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Contingency Games for Multi-Agent Interaction

Lasse Peters
Chih-Yuan Chiu
Laura Ferranti

Abstract—Contingency planning, wherein an agent generates a
set of possible plans conditioned on the outcome of an uncertain
event, is an increasingly popular way for robots to act under
uncertainty. In this work we take a game-theoretic perspective on
contingency planning, tailored to multi-agent scenarios in which
a robot’s actions impact the decisions of other agents and vice
versa. The resulting contingency game allows the robot to efficiently
interact with other agents by generating strategic motion plans con-
ditioned on multiple possible intents for other actors in the scene.
Contingency games are parameterized via a scalar variable which
represents a future time when intent uncertainty will be resolved.
By estimating this parameter online, we construct a game-theoretic
motion planner that adapts to changing beliefs while anticipating
future certainty. We show that existing variants of game-theoretic
planning under uncertainty are readily obtained as special cases
of contingency games. Through a series of simulated autonomous
driving scenarios, we demonstrate that contingency games close
the gap between certainty-equivalent games that commit to a single
hypothesis and non-contingent multi-hypothesis games that do not
account for future uncertainty reduction.

Index Terms—Planning under uncertainty, human-aware
motion planning, motion and path planning.

I. INTRODUCTION

MAGINE you are driving and you see a pedestrian in the
middle of the road as shown in Fig. 1. The pedestrian is
likely to continue walking to the right, but you also saw them
turning their head around; so maybe they want to walk back to
the left? You think to yourself, If the pedestrian continues to the
right, I just need to decelerate slightly and can safely pass on the
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Fig. 1. Vehicle approaching a jaywalking pedestrian with uncertain intent.
(a) A risk-taking driver may gamble for the most likely outcome, ignore
uncertainty, and pass on the left. (c) A risk-averse driver may hedge against
all outcomes by bringing their vehicle to a full halt, waiting for the situation to
resolve. (b) An experienced driver may realize that this uncertainty will resolve
in the near future (at time ¢;) and thus commit to an immediate plan that can be
continued safely and efficiently under both outcomes. Our contingency games
formalize this middle ground between the two extremes.

left; but if they suddenly turn around, I need to brake and pass
them on the right. Moreover, you understand that your actions
influence the pedestrian’s decision regarding whether and how
quickly to cross the street. You decide to take your foot off the
gas pedal and drive forward, aiming to pass the pedestrian on the
left, but you are ready to brake and swerve to the right should
the pedestrian turn around.

This example captures three important aspects of real-world
multi-agent reasoning: (i) strategic interdependence of agents’
actions due to their (partially) conflicting intents—e.g., the
pedestrian’s actions do not only depend on their own intent
but also on your actions, and vice versa; (ii) accounting for
uncertainty—e.g., how likely is it that the pedestrian wants to
move left or right?; and (iii) planning contingencies—e.g., by
anticipating that uncertainty will be resolved in the future, a
driver can commit to an immediate plan (shown in black in
Fig. 1(b)) that can be continued safely and efficiently under each
outcome (shown in red and blue in Fig. 1(b)).

In this letter, we formalize this kind of reasoning by intro-
ducing contingency games: a mathematical model for plan-
ning contingencies through the lens of dynamic game theory.
Specifically, we focus on model-predictive game-play (MPGP)
settings, wherein an ego agent (i.e., a robot) plans by choosing
its future trajectory in strategic equilibrium with those of other
nearby agents (e.g., humans) at each planning invocation. Im-
portantly, the ego agent must account for any uncertainty about
other agents’ intents—i.e., their optimization objectives—when
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solving this game. For computational tractability, most estab-
lished methods take one of two approaches. One class of methods
ignores uncertainty by performing maximum likelihood estima-
tion (MLE) and solving a certainty-equivalent game [1], [2],
[3]. The other class accounts for uncertainty by planning with
a full distribution—or “belief”—conservatively assuming that
intent uncertainty will never be resolved during the planning
horizon [4], [5]. Our main contribution is a game-theoretic in-
teraction model that bridges the gap between these two extremes:

A contingency game is a model for strategic interactions which
allows a robot to consider the full distribution of other agents’ intents
while anticipating intent certainty in the near future.

