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Abstract. We prove that for every positive integer m, there exist infinitely many simple abelian varieties

over F2 of order m. The method is constructive, building on the work of Madan–Pal in the case m = 1 to
produce an explicit sequence of Weil polynomials giving rise to abelian varieties over F2 of order m. This

sequence itself depends on the choice of a suitable generalized binary representation of m; by making careful
choices of this representation, we can ensure that the the resulting sequence of polynomials have 2-adic
Newton polygons which guarantee the existence of suitable irreducible factors.

1. Introduction

How can a given positive integer m occur as the order of the group of rational points of an abelian variety
A over Fq (or for short, the order of A)? While this is nominally a question in arithmetic algebraic geometry,
it immediately translates into a pure matter of algebraic number theory. To wit, Weil’s theorems on the
zeta function of A (e.g., see [13]) imply that #A(Fq) = P (1) where P (x) is the characteristic polynomial of
Frobenius on A. The polynomial P (x) is monic of degree 2g where g = dim(A) and its complex roots can
be labeled α1, . . . , α2g so that

|αi| =
√

q, αg+i = αi (i = 1, . . . , g).

Moreover, the Honda–Tate theorem asserts that any polynomial P (x) satisfying these conditions (plus a mild
additional hypothesis, which is automatic if q = p is prime) occurs for some abelian variety. Understanding
our original question thus becomes a matter of studying the space of Weil polynomials; some important
foundational work on this issue was done by DiPippo–Howe [2].

While it may seem at this point that our original question is mostly resolved by prior work, it should be
emphasized that we did not ask about a specific value of g, and this has a profound effect on the nature of
the question. For example, we may read off from Weil’s results the bounds

(
√

q − 1)2g ≤ #A(Fq) ≤ (
√

q + 1)2g;

if we distinguish these intervals based on g, then as q increases they become more and more separated, to
the extent that #A(Fq) eventually determines g uniquely. By contrast, if we fix q, then as g increases the
intervals eventually start to overlap, so specifying #A(Fq) does not fix g at all.

Keeping this in mind, let us now narrow our original question and ask: for a given prime power q, which
integers occur at least once as the order of an abelian variety A over Fq? Howe–Kedlaya [6] showed that
every positive integer occurs as the order of an abelian variety over F2, which can further be taken to
be ordinary. Building on this, van Bommel–Costa–Li–Poonen–Smith [1] showed that for any fixed q, every
sufficiently large positive integer occurs as the order of an abelian variety over Fq. This abelian variety can be
further taken to be ordinary, geometrically simple, and/or principally polarizable, and for each combination
of conditions one can in principle establish an effective “sufficiently large” cutoff; for example, for q > 4,
every integer m ≥ q3

√
q log q occurs as the order of an ordinary abelian variety over Fq [1, Theorem 1.13(b)],

and the lower bound on m is best possible up to replacing 3 with a smaller constant [1, Remark 1.15].
Another natural question to ask is, for a fixed Fq, how often a given order can occur. For q > 2, a result

of Kadets [7] implies that for all but finitely many simple abelian varieties A over Fq,

#A(Fq) ≥ 1.359dim(A);
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in particular, there are only finitely many simple abelian varieties over Fq of any given order (regardless of
dimension). It is natural to try to count these, but we do not address this here.

Instead, we focus on the case q = 2 and prove the following theorem.

Theorem 1.1. For every positive integer m, there exist infinitely many simple abelian varieties over F2 (of
various dimensions) of order m.

One key motivation for Theorem 1.1 is the fact that it holds for m = 1 by an old theorem of Madan–Pal
[9]. That result gives a complete classification (up to isogeny) of simple abelian varieties over F2 of order 1
using work of Robinson on algebraic integers with all conjugates in a short real interval [15, 16]. The case
m = 2 resolves a question of Kadets [7, §1]; the general question was raised in [6, §1].

The first step towards Theorem 1.1 is to produce some sequences of Weil polynomials giving rise to
abelian varieties over F2 of order m (without apparent common simple factors). This builds upon the work
of Madan–Pal, and also uses some careful choices of generalized binary representations of m as in [6] and
[1], including the nonadjacent binary representations of Reitwiesner [14]. One convenient feature of the
construction is that each sequence we produce satisfies a second-order linear recurrence (closely linked to the
recurrence relation satisfied by Chebyshev polynomials); this implies that every irreducible factor shared by
more than one term of the sequence corresponds to an abelian variety of order 1 (Lemma 5.3). Consequently,
if infinitely many terms of our sequence have irreducible factors of bounded codegree, then all but finitely
many of the corresponding simple abelian varieties have order m (Lemma 5.4). This observation by itself is
enough to establish Theorem 1.1 for m prime (Lemma 6.6), and thus to answer the question of Kadets.

