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Abstract

A splitting scheme for backward doubly stochastic differential equa-

tions is proposed. The main idea is to decompose a backward dou-

bly stochastic differential equation into a backward stochastic differential

equation and a stochastic differential equation. The backward stochas-

tic differential equation and the stochastic differential equation are then

approximated by first order finite difference schemes, which results in a

first order scheme for the backward doubly stochastic differential equa-

tion. Numerical experiments are conducted to illustrate the convergence

rate of the proposed scheme.
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1 Introduction

The aim of this paper is to introduce a splitting algorithm for the following

backward doubly stochastic differential equation (BDSDE):

Yt = ξ +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs +

∫ T

t

g(s,Xs, Ys) d
←−
Bs, (1.1)

where 0 ≤ t ≤ T , W := {Wt}t≥0, B := {Bt}t≥0 are two independent Brownian

motions and the stochastic process Xt is defined by Xt = X0 +Wt, where X0 is

an initial random variable independent of W and B. The notation d
←−
B stands
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for the backward Itô integral (see [32]), which is an Itô integral with backward

propagation direction. The solution of the BDSDE (1.1) is a pair of stochastic

processes (Yt, Zt). Here “doubly” refers to the fact that the equation is driven by

two independent Brownian motions. Without the d
←−
B t integral, the BDSDE is

reduced to a standard backward stochastic differential equation (BSDE), which

has been extensively studied [28, 29, 33, 39, 40].

The theory of BDSDEs was first studied in [34] to give a probabilistic inter-

pretation for the solutions of the following class of semilinear stochastic partial

differential equations (SPDEs)

u(t, x) =Φ(x) +

∫ T

t

(
Lu(s, x) + f(s, x, u(s, x), (∇uσ)(s, x))

)
ds

+

∫ T

t

g(s, x, u(s, x)) d
←−
Bs, (t, x) ∈ [0, T ]× Rd

(1.2)

through the relation

Yt = u(t,Xt), Zt = ∇u(t,Xt)σ(Xt). (1.3)

The SPDE system (1.2) provides a stochastic version of parabolic type PDEs

which could decribe uncertainties in modeling physical and engineering prob-

lems. For example, in the case that f is a linear function, the above SPDE solves

the optimal filtering problem which aims to obtain the best estimate for the state

of some stochastic dynamical system based on noisy partial observational data

[5]. The optimal filtering problem is the key mission in data assimilation and it

has been widely used in target tracking, weather forecasting, image processing,

parameter estimation, etc.. In an optimal filtering problem, we need to obtain

the conditional expectation for the target dynamical system given the observa-

tional information. It was proved ([37]) that the solution of the SPDE system

(1.2) (in the linear case) is the conditional probability density for the dynamical

system in the optimal filtering problem, which is used to calculate the desired

conditional expectation. In the connection of the equivalence relation (1.3),

the BDSDE (1.1) also provides solution for the optimal filtering problem. In

a recent study ([2, 3, 4, 6]), we established a direct link between BDSDEs and

optimal filtering problems. The main advantage of solving application problems

via BDSDEs instead of SPDEs is twofold. First, solving BDSDEs is mesh free,

thus unstructured methods such as Monte Carlo methods and stochastic mesh-

free approximations can be applied [10]. Moreover, scalable parallel numerical

algorithms for BSDEs and BDSDEs enable us to benefit from recent advances

in high performance parallel computing and even the deep learning techniques

([16, 18, 24]). Second, while it is very difficult to construct higher order methods

to solve SPDEs, high order schemes for BDSDEs are relatively easy to construct

([7, 8, 9]).
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In this paper we introduce a numerical scheme for the BDSDE eq. (1.1) using

the splitting up method. Our work is inspired by the studies of splitting up

method for linear SPDEs. The application of the splitting up methods to linear

SPDEs was initiated by A. Bensoussan et al [11] where the SPDE is decomposed

into a PDE and an SDE. Bensoussan’s method was further developed in [12,

13, 25]. In particular, Gyöngy and Krylov [20], proved the convergence in the

maximum norm.

To obtain a splitting up approximation for the BDSDE eq. (1.1), we decom-

pose it into two equations, a BSDE which serves as a predictor or a pre-solving

procedure, and an SDE which serves as an update procedure. Both can be

solved using highly efficient numerical schemes ([19, 23, 38, 40]). In this paper,

we construct a first order scheme by using the Milstein scheme on the SDE

and a simple first order scheme on the BSDE. One of the advantages of our

splitting up schemes, in comparison with the existing numerical schemes for

BDSDEs ([1, 9]), is that it avoids the solve of Zt in eq. (1.1), which significantly

reduces the computing cost. It’s also worthy to point out that the conventional

splitting up methods under the SPDEs framework are focused on the case that

both f and g in eq. (1.2) are linear functions while our methodology applies to

more general nonlinear equations. In addition, the significance our splitting up

method is boosted by some recent work of E, Han and Jentzen ([16, 21]), where

a deep learning technique is used to solve fairly high dimensional BSDEs. Such

a method can be applied to solve the BSDE, which is the most computational

expensive component in our splitting up algorithm, thus can help solve high

dimensional BDSDEs through our splitting up process.

The rest of this paper is organized as follows. In Section 2, we introduce

some notations, assumptions and concepts as well as some known theoretical

results of BDSDEs. In Section 3, we first present the splitting up method where

the BDSDE is split into a BSDE and an SDE, and then prove the first order

convergence. The numerical schemes with the corresponding numerical analysis

are presented in Section 4, followed by three numerical examples in Section 5.

2 Preliminaries

Let T > 0 be a fixed terminal time, (Ω,F , P ) a probability space, and W and

B two mutually independent Brownian motions on this space, with values in Rd

and Rl, respectively. For each t ∈ [0, T ], define two collections {Ft}0≤t≤T and

{Gt}0≤t≤T by

Ft := FW0,t ∨ FBt,T , and Gt := FW0,t ∨ FB0,T ,

where FWs,t and FBs,t are the completion of σ{Wr −Ws; s ≤ r ≤ t} and σ{Br −
Bs; s ≤ r ≤ t} , respectively. Here {Ft}0≤t≤T is neither increasing nor decreas-

ing, while {Gt}0≤t≤T is an increasing filtration. To simplify the presentation
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and make our analysis more readable, we assume throughout the paper that

d = l = 1. The results obtained in this paper can be extended to multi-

dimensional cases through similar procedures.

Denote by M2([0, T ];R) the set of all R-valued, Ft-measurable processes

{ϕ(t)}0≤t≤T such that E
∫ T
0
|ϕ(t)|2 dt < ∞, by S2([0, T ];R) the set of all R-

valued, Ft-measurable processes {ϕ(t)}0≤t≤T such that E
[

sup
0≤t≤T

|ϕ(t)|2
]
<∞,

and by L2(Ω,FT , P ;R) the set of all FT -measurable random variable ξ such

that E|ξ|2 <∞.

