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ABSTRACT
We study the motion of the coupled system, S, constituted by a physical pendulum, B, with an interior cavity entirely filled with a viscous,
compressible fluid, F . The system is constrained to rotate about a horizontal axis. The presence of the fluid may strongly affect the motion of
B. In fact, we prove that, under appropriate assumptions, the fluid acts as a damper, namely, Smust eventually reach a rest-state. Such a state
is characterized by a suitable time-independent density distribution of F and a corresponding equilibrium position of the center of mass of
S. These results are proved in the very general class of weak solutions and do not require any restriction on the initial data, other than having
a finite energy. We complement our findings with some numerical tests. The latter show, among other things, the interesting property that
“large” compressibility favors the damping effect, since it drastically reduces the time that S takes to go to rest.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143910

I. INTRODUCTION
The general problem of the motion of a rigid body with an interior, hollow cavity entirely filled with a fluid has all along attracted the

attention of engineers and applied mathematicians. The list of major contributions only would be too long to include here, and for this we
refer the reader to the monographs3,4 and the references therein.

One of the remarkable phenomena that motivated this study traces back to the famous experiments of Lord Kelvin.29 His tests unequiv-
ocally showed that the presence of the fluid in the cavity substantially influences the motion of the body by producing a significant stabilizing
effect. Modern primary applications of this distinctive property are, for example, liquid sloshing dampers for vibration control of tall
buildings6 and oscillations suppressors in spacecraft and artificial satellites.1

In spite of its relevance, a rigorous and systematic mathematical analysis of the motion of a body with a fluid-filled cavity has started only
a few years ago.5,12,15–19,23–25 These works have, on the one hand, produced a full explanation of experimental observations and, on the other
hand, hinted at other, new interesting features that might be supported by numerical or lab tests. In particular, a remarkable result proved in
Refs. 15 and 18 shows that, under certain conditions, the presence of fluid can even bring the coupled system body-fluid to full rest.

At this point, it must be emphasized that in all the papers indicated above, the fluid is supposed to be viscous and incompressible. Thus,
more recently, in Refs. 13 and 14 we began to investigate the case where the fluid is still viscous but compressible. This study has a two-
fold motivation. In the first place, to answer the natural question of the influence that compressibility may have on the characteristics of the
terminal state. Secondly, the mathematical challenge constituted by the fact that, being the density no longer a constant, a much richer set of
terminal states may occur and, therefore, the problem of their attainability can become of primary importance. In Refs. 13 and 14, we limited
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ourselves to the problem where the coupled system body-fluid, S, moves in absence of external forces (inertial motions). In particular, we
proved, that for “small” Mach numbers and for initial data of restricted magnitude, the system will reach a terminal state where the body
rotates with constant angular velocity and the fluid is at rest with respect to the body. Notice that this result is in sharp contrast with the
analogous one in absence of fluid, where the generic motion is a complicated motion a la Poinsot. This shows, in particular, the stabilizing
effect of the fluid mentioned earlier on.

In the current article we begin to analyze the situation when the coupled system S is subject to external forces. To this end, we have
chosen the classical example where the body is a physical pendulum whose interior is filled up with a viscous barotropic fluid with a classical
constitutive law; see (2.9). Our main findings will be described next. In the first place, we formulate the problem in the wide class of weak
solutions, namely, suitably renormalized, distributional solutions satisfying the “energy inequality” and corresponding to initial data that are
only requested to have a finite energy; see Definition 2.1. Our objective is to investigate the behavior of these solutions as time goes to infinity
and determine all possible terminal states. It comes then natural to consider the class of steady-state solutions, C, as significant candidates.
We thus show that, in such states, S must be at rest with a corresponding (time-independent) distribution of fluid density compatible with
the vanishing of the axial component (that is, along the axis of rotation) of the total angular momentum. These states represent all allowed
equilibrium configurations for S and are characterized by having their center of mass, C, belonging to the vertical plane containing the axis
of rotation; see Theorem 3.1. However, unlike the incompressible case, there could be more than two configurations of S that could furnish
the same location of C, due to the fact that the density of the fluid is not constant, thus leading to the circumstance of multiple solutions;
see Subsections III B and III D. This fact makes the problem of attainability of steady-state solutions more complicated, also due to the lack
of uniqueness of weak solutions. In any case, we are able to prove that, provided the cavity is convex, C is not empty, since it contains the
non-empty class of minimizers of the total energy; see Theorem 3.5. We then address the question of the asymptotic in time behavior in
the class of weak solutions. While their existence can be obtained by a rather standard method (Theorem 4.1), their behavior for large times
requires some efforts, especially for the proof of appropriate convergence of the pressure field; see Subsections IV A and IV B. As a result, we
are able to show that every weak solution tends to a steady state (equilibrium configuration), on condition that there is only one of them with
total energy not greater than that of the initial data; see Theorem 4.4. We then check that this condition is certainly satisfied if S possesses
suitable symmetry properties. Precisely, we prove that if the cavity is a sphere with its center on the line passing through the center of mass of
the body and its projection on the rotation axis, then whenever S is released from rest and in any position other than the straight-down and
straight-up ones, it will eventually reach the equilibrium where its center of mass in the straight-down position.

The above analytical findings are supported and complemented by several two-dimensional numerical tests. Here the coupled system S
consists of two concentric circles C1 and C2 ⊂ C1, where C1/C2 is “the body” and C2 the “cavity.” The objective is to study the behavior in
time of S, for different values of the physical quantities involved and, in particular, in the limit of very large values of the gas parameter a, that
is, small Mach number (incompressible limit). The tests show, among other things, a surprising property, namely, that compressibility acts in
favor of stability. In other words, all other parameters being fixed, S will reach the rest in a shorter time for “large” a, rather than “small” a.

The plan of the paper is as follows. After formulating the problem in Sec. II, including the definition of weak solution, in Sec. II we prove
a characterization (Subsection III A) and the existence (Subsection III C) of steady-state solutions, along with some comments about their
uniqueness (Subsections III B and III D). Successively, in Sec. IV, we study the large-time behavior of weak solutions and prove there our
main result on the attainability of steady states. Finally, Sec. V is dedicated to the numerical tests mentioned previously.

II. FORMULATION OF THE PROBLEM
Let B be a finite rigid body, with an interior hollow cavity C filled with a viscous fluid. In mathematical terms, C is an open simply

connected30 domain of R3 completely surrounded by a domain B in such a way that ∂ C ⊂ B, C ∩ B = ∅, and C ∪ B is bounded, connected
and open (see Fig. 1).

FIG. 1. Setting.
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The body B is constrained at all times to rotate around a horizontal axis, a, and we indicate by O the orthogonal projection of the center
of mass G of B on a. Our objective is to study the motion of coupled system body-fluid and, in particular, its behavior for large times. To this
end, let F = {O, ei} be the fixed (inertial) frame with e3 and e1 directed, respectively, along a and the downward vertical, so that, indicating
by ĝ the acceleration of gravity, in the frame F we have

ĝ = g e1, g = ∣̂g∣. (2.1)

Further, let ω = ω(t)e3 be the angular velocity of B, set

A(ω) ∶=

⎛
⎜
⎜
⎜
⎜
⎝

0 −ω 0

ω 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

(2.2)

and denote byQ = Q(t), t ≥ 0, the family of proper orthogonal transformations solving the following IVP:

Q̇ = A ⋅Q, Q(0) = Q0,

with

Q0 =

⎛
⎜
⎜
⎜
⎜
⎝

cos ϑ0 − sin ϑ0 0

sin ϑ0 cos ϑ0 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎠

, some ϑ0 ∈ [0, 2π).