To finish the proof of Theorem 1.1, we establish this irreducibility using 2-adic calculations (mostly
Newton polygons). For m even, we get by with a slight variant of the nonadjacent binary representation
(Lemma 7.9); for m odd, we need a representation of a more restricted form, which we construct using a
short computer calculation (Lemma 8.7) in SageMath [17]. We include the relevant SageMath code as
an appendix; it is also available as a Jupyter notebook from the author’s web site.

We conclude this introduction with some discussion of related questions that we do not treat.

• It is not clear whether our approach can be upgraded to ensure that the simple abelian varieties
we obtain are ordinary, geometrically simple, or principally polarizable; the ordinary condition in
particular is incompatible with our use of 2-adic methods. For order greater than 1, it is possible
that a suitable adaptation of [1, Construction 9.1] can be used for this purpose. Such a construction
may also shed some light on the number of isogeny classes of simple abelian varieties over F2 of fixed
dimension and order, which is known for dimensions up to 6 by the exhaustive tables in LMFDB;
see [5] for more on this data and its tabulation.

• For simple abelian varieties of order 1, one cannot hope to enforce the ordinary, geometrically
simple, and principally polarizable conditions simultaneously because the Madan–Pal classification
demonstrates a “rigidity” of these abelian varieties. In fact, it can be shown that no simple abelian
variety of order 1 is both ordinary and geometrically simple; see [4].

• Marseglia–Springer [11] consider the question of finding abelian varieties realizing specific groups of
rational points; this is a problem of a somewhat different nature because the group of rational points
of an abelian variety over a finite field is not an isogeny invariant (whereas its order is). Using the
result of [6] and [1], Marseglia–Springer show that every finite abelian group occurs as the group of
rational points of some ordinary abelian variety over F2, F3, and F5 (and a slightly weaker analogue
over F4). Using Theorem 1.1, Marseglia–Springer show that any fixed finite abelian group occurs as
the group of rational points of infinitely many pairwise coprime abelian varieties.

• In contrast with Theorem 1.1, for any positive integer m there are are only finitely many isomorphism
classes of curves whose Jacobians have order m; this is even true if we vary over all finite fields (modulo
the trivial exception of curves of genus 0 in the case m = 1). It would be interesting to identify
these curves for some small values of m. For example, it is known from work of Madan–Queen [10],
Stirpe [19], Mercuri–Stirpe [12], and Shen–Shi [18] that there are eight isomorphism classes of curves
of positive genus whose Jacobians have order 1: one curve of genus 1 over each of F3 and F4, plus
six more curves of genera at most 4 over F2.
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2. Setup

We first introduce the setup used by Madan–Pal to study abelian varieties over F2 with small order,
building on work of Robinson [15]. Throughout this paper, we consider the interval

[a, b] := [3 − 2
√

2, 3 + 2
√

2].

Lemma 2.1. Let P (x) ∈ Z[x] be an irreducible monic polynomial with all roots in [a, b] and set

Q(x) := (−1)deg P (x)P (3 − x), R(x) := xdeg P (x)Q(x + 2x−1).

Then R(x) occurs as the characteristic polynomial of Frobenius of some simple abelian variety A over F2

with #A(F2) = (−1)deg P (x)P (0).

Proof. Put m = (−1)deg P (x)P (0). The conditions on P imply that Q(x) ∈ Z[x] is a monic irreducible
polynomial with all roots in the interval [−2

√
2, 2

√
2] with Q(3) = m, and then that R(x) ∈ Z[x] is a

monic irreducible polynomial with all roots on the circle |x| =
√

2. By the Honda–Tate theorem [20], [21],
R(x) occurs as the characteristic polynomial of Frobenius of some simple abelian variety A over F2 (there
being no Brauer obstruction because we are working over a prime field and we avoid the exceptional case
R(x) = x2 − 2); for any such A, we have #A(F2) = R(1) = Q(3) = m. □

For n a positive integer, let Tn(x) ∈ Z[x] be the n-th Chebyshev polynomial of the first kind for the
“arithmetic” normalization (i.e., the Dickson polynomials of the first kind with parameter 1):

Tn(2 cos θ) = 2 cos nθ.

For n ≥ 0, define the polynomial fn(x) of degree 2n by the formula

fn(x) := xnTn(x + x−1 − 4).

Since x 7→ x + x−1 − 4 maps [a, b] two-to-one onto [−2, 2], fn(x) has all roots in [a, b]. In the ring

(2.2) R :=
Z[x±1, y±1, (x − 1)−1]

(x + x−1 − 4 − y − y−1)
∼= Z[x±1, (x − 1)−1,

√

x2 − 6x + 1],

we have

(2.3) fn(x) = xnTn(y + y−1) = xn(yn + y−n).