We assume that Φ, f and g satisfy the following regularity assumptions:

(H1) Φ ∈ C3(R,R), f ∈ C3([0, T ] × R × R × R,R), and g ∈ C3([0, T ] ×
R×R,R). Here Ck(A,B) denotes the set of functions of class Ck from A to B

whose partial derivatives of order less than or equal to k are bounded.

(H2) f : Ω × [0, T ] × R × R × R → R and g : Ω × [0, T ] × R × R → R are

jointly measurable. For any x, y, z ∈ R,

f(·, x, y, z) ∈M2([0, T ];R), and g(·, x, y) ∈M2([0, T ];R). (2.1)

(H3) f and g satisfy the Lipschitz conditions. For all ω ∈ Ω, t, s ∈
[0, T ], x, x̄ ∈ R, y, ȳ ∈ R, z, z̄ ∈ R, there exists a constant L > 0 such that

|f(t, x, y, z)− f(s, x̄, ȳ, z̄)|2 ≤ L(|t− s|+ |x− x̄|2 + |y − ȳ|2 + |z − z̄|2),

|g(t, x, y)− g(s, x̄, ȳ)|2 ≤ L(|t− s|+ |x− x̄|2 + |y − ȳ|2).
(2.2)

Moreover,

sup
0≤t≤T

{|f(t, 0, 0, 0)|2 + |g(t, 0, 0)|2} < L. (2.3)

The following theorem is a collection of well posedness and regularity results

on BDSDEs which will be used throughout the rest of the paper.

Theorem 2.1 Let (H1)-(H3) hold.

(1) (Theorem 1.1 in [34]) For any Φ(XT ) ∈ L2(Ω,FT , P ;R), BDSDE (1.1)

has a unique solution (Y,Z) ∈ S2([0, T ];R)×M2([0, T ];R).

(2) (Theorem 1.4 in [34]) There exists a positive constant M , independent

of t, such that

E

[
sup
0≤t≤T

|Yt|2 +

∫ T

0

|Zt|2 dt

]
≤M.

(2) (Lemma 4.2 in [9]) For 0 ≤ s ≤ t ≤ T , there exists some positive

constant C, independent of t, such that

E[(Yt − Ys)2] ≤ C(t− s), |E[Yt − Ys]| ≤ C(t− s).
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(3) (Lemma 2.3 in [34]) For any t ≤ s ≤ T , (∇Ys,∇Zs) is the unique

solution of the following variational equation

∇Ys = Φ′(XT )∇XT +

∫ T

s

∇f(r,Xr, Yr, Zr) dr −
∫ T

s

∇Zs dWr +

∫ T

s

∇g(r,Xr, Yr) d
←−
Br,

(2.4)

where ∇ is the gradient operator with respect to X0 (X0 denoting the initial

condition for Xt),

∇f(s,Xs, Ys, Zs) := fx(s,Xs, Ys, Zs)∇Xs + fy(s,Xs, Ys, Zs)∇Ys + fz(s,Xs, Ys, Zs)∇Zs,
∇g(s,Xs, Ys) := gx(s,Xs, Ys)∇Xs + gy(s,Xs, Ys)∇Ys.

Here we use subscripts to indicate partial differentiations.

(4) (Lemma 4.4 in [1]) {Zt}0≤t≤T has an a.s. continuous version which is

given by

Zt = ∇Yt.

Furthermore, with the assumptions of the theorem and through similar estima-

tion techniques for the variation equation for Yt, we have

E[(Zt − Zs)2] ≤ C(t− s), |E[Zt − Zs]| ≤ C(t− s), (2.5)

for some positive constant C, independent of t.

3 Splitting up method and convergence analysis

In this section, we introduce the splitting up framework for BDSDE (1.1) and

show that our splitting up system provides a first order approximation for the

original BDSDE.

3.1 Splitting up method

Let 0 = t0 < t1 < · · · < tN = T be an uniform partition of [0, T ] with partition

size ∆t := T
N , where N is a positive integer. Denote ∆Wi := Wti+1 −Wti and

∆Bi := Bti+1
−Bti . The approximation Yi(t) to the solution Yt of BDSDE (1.1)

is defined recursively on each time interval [ti, ti+1), i = 1, · · · , N − 1 as follows.

Set YN (T ) = Φ(XT ). First define Ỹi(t), ti ≤ t < ti+1, to be the solution of the

BSDE:

Ỹi(t) = Yi+1(ti+1) +

∫ ti+1

t

f(s,Xs, Ỹi(s), Z̃i(s)) ds−
∫ ti+1

t

Z̃i(s) dWs, (BSDE)

(3.1)
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Then Yi(t) is defined as the solution of the SDE:

Yi(t) = Ỹi(t) +

∫ ti+1

t

g(s,Xs, Yi(s)) d
←−
Bs. (SDE) (3.2)

In this way, the approximation of BDSDE (1.1) on subinterval [ti, ti+1) is split

into two steps. In the first step, we solve the BSDE (3.1). In the second step, we

use the solution Ỹi(ti) of the BSDE at time ti as the terminal value at time ti+1

and solve the SDE (3.2) on [ti, ti+1). These implicit equations are solved using

iterative techniques. Here, the solution (Ỹi, Z̃i) of the BSDE (3.1) plays the

role of the intermediate solution before we incorporate the d
←−
B integral. Hence

(Ỹi(t), Z̃i(t)) is FW0,t ∨ FBti+1,T
measurable for any t ∈ [ti, ti+1). On the other

hand, the solution Yi(t) of the SDE is FW0,ti+1
∨ FBt,T measurable. We let Z̃i be

our approximation for the solution Zt for t ∈ [ti, ti+1). It’s worthy noting that

Yi incorporates the d
←−
B integral as a solution for SDE, and Z̃i incorporates the

d
←−
B integral only through the variation relationship with Yi+1(ti+1) at temporal

grid points. Moreover, letting t→ ti+1 − 0, we have

lim
t→ti+1−0

Yi(t) = Yi+1(ti+1).

Therefore the approximate process Ȳt :=
N−1∑
i=0

Yi(t) 1[ti,ti+1)(t)+Φ(XT ) 1T (t) has

continuous trajectories.

3.2 Convergence analysis

We now turn to the convergence analysis for the proposed splitting up system

(3.1)-(3.2) in approximating the BDSDE eq. (1.1). We first state the main

result of our analysis which shows that our splitting up system provides a first

order mean square approximation for solution Yt and half order mean square

approximation for solution Zt.

Theorem 3.1 Assume that (H1)-(H3) hold. Then for sufficiently large N ,

there exists a positive constant C, independent of ∆t and X0, such that

max
1≤i≤N

(
E
[
Eti [Yi(ti)]− Yti

]2) ≤ C∆t2, max
1≤i≤N

(
E
[
Z̃i(ti)− Zti

]2) ≤ C∆t,

(3.3)

where Eti [·] denotes the conditional expectation over the σ-algebra G0,ti = FW0,ti∨
FB0,T .