Putting

ϑ(t) ∶= ∫
t

0
ω(s)ds + ϑ0, t ≥ 0,

we obtain

Q(t) =

⎛
⎜
⎜
⎜
⎜
⎝

cos ϑ(t) − sin ϑ(t) 0

sin ϑ(t) cos ϑ(t) 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎠

. (2.3)

Let B0, C0 be arbitrarily fixed reference configurations of B and C, respectively, and set, for all t ≥ 0,

C(t) ∶= {y ∈ R3 : y = Q(t) ⋅ x, x ∈ C0},
B(t) ∶= {y ∈ R3 : y = Q(t) ⋅ x, x ∈ B0},

S(t) := B(t) ∪ C(t).
(2.4)

Then, the equations of motion of the coupled system body-liquid in the frame F (that is, in the y-variable) are given by21

∂t(rw) +div (rw ⊗w) =div Ŝ(w) −∇p(r) + r g e1
∂tr +div (rw) = 0

⎫⎪⎪
⎬
⎪⎪⎭

(y, t) ∈ ∪t>0 C(t) × {t}

w = ω(t)e3 × y (y, t) ∈ ∪t>0 ∂ C(t) × {t}
d
dt
(J(t)ω + e3 ⋅ ∫

C(t)
r y ×w dy) = e3 ⋅ [(∫

S(t)
r̂ y dy) × ge1] ≡ g∫

S(t)
r̂y2 dy.

(2.5)

Here, r = r(y, t),w =w(y, t) are density and velocity fields of the fluid, while Ŝ is the viscous part of Cauchy stress tensor.Moreover, denoting
by rB(y) the density of B, we set

r̂ ∶=
⎧⎪⎪
⎨
⎪⎪⎩

r(y, t) if y ∈ C(t)
rB(y) if y ∈ B(t)

and
J(t) ∶= ∫

B(t)
rB(y)δ2(y) dy

where δ(y) = dist(y, a).
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In order to convert the problem into an equivalent one where the domain of the fluid does not change with time, we define

𝜚(x, t) ∶= r(Q(t) ⋅ x, t), u(x, t) ∶= Q⊺(t) ⋅w(Q(t) ⋅ x, t), (x, t) ∈ C0 × (0,∞),
S(u) ∶= Q⊺(t) ⋅ Ŝ(Q(t) ⋅ u) ⋅Q(t), g(t) ∶= Q⊺(t) ⋅ ĝ, 𝜚B(x, t) ∶= rB(Q(t) ⋅ x), t ∈ (0,∞),

so that, recalling that
Q(t) ⋅ e3 = e3, for all t ≥ 0, (2.6)

the system (2.5), in terms of the x-variable and fields 𝜚 and u, thus becomes21

∂t(𝜚u) +div (𝜚v ⊗ u) + 𝜚ωe3 × u =div S(u) −∇p(𝜚) + 𝜚 g
∂t𝜚 +div (𝜚v) = 0

⎫⎪⎪
⎬
⎪⎪⎭

(x, t) ∈ C0 × (0,∞)

u = ω(t)e3 × x (x, t) ∈ ∂ C0 × (0,∞)
d
dt
(I ω + e3 ⋅ ∫

C0
𝜚 x × u dx) = e3 ⋅ [(∫

S0
𝜚̂ x dx) × g],

(2.7)

where
v ∶= u − ωe3 × x, (2.8)

and

𝜚̂ ∶=
⎧⎪⎪
⎨
⎪⎪⎩

𝜚(x, t) if x ∈ C0
𝜚B(x) if x ∈ B0

,

I ∶= ∫
B0
𝜚B(x)δ

2
(x) dx.

Moreover,
S(u) = 2μD(u) + (λ − 2

3
μ)I div u

where D denotes the symmetric part of ∇u, I the identity matrix, while μ > 0 and λ ≥ 0 are (constant) shear and bulk viscosity coefficients.
Also, observing that, by (2.2) and (2.3), Q̇⊺ ⋅Q = A(ω) we derive

ġ = Q̇⊺ ⋅Q ⋅ g = A(ω) ⋅ g,

namely,
ġ + ω e3 × g = 0, t ∈ (0,∞).

For the pressure p we assume the following constitutive law
p(𝜚) = a𝜚γ, (2.9)

for some a > 0 and γ > 3/2. Further, we endow (2.7) with the initial conditions

𝜚(0, x) = 𝜚0(x), 𝜚(0, x)u(0, x) = (𝜚u)0(x)

so that, integrating (2.7)2 over (0, t) × C0 for arbitrary t ∈ R we deduce the equation of conservation of mass for the fluid

∫
C0
𝜚(t, x) dx = ∫

C0
𝜚0(x) dx. (2.10)

The unknowns of (2.7) are u : (0,T) × C0 → R3, 𝜚 : (0,T) × (B0 ∪ C0)→ R and g : (0,T)→ R3, while we assume that the density 𝜚B of B is
prescribed. However, instead of the unknown u, sometime we may find it more appropriate to use the velocity v defined in (2.8).

If we formally multiply (2.7)1 by u, (2.7)4 by ω and integrate by parts, we deduce the energy inequality:

1
2
(I dt ∣ω∣2 + ∂t∫

C0
𝜚∣u∣2 dx) + ∫

C0
S(v) : ∇v dx + ∂t∫

C0
P(𝜚) dx ≤ ∂t∫

S0
𝜚̂ x ⋅ g dx

which, after integration, leads to

[I
∣ω(t)∣2

2
+
1
2∫ C0

𝜚(t)∣u(t)∣2 dx + ∫
C0
P(𝜚(t)) dx − ∫

S0
𝜚̂ x ⋅ g dx]

τ

t=0
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+ ∫

τ

0
∫

C0
S(v) : ∇v dxdt ≤ 0,

where
P(𝜚) = a

γ − 1
𝜚γ.

Our primary objective is to investigate the long-time behavior of the system (2.7)–(2.9) in the class of weak solutions, which we defined
next.

Definition 2.1. A quadruple (𝜚,v,ω, g) is a renormalized weak solution to (2.7) on time interval (0,T) if 31

● The momentum equation (2.7)1 is fulfilled in a weak sense, i.e.

∫

T

0
∫

C0
𝜚u ⋅ ∂tφdxdt + ∫

T

0
∫

C0
𝜚v ⊗ u : ∇φ dxdt − ∫

T

0
∫

C0
𝜚ωe3 × u ⋅ φ dxdt

+ ∫

T

0
∫

C0
p(𝜚) divφ dxdt − ∫

T

0
∫

C0
S(u) : ∇φ dxdt

= −∫

T

0
∫

C0
𝜚 g ⋅ φ dxdt − ∫

C0
(𝜚u)0 ⋅ φ(0) dxdt (2.11)

for all φ ∈ C∞c ([0,T) × C0), φ∣∂ C0 = 0.
● The continuity equation is fulfilled in a renormalized weak sense, i.e.

∫

T

0
∫

C0
b(𝜚)∂tφ dxdt+∫

T

0
∫

C0
b(𝜚)v ⋅ ∇φ dxdt

+ ∫

T

0
∫

C0
(b(𝜚) − b′(𝜚)𝜚)divv φ dxdt = −∫

C0
𝜚0φ(0) dx (2.12)

for all φ ∈ C∞c ([0,T) × C0) and any b ∈ C1
[0,∞), ∣b′(z)z∣ ≤ c

√
∣z∣.

● The equations (2.7)3,4 are fulfilled.
● The energy inequality

E(𝜚(τ),u(τ),ω(τ), g(τ)) ≤ E(𝜚0,
(𝜚u)0
𝜚0

,ω0, g0) − ∫
τ

0
∫

C0
S(v) : ∇v dxdt

is fulfilled for almost all τ ∈ [0,T), where

E(𝜚,u,ω, g) ∶= I
∣ω∣2

2
+
1
2∫ C0

𝜚∣u∣2 dx + ∫
C0
P(𝜚) − P′(𝜚)(𝜚 − 𝜚) − P(𝜚) dx

−∫
S0
𝜚̂x ⋅ g dx,

(2.13)

and 𝜚 = 1
∣ C0 ∣∫ C0

𝜚 dx is constant in time due to (2.10).

Remark 2.2. As shown in Ref. 13, a sufficiently smooth weak solution defined as above solves, in fact, (2.7) pointwise.

