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Leadership Inference for Multi-Agent Interactions

Hamzah I. Khan

Abstract—Effectively predicting intent and behavior requires
inferring leadership in multi-agent interactions. Dynamic games
provide an expressive theoretical framework for modeling these in-
teractions. Employing this framework, we propose a novel method
to infer the leader in a two-agent game by observing the agents’
behavior in complex, long-horizon interactions. We make two con-
tributions. First, we introduce an iterative algorithm that solves
dynamic two-agent Stackelberg games with nonlinear dynamics and
nonquadratic costs, and demonstrate that it consistently converges
in repeated trials. Second, we propose the Stackelberg Leadership
Filter (SLF), an online method for identifying the leading agent
in interactive scenarios based on observations of the game inter-
actions. We validate the leadership filter’s efficacy on simulated
driving scenarios to demonstrate that the SLF can draw conclusions
about leadership that match right-of-way expectations.

Index Terms—Leadership inference, stackelberg games,
optimization and optimal control, probabilistic inference.

1. INTRODUCTION

URING daily commutes, drivers assert themselves in run-
D ning negotiations with other road users in order to reach
their destinations quickly and safely. Right-of-way expectations
inform these assertions between road users. Consider the passing
lane shown in Fig. 1. Agent A (blue) initially follows behind
agent A; (red), and we may intuitively perceive A; as the leader.
If instead A5 overtakes A, the scenario seems to imply a rever-
sal of leadership, with A5 in front and .4; behind, as in the inset
of Fig. 1. However, this intuition is vague and premature. If A
tailgates A, or otherwise behaves aggressively, .A; might speed
up or yield to As out of caution. However, aggressive behavior
does not necessarily indicate leadership, as .A; could also react
to Aj tailgating by slowing down and relying on the knowledge
that A, will not risk a collision. Here, any simple intuition of
the leadership dynamics falls short. Depending on each driver’s
safety and comfort tolerances, either .4; or .42 may be the leader.
Hence, deciphering leadership dynamics requires understand-
ing common expectations, agent incentives, and other agents’
actions. Successfully doing so can improve autonomous intent
and behavior prediction for motion planning, as shown by [1].
We turn to optimal decision making and game theory for tools
to analyze interactive scenarios. Stackelberg games [2], also
known as leader-follower games, stand out because they model
interactions with clear leadership hierarchies. In a Stackelberg
game, a leader selects its strategy to influence the follower’s
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Fig. 1. Agents A; (red) and Ay (blue) initially proceed along the same lane
of a two-way road at similar speeds. While A5 is behind A, the SLF infers that
Ay is the leader. During A2 ’s passing maneuver, the SLF captures the leadership
probability shifting to A>. The dashed line in the inset indicates the probabilities
at the current time. We display the current expected measurements generated by
the measurement model A. The blue coloring indicates that most particles in the
SLF believe As is the leader.

response. Each strategy in a Stackelberg solution satisfies lead-
ership conditions that describe how the leader’s behavior induces
the follower to act. Additionally, solving Stackelberg games
results in trajectories that we can use for model-predictive con-
trol. Using these attractive properties, we propose a leadership
inference technique for multi-agent scenarios like that of Fig. 1.

To this end, we first contribute Stackelberg Iterative Linear-
Quadratic Games (SILQGames), an algorithm for solving dy-
namic Stackelberg games, and we empirically show that it
converges for games with nonlinear dynamics and general costs.
Second, we propose the Stackelberg Leadership Filter (SLF) to
infer leadership over time in interactions based on observations
of the agents. We validate that it infers the correct Stackelberg
leader in two-agent games and report results on simulations of
driving scenarios.

II. RELATED WORK

Leadership Inference: Many prior works develop leadership
inference techniques, particularly for robotic swarms and animal
sociology. As an abstract concept, leadership is challenging
to measure [3], [4]. Leadership models prespecify particular
agent(s) as leaders that influence group motion. Swarm appli-
cations [5], [6] often assume the Reynolds flocking model [7].
Animal sociology applications define leadership models based
on principal component analysis [8] or stochastic inference [9]
with hand-selected domain-specific features. By contrast, we
explicitly frame these interactions in terms of optimal decision
making and game theory and therefore utilize the Stackelberg
leadership model. Defining a Stackelberg game requires pre-
specifying a leader and solving one produces equilibrium trajec-
tories for each agent. Hence, by associating a particular leader
with solution trajectories in a principled manner, Stackelberg
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leadership allows for modeling leadership over long-horizon
interactions without hand-crafted heuristics.

