘l) ]+ CelAtQE[(e;+1)2] + €1(1 + €0) AL E[(Ey, [elT1])?]

Set ﬁ < 1. Dividing both sides of the above estimate by At(1 + €3), and

noting that (Ey, [eZHAWi])2 < At (Eti[(e;“)ﬂ — (Ey, [e;“])Z) , we obtain

At
1+e

E[(Er,[e£7)?] < E[E[(e))) = (Br e ')?] + (£ + Cer) ALtE[(¢i1)?]

+ 11+ o) ALE[ B, [(141)?]] + CARE[(ef 1))

+2L(1 + €) AR E[(Ey, [e571])°] + O(AF).
(3.23)

which is the desired estimate for et!.

Now we use the above estimates, eq. (3.18) for Y;(¢;) — Y%,, and eq. (3.23)
for Z;(t;) — Zy,, to derive the error estimate of the theorem. First we combine

14



eq. (3.18) and eq. (3.23) to obtain

At .
E ‘ 1+11\2
1+ e t; [ez ]) }

< E[(ef™)?] + (Cy + g + Cer) AtE[(ef )] + (61212 + ex(1+ €0)) AtE[(Ey,[e

El(e,)] +

b E|(

+ CALE[(e)')?] + 4L(1 + €0) A E[(Ey, [e£1])?] 4+ O(AL?).
(3.24)
Next we properly choose €, €; and €3 to control the E[(Ey, [e£!])?] terms on
the right hand side of eq. (3.24). Specifically, we move all the E[(E;,[e}"1])?]

terms to the left hand side and get

El(ey)’] + C2AtE[(Ey, [e271])?] < El(e,™)?] + C,AtE[(ey)’] + O(AL)
(3.25)
where C, = C} + £ +Ce1+CAL C, = ﬁ —6|f.|2% —€e1(14€0) —4L(1+€) At.
Now we choose constants €, €; and ey sufficiently small such that ﬁ —6|f. % —
€1(1 + €9) > 0. When the temporal step size At is chosen such that At <
(1_562 —6|f.)% — e1(1 + €))/4L(1 + €), we have C, > 0. As a result, the
estimate eq. (3.25) becomes

El(e})?] < El(e, )] + C,AtE[(e, )] + O(AL?),

which gives

max, (El(e})?]) < CAL? (3.26)

according to the discrete Gronwall ’s inequality. This is the first part of eq. (3.3).
For the second part of eq. (3.3), we substitute eq. (3.26) into eq. (3.25) to
obtain

i+17)2] <
1§%%<71E[(Eti[ez 1)?] < CAt. (3.27)

Since Z;(t;) — Zy, is fé"éi Vv .F(?T measurable, i.e. Gj ¢, measurable, we have

| Jnax | E[(Zi(t:) — 7)) = | Jmax E[(By,[Z:i(t:) = Z4,])°)

= 1§%%{—13E[(Eti [Zi(t:) = Ziltirr = O + (B, [el'])? + (Eu[Zeiys — Z))?|-

Then the second part of the theorem follows from Theorem 2.1, Lemma 3.2,
and eq. (3.27). O

4 A first order splitting up scheme

In this section, we discretize the BSDE (3.1) and SDE (3.2) in the splitting up
system to obtain a first order splitting up numerical scheme.

15
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First we define an approximation for X by X% = X, and
XH = Xt L AW, i=1,---,N. (4.1)

It is easy to see that for any ¢ € [t;,t;41) and i = 1--- | N, there exists a positive
constant C, independent of Xy and At, such that

Bl X — X, 2+ X — X')?| < CAL (4.2)
To obtain a first order splitting up scheme, we use the explicit Euler scheme to

approximate the BSDE eq. (3.1) and the Milstein scheme to approximate the
SDE eq. (3.2). The resulting algorithm is given as follows.

H = Y 4 Atf (i, XYL 20, (a)
Y= E, [H], (b)
| , (4.3)
7= —E, [HT AW,
At tz[ Wl]7 (C)
Y =Y'+ E,[GT (YY), (d)

where for any ‘Ft{il,T measurable random variable, G*+1(¢) is defined by
, , ; 1
GHE) == g(tiv1, X AB; + (gy '9)(ti+17X1+17§)§(ABi2 —At).  (44)

Note that in eq. (4.3), Y is an approximation for fﬁ-(ti), Y is an approximation
for B, [Y;(t;)], and Z' is an approximation for Z;(t;). Apparently, Y7 is also an
approximation for Y;, and Z' is also an approximation for Z;,.

In order to show that Y is a first order numerical approximation for Y; and
Z' is a half order numerical approximation for Z;, we first show that Y? is a
first order approximation for Ey, [Y;(t;)] and Z° is a half order approximation for
Z(tz) Then, the first order convergence rate and half order convergence rate
of our numerical schemes in approximating Y; and Z;, respectively, is arrived as
a direct consequence of Theorem 3.1.