Remark 2.3. Our definition of weak solution allows us to deduce a weak formulation for a larger class of test functions. Precisely, take

φ = φ0 + ηe3 × x whereφ0 ∈ C
∞
c ([0,T) × C0) and η ∈ C∞c ([0,T)). (2.14)

We multiply (2.7)4 by η to get
Iω̇ η − ∫

C0
η ∂t(𝜚u) × x ⋅ e3 dx = ∫

S0
η 𝜚̂x dx × g ⋅ e3. (2.15)

Since, by definition,
I e3 = ∫

B
𝜚Bx × (e3 × x) dx,

the term on the left hand side of (2.15) is equal to

∫
S0
∂tη(𝜚̂u) ⋅ (e3 × x) dx,
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where u is extended to ωe3 × x on B0. Further, the right hand side of (2.15) can be rewritten as

∫
S0
η 𝜚̂g ⋅ (e3 × x) dx,

so that, (2.15) can be equivalently formulated as follows

∂t∫
S0
η(𝜚̂u) ⋅ (e3 × x) dx − ∫

S0
∂tη (𝜚̂u) ⋅ (e3 × x) dx = ∫

S0
η 𝜚̂ g ⋅ (e3 × x) dx (2.16)

Next, we observe that

∫
S0
η 𝜚̂ωe3 × u ⋅ (e3 × x) dx = ∫

S0
η 𝜚̂ωe3 × (v + ωe3 × x) ⋅ (e3 × x) dx

= ∫
S0
η 𝜚̂(e3 × v) ⋅ (ωe3 × x) dx = ∫

C0
η 𝜚(v2,−v1, 0) ⋅ (ωe3 × x) dx.

Furthermore,

∫
S0
𝜚̂(v ⊗ u) : ∇(ηe3 × x)dx = ∫

C0
𝜚η(v ⊗ u) : ∇(e3 × x) dx = ∫

C0
𝜚ηviuj∂i(x2,−x1, 0)j dx

= ∫
C0
𝜚η(−v1u2 + v2u1) dx = ∫

C0
𝜚η(v2,−v1, 0) ⋅ (ωe3 × x) dx,

from which we deduce
− ∫

S0
𝜚̂(v ⊗ u) : ∇(ηe3 × x) dx + ∫

S0
𝜚̂ωe3 × u ⋅ (ηe3 × x) dx = 0 (2.17)

Also, we observe that since S is a symmetric tensor whereas∇(e3 × x) is antisymmetric, we get

∫
C0
S(v) : ∇(ηe3 × x) dx = 0.

Thus, adding (2.11) with φ = φ0, (2.16) and (2.17), we obtain

∂t∫
S0
𝜚̂u ⋅ φ dx − ∫

S0
𝜚̂u ⋅ ∂tφdx − ∫

S0
𝜚̂(v ⊗ u) : ∇φ dx

+ ∫
S0
𝜚̂ωe3 × u ⋅ φ dx + ∫

S0
S(v) : ∇φ dx = ∫

S0
𝜚̂g ⋅ φ dx, (2.18)

where φ is a test function of the form (2.14). Note that the energy inequality may be deduced formally from (2.18) by taking φ = u.

III. STEADY STATES
Onemay expect that, for sufficiently large times, the generic weak solution may approach some steady state [namely, a time-independent

solution of (2.7)] in a suitable topology. This will be investigated in Sec. IV. Therefore, the main goal of this section is to find and characterize
all possible steady states, in the class of renormalized weak solutions. Before performing this study, however, we would like to make some
simple but important remarks concerning the class of irrotational solutions to (2.7), that is, those for which ω(t) = 0 for all t ≥ 0.

From what we presented at the beginning of Sec. II, in those motions where ω(t) ≡ 0, we have

Q(t) = Q0, for all t ≥ 0, (3.1)

implying that
y = Q0 ⋅ x, (3.2)

and, moreover,
𝜚 = r(Q0 ⋅ x), u = Q⊺0 ⋅w(Q0 ⋅ x), 𝜚B = rB(Q0 ⋅ x), g = Q⊺0 ⋅ ĝ. (3.3)

We notice that, by (2.4) and (3.1), in such a case the position of the body (as well as that of the cavity) is time independent in the original frame
F . We also notice that the system of Eq. (2.5) [or, equivalently (2.7)] might seem overdetermined. However, this is not the case, because,
in general, we cannot expect that motions with ω(t) ≡ 0 may occur for any Q0 (that is, any orientation of B). Therefore, Q0 (namely, ϑ0)
becomes a further unknown, which thus makes the problem well-defined.
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A. Characterization
With these premises, we now turn to the characterization of steady-state solutions. From (2.7) we derive that they must satisfy the

following set of equations

div (𝜚v ⊗ u) + 𝜚ωe3 × u +∇p(𝜚) − div S(u) = 𝜚 g
div (𝜚v) = 0

⎫⎪⎪
⎬
⎪⎪⎭

in C

u∣∂ C = ωe3 × x

e3 ⋅ (∫
S0
𝜚̂x dx) × g = 0

ωe3 × g = 0.

(3.4)

We work with a renormalized weak solution, i.e. a quadruple (𝜚,v,ω, g) (recall v = u − ωe3 × x) which satisfies (3.4) and

div (b(𝜚)v) + (𝜚b′(𝜚) − b(𝜚)) divv = 0, ∀ b ∈ C1
(R)

in distributional sense. The system (3.4) is complemented with the conservation of mass (2.10):

∫
C0
𝜚(x) dx = ∫

C0
𝜚0(x) dx ∶=M. (3.5)

We also recall that the gravity has prescribed magnitude, i.e.,

∣g∣ = ∣g0∣ ≡ g. (3.6)

Now, since g ⋅ e3 = 0, from the last equation in (3.4) we get ω = 0, and so, arguing exactly as in Ref. 13 (Lemma 1), we show that v = 0.
Consequently, (3.4) reduces to a system of only two relevant equations:

∇p(𝜚(x)) = 𝜚(x)g in C0,

e3 ⋅ (∫
S0
𝜚̂(x)x dx) × g = 0.

(3.7)

Since ω = 0, by what we just proved and what we remarked at the beginning of this section, by (3.1)–(3.3) we deduce

𝜚 ∶= rs(Q0 ⋅ x), 𝜚̂ ∶= r̂s(Q0 ⋅ x), u ≡w ≡ 0, g = Q⊺0 ⋅ ĝ, (3.8)

for someQ0 to be found, where, from (3.7)1, rs satisfies

∇xp(rs(Q0 ⋅ x)) = rs(Q0 ⋅ x) g,

and where we have emphasized that the derivatives are taken with respect to the x-variable. Employing (3.2), (3.8), and (2.1) in the latter, we
show (derivatives now taken with respect to the y-variable)

Q⊺0 ⋅ [∇yp(rs(y)) − rs(y) g e1] = 0,

which, recalling that p(rs) = a r
γ
s , is in turn equivalent to

drγ−1s

dy1
=
γ − 1
a γ

g.

Integrating both sides of this equation, and assuming that the cavity is convex we conclude

rs = rs(y1) = [(
γ − 1
a γ

g y1 + c)
+

]

1
γ−1

, (3.9)

for some constant c ∈ R.
We next investigate the class of all possible Q0 compatible with steady-state solutions, that is, the equilibrium configurations of the

pendulum. From (3.7)2 and (3.8) we obtain

e3 ⋅ [∫
S0
r̂(Q0 ⋅ x) x × g dx] = 0. (3.10)
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In this integral we now perform the change of variable (3.2). Thus, taking into account (3.8)4, (2.6), and (3.9) and that

x × g = (Q⊺0 ⋅ y) × (Q
⊺
0 ⋅ ĝ) = Q

⊺
0 ⋅ (y × ĝ),

we show that (3.10) is equivalent to

e3 ⋅ [∫
Seq
r̂(y) y × ĝ dy] = 0, (3.11)

where
Seq ∶= Beq ∪ Ceq,
Beq ∶= {y ∈ R3 : y = Q0 ⋅ x, x ∈ B0},

Ceq ∶= {y ∈ R3 : y = Q0 ⋅ x, x ∈ C0}.
(3.12)

The relation (3.11) expresses the vanishing of the axial component of the angular moment of the coupled system S at equilibrium in the fixed
frame F . By keeping in mind (3.9) and (2.1), we show that (3.11), in turn, is equivalent to the following one

∫
Ceq
rs(y1)y2 dy + ∫

Beq
rB(y)y2 dy = 0, (3.13)

which tells us that the center of mass C of the coupled system must belong to the vertical plane containing the rotation axis a. Now, in any
such equilibrium configurations Seq, the position yC (≡

Ð→
OC) in the fixed (inertial) frame is given by

yC =
1
M
(∫

Ceq
rs(y1)y dy + ∫

Beq
rB(y) y dy),

with M =M +m, andmmass of B. Since we chose O as the orthogonal projection of the center of mass G of B on a ≡ e3, we have

∫
Beq
rB(y) y3 dy = 0.