To prove the theorem, we need several estimations concerning the intermediate

approximation Ỹi and Z̃i given by eq. (3.1).
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Lemma 3.2 Under the assumptions (H1)-(H3), for any given interval [ti, ti+1),

there is a constant C, independent of ∆t and X0, such that

sup
t∈[ti,ti+1)

E[(Ỹi(t)− Yi+1(ti+1))2] ≤ C∆t, |Eti [Ỹi(t)− Yi+1(ti+1)]| ≤ C∆t,

sup
t∈[ti,ti+1)

E[(Z̃i(t)− Z̃i(ti))2] ≤ C∆t, |Eti [Z̃i(t)− Z̃i(ti)]| ≤ C∆t.

Proof: The estimations in the lemma follow directly from Theorem 2.1 with

the special case g ≡ 0. �

Lemma 3.3 Under the assumptions (H1)-(H3), for any given interval [ti, ti+1),

there is a constant C, independent of ∆t and X0, such that

sup
t∈[ti,ti+1)

(
E[(Ỹi(t)− Yt)2]

)
≤ CE[(Eti+1 [Yi+1(ti+1)]− Yti+1)2] + C∆t.

Proof: Subtracting eq. (1.1) for t ∈ [ti, ti+1) from eq. (3.1), and taking the

conditional expectation E[·|G0,ti+1
] gives

Ỹi(t)− Yt = Eti+1
[Yi+1(ti+1)]− Yti+1

−
∫ ti+1

t

[Z̃i(s)− Zs] dWs

+

∫ ti+1

t

[f(s,Xs, Ỹi(s), Z̃i(s))− f(s,Xs, Ys, Zs)] ds−
∫ ti+1

t

g(s,Xs, Ys) d
←−
Bs.

(3.4)

Note that Ỹi(t) is FW0,t ∨ FBti+1,T
measurable for t < ti+1, thus it is FW0,t ∨ FBt,T

measurable, i.e. Gt measurable. Applying the generalized Itô’s Lemma (see

Lemma 1.3 in [34]) to |Ỹi(t) − Yt|2 and taking the expectation, we have, using

Young’s inequality with ε = 1
2L , and assumption (H3),

E|Ỹi(t)− Yt|2 +

∫ ti+1

t

E|Z̃i(s)− Zs|2 ds

≤ E|Eti+1 [Yi+1(ti+1)]− Yti+1 |2 + 2

∫ ti+1

t

L(E|Xs|2 + E|Ys|2) ds

+ 2

∫ ti+1

t

E|g(s, 0, 0)|2 ds+ (2L+
1

2
)

∫ ti+1

t

E|Ỹi(s)− Ys|2 ds

+
1

2

∫ ti+1

t

E|Z̃i(s)− Zs|2 ds.

The desired result follows from Gronwall’s inequality, assumption (H3), and

Theorem 2.1. �

Lemma 3.4 Under assumptions (H1)-(H3), for any given interval [ti, ti+1),

there exists a constant C, independent of ∆t and X0, such that

sup
t∈[ti,ti+1)

(
E[(Yi(t)− Yt)2]

)
≤ CE[(Eti+1 [Yi+1(ti+1)]− Yti+1)2] + C∆t. (3.5)

7



Proof: Note that

Yi(t)− Yt = Yi(t)− Ỹi(t) + Ỹi(t)− Yt.

This result is then a direct consequence of Lemma 3.3, Itô’s isometry, and the

assumption (H3). �
Combining Theorem 2.1 and Lemma 3.2, using Young’s inequality, we arrive

an estimate on E[(Z̃i(t)− Zt)2].

Lemma 3.5 Under the assumptions (H1)-(H3), for any given interval [ti, ti+1),

there exits constant a C, independent of ∆t and X0, such that

sup
t∈[ti,ti+1)

(
E[(Z̃i(t)− Zt)2]

)
≤ (1 + ε0)E[(Z̃i(ti+1 − 0)− Zti+1

)2] + C∆t,

for some suitable ε0 > 0.

Proof of Theorem 3.1: The main ingredients of the proof are the estimations

for the errors Yi(ti)−Yti and Z̃i(ti)−Zti . Once these estimations are obtained,

the desired result of the theorem is the consequence of application of the discrete

Gronwall inequality.

Estimation for the error Yi(ti)− Yti .
Subtracting eq. (1.1) for t ∈ [ti, ti+1) from eq. (3.2) and substituting eq. (3.4)

with result we have that for t = ti

Yi(ti)− Yti = Eti+1 [Yi+1(ti+1)]− Yti+1 +

∫ ti+1

ti

[g(s,Xs, Yi(s))− g(s,Xs, Ys)] d
←−
Bs

+

∫ ti+1

ti

[f(s,Xs, Ỹi(s), Z̃i(s))− f(s,Xs, Ys, Zs)] ds−
∫ ti+1

ti

[Z̃i(s)− Zs] dWs.

(3.6)

To simplify notation in subsequent derivations, we shall use the following short-

hand notation:

eiy := Eti [Yi(ti)]− Yti , ei+1
z := Z̃i(ti+1 − 0)− Zti+1

,

δf i(s) := f(s,Xs, Ỹi(s), Z̃i(s))− f(s,Xs, Ys, Zs),

δgi(s) := g(s,Xs, Yi(s))− g(s,Xs, Ys).

Taking the conditional expectation Eti [·] on both sides of the above yields

Eti [Yi(ti)]− Yti = Eti [Eti+1
[Yi+1(ti+1)]− Yti+1

]

+

∫ ti+1

ti

Eti [δf
i(s)] ds+

∫ ti+1

ti

Eti [δg
i(s)] d

←−
Bs.

(3.7)

Here we have used Fubini’s theorem and the fact that Yti is FW0,ti ∨ F
B
0,T mea-

surable, i.e. G0,ti measurable.
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Next we consider the mean square estimation for eiy. Square and then take

the expectation on both sides of eq. (3.7) to obtain

E[(eiy)2] = E[(Eti [e
i+1
y ])2] + E

[( ∫ ti+1

ti

Eti [δf
i(s)] ds+

∫ ti+1

ti

Eti [δg
i(s)] d

←−
Bs

)2]
+ 2E

[(
Eti [e

i+1
y ]

)
·
(∫ ti+1

ti

Eti [δf
i(s)] ds+

∫ ti+1

ti

Eti [δg
i(s)] d

←−
Bs

)]
.

(3.8)

Using the elementary inequality (a+ b)2 ≤ 2(a2 + b2) on eq. (3.8), we have

E[(eiy)2] ≤ I1 + I2 + I3 + I4 + I5, (3.9)

where

I1 := E[(Eti [e
i+1
y ])2],

I2 := 2E
[( ∫ ti+1

ti

Eti [δf
i(s)] ds

)2]
,

I3 := 2E
[( ∫ ti+1

ti

Eti [δg
i(s)] d

←−
Bs
)2]

,

I4 := 2E
[(
Eti [e

i+1
y ]

)
·
( ∫ ti+1

ti

Eti [δf
i(s)] ds

)]
,

I5 := 2E
[(
Eti [e

i+1
y ]

)
·
( ∫ ti+1

ti

Eti [δg
i(s)] d

←−
Bs
)]
.