We finally introduce a key modification that will give rise to abelian varieties of prescribed orders greater
than 1. For n, k ≥ 0, define the rational function

gn,k(x) := (x − 1)−k
k
∑

j=0

(

k

j

)

fn+j(x),

so that gn,0(x) = fn(x). In the ring R, we have

(2.4) gn,k(x) = (xy)n

(

xy + 1

x − 1

)k

+ (xy−1)n

(

xy−1 + 1

x − 1

)k

.

We will see later that gn,k(x) is a polynomial of degree 2n+k (Lemma 3.11) with constant term (−2)k (3.12)
having all roots in [a, b] (Lemma 4.1).

3. Recurrence relations and algebraic corollaries

We next introduce some recurrence relations satisfied by fn(x) and gn,k(x), and use these to derive some
additional algebraic properties, notably that gn,k(x) is indeed a polynomial (Lemma 3.11). Many spot
verifications of these properties can also be found in the associated Jupyter notebook.

To begin with, recall that the Chebyshev polynomials are characterized by the recurrence relation and
initial conditions:

(3.1) Tn(x) − xTn−1(x) + Tn−2(x) = 0, T0(x) = 2, T1(x) = x.

This translates into a corresponding recurrence relation and initial conditions for fn(x):

(3.2) fn(x) − (x2 − 4x + 1)fn−1(x) + x2fn−2(x) = 0, f0(x) = 2, f1(x) = x2 − 4x + 1.
3



From (3.2), it is easy to deduce by induction that

fn(x) ≡ x2n + 1 (mod x)(3.3)

fn(x) ≡ (−1)n2 (mod x − 1)(3.4)

fn(x) ≡ x2n + 4n(x2n−1 + x2n−3 + · · · + x) + 1 (mod 8).(3.5)

(In (3.3), the term x2n is only relevant when n = 0.) The recurrence relation (3.2) for fn translates into the
recurrence relation

(3.6) gn,k(x) − (x2 − 4x + 1)gn−1,k(x) + x2gn−2,k(x) = 0.

We can also formulate recurrence relations for gn,k in which k varies. To begin with, for k ≥ 1,

(3.7) (x − 1)gn,k(x) = gn,k−1(x) + gn+1,k−1(x).

We can also avoid division by x − 1 at the expense of lengthening the recurrence in the k-aspect.

Lemma 3.8. For k ≥ 2,

gn,k(x) − (x − 3)gn,k−1(x) + 2gn,k−2(x) = 0,(3.9)

gn,k(x) + 4gn,k−1(x) + 4gn,k−2(x) − x2gn−1,k(x) = 0.(3.10)

Proof. The equalities can be seen to hold for k = 2 by expanding gn,k(x) in terms of fn+j(x) and applying
(3.2), and then for k > 2 by induction using (3.7). □

We are now ready to establish that gn,k(x) is in fact a polynomial.

Lemma 3.11. For n, k ≥ 0, gn,k(x) is a polynomial of degree 2n + k.

Proof. We have gn,k(x) ∈ Z[x] for k = 0 because gn,0(x) = fn(x), and for k = 1 by (3.4) and (3.7). By
(3.9) we deduce that gn,k(x) ∈ Z[x] for n, k ≥ 0. The degree assertion then follows from the fact that
deg fn+j(x) = 2n + 2j. □

Using (3.7), we may formally promote (3.3): for n > 0,

(3.12) gn,k(x) ≡ (−2)k (mod x).

We may also promote (3.4) as follows.

Lemma 3.13. For n, k ≥ 0,

(3.14) gn,k(x) ≡ (−1)n−k((1 + i)k + (1 − i)k) (mod x − 1).

Proof. For k = 0 this is a restatement of (3.4). For k = 1, we may check the claim for n = 0, 1 from the
values

f0(x) = 2, f1(x) = x2 − 4x + 1, f2(x) = x4 − 8x3 + 16x2 − 8x + 1

and then for general n by (3.6). We may then extend to general k using (3.9). □

We next consider analogues of (3.5) for gn,k for k > 0. We start with a mod 2 congruence: from (3.5)
and (3.7),

(3.15) gn,k(x) ≡ x2n(x + 1)k + 2k (mod 2).

We can also establish congruences modulo a higher power of 2 provided that we ignore some leading coeffi-
cients.

Lemma 3.16. For n ≥ 0,

(3.17) gn,k(x) ≡ 0 (mod (x2n, 2k)).

Proof. The claim holds for n = 0 and k = 0 vacuously, and for k = 1 by (3.15). We may then deduce the
general case by (3.10). □
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Finally, from (3.5) and (3.7) we obtain some congruences modulo higher powers of 2 relative to k:

gn,1(x) ≡
2n−1
∑

i=0

(−1)⌊(i−1)/2⌋2xi (mod (x2n, 8))(3.18)

gn,2(x) ≡
n−1
∑

i=0

4x2i (mod (x2n, 8)).(3.19)

4. Counting roots

To count zeros of polynomials in the interval [a, b], we use an approach based on winding numbers.