Importantly, unlike existing formulations of trajectory games
with parametric uncertainty [4], [5], [6], contingency games
capture the fact that future belief updates will reduce uncertainty
and hence, eventually, the frue intent of the human will be
clear at a future “branching” time, ¢;. As a result, solutions of
contingency games are conditional robot strategies which take a
tree structure as shown in Fig. 1(b). The trunk of the conditional
plan encodes decisions that are made before certainty is reached
(before t,). After t;, the robot generates separate conditional
trajectories for each possibility 6 € ©.

Beyond our main contribution of an uncertainty-aware game-
theoretic interaction model, we also (i) show how general-sum
N-player contingency games can be transformed into mixed
complementarity problems, for which off-the-shelf solvers [7]
are available and (ii) discuss how beliefs and branching times
may be estimated online for receding-horizon operation. We
also highlight the desirable modeling flexibility of contingency
games as a function of the parameter t;, recovering certainty-
equivalent games on one extreme, and conservative solutions
on the other (see Fig. 1). Through a series of simulation ex-
periments, we demonstrate that contingency games close the
gap between these two extremes, and highlight the utility of
estimating the branching time online.

II. RELATED WORK

A. Game-Theoretic Motion Planning

Game-theoretic planning has become increasingly popular
in interactive robotics domains like autonomous driving [1],
[8], [9], drone racing [10], and shared control [11] due to its
ability to model influence among agents. A crucial axis in which
prior works differ is in the modeling of the robot’s uncertainty
regarding other agents’ objectives, dynamics, and state at each
time. Methods which assume no uncertainty in the trajectory
game model (e.g., taking the most probable hypothesis as truth)
result in the simplest game formulations, and have been explored
extensively [2], [12], [13], [14]. However, in real-world settings
itis unrealistic to assume that a robot has full certainty, especially
with respect to other agents’ intents. Instead, robots will often
maintain a probability distribution, or “belief,” over uncertain
aspects of the game.

There are several ways in which such a belief can be incorpo-
rated in a trajectory game. On one hand, the robot could simply
optimize for its expected cost under the distribution of uncertain
game elements. We call this as a “fixed uncertainty” approach,
since the game ignores the fact that as the game evolves, the
robot could gain information leading to belief updates [4], [5],
[6]. While these methods do utilize the robot’s uncertainty, they
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often lead to overly conservative plans because the robot cannot
reason about future information that would make it more certain
(i.e., confident) in its decisions.

On the other hand, the agents in a game may reason about
how their actions could lead to information gain; we refer to this
as “dynamic uncertainty.” Games which exactly model dynamic
information gain are inherently more complex, and are generally
intractable to solve, especially when the belief space is large
and has non-trivial update dynamics [15], [16]. Recent methods
attempted to alleviate the computational burden of an exact
solution via linear-quadratic-Gaussian approximations of the
dynamics, objectives, and beliefs [17]. While the computational
benefits of such approximations are significant, they introduce
artifacts that make them inappropriate for scenarios such as
that shown in Fig. 1 in which uncertainty is fundamentally
multimodal. It remains an open challenge to solve “dynamic
uncertainty”’ games tractably.

Our contingency games approach presents a middle ground
between these paradigms via a belief-update model simple
enough to compute exact solutions to the resulting dynamic-
uncertainty game, and realistic enough to generate intelligent
behavior that anticipates future uncertainty reduction.

B. Non-Game-Theoretic Contingency Planning

There is a growing literature of non-game-theoretic inter-
action planners [18], including various flavors of contingency
planning. Online-optimization-based approaches primarily fo-
cus on predict-then-plan contingency planning [19], [20], [21],
[22]. Recent learning-based contingency planners leverage deep
neural networks to generate human predictions conditioned on
candidate robot plans [23], [24]; a robot plan is then selected
via methods like sampling-based model-predictive control [23],
dynamic programming [25], or neural trajectory decoders [24].