Therefore, collecting the above results we conclude with the following characterization of steady states.

Theorem 3.1. The quadruple (𝜚s,us ∶= vs + ωse3 × x,ωs, gs) is a renormalized weak solution to (3.4) if and only if the following conditions
(i)–(iii) are met:

(i) ωs = 0, us ≡ 0.
Setting y = Q0 ⋅ x:
(ii) 𝜚s = rs(y1), where rs(y1) is given in (3.9), and ĝs = ge1;
(iii) The rotation matrix Q0 is determined by the request that the center of mass C of S is located in the vertical plane, V, containing the

rotation axis a, and precisely at the point yC that, in the fixed (inertial) frame, is given by

yC =
1
M
[(∫

Ceq
rs(y1)y1 dy + ∫

Beq
rB(y) y1 dy)e1 + (∫

Ceq
rs(y1)y3 dy)e3], (3.14)

with Beq and Ceq given in (3.12).

Finally, the constant c in (3.9) is obtained by the condition

∫
Ceq
rs(y1) dy =M. (3.15)

B. Some relevant consequences of Theorem 3.1
We would like to analyze some interesting conclusions that can be drawn as corollary to the previous theorem.
We begin to observe that from (3.14) it follows that, in general, in the equilibrium configuration, yC ≡

Ð→
OC is not aligned with ĝ (namely,

e1). In fact, this alignment occurs if and only if

∫
Ceq
rs(y1)y3 dy = 0. (3.16)
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FIG. 2. (a) B is a homogeneous spherical shell with the cavity (blue) being the inner sphere. In this case yC and ĝ are parallel with same orientation; (b) B is a homogeneous
sphere with an off-centered interior spherical cavity (blue). yC and ĝ are not parallel.

The validity or invalidity of (3.16) may depend on the location of the cavity with respect to O (or, equivalently, G) and its shape. In particular,
(3.16) holds if G and Ceq are such that (⋅, y3) ∈ Ceq ⇒ (⋅,−y3) ∈ Ceq, but may not hold otherwise. A simple example is shown in Fig. 2.

We shall next consider the case when the system S possesses some suitable symmetries. Precisely, let G ≠ O, and suppose the cavity C is
a body of revolution around the axis e ∶=

Ð→
OG/∣

Ð→
OG∣. Moreover, denote by α ∈ [0, 2π) the angle between e and ĝ.

(1) Consider the configurations of B (in the inertial frame) where e is parallel to ĝ, namely, e = ±e1 corresponding to α = 0,π. Clearly,
these are (the only two) equilibrium configurations, B±eq, for B, since we have

∫
B±eq
rB(y)yi dy = 0, i = 2, 3. (3.17)

However, when B is in either one of the configurations B±eq, the coupled system S is in equilibrium as well. In fact, denoted by C±eq the
positions of C when B = B±eq, owing to the symmetry properties of C, we deduce

∫
C±eq
rs(y1)yi dy = 0, i = 2, 3. (3.18)

Therefore, (3.14) follows from (3.17) and (3.18).
(2) Let us comment about the possible uniqueness of the above “vertical” configurations. To this end, denote by G = G(α) the center of

mass of C with the density distribution given in (3.9). In view of Theorem 3.1(iii), equilibrium configurations for α ∈ (0, 2π)may exist
if and only if C(α) ∈ V, namely,

wα ∶= [M
Ð→
OG(α) +mB

Ð→
OG] ⋅ e2 = 0, (3.19)

withmB mass of B. Since w0 = wπ = 0, this suggests that, for suitable rs (that is, a, γ andM) and C, the location of G(α)may vary with
α in such a way that (3.19) is satisfied also for α close to 0,π, thus entailing the existence of some other equilibria, around α = 0,π; see
Remark 3.7. However, the latter circumstance is ruled out if C has suitable symmetry. For example, assume that C is a ball centered at
O′, and set R = ∣O′O∣. Because rs = rs(y1) and of the symmetry properties of C, it follows that G(α) belongs to the straight line parallel
to e1 and passing through O′, for any α ∈ [0, 2π). So, denoting by {O′, e′1} the frame with origin at O′ and e′1 parallel to and oriented

as e1, we have
ÐÐ→
O′G = ℓ′e′1 (≡ ℓ

′e1), for some ℓ′ ∈ R. Notice that ℓ′ is independent of α. Setting ℓ ∶= ∣OG∣, we then infer

Ð→
OG =

ÐÐ→
OO′ +

ÐÐ→
O′G = (R cos α + ℓ′)e1 − R sin αe2,

Ð→
OG = ℓ(cos αe1 − sin αe2),

and, consequently, condition (3.19) becomes

(M R +mB ℓ) sin α = 0, (3.20)

that is satisfied if and only if α = 0,π, which means that the configurations discussed in (1) are the only possible equilibria for S.
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(3) If G lies outside the cavity C, there exists a “critical angle,” αc > 0, such that no equilibrium is allowed for α ∈ (αc,π − αc). In fact, let
Γ be the smallest cone having vertex at G and containing C. Then, on the one hand, C must belong to the segment GG which, on the
other hand, must be in the interior of Γ or, at most, overlap with one of its generatrices. Thus, αc is precisely the least value of α for
which Γ ∩ V = ∅.

Suppose now G = O and let C be a ball centered at O. Then, clearly,

∫
Beq
rB(y)y dy = 0, (3.21)

for all Beq. Moreover, by symmetry,

∫
Ceq
rs(y1)yi dy = 0, i = 2, 3, (3.22)

for all Ceq. From (3.21) and (3.22) we deduce that (3.13) is satisfied in every position of S, implying the existence of a continuum of equilibrium
configurations.

Throughout this section, we have provided explicit examples of solutions to the steady-state problem (3.7), as a consequence of their
characterization furnished in Theorem 3.1. However, at this stage, we do not know if (3.5)–(3.7) admits a solution for every given B and C.
The (positive) answer to this question will be furnished in Sec. III C.

C. Existence
Objective of this subsection is to show existence to the problem (3.5)–(3.7). The main question to address here is not to find the distri-

bution of density (this was already done in Sec. III B) but, instead, to provide the existence of an orientation of S with respect to g compatible
with a steady state (equilibrium configurations) or, equivalently, the matrixQ0 introduced in the previous section.

To reach this objective, we notice, as before, that the first equation in (3.7) entails

𝜚 = γ−1

¿
Á
ÁÀ(

γ − 1
aγ

x ⋅ g + c)
+

(3.23)

for some constant c ∈ R. We also recall that we are assuming C convex, and thus supp𝜚 has just one connected component; see Ref. 9.
Denote by P the projection R3

→ R3, P : (x1, x2, x3)↦ (x1, x2, 0). The second equation in (3.7) then yields that g is parallel to
P(∫ S𝜚̂(x)x dx) (For simplicity of notation, in what follows we set S0 ≡ S, B ≡ B0, and C ≡ C0.) Thus, setting

l ∶= P(∫
B
𝜚B(x)x dx),

we infer that (3.5)–(3.7) is equivalent to the following system of four equations

∫
C

γ−1

¿
Á
ÁÀ(

γ − 1
aγ

x ⋅ g + c)
+

dx − ∫
C
𝜚0 dx = 0

dg − P
⎛

⎝
∫

C

γ−1

¿
Á
ÁÀ(

γ − 1
aγ

x ⋅ g + c)
+

x dx
⎞

⎠
− l = 0

∣g∣2 − ∣g0∣
2
= 0

(3.24)

for four unknowns: g = (g1, g2, 0) ∈ R3, c ∈ R, and d ∈ R.
In view of the above and of what established in Subsection III B, we can then state the following lemma.