Lemma 4.1. Let a0, . . . , ak be a sequence of real numbers with ak = 1, such that the polynomial Q(z) :=
∑k

i=0 aiz
i has all of its complex roots inside the closed disc |z| ≤

√
2 (e.g., by condition (4.4) below). Then

for each n ≥ 0, the roots of the polynomial

Pn(x) :=
k
∑

i=0

aign,i(x)

are all real and contained in [a, b]. If in fact Q(z) has all of its complex roots inside the open disc |z| <
√

2,
then the roots of Pn(x) are pairwise distinct.

Proof. By continuity (of the roots of a polynomial as a function of the coefficients), we may reduce to the
case where Q(z) has all of its complex roots in the open disc |z| <

√
2. For θ ∈ [−2π, 2π], we define a

parametric complex solution of the equation

x + x−1 − 4 = y + y−1

by setting y(θ) := e2πiθ and

x(θ) := cos θ + 2 +
√

cos2 θ + 4 cos θ + 3,

choosing the branch of the square root so that x(θ) varies continuously and

x(−2π) = b, x(0) = a, x(2π) = b.

Define the function

s(θ) :=











x(θ)y(θ)+1
x(θ)−1 (θ ̸= ±π)

−1 − i (θ = −π)

−1 + i (θ = π);

one may check using L’Hôpital’s rule that this function is continuous. By writing

(4.2) |s(θ)|2 =
(x(θ)y(θ) + 1)(x(θ)y(−θ) + 1)

(x(θ) − 1)2
=

x(θ)2 + x(θ)(x(θ) + x(θ)−1 − 4) + 1

x(θ)2 − 2x(θ) + 1
= 2,

we deduce that s carries [−2π, 2π] into the circle |z| =
√

2 (making one full counterclockwise circuit).
By (2.4),

(4.3) Pn(x(θ)) = 2x(θ)nReal

(

y(θ)n
k
∑

i=0

ais(θ)i

)

.

Since x(θ) is monotone, the zeros of Pn(x) in the interval [a, b] (counted without multiplicity) are in bijection
with zeros of Pn(x(θ)) in either of the intervals [−2π, 0] or [0, 2π]. We will estimate the number of zeros of
Pn(x(θ)) by computing the displacement of

arg

(

y(θ)n
k
∑

i=0

ais(θ)i

)

= n arg y(θ) + k arg s(θ) + arg

(

k
∑

i=0

ais(θ)i−k

)

over the interval [−2π, 2π] (choosing all of the arguments to vary continuously in θ).
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As θ varies from −2π to 2π, the displacement of n arg y(θ) + k arg s(θ) equals (4n + 2k)π. Meanwhile,

we may see that arg
(

∑k
i=0 ais(θ)i−k

)

has displacement 0 by combining (4.2), our condition on the roots of

Q(z), and the argument principle.

Since arg
(

y(θ)n
∑k

i=0 ais(θ)i
)

varies continuously from 0 to (4n + 2k)π as θ runs from −2π to 2π, by the

intermediate value theorem it evaluates to an odd multiple of π at no fewer than 4n + 2k distinct values in
this range. By (4.3), these values are zeros of Pn(x(θ)) in [a, b], each counted at most twice. Since Pn(x) is
a polynomial of degree 2n + k, we deduce that all of its zeros are pairwise distinct real numbers in [a, b]. □

Note that in Lemma 4.1, one way to enforce the condition on Q(z) is to assume

(4.4)

k−1
∑

i=0

|ai|2(i−k)/2 ≤ 1,

as then the triangle inequality implies that |z−kQ(z)| > 0 for |z| >
√

2 (compare [6, Lemma 2]). This
restricted setting will be enough to prove Theorem 1.1 for m even (Lemma 7.9), but we will need to exercise
more flexibility for m odd (Lemma 8.7).

5. Repeated zeros in a recurrent sequence

Note that for any fixed sequence {ai}, the sequence of polynomials Pn(x) considered in Lemma 4.1 satisfies
the same second-order recurrence as the ones satisfied by fn(x) (3.2) and gn,k(x) (3.6). Using this, we can
show that the polynomials Pn(x) have very few common zeros.

Lemma 5.1. Let {Pn(x)}n≥0 be a sequence of monic integer polynomials satisfying the recurrence relation

(5.2) Pn(x) − (x2 − 4x + 1)Pn−1(x) + x2Pn−2(x) = 0.

Suppose that α ∈ C× is a root of both Pn(x) and Pn′(x) for some n < n′. Then α is a unit in the ring of
algebraic integers.

Proof. In the ring R from (2.2), we can solve the recurrence (5.2) to obtain an analogue of (2.3): for some
P+, P− ∈ R (independent of n),

Pn = P+(xy)n + P−(xy−1)n.