Stackelberg Games for Motion Planning: Recent ad-
vances [10], [11] investigate Stackelberg models of leadership
for interactive scenarios involving self-driving vehicles. In par-
ticular, [1] incorporate leadership as a latent variable by solving
open-loop Stackelberg games and comparing expected leader
and follower behaviors with observed agent behaviors. Our
method generalizes this underlying approach to Stackelberg
leadership by modeling a joint distribution over game state and
leadership. We solve feedback Stackelberg games for richer
access to leadership information.

Solving Dynamic Games: ldentifying computationally effi-
cient game-solving techniques with theoretical guarantees of
finding equilibria remains an open area of research. Most exist-
ing game-solving algorithms consider Nash games, which find
equilibria for which each actor is unilaterally optimal given fixed
opponent strategies. These algorithms [12], [13], [14], [15], [16],
[17] generally use Newton-based schemes based on iterative and
dynamic programming algorithms that have been widespread for
decades [18], [19]. We note two axes on which such approaches
differ: first, these approaches solve either open-loop games [12],
[13], [14], [15] or feedback games [12], [16], [17]. Second,
these algorithms either reduce the game to a simpler prob-
lem [15] or directly solve the game [12], [13], [14], [16], [17].
In particular, [16] introduce Iterative Linear-Quadratic Games
(ILQGames), an iterative method that approximates solutions to
nonlinear dynamic, nonquadratic cost feedback Nash games by
repeatedly solving linear-quadratic (LQ) approximations until
convergence. Convergence analysis of these methods is subtle,
as described in depth by [20]. Our work is closely related to [17],
which uses ILQ schemes to solve for feedback Stackelberg
equilibria. Both our work and [17] utilize similar approaches
as [16] to solve for feedback Stackelberg equilibria, a different
solution concept than (1) single-agent optima found by Iterative
Linear Quadratic Regulation (ILQR) or DDP and (2) feedback
Nash equilibria found by [16].

III. PROBLEM FORMULATION

Let N =2 agents, A; and A, (e.g., vehicles), operate in
a shared n-dimensional state space with state x; at each time
teT={1,2,...,T} and sampling period At. Agent A, has
(4)

controls u; ’ € R™"” The state evolves according to

Ti41 = ft (xt7u£1)7u1(52)) .

ey
We denote sequence of states xy.7 = (1, 22,. .
u(f)T = (ugz), ugz),.. .. ,uéf)) as the sequence of A;’s controls.
We assume that f; is continuous and continuously differentiable

in ¢, ugl), uf). A;’s objective,

.,x7) and

T
J(Z) (mlzTa ugl’%‘a u?%‘) = Z gg” (xta ui(il)v U§2)> 9 (2)
t=1

describes its preferences in a given scenario. We model the
objective (2) as the sum of stage costs g,@, assumed to be
twice differentiable in z, ugl), u§2). Each agent .A; minimizes
its objective with respect to its controls ugl)T
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A. Background: Feedback Stackelberg Games

Stackelberg games model leadership as a mismatch of infor-
mation. Intuitively, the leader A;, commits to a strategy and
communicates it to the follower Ap. Given this relationship,
the leader carefully selects its strategy in order to influence the
follower.

Formally, a Stackelberg equilibrium {u!%", u!) (u!%))}
is a tuple of optimal control trajectories for both agents. The
function ugF; ) (ugLT)) highlights that Az’s optimal strategy de-
pends on the leader’s (possibly non-optimal) chosen strategy.
Using an abuse of notation, we omit the state argument of

Ay’s objective J@, and define y(u!") = [u{’)_,, u{", uf&ﬁ:T],

containing arbitrary controls from time 1 to ¢ — 1, control ugi)

passed as a parameter, and an equilibrium strategy ugij%:T from

time ¢t + 1 to 7. We note that the game dynamics ensure that
uiﬁzT is implicitly a function of the state. We define the set of
all optimal follower responses at time ¢, Ut(F*) (ugL)) c R™",
as

ur) (UEL)) = argmin, (r) J (’Y (“EL)) Y (uﬁF))) - O

We assume |U" (u{*))| = 1, 1.c., that an optimal leader strat-
egy results in a unique optimal follower response at each time
t. Under this assumption, the set of control trajectories for all
agents forms a feedback Stackelberg equilibrium if, at every time
t € T, the optimal trajectories satisfy

9 (3 (7). (47)
—mi (L) (L) (F)
- IJEILH ugmeﬁlﬁ?(uim) 4 (7 (ut ) Y (ut )) - @

Since the follower knows the leader’s controls at time ¢, (3)
ensures that the follower produces a best response at time .
Next, (4) ensures that the leader’s strategy guides the follower
towards its least bad option for the leader at time ¢.

Stackelberg games are generally non-cooperative, meaning
that agents do not coordinate but plan based on observations of
the game state. Agents in open-loop games observe only the
initial game state, whereas in feedback games, agents adjust
their control inputs after observing the state at each time step,
producing complex, temporally-nested game constraints (3) and
(4). LQ Stackelberg games have analytic solutions given strictly
convex costs [21, 7.14-15].