Lemma 3.2. Let v, 𝜚, ω and g be a renormalized weak solution to (3.4). Then v = 0,ω = 0,𝜚 is given by (3.23) and g satisfies (3.24).

Remark 3.3. We would like to explain the meaning of the parameter d. Equation (3.24)2 can be rearranged as

dg = P
⎛

⎝
∫

C

γ−1

¿
Á
ÁÀ(

γ − 1
2γ

x ⋅ g + c)
+

x dx
⎞

⎠
+ l.

As we know from Subsection III A [see (3.14)], the right-hand side of this equation is the vector
Ð→
OC, with C center of mass of the whole system at

equilibrium. Thus, d ≠ 0means that
Ð→
OC and g must be parallel. Moreover, d positive means that the g and

Ð→
OC have the same orientation (C is

below the hinge), whereas d negative means the opposite (C is above the hinge).
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By using the standard theory associated to the Euler–Lagrange equations, we can show the following result.

Lemma 3.4. Let 𝜚s ∈ Lγ(C) and gs ∈ R
2
× {0} be a minimizer of the functional

I : (𝜚, g)↦ E(𝜚, 0, 0, g)

with I defined on the set

{𝜚 ∈ Lγ, g ∈ R2
× {0}, 𝜚 ≥ 0, ∣g∣ = ∣g0∣, ∫

C
𝜚(x) dx = ∫

C
𝜚0(x) dx}.

Then 𝜚s and gs solve the system (3.23) and (3.24).

Proof. In particular, for fixed 𝜚s, gs is a minimizer of the smooth functional

I𝜚s : g ↦ I(𝜚s, g)

where, for simplicity, we assume g ∈ R2 as only the first and second components of g matter. We also assume that g satisfies the constraint
(3.6). Then the standard results for Lagrangian multipliers yields

−P(∫
S
𝜚̂(x)x dx) − 2λgs = 0

for some λ ∈ R. We get (3.24)2 assuming 𝜚 is given by (3.23) and d = −2λ. Likewise, for fixed gs, 𝜚s is a minimizer of the functional

Igs : 𝜚↦ I(𝜚, gs)

where 𝜚 ranges in the nonempty closed convex set

K ∶= {𝜚 ∈ Lγ, ∫
C
𝜚 dx = ∫

C
𝜚0 dx, 𝜚 ≥ 0 on C}.

According to Ref. 2, (Corollary 2.184 and Example 2.186), the minimizer 𝜚s satisfies

0 ∋ ∂ Igs(𝜚s) +NK(𝜚s) (3.25)

where ∂ denotes Frechét derivative and NK(𝜚s) is the normal cone defined by

NK(𝜚s) ∶= {η ∈ L
γ′ , ∀ f ∈ K ∫

C
η(x)( f (x) − 𝜚0(x)) dx ≤ 0}.

We now analyze the structure of NK . First, let η be a constant. Then

∫
C
η(x)( f (x) − 𝜚s(x)) dx = 0 for all f ∈ K,

which implies that every constant function belongs toNK . Next, let η ∈ NK , and let us show that η∣supp 𝜚s must be a constant. Suppose otherwise.
Without loss of generality, we may assume ∫supp 𝜚sη dx = 0. Consequently, there exist ε > 0 and sets A,B ⊂ supp𝜚s of positive measure such
that η∣A > ε, η∣B < −ε, 𝜚s∣A∪B > ε and ∣A∣ = ∣B∣. Take f = 𝜚s + ε(χA − χB) where χS is the characteristic function of the set S. Then

∫
C
η(x)( f (x) − 𝜚(x)) dx > 0,

which yields that η is not in NK : a contraddiction. Summing up, we can thus state that every function in NK is constant on supp𝜚s and every
constant belongs to NK . Consequently, (3.25) yields

P′(𝜚s) − P
′
(𝜚) − x ⋅ gs + λ = 0 on supp 𝜚s,

for some λ ∈ R. Since P′(𝜚s) =
aγ
γ−1𝜚

γ−1, this equation implies (3.23) with c = (P
′
(𝜚)−λ)(γ−1)

aγ . ◻

We are now in a position to show our existence result.

Theorem 3.5. Suppose C convex. Then (3.5)–(3.7) has at least one solution.

J. Math. Phys. 64, 111501 (2023); doi: 10.1063/5.0143910 64, 111501-11

Published under an exclusive license by AIP Publishing

 20 D
ecem

ber 2023 13:30:00

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

Proof. In view of Lemmas 3.2 and 3.4, we only have to prove that the functional

𝜚, g ↦ E(𝜚, 0, 0, g)

has at least one minimizer in the set

A ∶= {(𝜚, g) ∈ Lγ(C) × (R2
× {0}),𝜚 ≥ 0,∫

C
𝜚 dx = ∫

C
𝜚0 dx, ∣g∣ = ∣g0∣}.

We begin to show that for a fixed g, the functional
Ig : 𝜚↦ E(𝜚, 0, 0, g)

defined on
A0 ∶= {𝜚 ∈ Lγ(C),𝜚 ≥ 0,∫

C
𝜚 dx = ∫

C
𝜚0 dx}

attains there a minimum. Consider the function

P∞(z) =
⎧⎪⎪
⎨
⎪⎪⎩

P(z) − P′(𝜚)(z − 𝜚) − P(𝜚), for z ∈ [0,∞),
+∞, for z ∈ (−∞, 0).

and redefine Ig in the following way

Ig : 𝜚↦ ∫
C
(P∞(𝜚) + 𝜚x ⋅ g) dx.

Owing to Ref. 11 (Theorem 6.54), this functional is lower semicontinuous, and since A0 is convex and closed, we obtain the existence of a
minimizer by the direct method of calculus of variations; see Ref. 11 (Sec. 3.2). Next, consider the function

f : g ↦ min
𝜚

E(𝜚, 0, 0, g),

defined in E ∶= {g ∈ R2
× {0}, ∣g∣ = ∣g0∣} with values in R. In order to show the theorem, it remains to prove that f attains a minimum in E.

Since E is compact, it suffices to check that f is continuous there. The definition of E yields

∣E(𝜚, 0, 0, g1) − E(𝜚, 0, 0, g2)∣ ≤ c∣g1 − g2∣

with c independent of 𝜚 (but dependent on 𝜚0), from which it follows that

min
𝜚

E(𝜚, 0, 0, g1) ≤ min
𝜚

E(𝜚, 0, 0, g2) + c∣g1 − g2∣.

Interchanging the role of g1 and g2, we deduce the opposite inequality, which furnishes the desired continuity and thus completes the proof
of the theorem. ◻

D. Further comments about uniqueness
We shall now provide a result regarding the uniqueness of the “vertical” equilibrium configurations that relates to what discussed in

Sec. III B(1). To this end, set

Π(g) = P
⎛

⎝
∫

C

γ−1

¿
Á
ÁÀ(

γ − 1
aγ

x ⋅ g + c)
+

x dx
⎞

⎠

where the constant c is determined uniquely by (3.24)1. The following result holds.

Theorem 3.6. Assume the cavity C is such that, for any g ∈ R2
× {0}, ∣g∣ = ∣g0∣,

⟨Π(g), l⟩ > 0. (3.26)

Then, the corresponding d is not 0. Assume, further, we are in a class of solutions such that

∣d∣ > δ2 > 0, (3.27)

and
∣Π(g1) −Π(g2)∣ ≤ δ1∣g1 − g2∣, (3.28)
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for some δ2 > 2δ1 > 0. Then, there are at most two solutions to (3.24), one with d < 0 and the other with d > 0.