Other approaches draw inspiration from deep reinforcement
learning to accomplish both intention prediction and motion
planning. To predict multi-agent trajectories in the near fu-
ture, Packer et al. [26] and Rhinehart et al. [27] construct a
flow-based generative model and a likelihood-based generative
model, respectively. Meanwhile, Rhinehart et al. [28] develop an
end-to-end contingency planning framework for both intention
prediction and motion planning. We bring the notion of contin-
gency planning to a different modeling domain—dynamic game
theory—to extend its capabilities to handle “dynamic uncer-
tainty” in strategic interactions. This game-theoretic perspective
captures interdependent behavior by modeling other agents as
minimizing their own cost as a function of the decisions of all
players in the scene.

III. FORMALIZING CONTINGENCY GAMES

In this letter, we consider settings where a game-theoretic
interaction model is not fully specified. For example, an au-
tonomous car may not be sure if a nearby pedestrian intends
to jaywalk; an assistive robot may not know which tool a
surgeon will wish to use next. In such instances, the robot
(agent R) can construct a dynamic game in which components
of the model depend upon an unknown parameter 6 € O, with
|©] = K < co. When the robot has some prior information—
e.g., from observations of past behavior—it can maintain a
probability distribution or belief, b(f), over the set of possible
games. Naturally, however, this belief changes as a function of
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the human’s behavior and the robots actions. It is this dynamic
nature of the uncertainty that the robot can exploit to come up
with more efficient plans. In the formal description below, we
adopt a two-player convention for clarity. We note, however,
that the formalism can incorporate more players as illustrated in
Section VII-B.

Approximations and modeling assumptions: Contingency
games approximate a game which exactly models dynamic
uncertainty, which are generally intractable to solve. Specifi-
cally, we introduce the following key modeling assumptions to
facilitate tractable online computation:

1) We assume unilateral uncertainty with discrete support,

i.e. |©| = K. That s, while the robot R has uncertainty in
the form of a discrete probability mass function b(6), the

human H acts rationally under the true hypothesis 6.

2) We assume the robot has access to (an estimate of) the
so-called branching time, 5, which models the future time
at which additional state observations will have resolved
all uncertainty about the initially unknown 6.

3) We simplify the robot’s belief dynamics. Instead of captur-
ing the exact belief dynamics across the planning horizon,
the robot distinguishes two phases: before ¢, the belief is
fixed at b(+); after t; the belief collapses to certainty about
a single hypothesis.

We envision contingency games to be employed in a receding
horizon (MPGP) fashion. In that context, beliefs are updated
between each planner invocation and the branching time may
vary and can be estimated online.! We discuss considerations
and results for this case in Sections VI and VIII.

Notation conventions: We consider interaction of agents 7 €
{R,H} over T' < oo time steps. In contrast to existing game-
theoretic formulations [12], [13], [29], [30], in a contingency
game we endow each player with multiple trajectories; one
for each hypothesis 6. At each ¢t € [T] ={1,2,...,T} and
hypothesis 6 € © the state of the game is comprised of separate
variables for each agent i, i.e., g ; := (:chft7 xl‘,ft). Each agent i
begins at a fixed initial state & := (2%, 21), ie., xé 1= Zt,
which evolves over time as a function of that agent’s control
action, u} ,. States and control actions are assumed to be real
vectors of arbitrary, finite dimension. For brevity, we introduce
the following shorthand: we use Zé,t = (), “é,t) to denote
a state-control tuple, we use boldface to denote aggregation
over time, e.g. zj) := (z§)e[r), We omit player indices to de-
note aggregation, e.g. zp = (zi, z}} ), and we denote the finite
collection of all K = |O| trajectories for player i as zl =
(zo,ug) = (24)oco-

Contingency game formulation: With these conventions in
place, we formulate a contingency game as follows. The robot
wishes to optimize its expected performance over all hypothe-
ses (la) while restricting all contingency plans to be feasible
with respect to hypothesis-dependent constraints hy (1b) and
enforcing the contingency constraint (1c) that the first ¢, — 1
control inputs must be identical across all hypotheses § € ©:

. QRHY . : R/,R _H
R:8%(zg) = arg min Zb(&)J (24, 2zg) (1a)
©  9eco
h (24, 2() >0, V0 € © (1b)

Note that, despite the use of assumption 3 within our game formulation, we
will employ a belief updater that still captures more accurate belief dynamics as
we shall discuss in Section VI.
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c(ud;ty) = 0.