We denote St (z;) as the T-horizon Stackelberg game solved
from state x; with leader A;. For a more detailed treatment of
Stackelberg equilibria and solving LQ Stackelberg games, refer
to Basar and Olsder [21, Ch. 3, 7].

B. Stackelberg Leadership Filtering

We seek to describe a filter that identifies a leadership belief
for A, based on observations. To this end, we define H; € {1, 2}
to be a binary random variable (RV) indicating the leader at time
t. Next, we state our assumptions about the game’s observability.
We assume state x; is observable via noisy measurement z; ~
N (h(z¢; Hy),Xt) with known covariance matrix ¥; > 0 and
measurement model h. We also assume that control inputs uy)
for each agent .4; are directly observable. Next, recall that each
agent has an objective that describes its preferences. For this

work, we assume all agent objectives {.J(Y)} are known a priori.
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Fig. 2.

Each particle in the Stackelberg leadership filter has context c,’f = [fif, Hf]T

where continuous RV z; € IR™ describes the state and discrete RV

H; € {1, 2} indicates the leader. 1. At ¢ — 1, we have a prior distribution over the filter context. For H;_1, the prior is Bernoulli distributed. 2. The continuous
state transitions according to game dynamics f;_1. Leadership state evolves stochastically based on a two-state Markov chain. 3. We play a Stackelberg game
from each particle’s previous state and extract the game state at the current time ¢ as the expected measurement. 4. The algorithm uses a standard particle filter
measurement update [25, Ch. 4]. Resampling eliminates unlikely particles and reweights the particle set towards those that are similar to the measurement. Finally,

we marginalize over the continuous state and produce a probability of leadership.

In general settings, we note that techniques exist [22], [23], [24]
to infer agent objectives from noisy observations, though further
work may be required to confirm the computational tractability
of simultaneously inferring leadership and objectives. We define
the leadership belief for H; as b(H;) =p{H¢|z1.+}-

IV. INFERRING LEADERSHIP

We propose Stackelberg Iterative Linear-Quadratic Games
(SILQGames), which iteratively solves nonlinear dynamic, gen-
eral cost (non-LQ) Stackelberg games with continuous and
differentiable dynamics and costs. We use SILQGames in the
Stackelberg Leadership Filter (SLF, Fig. 2) as part of the Stack-
elberg leadership model. Our method infers the leading agent of
a two-agent interaction from observations.

A. [Iteratively Solving Stackelberg Games

At a high level, SILQGames (Algorithm 1) iteratively solves
LQ approximations of Stackelberg games (lines 4 to 8), updates
the control trajectories using the solutions to these approximated
games (line 9), and terminates if the updated trajectory satis-
fies a convergence condition (lines 10 to 12). Upon successful
convergence, the resulting trajectory constitutes an approximate
Stackelberg equilibrium. This type of approach also yields
approximate equilibrium solutions in the Nash case, although
establishing precise error bounds remains an open problem [20].
We expect a similar result for SILQGames, though it is beyond
the scope of this work.

Inputs: SILQGames accepts an initial state x; and a leader
Ap. It accepts a set of all agents’ nominal control trajectories

{u; (Z *=%1. We produce a nominal state trajectory x?., by
applylng the nominal controls from x; (line 1).

LQ Game Approximation: At each iteration s, we first lin-
earize the dynamics (lines 4 and 5) and take second-order
Taylor series approximations of the costs (lines 4 and 5)

about the previous iteration’s state and control trajectories,
(1),5— L (2),5-1,
T Uy ITAN

Algorithm 1:
Games.

Stackelberg Iterative Linear-Quadratic

Input: leader Ay, initial state =1, nominal strategies {ugZ)TO}

Output: converged strategies {ug”;-l}

1: 2%, « applyGameDynamics(z1, {u!;"})
2. g oy
3. foriteration s = 1,2, ..., My do
4 Frr={A,BYD}_1p (5a,5d)
5: « linearizeDynamics (x;}, {u{"'})
6:  Gur={QYW, ¢, R 177}, _1.p (5b,5c, Se, 5f)
7: « quadraticizeCosts (@37}, {u{"'})
8: 5 )T ,pg )T +solveLQStackelberg({ F'1.7, G1.17})
9: st {ul? } + stepToward(P\%* plh o) (7)
10:  if ||z — @5} < 7 then
11: return T,{u(Z S
12: end if
13: Qst1 ¢ max(umin, Sa)
14: end for

Ay =V ft, (5a)
Q" =v2.a", (5b)
Ry = Viu>uu>9t(i)7 (5¢)
B =V, fi. (5d)
g\’ = V9", (5e)

i = Vgt (5f)

We define the state and control variables for our LQ game
approximation as deviations from the previous state and

1 (i),s _
control xi.r and duy; =

1 1 . S — S
trajectories: dxy.p = xi.p —
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(i),s (1),s—1

uy.7 —uy. . We then approximate the game as an LQ
problem with linear dynamics and quadratic costs
dufyy ~ Adry + Y B su, (6a)
1€{1,2}
i D) [ e 1,51 (2),s—1 1,

N
DT e s 1 ),s ij ),s
sl a4 3 (G100 4 ) o

j=1
where || - || is an induced matrix norm. We exclude mixed
partials V), V(1,0 due to their rarity in cost structures of

relevant applications, but they can be included if needed.