By Cauchy’s inequality, Jensen’s inequality, and the assumptions (H1)-(H3),

we have

I2 ≤ 2∆tE
[ ∫ ti+1

ti

(Eti [δf
i(s)])2 ds

]
≤ 2∆t

∫ ti+1

ti

L
(
E[(Ỹi(s)− Ys)2] + E

[
(Z̃i(s)− Zs)2

])
ds.

Then, from Lemma 3.3 and Lemma 3.5, we get

I2 ≤ C(∆t)2E[(ei+1
y )2] + 2L(1 + ε0)(∆t)2E

[
(ei+1
z )2

]
+O(∆t3). (3.10)

Next we estimate I3. To simplify the presentation, we use abbreviated notations

Θr = (r,Xr, Yr) and Θ̃r = (r,Xr, Yi(r)), and use subscripts of function g to

indicate partial differentiations. We also use d[X]r to denote the quadratic

variation of Xr, and d[X,Y ]r the quadratic covariation of Xr and Yr. In order

to derive an estimation for I3, we first apply the Itô-Taylor expansions for g(Θs)
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and g(Θ̃s) on interval [s, ti+1] to obtain

g(Θti+1) = g(Θs) +

∫ ti+1

s

gt(Θr) dr +

∫ ti+1

s

gx(Θr) dXr +

∫ ti+1

s

gy(Θr) dYr

+
1

2

∫ ti+1

s

gxx(Θr) d[X]r +
1

2

∫ ti+1

s

gyy(Θr) d[Y ]r +

∫ ti+1

s

gxy(Θr) d[X,Y ]r,

(3.11)

and

g(Θ̃ti+1
) = g(Θ̃s) +

∫ ti+1

s

gt(Θ̃r) dr +

∫ ti+1

s

gx(Θ̃r) dXr +

∫ ti+1

s

gy(Θ̃r) dYi(r)

+
1

2

∫ ti+1

s

gxx(Θ̃r) d[X]r +
1

2

∫ ti+1

s

gyy(Θ̃r) d[Yi]r +

∫ ti+1

s

gxy(Θ̃r) d[X,Yi]r.

(3.12)

Note that dXr = dWr, it then follows from the generalized Itô’s Lemma (see

Lemma 1.3 in [34]) that

d[X]r = dr, d[Y ]r = −g2(Θr) dr + (Zr)
2 dr, d[X,Y ]r = Zr dr

d[Yi]r = −g2(Θ̃r) dr + (Z̃i(r))
2 dr, d[X,Yi]r = Z̃i(r) dr.

Subtracting eq. (3.11) from eq. (3.12), we have

g(Θ̃s)− g(Θs) = g(Θ̃ti+1)− g(Θti+1) +

∫ ti+1

s

[(gy · g)(Θ̃r)− (gy · g)(Θr)] d
←−
Br

−
∫ ti+1

s

[(gx(Θ̃r) + gy(Θ̃r)Z̃i(r))− (gx(Θr) + gy(Θr)Zr)] dWr +Rig,Y (s),

(3.13)

where Rig,Y contains all the
∫ ti+1

s
· dr integrals:

Rig,Y (s) := −
∫ ti+1

s

[gt(Θ̃r)− gt(Θr)] dr

+

∫ ti+1

s

[gy(Θ̃r)f(r,Xr, Ỹi(r), Z̃i(r))− gy(Θr)f(r,Xr, Yr, Zr)] dr

− 1

2

∫ ti+1

s

[gxx(Θ̃r) + gyy(Θ̃r)(Z̃i(r))
2 − gxx(Θr)− gyy(Θr)(Zr)

2] dr

+
1

2

∫ ti+1

s

[gyy(Θ̃r)g
2(Θ̃r)− gyy(Θr)g

2(Θr)] dr

−
∫ ti+1

s

[gxy(Θ̃r)Z̃i(r)− gxy(Θr)Zr] dr,

and it’s easy to see that sup
s∈[ti,ti+1)

E[(Rig,Y (s))2] = O(∆t2).
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Taking the conditional expectation Eti [·] on both sides of eq. (3.13), we have

Eti [δg
i(s)] = Eti [δg

i(ti+1)] + Eti

[ ∫ ti+1

s

δ(gyg)i(r) d
←−
Br

]
+ Eti [R

i
g,Y (s)],

where δ(gyg)i(r) := (gy · g)(Θ̃r) − (gy · g)(Θr). By the above estimation, Itô’s

isometry, the elementary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), and Jensen’s

inequality, we obtain

I3 = 2E

(∫ ti+1

ti

(Eti [δg
i(s)])2 ds

)
≤ 6

∫ ti+1

ti

(
E
[(
Eti [δg

i(ti+1)]
)2]

+

∫ ti+1

s

E[(Eti [δ(gyg)i(r)])2] dr + E[(Rig,Y (s))2]

)
ds.

(3.14)

Using Lemma 3.4, the assumptions (H1)-(H3) and Jensen’s inequality, we have

I3 ≤ 6|gy|2∞∆tE[(ei+1
y )2] + C∆t2E[(ei+1

y )2] +O(∆t3). (3.15)

We now turn to the estimation of I4. First we decompose δf i(s), which is

the abbreviation for f(s,Xs, Ỹi(s), Z̃i(s)) − f(s,Xs, Ys, Zs), into three parts to

write I4 as

I4 = 2E

[
Eti [e

i+1
y ] ·

∫ ti+1

ti

(
Eti [δf

i,a] + Eti [δf
i,b] + Eti [δf

i,c]
)

ds

]
,

where

δf i,a := f(s,Xs, Ỹi(s), Z̃i(s))− f(ti+1, Xti+1
, Yi+1(ti+1), Z̃i(ti+1 − 0)),

δf i,b := f(ti+1, Xti+1 , Yi+1(ti+1), Z̃i(ti+1 − 0))− f(ti+1, Xti+1 , Yti+1 , Zti+1),

δf i,c := f(ti+1, Xti+1
, Yti+1

, Zti+1
)− f(s,Xs, Ys, Zs).

By Itô-Taylor expansion and Lemma 3.2, we see that Eti [δf
i,a] = O(∆t). Hence

2E

[
Eti [e

i+1
y ] ·

∫ ti+1

ti

Eti [δf
i,a] ds

]
≤ ∆t

3
E
[
(ei+1
y )2

]
+O(∆t3).