Proof. We begin to notice that condition (3.26) is guaranteed once we know, for example, that every x ∈ C satisfies ⟨x, l⟩ > 0. From (3.24)
we get

∣d∣ =
∣Π(g) + l∣
∣g0∣

,

which, by (3.26), implies ∣d∣ > 0. We distinguish the two cases d > 0 and d < 0, and begin to treat the case d > 0 first. Let g1, c1,d1 and g2, c2,d2
be two solutions to (3.24). Employing (3.28), we infer

∣d1 − d2∣ =
∥Π(g1) + l∣ − ∣Π(g2) + l∥

∣g0∣
≤
∣Π(g1) −Π(g2)∣

∣g0∣
≤

δ1
∣g0∣
∣g1 − g2∣.

On the other hand, from (3.24)2 we show

0 = ⟨d1g1 − d2g2 − (Π(g1) −Π(g2)), g1 − g2⟩

= d1∣g1 − g2∣
2
+ (d1 − d2)⟨g2, g1 − g2⟩ − ⟨Π(g1) −Π(g2), g1 − g2⟩

≥ (δ2 − 2δ1)∣g1 − g2∣
2
≥ (δ2 − 2δ1)∣g1 − g2∣

2

and thus, assuming d > 0 and δ2 − 2δ1 > 0, there is at most one solution. Note that the same conclusion holds also in the case d < 0. ◻

Remark 3.7. The assumptions of Theorem 3.6 are rather significant. In fact, they ensure that the center of mass of the whole system does
not vary too much for different directions of gravity. We now show that these assumptions are somehow also necessary, by bringing an example
that shows that, if they are violated, the conclusion of the theorem is not true. Let consider C = (−1, 1) × (−1, 1) × (−1, 1), γ = 2, and a = 1

2 . The
total mass is assumed to be 4. Furthermore, the body is such that l = (1, 0, 0). Then g1 = (1, 0, 0) and g2 = (−1, 0, 0) are two solutions for which
the appropriate c1 and c2 is both equal to 1. However, for g1 we have

Π(g1) + l = (11/3, 0, 0) =
11
3
g1

and for g2 we have

Π(g2) + l = (−5/3, 0, 0) =
5
3
g2

and we have two solutions for which d > 0 (namely, d1 = 11
3 and d2 = 5

3 ). Notice that in this case, δ1 = 2, ∣d∣ = 11/3, so that ∣d∣ < 2δ1, and (3.28)
is violated, for all δ2 > 2δ1.

IV. GLOBAL BEHAVIOR OF WEAK SOLUTIONS
For simplicity, in what follow we set C0 ≡ C. We begin by stating an existence result of weak solutions.

Theorem 4.1. Let C be of class C2+ν, for some ν > 0, and let 𝜚0 ∈ Lγ(C), γ > 3/2, with 𝜚0∣B = 𝜚c, 𝜚c ∈ R. Further, let u0 : S→ R3 be such
that 𝜚0∣u0∣2 ∈ L1(C) and u0∣B = ωe3 × x for some ω ∈ R. Then there exists a weak solution to (2.7) in the sense of Definition 2.1 on the time
interval (0,T), arbitrary T > 0.

Remark 4.2. The proof of this theorem is omitted, since it can be obtained by simply combining the arguments used in Ref. 7 in the case
when the motion of B is prescribed with those of Ref. 14, where the motion of B is a further unknown. The crucial point is to show uniform
estimates to derive the regularity of the pressure by using the Bogovski operator that allows for the passage to the limit in the pressure term. A
detailed treatment of this issue can be found in Refs. 14 and 8.

Remark 4.3. The regularity on C stated in the theorem could be relaxed to assume C to be just of class C0,1 (or even less regular). The method
may be found in Ref. 22.
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A. Global estimates
Hereinafter we assume that 𝜚 and u is a weak solution in the sense of Definition 2.1. Moreover, we assume C is of class C0,1 and γ > 3

2 .
We recall that, from the energy inequality, we deduce the following estimates

ess supt∈(0,∞)∥𝜚(t, ⋅)∥γ ≤ c
sup

t∈(0,∞)
∣ω(t)∣ ≤ c

ess supt∈(0,∞)∥𝜚(t, ⋅)∣u∣
2
(t, ⋅)∥1 ≤ c

∥u∥L2((0,∞)× C) ≤ c

∥∇u∥L2((0,∞)× C) ≤ c

for some c > 0. In order to perform the long-time analysis of our solutions we need some other uniform bounds that we are going to derive.
First, we observe that from (2.7)5 we get at once

∣g(t)∣ = ∣g(0)∣ for all t ∈ (0,∞). (4.1)

We next define the sequence
(𝜚n(t),vn(t),ωn(t)) ∶= (𝜚(n + t),v(n + t),ω(n + t))

and investigate its behavior as n→∞. Throughout, we shall use the letter c to denote an arbitrary constant independent of n. We begin to
show higher integrability properties of the density, by adapting a method from Ref. 26 (Sec. 7.9.5). Consider the test function

φ(t, x) = ψ(t)Φ(t, x), Φ = B(Sα(bk(𝜚n)) − ∫− CSα(bk(𝜚n)) dt)

where ψ ∈ C∞c (−1, 2),B is the Bogovski operator, Sα is a mollifying operator with respect to time and

bk(𝜚) =
⎧⎪⎪
⎨
⎪⎪⎩

𝜚ν for𝜚 ∈ [0, k)
kν for𝜚 ∈ [k,∞)

for some ν ∈ (0, 23γ − 1]. Such a φ is an admissible test function for (2.7). We thus obtain

∫

2

−1
ψ∫

C
p(𝜚n)Sα(bk(𝜚n)) dxdt = ∫

2

−1
∫

C
ψp(𝜚n)(∫− CSα(bk(𝜚n)) dxdt

+ ∫

2

−1
∫

C
ψS(vn) : ∇Φ dxdt + ∫

s

−1
∫

C
ψ𝜚ng ⋅Φ dxdt − ∫

2

−1
∫

C
ψ𝜚nvn ⊗ un : ∇Φ dxdt

− ∫

2

−1
∫

C
𝜚nun ⋅Φ∂tψ dxdt − ∫

2

−1
∫

C
𝜚nun ⋅ ∂tΦψ dxdt + ∫

2

−1
∫

C
ψ𝜚nωne3 × un ⋅Φ dxdt

Every term above, except for the last one, may be estimated similarly as it is done in Ref. 26 (Sec. 7.9.5.2). The last term may be estimated as
follows [compare with the estimate of term J5 in Ref. 26 (Sec. 7.9.5.2)]

∣∫

2

−1
∫

C
𝜚nωne3 × unΦ dxdt∣ ≤ c∫

2

−1
∫

C
∣ψ∣𝜚n∣ωn∣

2
∣Φ∣ dxdt + c∫

2

−1
∫

C
∣ψ∣𝜚n∣ωn∥vn∣∣Φ∣ dxdt

≤ c∥ψ∥L1∥Sα(bk(𝜚n))∥
L∞(L

6γ
5γ−3 )

.

Thus, one may let α→ 0 and k→∞ and, in the same fashion as,26 to deduce

∫

1

0
∫

C
𝜚γ+νn dxdt ≤ c.

Furthermore, from the energy and Korn’s inequalities we easily derive

∫

τ+1

τ
∫

C
∣∇vn∣

2 dxdt → 0
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as τ →∞. As a result, along a subsequence,

𝜚n → 𝜚s weakly in L
γ+ν
((0, 1) × C)

vn → vs ≡ 0 weakly in L2(0, 1;W1,2
(C))

ωn → ωs weakly∗ in L∞(0, 1)

p(𝜚n)→ p(𝜚)s weakly in L1+γ/ν((0, 1) × C).

(4.2)

The functions 𝜚s,vs,ωs and p(𝜚)s solve (3.4) and thus ωs = 0. Notice that p(𝜚)s denotes a weak limit of p(𝜚n) and since p is nonlinear, it is
not necessarily true that p(𝜚)s = p(𝜚s). We shall address this issue in Subsection IV B.