In practice, le) and R;’ may not be positive definite. Recall
that LQ Stackelberg games have unique global solutions given
strictly convex costs. Thus, we enforce positive definiteness,
and thus convexity, in the quadratic cost estimates by adding

a scaled identity matrix vI to all QEZ) and R} terms. This
addition increases each eigenvalue by v € R [26, Ch. 3], so
a sufficiently large choice of v guarantees convexity. Finally, we
solve the LQ game analytically (line 8) [21, Eq. 7.14-15].
Strategy Update: After approximating the game as LQ and
solving it, we update the control strategy (line 9). The analytic
solution to the LQ game consists of gain and feedforward

(1),s

terms Pg)jls, P, constituting an affine feedback control law

that produces strategy 5&,57:)’8 = —Pt(i)’s&tf — pgi)’s. Following
standard procedures in ILQR [18], we define update rule

ugi),s _ ugi)’kl - Pt(i),s(sxf . aspgi),s’ 7

where s € (0, 1] is an iteration-varying step size parameter. As

a, approaches 0, the new iterate u?)*

iterate uﬁ” #

* approaches the previous

- Likewise, as a approaches 1, we adjust our
previous iterate by the full step 5ﬁ£l)’s. In single-agent settings,
methods like ILQR commonly apply a line search for step size
selection. However, this approach requires a detailed description
of complex, temporally-nested feedback game constraints (3)
and (4). Instead, SILQGames decays the step size (line 13)
with configurable decay factor 8 € (0,1) and minimum step
Size aupin. Initial step size a; = 1 unless otherwise specified
(line 2).

Convergence Criterion: Optimization algorithms commonly
use first-order optimality conditions [26, Ch. 12] to test for
convergence, and incorporating a line search guarantees mono-
tone improvement in such a convergence metric. As with a line
search, however, using first-order optimality conditions becomes
unwieldy due to the feedback game constraints (3) and (4). In
practice, we define a convergence criterion as a function of the
current and next iterate’s states:

Conv (a:f:T, :cf’Tl) = ||a:‘19:T — ;cf’TlHoo . 8)
We compute x] . based on the proposed controls resulting from
update step (7). We say SILQGames converges if the metric
value falls below a threshold 7. SILQGames stops after a max-
imum number of iterations M, irrespective of convergence.
We expect SILQGames to converge, though we do not expect
monotone decrease in the convergence criterion as a large step
size may occasionally overshoot the Stackelberg equilibrium.
Oscillations in the convergence metric can occur when step sizes
are consistently too large and may indicate that a,,,;;, or 3 should

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 5, MAY 2024

be reduced. Please refer to our results in Section V-A for further
details.

Computational Complexity: The complexity analysis of [16]
holds almost identically for SILQGames. For a size-n state,
linearizing the dynamics and computing quadratic cost approx-
imations both require taking O(n?) partial derivatives. Solving
the coupled Ricatti equations for the approximate LQ game has
complexity O(n?) for a constant (N = 2) number of agents,
so the per-iteration runtime of SILQGames is cubic in n. The
entire algorithm runs in O(sn3), where s < Mj, is the number
of iterations to convergence.

B. Leadership Filtering

The Stackelberg Leadership Filter (SLF) estimates the like-
lihood that each agent is the leader of a two-agent interaction
given noisy measurements z1.7. Let filter context ¢; = [y, Hy|T
consist of continuous game state x; and leader H,. Following
conventional Bayesian filtering practices and denoting all agent
controls wy = {u§13 u§2)} for brevity, the SLF refines prior con-
text belief b(c;—1) with update rule

pledei—1, w1} b(e—1)dei-1,  (9)
Ct—1
In (9), the context transition probability term
pletlei—1,wi—1} = p{ay, He|xe—1, Hi—1, w1} describes
the likelihood of context c; given the previous context c; 1
and each agent’s controls. Furthermore, the measurement
likelihood p{z;|z;} quantifies an expected measurement based
on how well the new state x; matches the observation z;. Thus,
we compute the leadership belief at time ¢ by marginalizing
b(ct) = b(ay, Hy) over xy:

b(Ht):/ b(.’IJt,Ht)dl‘t.