On the other hand, by Theorem 2.1, we have E[δf i,c] = O(∆t). Therefore, it

follows from the properties of conditional expectations and Youngs inequality

that

2E

[
Eti [e

i+1
y ] ·

∫ ti+1

ti

(
Eti [δf

i,c]
)

ds

]
= 2E

[
E
[
Eti [e

i+1
y ] ·

∫ ti+1

ti

(
Eti [δf

i,c]
)

ds|FBti,ti+1

]]
= 2E[ei+1

y ]

∫ ti+1

ti

E[δf i,c] ds ≤ ∆t

3
E
[
(ei+1
y )2

]
+O(∆t3).

(3.16)
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Putting the above estimates together, then using the assumptions (H1)-(H3)

and Youngs inequality, we obtain

I4 ≤ ∆tE
[
(Eti [e

i+1
y ])2

]
+ 6|fy|2∞∆tE[(ei+1

y )2] + 6|fz|2∞∆tE[(Eti [e
i+1
z ])2] +O(∆t3)

= (1 + 6|fy|2∞)∆tE[(ei+1
y )2] + 6|fz|2∞∆tE

[
(Eti [e

i+1
z ])2

]
+O(∆t3).

(3.17)

To estimate the last term, we use an argument similar to (3.16).

I5 =2E
[
E[Eti [e

i+1
y ] ·

∫ ti+1

ti

Eti [δg
i(ti+1)] d

←−
Bs|FBti,ti+1

]
]

+ 2E
[
E[Eti [e

i+1
y ] ·

∫ ti+1

ti

(Eti [δg
i(s)− δgi(ti+1)]) d

←−
Bs|FBti,ti+1

]
]

= 2E
[
Eti [e

i+1
y ]Eti [δg

i(ti+1)]
]
E[∆Bi] + 2E[ei+1

y ] · E
[ ∫ ti+1

ti

(Eti [δg
i(s)− δgi(ti+1)]) d

←−
Bs

]
= 0.

Substituting the above estimations eqs. (3.10), (3.15) and (3.17) into eq. (3.9),

we have

E[(eiy)2] ≤E[(Eti [e
i+1
y ])2] + C1

y∆tE
[
(ei+1
y )2

]
+ 6|fz|2∞∆tE

[
(Eti [e

i+1
z ])2

]
+ C∆t2E[(ei+1

y )2] + 2L(1 + ε0)∆t2E
[
(Eti [e

i+1
z ])2

]
+O(∆t3),

(3.18)

where C1
y := 1 + 6|fy|2∞ + 6|gy|2∞ is a constant.

Estimation for the error Z̃i(ti)− Zti .
In order to derive an estimation for Z̃i(ti) − Zti , we subtract eq. (1.1) for t ∈
[ti, ti+1) from eq. (3.4), let t = ti, multiply both sides of the resulting equation

by ∆Wi, and then take the conditional expectation Eti [·] to obtain∫ ti+1

ti

Eti [Z̃
i(s)− Zs] ds = Eti [e

i+1
y ∆Wi] +

∫ ti+1

ti

Eti [δf
i(s)∆Wi] ds

−
∫ ti+1

ti

Eti

[
g(s,Xs, Ys)∆Wi

]
d
←−
Bs,

(3.19)

where we have used the Fubini’s theorem and the fact that Eti [(Ỹi(ti)−Yti)∆Wi] =

0. Rewrite Eti [Z̃
i(s)− Zs] as

Eti [Z̃i(s)− Z̃i(ti+1 − 0)] + Eti [Z̃i(ti+1 − 0)− Zti+1
] + Eti [Zti+1

− Zs].

Using Theorem 2.1 (4), we have

∆tEti [e
i+1
z ] = Eti [e

i+1
y ∆Wi] +

∫ ti+1

ti

Eti [δf
i(s)∆Wi] ds

−
∫ ti+1

ti

Eti [g(Θs)∆Wi] d
←−
Bs +

∫ ti+1

ti

∫ ti+1

s

Eti [∇g(Θr)] d
←−
Br ds+O(∆t2),

(3.20)
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where Θr = (r,Xr, Yr) . Similar to the argument in eq. (3.11) ( notice that here

we apply the Itô formula on interval [ti, s] instead of [s, ti+1] in eq. (3.11) ), we

obtain

g(Θs) = g(Θti) +

∫ s

ti

(
gx(Θr) + gy(Θ)Zr

)
dWr −

∫ s

ti

(gy · g)(Θr) d
←−
Br +Rig,

where all the
∫ s
ti
·dr terms are included in Rig. The above equation leads to∫ ti+1

ti

Eti

[
g(Θs)∆Wi

]
d
←−
Bs =

∫ ti+1

ti

∫ s

ti

Eti
[
gx(Θr) + gy(Θr)Zr

]
dr d
←−
Bs

−
∫ ti+1

ti

∫ s

ti

Eti [(gy · g)(Θr)∆Wi] d
←−
Br d
←−
Bs +

∫ ti+1

ti

Eti

[
Rig∆Wi

]
d
←−
Bs.

Here we have used the fact Eti [g(Θti)∆Wi] = 0. Decompose the second term

on the right hand side of the above equation into two terms∫ ti+1

ti

∫ s

ti

Eti [(gy · g)(Θti)∆Wi] d
←−
Br d
←−
Bs

+

∫ ti+1

ti

∫ s

ti

Eti [
(
(gy · g)(Θr)− (gy · g)(Θti)

)
∆Wi] d

←−
Br d
←−
Bs.

By properties of conditional expectations, the first part is 0. Therefore∫ ti+1

ti

Eti

[
g(Θs)∆Wi

]
d
←−
Bs =

∫ ti+1

ti

∫ s

ti

Eti
[
gx(Θr) + gy(Θr)Zr

]
dr d
←−
Bs

−
∫ ti+1

ti

∫ s

ti

Eti [
(
(gy · g)(Θr)− (gy · g)(Θti)

)
∆Wi] d

←−
Br d
←−
Bs +

∫ ti+1

ti

Eti

[
Rig∆Wi

]
d
←−
Bs.

Putting this into eq. (3.20), and noting that ∇g(Θr) = gx(Θr) + gy(Θr)Zr (as

defined in Theorem 2.1), we obtain

∆tEti [e
i+1
z ] = Eti [e

i+1
y ∆Wi] +

∫ ti+1

ti

Eti [δf
i(s)∆Wi] ds+Ri+1

z , (3.21)

where

Ri+1
z = −

∫ ti+1

ti

∫ s

ti

Eti
[
∇g(Θr)−∇g(Θti)

]
dr d
←−
Bs

+

∫ ti+1

ti

∫ s

ti

Eti [
(
(gy · g)(Θr)− (gy · g)(Θti)

)
∆Wi] d

←−
Br d
←−
Bs −

∫ ti+1

ti

Eti

[
Rig∆Wi

]
d
←−
Bs

+

∫ ti+1

ti

∫ ti+1

s

Eti [∇g(Θr)−∇g(Θti)] d
←−
Br ds+O(∆t2).
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It is easy to check that E[(Ri+1
z )2] = O(∆t4). Similar to the discussions for the

eiy error, we square eq. (3.21), and take expectation to get

∆t2E
[
(Eti [e

i+1
z ])2

]
≤ E

[(
Eti [e

i+1
y ∆Wi]

)2]
+ 2E

[(∫ ti+1

ti

Eti [δf
i(s)∆Wi] ds

)2]
+ 2E

[
Eti [e

i+1
y ∆Wi] ·

∫ ti+1

ti

Eti [δf
i(s)∆Wi] ds

]
+ E

[
Eti [e

i+1
y ∆Wi]R

i+1
z

]
+O(∆t4).