Define a specialization homomorphism π : R → C taking x to α by picking a square root of α + α−1 − 4;
then solving the system of equations

π(P+)π(xy)n + π(P−)π(xy−1)n = π(P+)π(xy)n′

+ π(P−)π(xy−1)n′

= 0

yields

π(xy)n′−n = π(xy−1)n′−n

and so π(y)2(n′−n) = 1. By (2.3) this yields f2(n′−n)(α) = 2α2(n′−n); since deg f2(n′−n)(x) = 4(n′ − n) >

2(n′ − n) and f2(n′−n)(0) = 1 by (3.3), α is a root of the monic polynomial f2(n′−n)(x) − 2x2(n′−n) with
constant coefficient 1. □

This has the following implication for Theorem 1.1.

Lemma 5.3. Let m > 1 be an integer and fix a sequence a0, . . . , ak of integers satisfying the hypotheses
of Lemma 4.1. Suppose that for infinitely many n, the polynomial Pn(x) =

∑

i aign,i(x) over Q has an
irreducible factor Q(x) with P (0) = ±m. Then there exist infinitely many simple abelian varieties A over
F2 with #A(F2) = m.

Proof. By Lemma 4.1, the polynomial Pn(x) has all of its roots in [a, b], as then does Q(x). By Lemma 5.1,
the factors Q(x) are pairwise distinct. We may thus apply Lemma 2.1 to conclude. □

We also need a slightly modified version of Lemma 5.3.
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Lemma 5.4. Let m > 1 be an integer and fix a sequence a0, . . . , ak of integers satisfying the hypotheses

of Lemma 4.1, and additionally satisfying
∑k

i=0 ai2
i ∈ {±m}. Suppose that for infinitely many n, the

polynomial Pn(x) =
∑

i aign,i(x) over Q has a monic irreducible factor Q(x) whose codegree (i.e., deg Pn(x)−
deg Q(x)) is bounded by a function of m alone. Then there exist infinitely many simple abelian varieties A
over F2 with #A(F2) = m.

Proof. By hypothesis, we can write Pn(x) = Q(x)R(x) where deg R(x) is bounded by a function of m alone.
By Lemma 4.1, Pn(x) has all roots in [a, b], as then do Q(x) and R(x). Since R(x) has integer coefficients
and roots in a fixed interval, R(x) itself is contained in a finite set determined by m. By Lemma 5.1, there
are only finitely many values of n for which R(x) has constant term not in {±1}. For the remaining values,
Q(x) is a monic irreducible polynomial with Q(0) = ±m. We may thus apply Lemma 5.3 to conclude. □

6. Nonadjacent binary representations

In order to apply Lemma 4.1, we need to find ways to represent a given positive integer m as the evaluation
at z = 2 of a monic integer polynomial Q(z) having all complex roots in the disc |z| ≤

√
2. That is, we need

a binary representation of m which is “efficient” in a suitable sense.
One good candidate is the nonadjacent binary representation of m in the sense of Reitwiesner [14]:

(6.1) m =
∞
∑

i=0

ai2
i where ai ∈ {−1, 0, 1}, ak = 1, aiai+1 = 0 (i ≥ 0).

The sequence a0, . . . , ak can be generated efficiently from m using the rule

a0 =

{

±1 m ≡ ±1 (mod 4)

0 m ≡ 0 (mod 2).

Moreover, the largest index k with ak ̸= 0 (and hence ak = 1) is k(m) = ⌊log2(3m)⌋ − 1.
Define the polynomial

hn,m(x) :=

k
∑

i=0

(−1)i+kaign,i(x);

by Lemma 3.11, hn,m(x) is a monic polynomial of degree 2n + k. By (3.12),

(6.2) hn,m(0) = (−1)km.

Since we chose a0, . . . , ak without reference to n, we deduce from (3.6) that

(6.3) hn,k(x) − (x2 − 4x + 1)hn−1,k(x) + x2hn−2,k(x) = 0.

Lemma 6.4. The roots of the polynomial hn,m(x) are all real, pairwise distinct, and contained in the interval

[a, b] = [3 − 2
√

2, 3 + 2
√

2].

Proof. From the definition of nonadjacent binary representations, we see that

(6.5)

k−1
∑

i=0

|ai|2(i−k)/2 ≤ 1 + 2−1 + · · · + 2−⌊k/2⌋ ≤ 1 − 2−k/2 < 1.

We may thus apply Lemma 4.1. □

In passing, we can already derive some cases of Theorem 1.1, including the case m = 2 considered in [7].
While this case is logically necessary for the rest of the proof, it does illustrate the key ideas with limited
technical complications compared to the general case.

Lemma 6.6. Theorem 1.1 holds when m is prime.

Proof. This is immediate from Lemma 5.3 and Lemma 6.4: if m is prime, then hn,m(x) admits a unique
irreducible factor with constant coefficient ±m. □
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7. 2-adic congruences: even order case

In this section, we prove Theorem 1.1 for m even, using factorizations over the 2-adic field Q2. Let v2(m)
denote the 2-adic valuation of m. By convention, our Newton polygons are convex with left endpoint (0, 0).