(1)

Simultaneously, the robot interacts with K versions of agent
H, each of which is guided by a different intent 6 which pa-
rameterizes both the hypothesis-dependent cost Jé{ (2a) and

constraints hg (2b):
Hy : S0 (5)
1= arg min_u JR(zE, 25

hg(zg, zg) > 0.

(2a)
(2b)

Vo € O:

In this contingency game formulation, it is important to ap-
preciate that the robot’s strategy depends on the distribution
b(0) and all the trajectories zg = (z¢)gpeco, while Hy’s strategy
depends only on the trajectories under hypothesis 6, zy. Since the
objectives of R and H may in general conflict with one another,
and we model agents as being self-interested, such a game is
termed noncooperative.

Taken together, optimization problems (1), (2) take the form
of a generalized Nash equilibrium problem (GNEP). Solutions
to this problem are defined as follows.

Definition 1: (Generalized Nash Equilibrium, [31, Ch. 1]). A
trajectory profile (28*, z8*) is a generalized Nash equilibrium
(GNE) of the game from (1), (2) if and only if

25 € SR (28") and /\ zyt € ST (z5).
4SC]

In practice, we relax Definition 1 and only require local
minimizers of (1), (2). Under appropriate technical qualifica-
tions, such local equilibria are characterized by first and second
order conditions commensurate with concepts in optimization.
Readers are directed to [31] for further details.

A solution method for contingency games is discussed in
Section V; but first, we take a step back to build intuition about
the behavior induced by the proposed interaction model.

IV. FEATURES OF CONTINGENCY GAME SOLUTIONS

Scenario 1. driving near a jaywalking pedestrian: Consider
the scenario shown in Fig. 2. Here, the robot (R) wants to
move forward but does not know if the pedestrian (H) wants to
reach the left or right side of the road. To model this ambiguity,
let 0 € © := {left, right}. Robot R plans a trajectory for each
hypothesis, i.e. 28 := (21, Zran)» €ach of which is tailored to
react appropriately to human Hy in the corresponding scenario.
Similarly, H maintains 2§ := (2i, 25 ), Which capture its
“ground truth” behavior under each hypothesis. Each of H’s
trajectories will react to the corresponding trajectory of R. We
model the robot as a kinematic unicycle and the pedestrian as
a planar point mass. To ensure collision avoidance, the robot
must pass behind the pedestrian, i.e. not between the pedestrian
and its (initially unknown) goal position. We capture all of these
constraints via a single vector-valued function k), (2§}, z§') > 0,
which explicitly depends on hypothesis 6.

How each agent acts in a contingency game formulation of
this problem is largely affected by two quantities: (i) the initial
belief that the robot holds over the human’s intent and (ii) the
branching time which models the time at which the robot will
get certainty. We discuss the role of both quantities below.

Qualitative behavior. Role of belief: First, we keep the branch-
ing time fixed and analyze the contingency plans for a suite of
beliefs. Fig. 2(a)—(e) show how both the robot’s contingency
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plan and the pedestrian’s reaction change as a function of the
robot’s intent uncertainty. At extreme values of the belief, the
robot is certain which hypothesis is accurate and the contingency
strategy is equivalent to that of a single-hypothesis game with
intent certainty. At intermediate beliefs, the contingency game
balances hypotheses’ cost according to their likelihood, yielding
interesting behaviors: in Fig. 2(d) the robot plans to inch forward
at first (black), but biases its initial motion towards the scenario
where the pedestrian will go left (blue). Nevertheless, it still
generates a plan for the less likely event that the pedestrian goes
right (red).

Qualitative behavior. Role of branching time: Next, we as-
sume that the robot’s belief is always a uniform distribution,
and vary the contingency game’s t;, parameter. Fig. 2(f)-(h)
show how extreme values of this parameter automatically re-
cover existing variants of game-theoretic planning under un-
certainty: certainty-equivalent games [1], [2], [3] and non-
contingent games that plan in expectation [4], [6]. At one ex-
treme, when t;, = 1, the contingency constraint (1c) is removed
entirely and we obtain the solutions of the fully observed game
under each hypothesis (see Fig. 2(f)). These are precisely the so-
lutions found for the certainty-equivalent games in Fig. 2(a),(e).
Note, however, that in this special case the contingency plan is
not immediately actionable since it first requires the ego agent
to commit to a single branch, e.g., by considering only the most
likely hypothesis [1], [2], [3]. While easy to implement, such
an approach can be overly optimistic and can lead to unsafe
behavior since the control sequence from the selected branch
may be infeasible for another intent hypothesis. For example, if
the robot were to commit to § = left in Fig. 2(f), it would be on
a collision course with 50% probability.