To simplify the context transition probability, we assume
conditional independence of x;, and H; given c¢;,—; and w;_;.
While these values often evolve together, we can make this
assumption if the state responds slowly to changes in leadership.
In particular, if we select a sufficiently small sampling period
At, then changes in state z; when H; # H;_; require multiple
time steps to observe. After this simplification,

pledei1, w1} =p{wilei—1, wi1} p{He|er-1,weq . (11)

The term p{x¢|c:—1,w;—1} indicates that x; depends on the
previous leader and the previous state and controls through the
dynamics f;_1. The second term p{H¢|c;_1,w;_1} describes
how H; depends on the previous state and controls. In the passing
scenario, for example, analyzing this term might allow us to test
for arelationship between H; and whichever vehicle was in front
at time ¢t — 1.

Constructing the SLF as a Bayesian filter first requires a
leadership transition process. However, establishing a form for
the p{ H¢|ct—1, w1} term is difficult [3], [4], so we leave it to
user discretion if such knowledge is available. In the case that
a form does not exist, we treat the leadership transition process
as a two-state Markov Chain with transition likelihood p{ H, #
H, 1|H¢_1} = Puans- In this chain, H; evolves independently of
state ;1 and agent controls w;_1. One example in which this
treatment appropriately models leadership is when leadership
is correlated with distraction and can thus be modeled as only
dependent on time. Despite this simplification in construction,

b(er) o< plze|we}

(10)
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(b) Stackelberg solution positions.

We run 100 SILQGames simulations on the non-LQ shepherd and sheep game with leader A5. The simulations converge in 1133 + 367 iterations.

(a) shows the number of unconverged simulations and (b) shows the solution for one instance.

our experiments show the SLF still accounts for the statistical
dependence between leadership, state, and controls.

Selecting a Filter: Due to the computational intractability of
exactly evaluating Bayesian update rule (9), we use a particle
filtering approach. Particle k has context c¥ = [#F, HF]T. Par-
ticle filters use a measurement model to compute the expected
observation for a state x; [25, Ch. 4]. Our measurement model
h(z¥; HF) solves a Stackelberg game to generate simulated
solution trajectories conditioned on the particle’s leader. In
the measurement update, we compare a subset of the solution
to the ground truth observations and update the likelihood of
leadership using (9) and (10). We resample with replacement
to eliminate unlikely particles when the effective number of
particles, a metric that measures how well the particles repre-
sent the distribution, becomes low. We infer the leading agent
based on the similarity of expected measurements, generated
from Stackelberg games, to observations of the ground truth.
Since Stackelberg equilibria satisfy leadership condition (4),
converged solutions let the filter observe leadership indirectly
via the measurement model.

The Stackelberg Measurement Model: We construct a mea-
surement model that relates the leader Hf | in particle k at time
t—1 with the expected state measurement at time ¢; in particular,
we model the expected measurement from each particle as an

k

equilibrium strategy of game Sﬁ “1(zF |). We solve this game
with SILQGames over horizon T}, taking the initial state and
leader from previous particle context cF ;. For the third input,
we require the user to provide an application-specific function
to specify nominal strategies ugl_)lst 4,1 UsIng previous par-
ticles, a heuristic, etc. The SLF calls this function within the
measurement model to produce nominal strategies as input to
SILQGames. We describe one such heuristic in the appendix.
We call the solutions to these games Stackelberg measurement
trajectories and select the state at time ¢ as the expected measure-
ment. Next, we clarify a few practical details. First, experiments
determine that we must configure 7T carefully, neither too short
to provide relevant leadership information nor too long as to
cause excessive latency. Second, playing a Stackelberg game
from previous state x;_; requires each particle to maintain x;_1
as additional context. Third, after producing a measurement
trajectory, we attach measurement uncertainty >; to each state
in it. Depending on the application, this step may incorporate
uncertainty from sensors, processing, etc.

V. EXPERIMENTS & RESULTS

We first introduce the two-agent LQ shepherd and sheep
game [27] and a nonlinear, nonquadratic variant, which we use

to validate SILQGames and the SLF. Finally, we run the SLF on
realistic driving scenarios.

In the LQ shepherd and sheep game, each agent’s state :cﬁ”
evolves according to planar double-integrator dynamics [28, 75]

discretized at At. The game state combines the agent states x; =

[;vgl), x§2)]T, and each agent controls its horizontal and vertical
accelerations. Agents’ costs

2 2
g (weu w®) = (02) + (02) + 113 a2)

)

2 1 2)) 2 1 2)) 2 2
0?0 = (=) + (B = o)+ 13, a3)

are quadratic in state and controls and incentivize “shepherd” A,
to minimize “sheep” A’s distance to the origin (i.e., the barn)
and A, to minimize its distance to .4;. We denote the planar
positions for A; as pgi)t’ p(i)t. An analytic Stackelberg solution
exists since the game is LQ. When framing the shepherd and
sheep game as a Stackelberg game, we note that either agent can
be selected as the leader.