Theorem 4.1 Assume that assumptions (H1)-(H3) hold. Then there exists
a positive constant C, independent of At and Xg, such that

%%VE[(W — By, [Y;(t)])? + AHZ' — Zi(t:))?] < CAL. (4.5)

Proof: Set t = t;, take conditional expectation on both sides of eq. (3.2), and
then subtract the result from eq. (4.3) (d) to get

Y- B Yit)] = V' = Vilt) + B [G (V) - G (Tt + RY, (46)
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where

Ry= [ Bula(6)1dB, - B, [6 ((1)

It is easy to verify that E[(R})?] = O(At?). As in Section 3, denote
e, =Y'— B, [Yi(t:)], and €. = Z' — Z;(t;).

Squaring eq. (4.6) and taking the expectation, we obtain

Bl(e4)?] = B[V~ ¥i(t))?) + E[(Eu[GF (7)) - G ()] + B3 ]

+2B[ (V' = Yi(t) (B[ (V) = G (i) + Ry |.
(4.7)
The last term above is 0, which can be proved by an argument similar to (3.16).
Next we estimate Y7 — Y;(t;) and Ey, [G*F1(Y?) — G*HH(Y;(t;))] in eq. (4.7). By
the definition of G in eq. (4.4), we have

E[(GHL(Y) = G (Vi(1:))"] < CaAtB[(Y" - Vi(t:)?), (4.8)

where C¢g is a constant independent of Xy and At. Therefore, it suffices to
estimate E[(Y*® — Y;(t;))?]. To this end, we take the conditional expectation
E;,[-] on both sides of eq. (3.4) and subtract it from eq. (4.3) (b) to obtain

V= Yilts) =By 6] + AtE, [FT4Y) = f(ML,,,)] + R}, (4.9)

where R} = fttb“ By, [f(Ii1)— £ (s, X, Yi(s), Zi(s))] ds is the truncation error,

and RY; = O(At?) (for notational simplicity, we denote IT"* := (t; 1, X*T1, Y+t Zi+1)
and ﬁi_l’_l = (tig1, Xtyors Yig1(tigr), Zi(ti.l,_l —0))). Squaring both sides of the
above, and then taking the expectation, we have

BI(V' = ¥i(t)"] =B[(Eule;)?] + B[ (Atk, [£@0+) - £(1,,,,)] + ch)2]

+ 2B | By, [y (ALE, | (I - £(L,,)] + BY) .
(4.10)
Using similar arguments as egs. (3.10), (3.15) and (3.17), we obtain

E[(61)%] < E[(Ew[ei™)’] + AtCLE[(e+1)?]

, R’ , (4.11)
+ a AtE[(eL)?] + CIAPE[(657)?] + O(A?),

where C'yl and C’; are constants independent of Xy and At, and €; is a constant
to be specified later.
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To estimate é¢, we multiply AW; on both sides of eq. (3.1), take conditional
expectation Ey,[-], and subtract it from eq. (4.3) (c) to obtain

At(éi) :Eti [(é;+1)AWi] + AtEti |:(f(Hi+1) - f(ﬁterl))AWl] + R?W?
(4.12)
where

- /tf+ Eti[(f(ﬁtm)_ f(s,xs,m(s),z@)))AWi} ds

1
Z tita N N
t;
It follows from Lemma 3.2 that R’y = O(At?). Squaring both sides of eq. (4.12),
taking the expectation, and using similar analysis techniques as in the proof of
Theorem 3.1, we derive that

At
1+e

E[(6)%] < E[B,[(6)"] - (B, [,7])?] + AtCLE[(@)?]

(4.13)
+ e AtE[(e1F)?] + CZALPE[(5)?] + O(Ar),

where C’Zl, C’f are constants independent of A and X, and €5 is a constant that
will be determined later.
Finally, we add eq. (4.11) and eq. (4.13) to obtain
A At , . .
E[(éZ)szE[(élz)z] < B[] + (a1 + e2) AtE[(eL)?]
+ AHCy + CHE[()?] + (CF + C2)ALE[(e5M)?] + O(AL?).
(4.14)

Choosing €, €; and e, sufficiently small so that e; + €3 < and using the

1
Tre
discrete Gronwall inequality, we obtain the desired result of the theorem. O

As a direct consequence of Theorem 3.1 and Theorem 4.1, we have the

following first order error estimate for our numerical scheme (4.3).

Theorem 4.2 Assume that assumptions (H1)-(H3) hold. Then there exists
a positive constant C independent of At, such that

@%E[(W =Y., + AHZT - Z,,)?] < CAP. (4.15)
5 Numerical experiments

In this section, we use three numerical experiments to validate our splitting up
scheme and verify the error estimations. In order to implement the numeri-
cal schemes (4.3), we need to approximate the conditional expectation Ei, in
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eq. (4.3). Since the conditional expectation Fy, is essentially an integral with
the Gaussian kernel, we use Gauss - Hermite quadrature formula as a numerical
integral method to calculate conditional expectations (see [9] for more details).
To calculate the general expectation E, we use Monte Carlo method with 300
samples and compute the root mean square error in each example.