By contrast, at the upper extreme of the branching time, ¢, =
T, the contingency plan no longer branches and it consists of a
single control sequence for the entire planning horizon, cf. [4],
[6]. As aresult, this plan is substantially more conservative since
it must trade off the cost under all hypotheses while respecting
the constraints for any hypothesis with non-zero probability
mass: in Fig. 2(g), the ego agent plans to slow down aggressively
since its uncertainty about the pedestrian’s intent renders both
sides of the roadway blocked.

Overall, this analysis shows that contingency games (i) unify
various popular approaches for game-theoretic planning under
uncertainty, and (ii) go beyond these existing formulations to-
wards games that consider the distribution of other players’
intents while anticipating intent certainty in the future.
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Quantitative impact of the branching time: Given the central
role of the branching time in our interaction model, we further
analyze the quantitative impact of this parameter on the robot’s
contingency plan. For this purpose, we generate contingency
plans across varying branching times, ¢, € {1,...,25}, foreach
of 70 different initial pedestrian positions sampled from a uni-
form grid around the nominal position as shown in Fig. 3(a).
Fig. 3(b) shows that, by anticipating future certainty at earlier
branching times (¢, = 5), the robot discovers lower-cost plans
than a method that assumes uncertainty will never resolve
(tp = 25). Furthermore, the spatial distribution of the cost in
Fig. 3(c) reveals that robot generates particularly low-cost plans
for ¢, = 5 if the human is initially in the center of the road.
Here, the contingency plan exploits the fact that—irrespective
of the human’s true intent—the road will be cleared by the time
the robot arrives, cf. Fig. 2(g). Of course, this analysis pertains
to the open-loop plan. However, as we shall demonstrate in
Section VIII, a performance advantage persists under the added
effect of receding-horizon planning.

V. TRANSFORMING CONTINGENCY GAMES INTO MIXED
COMPLEMENTARITY PROBLEMS

Next, we discuss how to compute strategies from this inter-
action model. Rather than developing a specialized solver, we
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demonstrate how contingency games can be transformed into
mixed complementarity problems (MCPs) for which large-scale
off-the-shelf solvers are readily available [7]. Our implementa-
tion of a game-theoretic contingency planner internally synthe-
sizes such MCPs from user-provided descriptions of dynamics,
costs, constraints, and beliefs.

We begin by deriving the Karush-Kuhn-Tucker (KKT) con-
ditions for the contingency game in (1), (2). Under an appro-
priate constraint qualification (e.g., Abadie, or linear indepen-
dence [31, Ch. 1], [32, Ch. 12]), these first-order conditions are
jointly necessary for any generalized Nash equilibrium of the
game. The Lagrangians of both players are:

R: ER(ZS, zg,kg, p) = pTc(ug;tb)
+> (0
6O

Ho : L4 (25, 2, 1y) =

0)J" (25, 2y) — kg hg (25 2))
— gy (25, 25)

3

where p is the Lagrange multiplier for player R’s contingency
constraint, and A}, are Lagrange multipliers for all other con-
straints of player ¢ at hypothesis 6. Denoting complementarity
by L, we derive the following KKT system for all players:

VACHER

Vo L(28, 26,26, p) = 0, (4a)

\Y HEH(ze,zQ,AH) =0, (4b)

VO €O :¢0<hl (=R 2z Lak >0, (4c)
0 < hil(zR, 2l LAkt > o, (4d)

c(ud;ty) = 0. (de)

Collectively, (4) forms an MCP, as defined below [31, Ch. 1].