We form a nonlinear, nonquadratic variant of (12), (13) by
using planar unicycle dynamics [28, 77] with a velocity state
that evolves according to v = a. We discretize the dynamics at
At. Each agent A; controls yaw rate w,ﬁ” € R and longitudinal

acceleration a")

glgl) ($t7u1(fl)7u£2)) = gt(l)(a R ) - IOg (6 - p§c2,2>

—log (pf,i - f) —log (5 - pf,t) ) —log (pf,i *5) (14)

adds log barrier terms to (12) which force A; to keep As’s

position (pfz, pgzz) bounded within an origin-centered square

of side length 2¢. The cost remains convex.

€R. The nonquadratic cost

A. SILQGames Validation

To test convergence for non-LQ games, we run 100 simula-
tions of SILQGames on the non-LQ shepherd and sheep game
with Aj as leader. We fix A;’s initial position at (2 m, 1 m) and
vary Aj’s initial position along the perimeter of a radius-v/5m
circle. Both agents begin stationary and face toward the origin.
The nominal strategies apply zero input. We specify additional
parameters in the appendix.

Analysis: The results in Fig. 3(a) indicate that all simulations
converge. The median value of the convergence metric, shown
with 10% and 90% percentile bounds, exhibits a generally
decreasing trend. These results are consistent with our previous
discussion on convergence, as SILQGames converges in every
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(b) Measurement trajectories at t = 0.54s.
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(c) Measurement trajectories at ¢t = 2.04s.

We run 100 SLF simulations on analytic solutions to the LQ shepherd and sheep game. (a) indicates that the SLF initially misidentifies the leader but

then identifies the leader correctly as .A; before becoming uncertain due to noise. (b) and (c) are associated with a particular simulation and show the Stackelberg
measurement trajectories at t = 0.54 s and t = 2.04 s, respectively. The color of a particle’s measurement trajectory indicates leading agent H fﬁl, and the insets
show the expected measurements for each particle, the actual measurement, and the ground truth.

simulation, though without monotone decrease in the conver-
gence criterion. SILQGames behaves similarly when we vary
the initial position of the follower.

In Fig. 3(b), we report the solution for a particular (arbitrarily
chosen) simulation. Both agents’ motion follows the incentive
structure of the game: the distance between the two agents de-
creases, as does the distance from Aj to the origin. As expected,
A exerts more control effort than A5 due to As’s leadership
role and A;’s incentive to constrain A5’s position. Finally, we
note that .4;’s motion changes sharply towards the end of its
trajectory. Here, the unicycle comes to a stop and moves in
reverse. These results demonstrate that, for a game with non-
linear dynamics and convex, nonquadratic costs, SILQGames
converges to a solution that appears consistent with the dynamics
and costs.

Timing: We collect elapsed times for each iteration of 100
SILQGames simulations on AMD Ryzen 9 5900x 12-core pro-
cessors. The per-iteration runtime (with standard deviation) of
SILQGames is 0.49 = 0.29s. We note that straightforward but
nontrivial optimizations (i.e., more principled step size selection,
numerical optimization techniques, etc.) such as those used
in other iterative game solvers [29], [30] have been shown to
improve computational efficiency.

B. Leadership Filter Validation

We validate the leadership filter on analytic solution trajecto-
ries of horizon Ty, for the LQ shepherd and sheep game played
with leader Lgr=.A;. Since we generate the ground truth %,
with a known leader, a perfect filter should infer the true leader
with consistently high confidence. Our results suggest that the
SLF produces an observable signal for Stackelberg leadership,
but (as one can expect) noise and measurement model configu-
ration significantly affect performance. We simulate noisy state
measurements 2z, ~ N (x8T, ) and pass ¥ to the SLF. We list
parameter values in the appendix.

Analysis: In our results, the SLF produces the expected
leadership probability for part of the simulation horizon. From
1.5 — 3.5sin Fig. 4(a), the SLF correctly infers A; as the leader
with high likelihood. Examining the expected measurements in
Fig.4(c) at2.04 s, we note that the observations in this time range
more closely match the measurement models generated with 4,
as leader, which the SLF interprets as indicating leadership by
Aj.Intheleftinset of Fig. 4(c), the particles that believe A5 to be
the leader have positions further to the left of those that consider
A to be the leader. From this effect, we see that the SLF accounts

for the statistical dependence of state and leadership despite our
simplified treatment of the leadership transition process.