As a warmup, we treat the case where v2(m) = 1.

Lemma 7.1. Theorem 1.1 holds when m ≡ 2 (mod 4).

Proof. From (3.15),

(7.2) hn,m(x) ≡ x2n

k(m)
∑

i=0

ai(x + 1)i + m (mod 2).

By (6.2) and (7.2), the 2-adic Newton polygon of hn,m(x) has vertices

(0, 0), (k(m) − d, 0), (2n + k(m), 1)

for some d ∈ {0, . . . , k(m)}. The last segment corresponds to an irreducible factor of hn,m(x) over Q2; hence
over Q, hn,m(x) has an irreducible factor of codegree bounded by a function of m. We may thus combine
Lemma 5.4 and Lemma 6.4 to conclude. □

We next generalize the Newton polygon calculation from the previous argument.

Lemma 7.3. For m even and n ≫ 0, the 2-adic Newton polygon of hn,m(x) has vertices

(0, 0), (k(m) − d, 0), (2n + k(m), v2(m))

where d is the order of vanishing of
∑k

i=0 ai(x + 1)k at x = 0 over F2.

Proof. From (3.17), we have

(7.4) hn,m(x) ≡ 0 (mod (x2n, 2v2(m))).

By combining (7.2) with (7.4), we deduce the claim. □

This gives us a direct adaptation of Lemma 7.1 when v2(m) is odd.

Lemma 7.5. Theorem 1.1 holds when v2(m) is odd.

Proof. Define d as in Lemma 7.3. Since v2(m) is odd, by restricting n to a suitable arithmetic progression
we can ensure that gcd(v2(m), 2n + d) = 1; then the final segment of the 2-adic Newton polygon of hn,m(x)
corresponds to an irreducible factor of hn,m(x) over Q2. For such n, hn,m(x) has an irreducible factor over Q
of codegree bounded by a function of m; we may thus combine Lemma 5.4 and Lemma 6.4 to conclude. □

To handle the case where v2(m) is even, it is convenient to separate off the case v2(m) = 2, which we can
handle in a similar manner.

Lemma 7.6. Theorem 1.1 holds when v2(m) = 2.

Proof. Define d as in Lemma 7.3. The final segment of the 2-adic Newton polygon of hn,m(x) corresponds to
either an irreducible factor of hn,m(x) over Q2 or a pair of irreducible factors, each of degree 1/(n + d/2). In

the latter case (which only occurs if d is even), the coefficient of xn+d/2 must be congruent to 0 or 4 modulo
8 according to whether (−1)km is congruent to −4 or 4 modulo 16; since (3.17) and (3.19) together imply

(7.7) hn,m(x) ≡ 4(x2n + · · · + x2 + 1) (mod (x2n, 8)),

this case can be ruled out by fixing the parity of n appropriately. For such n, hn,m(x) has an irreducible
factor over Q of codegree bounded by a function of m. We may thus combine Lemma 5.4 and Lemma 6.4 to
conclude. □

To handle higher values of v2(m), we modify the polynomial hn,m(x) so that we can better emulate the
case v2(m) = 1.

Lemma 7.8. Theorem 1.1 holds when v2(m) ≥ 4.
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Proof. Since a0 = a1 = a2 = a3 = 0, the sequence

(a′
0, . . . , a′

k) = (2, 1, 0, 0, a4, . . . , ak)

satisfies
k
∑

i=0

|a′
i|2(i−k)/2 ≤ 2 · 2−k/2 + 2(1−k)/2 + 1 − 2(4−k)/2 < 1;

hence the polynomial

h′
n,m(x) = hn,m(x) + (−1)k(2gn,0(x) + gn,1(x))

satisfies the hypothesis of Lemma 4.1. We may again compute its 2-adic Newton polygon using (3.15), (3.18),
(7.2), and (7.4): its vertices are

(0, 0), (k − d, 0), (2n + k(m) − 1, 1), (2n + k(m), v2(m))

where d is the order of vanishing of x + 1 +
∑k

i=0 ai(x + 1)k at x = 0 over F2. Over Q2, the middle segment
corresponds to a single irreducible factor of hn,m(x); we may thus argue as in the proof of Lemma 7.5 to
conclude. □

To summarize, by combining Lemma 7.5, Lemma 7.6, and Lemma 7.8, we deduce the following.

Lemma 7.9. Theorem 1.1 holds when m is even.

8. 2-adic congruences: odd order case

In this section, we prove Theorem 1.1 for m odd. For this, we cannot use the 2-adic Newton polygon of
hn,m(x) because it has all slopes equal to 0; instead, we use the 2-adic Newton polygon of hn,m(x + 1). To
begin with, note that for m odd, by (3.14) we have

(8.1) hn,m(1) ≡ 2 (mod 4);

more precisely, we are using here the fact that a0 is odd, a1 is even, and gn,k(1) ≡ 0 (mod 4) for k ≥ 2.
To illustrate the method, we first prove some isolated cases of Theorem 1.1.