Definition 2 (Mixed Complementarity Problem): A mixed
complementarity problem (MCP) takes the following form:
Given G : R? — R?, lower bounds v}, € [~00,00)? and up-
per bounds vy, € (—oc, oc]?, solve for v* € R such that, for
each j € {1,...,d}, one of the equations below holds:

[0} = [vo]y, [G]5(v") = 0,
[vlo]j < [U]; < [Uup]j, [Gb‘(v*) =0,

[} = [vwp);, (G5 (0"

where [G]; denotes the j™ component of G, and [vy,] ; and [vyp) ;
denote the ™ components of vy, and Vup, TESpECtively.

Observe that the KKT conditions (4) encode an MCP with
variable v, function G, and bounds wvi,, vy, block-wise de-
fined (by slight abuse of notation): one block for each 6 € ©,

) <0,

[v]o = (25, 25, A5 A6, (5a)
[Uo]o = (=00, —00,0,0), (5b)
[vuplo = (00, 00, 00, 00), (5¢)

Vn L8928, 28,48, p)
[G(v)]s = Vzgflf gg,’:ﬁ)’ ) sa)

hy (25 24)
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Fig. 4. Bayesian network modeling the robot’s intent inference problem.
Shaded nodes represent observed variables.

and an additional block for the contingency constraint

[W]e = p, [Uio]e = —00, [Vup]e = 00, [G(V)]e = c(ug;ty). (6)

To establish that the MCP solution is indeed a local equilibrium
of the contingency game, sufficient second-order conditions [32,
Thm. 12.6] can be checked for (1) and (2).

VI. ONLINE PLANNING WITH CONTINGENCY GAMES

We envision contingency games to be deployed in a MPGP
framework where beliefs and branching times are estimated
online. Next, we discuss considerations for this setting.

A. Belief Updates

While the true human intent 6 is hidden from the robot,
the robot can utilize observations of past human decisions to
update its current belief b, (0) = P (¢ \ &) about this quantity,
where 2 := {(2%, 21), ... (28, 211)} is the sequence of joint
human-robot states observed up until the current time 7. We use
the model in Fig. 4 to cast this inference problem in a Bayesian
framework. In this model, we use our game-theoretic planner to
compute jointly a nominal state-action trajectory for each agent
and for each hypothesis. The robot’s portion of this solution
computed at time 7, ng, serves as our receding-horizon motion

plan, and the human’s portion of the plan, zg{T, constitutes
a nominal receding-horizon prediction of their future actions
under each hypothesis 6 € ©. However, due to bounded ratio-
nality [33], the human may not execute exactly this plan. Hence,
at the next time step 7+ 1 when we observe a new human
physical state, i? 1, We treat it as a random emission of the
previous nominal predictions. Similar to prior works [22], [24],
in our experiments we assume that human states are distributed
according to a Gaussian mixture model with one mode for each
hypothesis 6 i.e., p(&}, | | z4',) = N(pg, ¥) where the mean
e is the expected human state extracted from the previous
human prediction, zng, and X is a covariance parameter charac-
terizing human rationality. In summary, the robot can recursively
update their belief via

P(AT+1|Z9 )b (0)

b ) = R 28 )6 0)

(7

B. Estimating Branching Times

Prior work on non-game-theoretic contingency planning ei-
ther chooses the branching time as informed by a careful
heuristic design [19] or through offline analysis of the belief
updater [34]. A thorough theoretical analysis on how to choose
the branching time ¢; in the more general game-theoretic case
is beyond the scope of this work. Nonetheless, to demonstrate
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the utility of anticipating future intent certainty, we propose
a branching time heuristic which only requires access to the
previous game solution and current belief.

Heuristic branching time estimator: Intuitively, the branch-
ing time should be lower when the future human ac-
tions are more “distinct” under each hypothesis. Our heuris-
tic captures this relationship as follows. Let H[b;] =
— > pco br(0) log|(b-(0)) denote the entropy of belief b,.
Furthermore, let B(z§ ._,, 0, k)[-] denote the operator that, for
a given 0, takes the first k states from the previously-computed
zg ~_ ashypothetical observations and returns the thus updated
belief. We approximate the branching time as

ty (br, 28 ) = i k
o (bro26,00) = min
st. H[B(zy,_1,0,k)[b.]] <e 8)

Note that the minimum branching time chosen by this heuristic
is t, = 2, ensuring that the robot has a unique first input to apply
during receding-horizon operation. Procedurally, this heuristic
is straightforward to implement: for each hypothesis, we predict
the belief via a hypothetical observation sequence as if the human
(1) is perfectly rational and (ii) does not re-plan in the future;
then, we return the first time at which all predicted beliefs reach
entropy threshold €. Assumptions (i) and (ii) make this heuristic
cheap to evaluate since they avoid the need to re-compute game
solutions within (8). While, these approximations may affect the
accuracy of the estimator we shall demonstrate the utility of this
approach in Section VIIIL.