(3.22)

For the cross product terms in the above equation, we use Young’s inequality

to get

2E
[
Eti [e

i+1
y ∆Wi]

∫ ti+1

ti

Eti [δf
i(s)∆Wi] ds

]
≤ L∆t

ε1
E
[(
Eti [e

i+1
y ∆Wi]

)2]
+

ε1
L∆t

E
[( ∫ ti+1

ti

Eti [δf
i(s)∆Wi] ds

)2]
≤ L∆t2

ε1
E
[(
ei+1
y

)2]
+ ε1∆t2E

[
(CEti

[
ei+1
y ])2 + (1 + ε0)(Eti [e

i+1
z ])2

]]
+O(∆t4)

and

E
[
Eti [e

i+1
y ∆Wi]R

i+1
z

]
≤ ε2E

[(
Eti [e

i+1
y ∆Wi]

)2]
+O(∆t4).

From the assumption (H3), Lemma 3.3 and Lemma 3.5, and the above estima-

tions, we have

∆t2E
[
(Eti [e

i+1
z ])2

]
≤ E

[(
Eti [e

i+1
y ∆Wi]

)2]
+ C∆t3E[(ei+1

y )2] + 2L(1 + ε0)∆t3E
[(
Eti [e

i+1
z ]

)2]
+
L∆t2

ε1
E
[(
ei+1
y

)2]
+ Cε1∆t2E[(ei+1

y )2] + ε1(1 + ε0)∆t2E[(Eti [e
i+1
z ])2]

+ ε2E
[(
Eti [e

i+1
y ∆Wi]

)2]
+O(∆t4).

Set 1
1+ε2

< 1. Dividing both sides of the above estimate by ∆t(1 + ε2), and

noting that
(
Eti [e

i+1
y ∆Wi]

)2 ≤ ∆t
(
Eti [(e

i+1
y )2]− (Eti [e

i+1
y ])2

)
, we obtain

∆t

1 + ε2
E
[
(Eti [e

i+1
z ])2

]
≤ E

[
Eti [(e

i+1
y )2]− (Eti [e

i+1
y ])2

]
+
( L
ε1

+ Cε1
)
∆tE

[(
ei+1
y

)2]
+ ε1(1 + ε0)∆tE

[
Eti [(e

i+1
z )2

]]
+ C∆t2E[(ei+1

y )2]

+ 2L(1 + ε0)∆t2E
[(
Eti [e

i+1
z ]

)2]
+O(∆t3).

(3.23)

which is the desired estimate for ei+1
z .

Now we use the above estimates, eq. (3.18) for Yi(ti) − Yti , and eq. (3.23)

for Z̃i(ti) − Zti , to derive the error estimate of the theorem. First we combine
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eq. (3.18) and eq. (3.23) to obtain

E[(eiy)2] +
∆t

1 + ε2
E
[
(Eti [e

i+1
z ])2

]
≤ E[(ei+1

y )2] +
(
C1
y +

L

ε1
+ Cε1

)
∆tE[(ei+1

y )2] +
(
6|fz|2∞ + ε1(1 + ε0)

)
∆tE

[
(Eti [e

i+1
z ])2

]
+ C∆t2E[(ei+1

y )2] + 4L(1 + ε0)∆t2E
[
(Eti [e

i+1
z ])2

]
+O(∆t3).

(3.24)

Next we properly choose ε0, ε1 and ε2 to control the E
[
(Eti [e

i+1
z ])2

]
terms on

the right hand side of eq. (3.24). Specifically, we move all the E
[
(Eti [e

i+1
z ])2

]
terms to the left hand side and get

E[(eiy)2] + Cz∆tE
[
(Eti [e

i+1
z ])2

]
≤ E[(ei+1

y )2] + Cy∆tE[(ei+1
y )2] +O(∆t3)

(3.25)

where Cy = C1
y + L

ε1
+Cε1+C∆t, Cz = 1

1+ε2
−6|fz|2∞−ε1(1+ε0)−4L(1+ε0)∆t.

Now we choose constants ε0, ε1 and ε2 sufficiently small such that 1
1+ε2
−6|fz|2∞−

ε1(1 + ε0) > 0. When the temporal step size ∆t is chosen such that ∆t <

( 1
1+ε2

− 6|fz|2∞ − ε1(1 + ε0))/4L(1 + ε0), we have Cz > 0. As a result, the

estimate eq. (3.25) becomes

E[(eiy)2] ≤ E[(ei+1
y )2] + Cy∆tE[(ei+1

y )2] +O(∆t3),

which gives

max
1≤i≤N

(
E[(eiy)2]

)
≤ C∆t2 (3.26)

according to the discrete Gronwall ’s inequality. This is the first part of eq. (3.3).

For the second part of eq. (3.3), we substitute eq. (3.26) into eq. (3.25) to

obtain

max
1≤i≤N−1

E
[
(Eti [e

i+1
z ])2

]
≤ C∆t. (3.27)

Since Z̃i(ti)− Zti is FW0,ti ∨ F
B
0,T measurable, i.e. G0,ti measurable, we have

max
1≤i≤N−1

E
[
(Z̃i(ti)− Zti)2

]
= max

1≤i≤N−1
E
[
(Eti [Z̃i(ti)− Zti ])2

]
≤ max

1≤i≤N−1
3E
[
(Eti [Z̃i(ti)− Z̃i(ti+1 − 0)])2 + (Eti [e

i+1
z ])2 + (Eti [Zti+1

− Zti ])2
]
.

Then the second part of the theorem follows from Theorem 2.1, Lemma 3.2,

and eq. (3.27). �

4 A first order splitting up scheme

In this section, we discretize the BSDE (3.1) and SDE (3.2) in the splitting up

system to obtain a first order splitting up numerical scheme.
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First we define an approximation for X by X0 = X0, and

Xi+1 = Xi + ∆Wi, i = 1, · · · , N. (4.1)

It is easy to see that for any t ∈ [ti, ti+1) and i = 1 · · · , N , there exists a positive

constant C, independent of X0 and ∆t, such that

E

[
|Xi+1 −Xt|2 + |Xt −Xi|2

]
≤ C∆t. (4.2)

To obtain a first order splitting up scheme, we use the explicit Euler scheme to

approximate the BSDE eq. (3.1) and the Milstein scheme to approximate the

SDE eq. (3.2). The resulting algorithm is given as follows.