Lemma 8.2. Theorem 1.1 holds for any odd m such that k(m) is even and

k(m)
∑

i=0

aix
i ≡ (x + 1)k(m) (mod 2).

For example, this holds for m = 15, 45, 51, 75, 77, 85.

Proof. For n = 2j − k(m)/2, we have from (7.2) that

hn,m(x) ≡ (x + 1)2j+1

(mod 2).

By Lemma 3.13 and (8.1), the Newton polygon of hn,m(x + 1) has vertices

(0, 0), (2j+1, 1);

that is, hn,m(x + 1) satisfies the Schönemann–Eisenstein irreducibility criterion at 2. We may thus combine
Lemma 2.1 and Lemma 6.4 to conclude. □

To cover the remaining values of m, we use a variant construction that preserves the key features of this
method. We say that a monic integer polynomial Q(z) is a compliant representation of the odd positive
integer m if Q(2) = m, Q(z) ≡ (z − 1)deg Q(z) (mod 2), and Q(z) has all complex roots in the disc |z| <

√
2.

Lemma 8.3. Theorem 1.1 holds for m admitting a compliant representation.

Proof. Let Q(z) be a compliant representation of m; by multiplying by z − 1 as needed, we may ensure that

k := deg Q(z) is even. Write Q(z) =
∑k

i=0 ciz
i. For each n, the polynomial Pn(x) =

∑

i(−1)i+kcign,i(x)
satisfies Pn(0) = (−1)km. By Lemma 4.1, Pn(x) has all roots in [a, b]. By (3.14) (as in the proof of (8.1)),
Pn(1) ≡ 2 (mod 4). For n = 2j − k/2, we see from the proof of Lemma 8.2 that Pn(x) is Eisenstein at 2 and
hence irreducible. We may thus directly apply Lemma 2.1 to conclude. □
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In order to produce compliant representations, it will be convenient to further quantify the condition on
the roots. To this end, for Q(z) a compliant representation of some integer m, define the quality of Q(z) as

(8.4) qual(Q(z)) := min{|Q(z)| : |z| =
√

2} = min{|Q(z)| : |z| ≥
√

2}.

Keep in mind that the last equality in (8.4) is a consequence of the maximum modulus principle, and is only
valid under the assumption that Q(z) is compliant.

Lemma 8.5. Let m be a positive odd integer.

(a) If m ≤ 3094, then m admits a compliant representation.
(b) If 3094 ≤ m ≤ 50000, then m admits a compliant representation of quality at least 7.

Proof. We describe a computer-assisted proof; the associated computations run in SageMath (version 9.6)
in under 5 minutes on a standard laptop (we used one core on an Intel iCore i5-6200U @2.30GHz). As the
SageMath code is quite short, we have included it in its entirety in the appendix.

We first observe that SageMath provides an exact representation of the subfield Q of C based on interval
arithmetic. Using this, given a monic integer polynomial Q(z), we may compute the roots of Q(z) in Q and
then test rigorously whether they all lie in the disc |z| <

√
2. If so, we may then rigorously compute

qual(Q(z)) ∈ Q as follows. Since Q(z)Q(z) is a symmetric integer polynomial in z and z, we may rewrite
it as an integer polynomial in z + z and zz; specializing these to t and 2, respectively, yields an integer
polynomial R(t) such that

(8.6) qual(Q(z))2 = min{R(t) : t ∈ [−2
√

2, 2
√

2]}.

The minimum is achieved either at ±2
√

2 or at some zero of R′(t) in [−2
√

2, 2
√

2].
We now describe the main computation. We first run an exhaust over monic polynomials of degree at

most 7 with all coefficients in {−3, . . . , 3}, checking whether each polynomial is compliant. (While it would
be feasible to perform an exhaustive search for compliant polynomials of degree up to 7 by adapting the
search strategy for Weil polynomials described in [8], we did not need to implement this here.) In this way
we find compliant representations of 167 distinct integers in the range {1, . . . , 459}; for each of these we
record the maximum observed quality, rounded down to the nearest multiple of 1/7.

We then compute, for each odd integer m ∈ {1, . . . , 50000}, a lower bound on the maximum quality of
a compliant representation of m using the following logic. Given odd integers m1 < m, let m2 be one of
the nearest odd integers to m/m1 and set c = m − m1m2. Let Q1(z), Q2(z) be compliant representations of
m1, m2 of respective qualities q1, q2. If q1q2 > |c|, then R(z) = Q1(z)Q2(z) + c is a compliant representation
of m of quality at least q1q2 − |c|.