VII. EXPERIMENTAL SETUP

We wish to study the value of anticipating future certainty
in game-theoretic planning. Therefore, we compare our method
against a non-contingent game-theoretic baselines on two sim-
ulated interaction scenarios in which dynamic uncertainty natu-
rally occurs.

A. Compared Methods

Beyond the contingency game that uses our branching time
heuristic, we consider the following methods, all of which
operate in receding-horizon fashion with online belief up-
dates according to (7). Note that, following the discussion in
Section IV, all game-theoretic methods below can be understood
as a contingency game with a special branching time choice.

Baseline 1. Certainty-equivalent (t, = 1): This baseline as-
sumes certainty, making a point estimate by considering only
the most probable hypothesis at each time step.

Baseline 2. Fixed uncertainty (t, = T'): Similar to [4], this
baseline ignores future information gains, assuming fixed un-
certainty along the entire planning horizon.

Baseline 3. MPC: This baseline uses non-game-theoretic
model-predictive control (MPC), forecasting opponent trajec-
tories assuming constant ground-truth velocity.

Contingency game with t, = 2: To test the utility of our
branching time heuristic, we also consider a contingency game
that assumes certainty one step into the future—an assumption
also used in non-game-theoretic contingency planning [21].

2A low threshold results in more conservative behavior. As informed by
a parameter sweep over €, we choose ¢ = 272 for all experiments for best
performance.

2213
¥ =meel  ego human._.__ __human _
agent (R) driver (H) : ¢ driver (H)
0 = stay (©) N | ' |

Fig. 5. Scenario 2: an autonomous vehicle seeks to overtake slow traffic on a
highway while being uncertain about the lane changing intentions of the vehicle
ahead.

Contingency game with oracle branching time: Additionally,
we consider an oracle branching time estimator that recovers
the true branching time by first simulating receding-horizon
interaction with a nominal branching time and then extracting
the time of certainty from the belief evolution in hindsight.
Naturally, this oracle requires access to the frue human intent
and hence is not realizable in practice. Nonetheless, we include
this variant to demonstrate the potential performance achievable
with our interaction model.

B. Driving Scenarios

Beyond the jaywalking example (Scenario 1) introduced in
Section IV, we evaluate our method on the following three-
player scenario.

Scenario 2. highway overtaking: In this scenario, an au-
tonomous vehicle attempts to overtake a human-operated vehicle
with additional slow traffic in front, cf. Fig. 5. To perform this
overtaking maneuver safely, the robot must reason about possi-
ble lane changing intentions of the other vehicle. Since the robot
is uncertain about the target lane of human-driven car in front, it
maintains a belief over the hypothesis space © = {merge, stay}.
We add a non-convex collision avoidance constraint between
pairs of players which enforces that cars cannot be overtaken on
the side of their target lane.

Implementation details: Throughout all experiments, we
model cars as kinematic unicycles, and pedestrians as planar
point masses. All systems evolve in discrete-time with time
discretization of 0.2 s and agents plan over a horizon of 7" = 25
time steps. In both scenarios, road users’ costs comprise of
a quadratic control penalty and their intent § € © dictates a
goal position for pedestrians and a reference lane for cars via a
quadratic state cost. Collision avoidance constraints are shared
between all agents.

VIII. SIMULATED INTERACTION RESULTS

The following evaluations are designed to support the claims
that (C1) contingency games close the gap between the two
extremes shown in Fig. 1: providing more efficient plans than
fixed-uncertainty games at higher levels of safety than certainty-
equivalent games; and that (C2) our branching time heuristic
improves the performance of contingency games over a naive
fixed branching time estimate of ¢; = 2.