Hi+1 = Y i+1 + ∆tf(ti+1, X
i+1, Y i+1, Zi+1), (a)

Ỹ i = Eti [H
i+1], (b)

Zi =
1

∆t
Eti [H

i+1∆Wi], (c)

Y i = Ỹ i + Eti [G
i+1(Ỹ i)], (d)

(4.3)

where for any FBti+1,T
measurable random variable, Gi+1(ξ) is defined by

Gi+1(ξ) := g(ti+1, X
i+1, ξ)∆Bi + (gy · g)(ti+1, X

i+1, ξ)
1

2
(∆B2

i −∆t). (4.4)

Note that in eq. (4.3), Ỹ i is an approximation for Ỹi(ti), Y
i is an approximation

for Eti [Yi(ti)], and Zi is an approximation for Z̃i(ti). Apparently, Y i is also an

approximation for Yti and Zi is also an approximation for Zti .

In order to show that Y i is a first order numerical approximation for Yt and

Zi is a half order numerical approximation for Zt, we first show that Y i is a

first order approximation for Eti [Yi(ti)] and Zi is a half order approximation for

Z̃i(ti). Then, the first order convergence rate and half order convergence rate

of our numerical schemes in approximating Yt and Zt, respectively, is arrived as

a direct consequence of Theorem 3.1.

Theorem 4.1 Assume that assumptions (H1)-(H3) hold. Then there exists

a positive constant C, independent of ∆t and X0, such that

max
1≤i≤N

E
[
(Y i − Eti [Yi(ti)])2 + ∆t(Zi − Z̃i(ti))2

]
≤ C∆t2. (4.5)

Proof: Set t = ti, take conditional expectation on both sides of eq. (3.2), and

then subtract the result from eq. (4.3) (d) to get

Y i − Eti [Yi(ti)] = Ỹ i − Ỹi(ti) + Eti [G
i+1(Ỹ i)−Gi+1(Ỹi(ti))] +Rig, (4.6)
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where

Rig =

∫ ti+1

ti

Eti [g(Θ̃s)] d
←−
Bs − Eti [Gi+1(Ỹi(ti))].

It is easy to verify that E[(Rig)
2] = O(∆t3). As in Section 3, denote

êiy = Y i − Eti [Yi(ti)], and êiz = Zi − Z̃i(ti).

Squaring eq. (4.6) and taking the expectation, we obtain

E[(êiy)2] = E
[
(Ỹ i − Ỹi(ti))2

]
+ E

[(
Eti [G

i+1(Ỹ i)−Gi+1(Ỹi(ti))] +Rig

)2]
+ 2E

[(
Ỹ i − Ỹi(ti)

)(
Eti [G

i+1(Ỹ i)−Gi+1(Ỹi(ti))] +Rig

)]
.

(4.7)

The last term above is 0, which can be proved by an argument similar to (3.16).

Next we estimate Ỹ i − Ỹi(ti) and Eti [G
i+1(Ỹ i)−Gi+1(Ỹi(ti))] in eq. (4.7). By

the definition of Ĝ in eq. (4.4), we have

E
[(
Gi+1(Ỹ i)−Gi+1(Ỹi(ti))

)2] ≤ CG∆tE[(Ỹ i − Ỹi(ti))2], (4.8)

where CG is a constant independent of X0 and ∆t. Therefore, it suffices to

estimate E[(Ỹ i − Ỹi(ti))
2]. To this end, we take the conditional expectation

Eti [·] on both sides of eq. (3.4) and subtract it from eq. (4.3) (b) to obtain

Ỹ i − Ỹi(ti) =Eti [ê
i+1
y ] + ∆tEti

[
f(Πi+1)− f(Π̃ti+1

)
]

+Rif , (4.9)

where Rif =
∫ ti+1

ti
Eti
[
f(Π̃i+1)−f(s,Xs, Ỹi(s), Z̃i(s))

]
ds is the truncation error,

andRif = O(∆t2) (for notational simplicity, we denote Πi+1 := (ti+1, X
i+1, Y i+1, Zi+1)

and Π̃i+1 := (ti+1, Xti+1
, Yi+1(ti+1), Z̃i(ti+1 − 0))). Squaring both sides of the

above, and then taking the expectation, we have

E
[(
Ỹ i − Ỹi(ti)

)2]
=E
[(
Eti [ê

i+1
y ]

)2]
+ E

[(
∆tEti

[
f(Πi+1)− f(Π̃ti+1)

]
+Rif

)2]
+ 2E

[
Eti [ê

i+1
y ]

(
∆tEti

[
f(Πi+1)− f(Π̃ti+1)

]
+Rif

)]
.

(4.10)

Using similar arguments as eqs. (3.10), (3.15) and (3.17), we obtain

E[(êiy)2] ≤ E
[(
Eti [ê

i+1
y ]

)2]
+ ∆tĈ1

yE
[
(êi+1
y )2

]
+ ε1∆tE

[
(êi+1
z )2

]
+ Ĉ2

y∆t2E
[
(êi+1
z )2

]
+O(∆t3),

(4.11)

where Ĉ1
y and Ĉ2

y are constants independent of X0 and ∆t, and ε1 is a constant

to be specified later.
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To estimate êiz, we multiply ∆Wi on both sides of eq. (3.1), take conditional

expectation Eti [·], and subtract it from eq. (4.3) (c) to obtain

∆t
(
êiz
)

=Eti [
(
êi+1
y

)
∆Wi] + ∆tEti

[(
f(Πi+1)− f(Π̃ti+1

)
)

∆Wi

]
+RifW ,

(4.12)

where

RifW =

∫ ti+1

ti

Eti

[(
f(Π̃ti+1

)− f(s,Xs, Ỹi(s), Z̃i(s))
)
∆Wi

]
ds

+

∫ ti+1

ti

Eti [Z̃i(s)− Z̃i(ti)] ds.

It follows from Lemma 3.2 that RifW = O(∆t2). Squaring both sides of eq. (4.12),

taking the expectation, and using similar analysis techniques as in the proof of

Theorem 3.1, we derive that

∆t

1 + ε
E[(êiz)

2] ≤ E
[
Eti [

(
êi+1
y

)2
]− (Eti [ê

i+1
y ])2

]
+ ∆tĈ1

zE
[
(êi+1
y )2

]
+ ε2∆tE

[
(êi+1
z )2

]
+ Ĉ2

z∆t2E
[
(êi+1
z )2

]
+O(∆t3),

(4.13)

where Ĉ1
z , Ĉ2

z are constants independent of ∆ and X0, and ε2 is a constant that

will be determined later.

Finally, we add eq. (4.11) and eq. (4.13) to obtain

E[(êiy)2]+
∆t

1 + ε
E[(êiz)

2] ≤ E
[
(êi+1
y )2

]
+ (ε1 + ε2)∆tE

[
(êi+1
z )2

]
+ ∆t(Ĉ1

y + Ĉ1
z )E

[
(êi+1
y )2

]
+ (Ĉ2

y + Ĉ2
z )∆t2E

[
(êi+1
z )2

]
+O(∆t3).