From the results of this computation, we read off (a) and (b). □

Lemma 8.7. Every positive odd integer admits a compliant representation. Hence by Lemma 8.5 (or the
theorem of Madan–Pal in the case m = 1), Theorem 1.1 holds for m odd.

Proof. By Lemma 8.5(a), it will suffices to check that every odd integer m ≥ 3095 admits a compliant
representation of quality at least 7. We check by induction on m that each of {m, m + 2, . . . , 15m − 16}
admits such a representation, this being true for m = 3095 by Lemma 8.5(b) because 15 · 3095 − 16 < 50000.

Given the claim for some m, let Q(z) be a compliant representation of m of quality at least 7. For c even
with |c| ≤ 14,

R(z) = (z4 − 1)Q(z) + c

is a compliant representation of 15m + c of quality at least

qual(z4 − 1) qual(Q(z)) − |c| ≥ 3 · 7 − 14 ≥ 7.

It follows that each of {m + 2, m + 4, . . . , 15m + 14 = 15(m + 2) − 16} admits a compliant representation of
quality at least 7; that is, the induction hypothesis holds with m replaced by m + 2, as desired. □
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Appendix A. SageMath code for Lemma 8.5

This code uses the following features of Python and SageMath:

• all returns True iff all of its inputs evaluate to True in a boolean context.
• Python indexing starts from 0 rather than 1, so range(n) returns 0, . . . , n − 1 and range(1,n)

returns 1, . . . , n − 1.
• AA and QQbar are predefined in SageMath as the fields of algebraic real and complex numbers,

respectively. Computations in these fields is rigorous, not subject to roundoff errors.
• For f a polynomial over a field, f.roots(K) computes its roots in the field K (defaulting to the

base field of f if K is omitted). The output consists of pairs (α, m) where α is a root and m is the
multiplicity of the root.

import itertools

R.<z> = QQ[] # Univariate polynomial ring

# Check that the polynomial f has all complex roots

# in the disc |z| < sqrt(2).

def all_roots_in_disc(f):

return all(abs(i)^2 < 2 for (i,_) in f.roots(QQbar))

# Compute the quality of f (see (8.4)), multiplied by 7

# and rounded down to the nearest integer.

def quality_lower_bound(f):

P.<x,y,t> = QQ[]

I = P.ideal(x+y-t, x*y-2)

# Compute a representative of f(x)*f(y) modulo I.

# This corresponds to the polynomial R(t) appearing

# in the proof of Lemma 8.5.

g1 = I.reduce(f(x) * f(y))

# The polynomial g1 is currently a univariate polynomial in t,

# but in the ring P.

# We next create g by substituting t -> z to land in the ring R.

g = R(g1(0, 0, z))

# Make the list of roots of this polynomial,

# together with +/- 2*sqrt(2).

rootlist = (g.derivative()*(z^2 - 8)).roots(AA)

# Implement (8.7).

ans = min((g(i) * 49).floor() for (i,_) in rootlist if i^2 <= 8)

return floor(sqrt(ans))

# Create a table of compliant representations of small integers.

compliant_reps = {}

rep_quality = {}

for n in range(1, 8): # step through n = 1, ..., 7

# Iterate over n-tuples in which the i-th term

# (starting wih i=0) runs over -3,-1,1,3 if (n choose i) is odd

# and -2,0,2 otherwise.

for t in itertools.product(*((range(-3,4,2) if binomial(n,i)%2

else range(-2,3,2)) for i in range(n))):

# Convert t to a polynomial, after appending 1

# for the leading coefficient.

u = R(list(t) + [1])

if all_roots_in_disc(u):

m = u(2)

11



q = quality_lower_bound(u)

if m not in rep_quality or rep_quality[m] < q:

compliant_reps[m] = u

rep_quality[m] = q

# Compute lower bounds of qualities of compliant representations of

# larger integers. To save time, rather than optimizing fully,

# we quit as soon as we find a representation of quality at least 8.

n = 50000

for m in range(1, n, 2): # step by 2

for m1 in range(3, ceil(sqrt(m)), 2): # step by 2

if m1 in rep_quality:

# Let m2 be one of the nearest odd integers to m/m1.

tmp = (QQ(m)/m1+1) / 2

for m2 in [tmp.floor()*2-1, tmp.ceil()*2-1]:

if m2 < m and m2 in rep_quality:

c = m - m1*m2

q = (rep_quality[m1]*rep_quality[m2])//7 - abs(c)

if m not in rep_quality or rep_quality[m] < q:

compliant_reps[m] = compliant_reps[m1] * \

compliant_reps[m2] + c

if q < 56:

q = quality_lower_bound(compliant_reps[m])

rep_quality[m] = q

if m in rep_quality and rep_quality[m] >= 56:

break

# Running these commands without errors confirms

# the conclusions of Lemma 8.5.

assert all(i in rep_quality for i in range(1, n, 2))

assert all(rep_quality[i] >= 49 for i in range(3095, n, 2))
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