However, we also see complex behavior in Fig. 4(a). First,
the SLF initially misidentifies the leader as 45, as shown
by Fig. 4(b), because the Stackelberg measurement trajec-
tories do not capture leadership information over the whole
simulation horizon. Specifically, the measurement trajectories
{h(z% ,, HF |)} are straight lines that roughly reduce the state
costs of the shepherd and sheep, but do not capture the granular-
ity of motion from the ground truth due to higher control costs
over the short horizon Ty, << Tyin.

Second, the SLF is completely uncertain after 4.5 s. Near the
origin, the contribution of process noise to the motion outweighs
the contribution of the dynamics, and together with measurement
noise obfuscate the dynamics.

From these results, we see that the SLF requires parameter 7’
to be of sufficient length to capture the influence of leadership on
the measurement trajectories. We note that the SLF is sensitive to
noise as it infers leadership indirectly by comparing the observed
motion with the expected motion of a Stackelberg leader. Thus,
too little process noise may lead particles to converge to an
incorrect trajectory, and too much reduces the signal-to-noise
ratio.

Timing: The mean overall runtime for 100 simulations of
an LQ game with 501 steps is 10.914+1.64 s. For 50 particles
and a 75-step measurement horizon, each step of the SLF
runs in 0.82 % 0.35 s. Self-driving vehicle applications require
sub-100 ms perception cycle computation time [31], so our im-
plementation is not real-time. To meet real-time computational
efficiency requirements, we must parallelize particle computa-
tion and optimize SILQGames; the latter is the most expensive
step for each particle. These changes have been shown to reduce
computation time below 100 ms, as demonstrated by [29], [30],
which use fast particle filters with measurement models that
solve dynamic games.

C. Realistic Driving Scenarios

We formulate passing and merging scenarios using realistic
ground truth trajectories without a clear leader. We demonstrate
that the SLF responds to changes in leadership, handles objec-
tives that imperfectly model agent behavior, and that the results
match right-of-way expectations. The dynamics and cost terms
demonstrate that the SLF does not require LQ assumptions
and works for nonconvex costs. Our results further indicate
that SILQGames, used within the SLF, converges under these
conditions.
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Each agent’s state evolves according to unicycle dynamics.
The simulation runs for T steps at period At = 0.05 s. We model

stage cost ggi) as a weighted sum of incentives gj(lg ,

M (D)

= > w g0
j=1

Weights {wﬁ-”} C R specify the relative priorities of subobjec-

15)

tives. We define M (?) = 6 terms to incentivize driving behaviors
corresponding to legal or safety considerations.

i) = d(af) x{ e (16a)
g5 = 1og<up“> pP3 — do) Vi # j (16b)
98} = —log(vm — [v"]) — log(Ath, — [ — i) (16¢)
g1 = (@) + (af”)? (16d)
g5) = —log(|lpy, E”II%) —log(Ip{% — 27 12)  (160)
981 = exp(—(1/2)(p\% — p)TC P — pi)) (66

Equation (16a) requires a small distance between vehicle state

( ) and goal state x( 2911 Eor this scenario, d(-,-) is a weighted
Euchdean distance. Equation (16b) requires a minimum safety
radius d. between the vehicles. Equation (16c¢) requires obeying
speed limit v,,, and avoiding excessive heading deviation A,
from road direction v;. Equation (16d) incentivizes low control

effort. Equation (16e) enforces left and right lane boundaries

pi ])]b,pg r)]b, based on lane width £,,. Equation (16f) uses a

(nonconvex) Gaussian function with covariance C to discourage

crossing the center line pi c)l' We specify these parameter values

in the appendix. Lastly, we define the direction of motion as the
y-direction and the transverse direction as the —x-direction to
maintain a righthand coordinate frame.

Passing Scenario: The passing scenario begins with 45 be-
hind A; and runs for 7.5s. In the ground truth trajectories
(Fig. 1), A; initially follows A; for 2.5s, then passes in the
other lane, and ends ahead of A; in the initial lane. A; drives
along the lane at a constant velocity, applying no controls.

We simulate the leadership filter on the passing maneuver.
We expect A; to start with a high leadership probability and for
that probability to decrease once the passing maneuver begins,
and vice versa for As. In Fig. 1, the state estimate tracks the
ground truth, indicating that the leadership filter captures the
game dynamics. Since the SLF produces the expected trends
in the state estimates and agents’ probabilities, our results show
that Stackelberg leadership can match right-of-way expectations
for scenarios without a ground truth leader. Moreover, the SLF
responds appropriately to changing leadership dynamics over
fime.