Example 1
In the first example, we consider the BDSDE

dY; = —f(t, Yo, Z) At + Z, AW, — g(t, V) d By,

where f(¢,Y:,Z;) = % — 7y + BthT and ¢g(t,Y;) = i(cos(t + W) +Y, —

(%)2) .The exact solution to the above equation is Y; = sin(t+W;)— 5t 4 Bz

and Z; = cos(t + W;). To demonstrate the performance of our numerical

Table 1: Example 1

Partition | E[|Y° — Yollp2] | BlIY" = Yollz2] | E[llZ° — Zoll.2]
N =2 | 2.4000e — 01 2.3489¢ — 01 9.8106¢ — 02
N =2" | 13788 — 01 1.2745¢ — 01 4.2258¢ — 02
N=2" | T7.7604e — 02 6.4257¢ — 02 2.0880¢ — 02
N =2 | 4.3455¢ — 02 3.1834¢ — 02 1.2762¢ — 02
N =27 | 27816 — 02 1.5770e — 02 6.0392¢ — 03

CR 0.79 0.98 0.98

schemes, we compute the root mean square errors (RMSEs) between our approx-
imate solutions and the exact solution. Specifically, we calculate the expectation
of the L? norm errors ||[Y? — Yo 12, [|[YO = Yo||12 and || Z° — Zo]| > at time t = 0
with 300 Monte Carlo samples and discretize the equations with time step sizes
At = 273,274, 275 276 27 The corresponding errors are presented in Table
1. Here CR in the table stands for “convergence rate”. We can see from the
table that Y? indeed provides a first order numerical approximation for the so-
lution Y;, and yi provides reasonably accurate approximation for Y;. However,
since the scheme for Y does not include the d integral, it does not provide a
first order approximation for the solution. On the other hand, we can see that
our numerical solution Z? converges with first order in approximating Z, in this
example although in our proof we only obtain half order convergence analysis
for Z'. Further investigation is needed to determine if this a super convergence
for Z; on the nodal points.
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Example 2

In the second example, we consider the BDSDE

dY, = —f(t, Y, Z) dt + Z, AW, — g(t,Y:) d B,

with (£, Y5, Z) = (Vi — t — By)® + (cos(W4))° — Lsin(Wy), g(t,¥;) = (¥ — £ -
By)? + (cos(Wt))Q. The exact solution is given by Y; = sin(W;) + ¢ + B; and
Zy = cos(Wy). We can see that in this example, both f and g are nonlinear

Table 2: Example 2

Partition | E[|Y° = Yolr2] | ElIY° = YollL2] | ElIZ° — Zoll2]
N=2 4.1305e — 01 2.4342¢ — 01 1.3810e — 01
N=2 2.9031e — 01 1.4541e — 01 9.0722e — 02
N=2° 1.9627e — 01 7.3160e — 02 5.5327¢ — 02
N =2 1.3704e — 01 3.4548¢ — 02 2.7033e — 02
N =27 8.9505¢ — 02 1.5549¢ — 02 1.3429¢ — 02

CR 0.55 1.00 0.85

function for Y;. Therefore, this example demonstrates the performance of our
schemes in solving nonlinear BDSDE systems. As in the first example, we
evaluate he RMSEs E[||Y? — Y| 2], E[||Y? — Yol|z2] and E[||Z° — Zo||12], at
time ¢ = 0. In Table 2, we can see that the convergence order for |[|[Y° —Yp|| 2 is
1 and the convergence order for HY/O — Yoz is roughly 0.55, For the numerical
solution Z%, we can see from the table that the convergence for ||Z° — Zg||L2
is 0.847, which is less than 1. From this example we can see that Z° does not
always produce first order approximation for Z;,.

Example 3
In the third example, we consider the BDSDE
AY; = —f(t. Y, Z2) dt + Z,dW; — g(t,Y,) d B,,

with f(t,Ys, Z¢) = =5 (sin(Y2))? — 3(cos(t+ Wi+ 5B,))* — 5(Z¢)* and g(t,Y;) =

—2(sin(Y3))? — 1 (cos(t+ Wi+ 3 By))?. The exact solution for the above equation
isYi=t+W;+ %Bt and Z; = 1. In the last example, f is a nonlinear functions
for Y;, Z;, g is a nonlinear function for Y;, and Y; is in a trigonometric function
in both f and g. The purpose of this example to demonstrate the performance
of our method in solving a more general BDSDE system. In Table 3, we present
the RMSEs between our approximate solutions and the exact solution at time
t = 0. From this table, we can see that for this example Y° converges to Yy

with half order, and (f’o, Zo) converges to (Yp, Zp)with first order.
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Table 3: Example 3

Partition

E[|[Y® ~ Yol 12]

BlY" — Yol 2]

Bl|Z° — Zo|| 2]

N =23

1.7759e — 01

9.2446e — 03

1.6664e — 02

N =24

1.1907e — 01

4.3131e — 03

8.1184e — 03

N=2°

9.0338e — 02

2.2815e — 03

4.2914e — 03

N =2°

5.7300e — 02

1.1198e — 03

2.1936e — 03

N =27

4.6539¢e — 02

5.5550e — 04

1.0452e — 03

CR

0.49

1.01

0.99
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