(4.14)

Choosing ε, ε1 and ε2 sufficiently small so that ε1 + ε2 <
1

1+ε , and using the

discrete Gronwall inequality, we obtain the desired result of the theorem. �
As a direct consequence of Theorem 3.1 and Theorem 4.1, we have the

following first order error estimate for our numerical scheme (4.3).

Theorem 4.2 Assume that assumptions (H1)-(H3) hold. Then there exists

a positive constant C independent of ∆t, such that

max
1≤i≤N

E
[
(Y i − Yti)2 + ∆t(Zi − Zti)2

]
≤ C∆t2. (4.15)

5 Numerical experiments

In this section, we use three numerical experiments to validate our splitting up

scheme and verify the error estimations. In order to implement the numeri-

cal schemes (4.3), we need to approximate the conditional expectation Eti in
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eq. (4.3). Since the conditional expectation Eti is essentially an integral with

the Gaussian kernel, we use Gauss - Hermite quadrature formula as a numerical

integral method to calculate conditional expectations (see [9] for more details).

To calculate the general expectation E, we use Monte Carlo method with 300

samples and compute the root mean square error in each example.

Example 1

In the first example, we consider the BDSDE

dYt = −f(t, Yt, Zt) dt+ Zt dWt − g(t, Yt) d
←−
B t,

where f(t, Yt, Zt) = Yt

2 − Zt + Bt−BT

8 and g(t, Yt) = 1
4

(
cos(t + Wt)

2 + Yt −
(Bt−BT

8 )2
)
.The exact solution to the above equation is Yt = sin(t+Wt)−Bt

4 +BT

4

and Zt = cos(t + Wt). To demonstrate the performance of our numerical

Table 1: Example 1

Partition E[‖Ỹ 0 − Y0‖L2 ] E[‖Y 0 − Y0‖L2 ] E[‖Z0 − Z0‖L2 ]

N = 23 2.4000e− 01 2.3489e− 01 9.8106e− 02

N = 24 1.3788e− 01 1.2745e− 01 4.2258e− 02

N = 25 7.7604e− 02 6.4257e− 02 2.0880e− 02

N = 26 4.3455e− 02 3.1834e− 02 1.2762e− 02

N = 27 2.7816e− 02 1.5770e− 02 6.0392e− 03

CR 0.79 0.98 0.98

schemes, we compute the root mean square errors (RMSEs) between our approx-

imate solutions and the exact solution. Specifically, we calculate the expectation

of the L2 norm errors ‖Ỹ 0−Y0‖L2 , ‖Y 0−Y0‖L2 and ‖Z0−Z0‖L2 at time t = 0

with 300 Monte Carlo samples and discretize the equations with time step sizes

∆t = 2−3, 2−4, 2−5, 2−6, 2−7. The corresponding errors are presented in Table

1. Here CR in the table stands for “convergence rate”. We can see from the

table that Y i indeed provides a first order numerical approximation for the so-

lution Yt, and Ỹ i provides reasonably accurate approximation for Yt. However,

since the scheme for Ỹ i does not include the d
←−
B integral, it does not provide a

first order approximation for the solution. On the other hand, we can see that

our numerical solution Zi converges with first order in approximating Zt in this

example although in our proof we only obtain half order convergence analysis

for Zi. Further investigation is needed to determine if this a super convergence

for Zt on the nodal points.
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Example 2

In the second example, we consider the BDSDE

dYt = −f(t, Yt, Zt) dt+ Zt dWt − g(t, Yt) d
←−
B t,

with f(t, Yt, Zt) = (Yt − t−Bt)2 +
(

cos(Wt)
)2 − 1

2 sin(Wt), g(t, Yt) = (Yt − t−
Bt)

2 +
(

cos(Wt)
)2

. The exact solution is given by Yt = sin(Wt) + t + Bt and

Zt = cos(Wt). We can see that in this example, both f and g are nonlinear

Table 2: Example 2

Partition E[‖Ỹ 0 − Y0‖L2 ] E[‖Y 0 − Y0‖L2 ] E[‖Z0 − Z0‖L2 ]

N = 23 4.1305e− 01 2.4342e− 01 1.3810e− 01

N = 24 2.9031e− 01 1.4541e− 01 9.0722e− 02

N = 25 1.9627e− 01 7.3160e− 02 5.5327e− 02

N = 26 1.3704e− 01 3.4548e− 02 2.7033e− 02

N = 27 8.9505e− 02 1.5549e− 02 1.3429e− 02

CR 0.55 1.00 0.85

function for Yt. Therefore, this example demonstrates the performance of our

schemes in solving nonlinear BDSDE systems. As in the first example, we

evaluate he RMSEs E[‖Ỹ 0 − Y0‖L2 ], E[‖Y 0 − Y0‖L2 ] and E[‖Z0 − Z0‖L2 ], at

time t = 0. In Table 2, we can see that the convergence order for ‖Y 0−Y0‖L2 is

1 and the convergence order for ‖Ỹ 0 − Y0‖L2 is roughly 0.55, For the numerical

solution Zi, we can see from the table that the convergence for ‖Z0 − Z0‖L2

is 0.847, which is less than 1. From this example we can see that Zi does not

always produce first order approximation for Zti .

Example 3

In the third example, we consider the BDSDE

dYt = −f(t, Yt, Zt) dt+ Zt dWt − g(t, Yt) d
←−
B t,

with f(t, Yt, Zt) = − 1
2 (sin(Yt))

2− 1
2 (cos(t+Wt+ 1

2Bt))
2− 1

2 (Zt)
2 and g(t, Yt) =

− 1
2 (sin(Yt))

2− 1
2 (cos(t+Wt+

1
2Bt))

2. The exact solution for the above equation

is Yt = t+Wt+ 1
2Bt and Zt = 1. In the last example, f is a nonlinear functions

for Yt, Zt, g is a nonlinear function for Yt, and Yt is in a trigonometric function

in both f and g. The purpose of this example to demonstrate the performance

of our method in solving a more general BDSDE system. In Table 3, we present

the RMSEs between our approximate solutions and the exact solution at time

t = 0. From this table, we can see that for this example Ỹ 0 converges to Y0
with half order, and (Ŷ0, Ẑ0) converges to (Y0, Z0)with first order.
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Table 3: Example 3

Partition E[‖Ỹ 0 − Y0‖L2 ] E[‖Y 0 − Y0‖L2 ] E[‖Z0 − Z0‖L2 ]

N = 23 1.7759e− 01 9.2446e− 03 1.6664e− 02

N = 24 1.1907e− 01 4.3131e− 03 8.1184e− 03

N = 25 9.0338e− 02 2.2815e− 03 4.2914e− 03

N = 26 5.7300e− 02 1.1198e− 03 2.1936e− 03

N = 27 4.6539e− 02 5.5550e− 04 1.0452e− 03

CR 0.49 1.01 0.99
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