B. Limit of the pressure term
We will prove that p(𝜚)s = p(𝜚s). To this end, it is sufficient to adapt the method from Ref. 10 (Sec. 4). Let

G(z) = zα, 0 < α < min{
1
2γ

,
ν

2(ν + γ)
}

and consider a function b(z) = G(p(z)) in (2.12) to deduce

∣⟨∂tG(p(𝜚n)),φ⟩∣

= ∣∫

1

0
∫

C
G(p(𝜚n))vn∇φ dxdt + ∫

1

0
∫

C
(G(p(𝜚n)) −G

′
(p(𝜚n))𝜚n)φv dxdt∣ ≤ c∥φ∥1,q1 ,

for some q1 > 1 and for φ ∈ C∞c ((0, 1) × C). Consequently

Divt,x(G(p(𝜚n), 0, 0, 0) is precompact inW−1,q1
loc ((0, 1) × C).

We know that
∣⟨∇p(𝜚n),φ⟩∣ = ∣−∫

1

0
∫

C
p(𝜚n)divφ dxdt∣ ≤ c∥φ∥1,q2.

for some q2 > 1 and for φ ∈ C∞c ((0, 1) × C). Thus

Curlt,x(p(𝜚n), 0, 0, 0) is precompact inW−1,q2
loc ((0, 1) × C)

The well known div-curl lemma (see Ref. 28) yields

G(p(𝜚n))p(𝜚n)→ G(p(𝜚)s)p(𝜚)s. (4.3)

According to Ref. 27 (Theorem 6.2) there exists a parametrized family of probabilistic measures νt,x on [0,∞) such that

𝜚s(t, x) = ∫
∞

0
ρ dνt,x(ρ).

and, according to (4.3), we also have

∫

∞

0
ραγ+γ dνt,x(ρ) = ∫

∞

0
ραγ dνt,x(ρ)∫

∞

0
ργ dνt,x(ρ). (4.4)

where we assume for simplicity that p(𝜚) = 𝜚γ. Fix (t, x) and set θαγ ∶= ∫
∞

0 ραγ dνt,x(ρ). Then (4.4) yields

∫

∞

0
(ργα+γ − θγαργ − θγ(θαγ − ραγ)) dνt,x(ρ) = 0,

which transforms into
∫

∞

0
(ργ − θγ)(ραγ − θαγ) dνt,x(ρ) = 0.

The integrand is strictly positive for all ρ ≠ θ and since νt,x is a probabilistic measure, we get νt,x = δ𝜚s(t,x) where δα is a Dirac mass at point α.
Consequently,

𝜚n → 𝜚s strongly in L
q
((0, 1) × C),

for all q ∈ [1, γ + ν) yielding p(𝜚)s = p(𝜚s).
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C. Large-time behavior
In view of what we have proved in the previous subsections, we may now proceed to the limit in (2.7) and deduce that 𝜚s,ωs, gs solve

(3.4). Furthermore, (4.2) allows us to pass to a limit also in the energy as follows

lim
tn→∞
∫

tn+1

tn
E(𝜚(t),u(t),ω(t), g(t)) dt = E(𝜚s, 0, 0, gs).

We will assume that there is only one solution to (3.7) fulfilling the condition

E(𝜚s, 0, 0, gs) ≤ E(𝜚0,u0,ω0, g0).

In such a case, as there is only one possible limit, we immediately get g(t)→ gs as t →∞. Due to (2.7)2 we have ∂t𝜚 ∈ L2(W−1,2
) and,

consequently 𝜚(t)→ 𝜚s as t →∞.
We have just proved the following theorem.

Theorem 4.4. Let C be a Lipschitz domain and let the initial conditions 𝜚0,v0,ω0 and g0 be the same as in Theorem 4.1. Assume that
there is just one solution to (3.4) for which E(𝜚s, 0, 0, gs) ≤ E(𝜚0,u0,ω0, g0).Then every renormalized weak solution to (2.7) tends to (𝜚s, 0, 0, gs).
More precisely,

𝜚(t)→ 𝜚s weakly in L
γ as t →∞,

v(tn + t)→ 0 strongly in L2(0, 1;W1,2
(C)) as tn →∞,

ω(t)→ 0 as t →∞,
g(t)→ gs as t →∞.

As a simple application of this theorem, consider the case when the cavity C is a sphere S with its center O′ belonging to the straight line
OG, G ≠ O. Then, from Sec. III B(3), we know that there are two and only two equilibrium configurations, namely, with the pendulum either
in the straight-down or straight-up position. More precisely, these configurations are characterized by two numbers σ+ > 0 and σ− < 0, such
that

ÐÐ→
OC± = σ± e1, (4.5)

corresponding to the case when the center of massC of the coupled system S is below (C+) or above (C−) the hinge. Let us denote by (𝜚+s , g+s )
and (𝜚−s , g−s ) the two associated steady-state solutions, and set E± ∶= E(𝜚±s , 0, 0, g±s ). Thus, 𝜚

+
s = 𝜚−s ≡ rs, with rs given in (3.9), and

∫
S+
P(𝜚+s ) − P

′
(𝜚)(𝜚+s − 𝜚) − P(𝜚) dx = ∫

S−
P(𝜚−s ) − P

′
(𝜚)(𝜚−s − 𝜚) − P(𝜚) dx,

where S+ (resp. S−) denotes the position of the sphere in the straight-down (resp. straight-up) configuration of S. Moreover,

∫
B
𝜚̂ x ⋅ g = gMÐ→OC ⋅ e1.

Collecting all the above, using (4.5) and recalling (2.13), we show

E+ − E− = −g M (σ+ + σ−) < 0. (4.6)

Therefore, if we choose the initial data in such a way that

E+ < E(𝜚0,u0,ω0, g0) < E−, (4.7)

then every (renormalized) weak solution will converge for large times to (𝜚+s , g+), namely, the pendulum will eventually reach the configu-
ration with its center of mass in its lowest position. This will certainly happen, if we start the pendulum from rest (u0 ≡ 0,ω0 = 0) and pick
(𝜚0, g0) ≠ (𝜚

±, g±), that is, the pendulum is initially away from either straight-down and straight-up configurations (Actually, if S is initially
in one of these two positions with u0 and ω0 both vanishing, it will stay there for all times.). In fact, from Lemma 3.4 we know that any
minimizer of E(𝜚, 0, 0, g) is a solution to (3.5)–(3.7) and, by Theorem 3.5 that the set of minimizers is not empty. However, from the results
of Sec. III B(3) and (4.6), we deduce that (𝜚+, g+) is the only minimizer, which proves our claim.

V. NUMERICAL RESULTS
As we mentioned in the introductory section, in Ref. 15 a problem analogous to the one treated here was investigated under the assump-

tion that the fluid filling the cavity was incompressible. One interesting point to investigate is whether there is any quantitative difference
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between the two problems. For example, how the characteristic time taken to reach the terminal state (the rest) depends on the compressibil-
ity of the fluid. Unfortunately, an analytic study of such a question is, to date, beyond our grasp. However, we have performed numerical tests
that may suggest the answer. Objective of this section is to present these findings.

For simplicity, we assume that the flow is two-dimensional – this is a reasonable assumption as the physical phenomenon may hint to
neglect the third dimension.

We propose a mixed finite volume – finite element method for the approximation of the system (2.7) that we are going to describe next.

A. The mixed finite volume – finite element scheme
To begin, let Ch be a regular and quasi-uniform triangulation of the cavity C and Fh be the set of all interior faces of Ch. Further, we write

h = maxK ∈ ChhK as the mesh size, where hK is the diameter of an element K ∈ Ch. We denote by Qh the space of piecewise constant functions
and by Vh the piecewise linear Crouzeix–Raviart element space:

Qh = {v ∈ L
1
(C)∣ vK is a constant ∀ K ∈ Ch},

Vh = {v ∈ L
2
(C) ∣ vK is a piecewise affine function ∀ K ∈ Ch; ∫

σ
[[v]]dSx = 0 ∀ σ ∈ Fh},

where [[⋅]]∣σ represents the jump over the interface σ. To specify the homogeneous Dirichlet boundary condition, we define

V0,h = {φ ∈ Vh ∣ ∫
σ
φdSx = 0 ∀ σ ∈ ∂ C}.

Now we are ready to introduce the following mixed finite volume – finite element method.

1. Numerical method (compressible solver)
LetΔt be the time increment, g0h = g(0),ω

0
h = ω(0), and let (𝜚0h,u0h) be the projection of the initial data (𝜚,u) (0) onto the spaceQh ×Vh.