Data collection: We evaluate all methods in a large-scale
Monte Carlo study as follows. For each scenario, we simulate
receding-horizon interactions of 6s duration. As in the open-loop
evaluation of Section IV, we repeat the simulation for 70 initial
states of each non-ego agent. These initial states are drawn from a
uniform grid over the state regions shown in Figs. 3(a) and 5. We
generate the ground-truth human behavior from a game solution

at each fixed hypothesis 6 € ©. Since this true human intent is
initially unknown to the robot, the robot starts with a uniform
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Fig. 6. Quantitative closed-loop results for the jaywalking example.
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Fig. 7. Quantitative closed-loop results for the overtaking example.

belief. To test the methods under varying information gain
dynamics—and thereby varying branching times—we consider
five levels of human rationality, o2, parameterizing an isotropic
observation model, i.e., 3 = 021 where I denotes the identity
matrix. In contrast to the open-loop evaluation of Section IV,
here the robot re-plans at every time step with the latest online
estimate of the belief and branching time. Figs. 6, 7 summarize
the results of this Monte Carlo study.

Quantitative results: In terms of safety, Figs. 6(a) and 7(a)
show that the methods making a single prediction about the
future, Baseline 1 and Baseline 3, fail significantly more often
than the remaining approaches, all of which achieve failure rates
below 1% across all levels of human rationality. In terms of
efficiency, Figs. 6(b) and 7(b) show that contingency games
incur a lower interaction cost than the more conservative fixed-
uncertainty Baseline 2. However, this performance advantage
relies on a dynamic branching time estimate, as indicated by the
performance advantage of Ours (heuristic) over Ours (¢, = 2).
Finally, Ours (oracle) further improves efficiency due to the tight
branching time estimate (cf. Figs. 6(c) and 7(c)), demonstrating
the potential of our interaction model. In summary, these results
support our claims C1 and C2 above.

Qualitative results: To further contextualize these results with
respect to claim C1, we visualize examples of the closed-loop
behavior generated by our method, the certainty-equivalent
Baseline 1, and the fixed-uncertainty Baseline 2 in Figs. 8, 9.
Here, we show both the sequence of states traced out by all
players and the robot’s plan five time steps into the interaction.
In both scenarios, the robot’s initial observations cause its belief
to favor an incorrect hypothesis. This belief prompts Baseline 1
to commit to an unsafe strategy, causing a collision with the
human. Baseline 2, on the other hand, brakes conservatively in
the face of this belief and only accelerates once the uncertainty
fully resolves. Finally, our contingency game planner anticipates

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 3, MARCH 2024

Baseline 1 (tb = 1) Ours (heuristic) Baseline 2 (tb = T)

®
§é§\

collision

Estimated
branching
point <

Fig. 8. Qualitative closed-loop results for the jaywalking example.
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Fig. 9. Qualitative closed-loop results for the overtaking example.

the future information gain and avoids excessive braking while
remaining safe.

IX. LIMITATIONS & FUTURE WORK

Even with a simple branching time heuristic, our approach
outperforms the baselines. Nonetheless, the observed perfor-
mance gains for the branching time oracle motivate further
research into more precise estimators. Beyond that, in this work
we assumed access to a fixed set of suitable intent hypotheses
and our approach relies on receding-horizon re-planning to adapt
to changes of this set. Future work should seek to automate the
discovery of intent hypotheses, test our approach in scenarios
with more complex intent dynamics, and consider extensions
that explicitly capture these effects in the contingency game.
Furthermore, the complexity of our approach is proportional to
the product of the number of individual intents of each player,
and the technique we employ to solve these games generally
scales cubically with regards to total strategy size. Future work
could consider employing a learning-based predictor [35] to
automatically identify high-likelihood intents in complex sce-
narios and sub-select local players [36]. Finally, future work
may extend our approach to continuous hypothesis spaces, e.g.,
by sampling as in [5], [37].

X. CONCLUSION

We present contingency games, a game-theoretic motion
planning framework that enables a robot to efficiently interact
with other agents in the face of uncertainty about their intents.
By capturing simplified belief dynamics, our method allows a
robot to anticipate future changes in its belief during strategic
interactions. In detailed simulated driving experiments, we char-
acterized both the qualitative behavior induced by contingency
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games and the quantitative performance gains with respect to
non-contingent baselines.
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