Lastly, we analyze the computation time of the SLF (0.027 &
0.03 s per particle, per step). We note that calls to SILQGames
converge in 4.2 £ 13.6 iterations. During the straight portions
of the passing maneuver, the nominal trajectories produce bet-
ter LQ approximations and thus SILQGames converges faster.
During the turns, poor nominal strategies lead to slower con-
vergence and result in variability in the computation time of
the SLE. Overall, our results show that SILQGames can handle
nonconvex cost terms.
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Fig.5. Inthis merge, Ay starts ahead in its lane and .4 yields to As. We see a
high leadership likelihood for A3, as expected because it merges first. The inset
indicates the current probabilities with a vertical dashed line.

Merging Scenario: The merging scenario involves three sec-
tions of road (see Fig. 5): two 30 m-long lanes separated by a
barrier at x = 0 m, a merging segment that decreases from width
20y, to £, over 30m of length, and a one lane road centered
along x = O m. Both agents start in their own lanes, though
A; starts behind As. In the ground truth, 45 merges before
Ay, which slows down to yield before merging. As delays its
merge once it enters the merging segment. We construct the game
played within the measurement model to incentivize each agent
to merge quickly after entering the merging segment, so the cost
we define for A does not exactly reflect its actual behavior.

In Fig. 5, we simulate this merge with the leadership fil-
ter. We expect A, to lead the interaction as it begins ahead
and merges first. Given their objectives, we expect the agents’
measurement trajectories to merge quickly, and we see these
trajectories quickly move toward the center of the merging seg-
ment. Nevertheless, the leadership filter’s state estimate tracks
the ground truth, including A5’s delayed merge, and the SLF
infers A5 as the leader. Thus, the results match our right-of-
way expectations despite agent objectives that do not exactly
describe the observed ground truth behavior. This mismatch
results in poor initialization, which affects the computation time
(1.02 £ 0.99 s per particle, per step) as calls to SILQGames take
longer to converge (69.2 + 38.3 iterations). As with the passing
scenario, the variance in computation time reflects a degradation
in the quality of the LQ approximation. We further re-iterate that
parallelization is critical for the SLF to run in real-time.

VI. DISCUSSION & LIMITATIONS

We contribute SILQGames, an iterative algorithm to solve
Stackelberg games with nonlinear dynamics and nonquadratic
costs. Through empirical validation on non-LQ game scenarios,
we show it reliably converges. We also introduce the Stackelberg
Leadership Filter and apply it to noisy scenarios with known
leaders and realistic driving situations. Results highlight the
SLF’s ability to estimate leadership in long-horizon interactions
with changing leadership and with objectives that do not exactly
reflect observed agent behavior. Furthermore, we discuss the
robustness of our method to the measurement horizon and noise.

Future directions include extending SILQGames to N > 2
agents and overcoming combinatorial scaling challenges aris-
ing from the pairwise definition of Stackelberg leadership.
The number of possible /N-agent Stackelberg hierarchies grows
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exponentially and resolving the dependencies in any such hierar-
chy is nontrivial. Another critical direction involves establishing
theoretical bounds on the number of SILQGames iterations. For
the SLF, future work includes enabling real-time application
using more efficient estimators and algorithmically adjusting the
measurement horizon 7 to observe leadership dynamics over
different horizons.

APPENDIX

SILQGames Parameters: We vary the initial position of Az
about (—1m,2m) along a 0.4rad arc of a circle. We set
convergence threshold 7 = 1.2 - 1073, the maximum number
of iterations to 3500, and minimum step size i = 1072, We
play the game for 10's with period At = 0.02s (501 steps). The
nominal controls apply zero input.

SLF Parameters: In our examples, we select nominal strate-
gies with a simple heuristic that returns 7-length control tra-
jectories for each agent, i.e. at time ¢ — 1, the nominal strategy
for A; is [ugqjl . ug?l] We configure the number of particles
N; = 50. The Stackelberg measurement horizon Ts = 75 steps
(1.558). Let pyans = 0.02, so transitioning is thus likely enough
that particles can switch leadership state and model dynamic
leadership transitions without injecting excessive uncertainty
into the inference. For the process noise uncertainty W, we set
position and heading variances on the order of magnitude of 103
and velocity variances to 10~%. SLF measurement uncertainty
¥ = 5-1073I. The convergence threshold 7 = 1.5 - 1072, the
max iteration count M, = 50, and step size amin = 1072,

Driving Scenario Parameters: Let speed limit v,,, = 35m/s
with initial headings aligned with the road direction v,.. Lanes
are £, =2.5m wide. A safety violation occurs if the vehicles
come within d.=0.2 m of one another. We constrain accelera-
tion and rotational velocity magnitudes to 9m/s? and 2rad/s.
The measurement horizon T = 1.0s, with sampling periods of
0.05s (20 Hz). We use 100 particles with equal initial chance of
Aj and As as leader. The center line is at = 0 m. Each agent
begins with velocity 10 m/s. Other parameters are identical to
the SLF parameters.
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