Then, for k = 1, . . . ,Nt = T/Δt we seek (𝜚kh,ukh, gkh,ω
k
h) ∈ Qh ×Vh ×R2

×R as solutions to the following system of algebraic equations

Dtgkh + ω
k−1
h e3 × gk+1/2h = 0, (5.1a)

where gk+1/2h =
gk−1h +g

k
h

2 and Dtv
k
h =

vk
h−v

k−1
h

Δt ;

∫
K
Dt𝜚kh dx + ∫

∂K
𝜚k,uph vk−1

h ⋅ ndSx = 0 for allK ∈ Ch, (5.1b)

where vh = uh − uB,uB = ωhe3 × x, n is the outer normal vector, and 𝜚uph is the so-called upwind value of the density given by

𝜚uph =
⎧⎪⎪
⎨
⎪⎪⎩

limδ→0 𝜚h(x + δn) ifvh ⋅ n ≥ 0,
limδ→0 𝜚h(x − δn) otherwise;

1
2∫ C
(Dt(𝜚khu

k
h) ⋅ φ + 𝜚k−1h Dtukh ⋅ φ + 𝜚khv

k−1
h ⋅ ∇ukh ⋅ φ − 𝜚khv

k−1
h ⋅ ∇φ ⋅ ukh) dx

+ ∫
C
𝜚khw

k−1
h e3 × ukh ⋅ φ dx + ∫

C
(S(ukh) : ∇φ − p(𝜚kh) divφ) dx = ∫

C
𝜚khg

k+1/2
h ⋅ φ dx, for all φ ∈ V0,h; (5.1c)

IB33Dtωk
h +Dt(∫

C
𝜚khx × u

k
h dx) ⋅ e3 = ∫

B+ C
𝜚khx dx × g

k+1/2
h ⋅ e3.

Remark 5.1. The scheme (5.1) enjoys the following properties for all k = 1, . . .,Nt :

● Conservation of mass. Indeed, summing up over all elements leads to the mass conservation.

∫
C
𝜚kh dx = ∫

C
𝜚k−1h dx = ⋅ ⋅ ⋅ = ∫

C
𝜚0h dx.
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● Conservation of gravity in the sense of (4.1), i.e.,

∣gkh∣ = ∣g
k−1
h ∣ = ⋅ ⋅ ⋅ = ∣g

0
h∣,

which can be easily obtained by multiplying (5.1a) with gk+1/2h =
gk−1h +g

k
h

2 .
● Positivity preserving of density. We have 𝜚kh > 0 provided 𝜚0h > 0, for which we refer the proof to Ref. 20 (Lemma 4.1).

B. Numerical experiments
We take the pendulum as a circular plate with a circular cavity in the center

B = {x ∣R0 ≤

√

(x1 − L)2 + x22 ≤ R1}, C = {x ∣
√

(x1 − L)2 + x22 ≤ R0},

with R0 = 0.1, R1 = 0.2, and L be the length of the pendulum, see Fig. 3. In our numerical experiments we set γ = 5/3, μ = 100, and η = 0 if
not otherwise mentioned. Further, we denote 𝜚B as the density of the body B, 𝜚0 = 1

∣ C∣∫ C𝜚(0) dx as the averaged initial density of the fluid in
the cavity C and R𝜚 = 𝜚B/𝜚0 as the ratio of the densities. The initial data are set as 𝜚(0) = 1,u(0) = 0,ω(0) = 0, g(0) = (cos ϑ0, sin ϑ0) with
ϑ0 = π/45.

1. Experiment 1: Influence of gas parameters of the compressible solver (5.1)
We show in Figs. 4–6 the evolution of pendulum position (angle ϑ) for different values of density ratioR𝜚, gas parameter a, and pendulum

length L. First of all, in all these numerical experiments we observe the effect of the dissipation due to the viscosity of the fluid. Moreover, we
see larger dissipation effects for:

1. smaller density ratio R𝜚 (fixed gas parameter a and pendulum length L) in Fig. 4;
2. smaller gas parameter a (fixed density ratio R𝜚 and pendulum length L) in Fig. 5;
3. smaller pendulum length L (fixed density ratio R𝜚 and gas parameter a) in Fig. 6.

FIG. 3. Pendulum with a cavity.

J. Math. Phys. 64, 111501 (2023); doi: 10.1063/5.0143910 64, 111501-18

Published under an exclusive license by AIP Publishing

 20 D
ecem

ber 2023 13:30:00

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

FIG. 4. Evolution of pendulum position (angle ϑ) for different density ratio R𝜚 with fixed gas parameter a = 10 and pendulum length L = 0.4.

FIG. 5. Evolution of pendulum position (angle ϑ) for different gas parameter a with fixed density ratio R𝜚 = 1 and length L = 0.4.

FIG. 6. Evolution of pendulum position (angle ϑ) for different pendulum length L with fixed density ratio R𝜚 = 1 and gas parameter a = 10.

2. Experiment 2: Comparison with an incompressible solver
To compare the damping effects of compressible and incompressible fluids, we also introduce an incompressible solver which replaces

the Navier–Stokes part of the compressible solver (5.1), that is (5.1b) and (5.1c), by it incompressible counterpart, while keeping the method
of gh and ωh unchanged.

a. Incompressible solver. Let u0h, g
0
h,ω

0
h be given in the same way as the compressible solver. Let 𝜚 C be the density of the incompressible

fluid in the cavity C. For k = 1, . . . ,Nt we seek (pkh,u
k
h, g

k
h,ω

k
h) ∈ Xh ×Vh ×R2

×R such that the following system of algebraic equations hold:

Dtgkh + ω
k−1
h e3 × gk+1/2h = 0,

𝜚 C∫
C
(Dtukh ⋅ φ +

1
2
vk−1
h ⋅ ∇ukh ⋅ φ −

1
2
vk−1
h ⋅ ∇φ ⋅ ukh) dx + 𝜚 C∫

C
wk−1

h e3 × ukh ⋅ φ dx

+ ∫
C
(S(ukh) : ∇φ − p

k
h divφ − qhdiv u

k
h) dx = ∫

C
𝜚 Cg

k+1/2
h ⋅ φ dx, ∀ qh ∈ Xh, φ ∈ V0,h,

IB33Dtωk
h +Dt(∫

C
𝜚 Cx × u

k
h dx) ⋅ e3 = (∫

B
𝜚Bx dx + ∫

C
𝜚 Cx dx) × g

k+1/2
h ⋅ e3,

where Xh ∶= {v ∈ L2(C)∣ vK is a constant ∀ K ∈ Ch; ∫ Cv dx = 0}.
We show in Fig. 7 the evolution of pendulum positions (represented by the angle ϑ) obtained by the compressible solver and the incom-

pressible solver. Here we have used same parameters for both solvers: L = 0.4, μ = 100, η = 0, 𝜚B = 1, and initial fluid density 𝜚 C = 1.0. Note
that the only difference relies on the gas parameter a(= 0.1, 20, 100) in the compressible solver, which is not needed in the incompressible
solver. Here, let us point out that larger gas parameter a means smaller Mach number. Obviously, Fig. 7 tells that compressible fluids brings
more damping.
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13G. ., P. Galdi, V. Mácha, and Š. Nečasová, “On the motion of a body with a cavity filled with compressible fluid,” Arch. Ration. Mech. Anal. 232(3), 1649–1683 (2019).

J. Math. Phys. 64, 111501 (2023); doi: 10.1063/5.0143910 64, 111501-20

Published under an exclusive license by AIP Publishing

 20 D
ecem

ber 2023 13:30:00

https://pubs.aip.org/aip/jmp
https://doi.org/10.1016/0020-7403(66)90009-9
https://doi.org/10.1007/s00205-016-0966-2
https://doi.org/10.12989/ose.2011.1.2.131
https://doi.org/10.1007/pl00000976
https://doi.org/10.1007/s002290050089
https://doi.org/10.1007/s002050050181
https://doi.org/10.1007/s00205-018-01351-8


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp
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