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ABSTRACT

We study the motion of the coupled system, S, constituted by a physical pendulum, 5, with an interior cavity entirely filled with a viscous,
compressible fluid, F. The system is constrained to rotate about a horizontal axis. The presence of the fluid may strongly affect the motion of
B. In fact, we prove that, under appropriate assumptions, the fluid acts as a damper, namely, S must eventually reach a rest-state. Such a state
is characterized by a suitable time-independent density distribution of F and a corresponding equilibrium position of the center of mass of
S. These results are proved in the very general class of weak solutions and do not require any restriction on the initial data, other than having
a finite energy. We complement our findings with some numerical tests. The latter show, among other things, the interesting property that
“large” compressibility favors the damping effect, since it drastically reduces the time that S takes to go to rest.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143910

I. INTRODUCTION

The general problem of the motion of a rigid body with an interior, hollow cavity entirely filled with a fluid has all along attracted the
attention of engineers and applied mathematicians. The list of major contributions only would be too long to include here, and for this we
refer the reader to the monographs” and the references therein.

One of the remarkable phenomena that motivated this study traces back to the famous experiments of Lord Kelvin.”” His tests unequiv-
ocally showed that the presence of the fluid in the cavity substantially influences the motion of the body by producing a significant stabilizing
effect. Modern primary applications of this distinctive property are, for example, liquid sloshing dampers for vibration control of tall
buildings® and oscillations suppressors in spacecraft and artificial satellites.!

In spite of its relevance, a rigorous and systematic mathematical analysis of the motion of a body with a fluid-filled cavity has started only
a few years ago.”'”'”'**"** These works have, on the one hand, produced a full explanation of experimental observations and, on the other
hand, hinted at other, new interesting features that might be supported by numerical or lab tests. In particular, a remarkable result proved in
Refs. 15 and 18 shows that, under certain conditions, the presence of fluid can even bring the coupled system body-fluid to full rest.

At this point, it must be emphasized that in all the papers indicated above, the fluid is supposed to be viscous and incompressible. Thus,
more recently, in Refs. 13 and 14 we began to investigate the case where the fluid is still viscous but compressible. This study has a two-
fold motivation. In the first place, to answer the natural question of the influence that compressibility may have on the characteristics of the
terminal state. Secondly, the mathematical challenge constituted by the fact that, being the density no longer a constant, a much richer set of
terminal states may occur and, therefore, the problem of their attainability can become of primary importance. In Refs. 13 and 14, we limited
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ourselves to the problem where the coupled system body-fluid, S, moves in absence of external forces (inertial motions). In particular, we
proved, that for “small” Mach numbers and for initial data of restricted magnitude, the system will reach a terminal state where the body
rotates with constant angular velocity and the fluid is at rest with respect to the body. Notice that this result is in sharp contrast with the
analogous one in absence of fluid, where the generic motion is a complicated motion a la Poinsot. This shows, in particular, the stabilizing
effect of the fluid mentioned earlier on.

In the current article we begin to analyze the situation when the coupled system S is subject to external forces. To this end, we have
chosen the classical example where the body is a physical pendulum whose interior is filled up with a viscous barotropic fluid with a classical
constitutive law; see (2.9). Our main findings will be described next. In the first place, we formulate the problem in the wide class of weak
solutions, namely, suitably renormalized, distributional solutions satisfying the “energy inequality” and corresponding to initial data that are
only requested to have a finite energy; see Definition 2.1. Our objective is to investigate the behavior of these solutions as time goes to infinity
and determine all possible terminal states. It comes then natural to consider the class of steady-state solutions, C, as significant candidates.
We thus show that, in such states, S must be at rest with a corresponding (time-independent) distribution of fluid density compatible with
the vanishing of the axial component (that is, along the axis of rotation) of the total angular momentum. These states represent all allowed
equilibrium configurations for S and are characterized by having their center of mass, C, belonging to the vertical plane containing the axis
of rotation; see Theorem 3.1. However, unlike the incompressible case, there could be more than two configurations of S that could furnish
the same location of C, due to the fact that the density of the fluid is not constant, thus leading to the circumstance of multiple solutions;
see Subsections 1] B and I1I D. This fact makes the problem of attainability of steady-state solutions more complicated, also due to the lack
of uniqueness of weak solutions. In any case, we are able to prove that, provided the cavity is convex, C is not empty, since it contains the
non-empty class of minimizers of the total energy; see Theorem 3.5. We then address the question of the asymptotic in time behavior in
the class of weak solutions. While their existence can be obtained by a rather standard method (Theorem 4.1), their behavior for large times
requires some efforts, especially for the proof of appropriate convergence of the pressure field; see Subsections IV A and IV B. As a result, we
are able to show that every weak solution tends to a steady state (equilibrium configuration), on condition that there is only one of them with
total energy not greater than that of the initial data; see Theorem 4.4. We then check that this condition is certainly satisfied if S possesses
suitable symmetry properties. Precisely, we prove that if the cavity is a sphere with its center on the line passing through the center of mass of
the body and its projection on the rotation axis, then whenever S is released from rest and in any position other than the straight-down and
straight-up ones, it will eventually reach the equilibrium where its center of mass in the straight-down position.

The above analytical findings are supported and complemented by several two-dimensional numerical tests. Here the coupled system S
consists of two concentric circles C; and C, c Ci, where C\C; is “the body” and C, the “cavity.” The objective is to study the behavior in
time of S, for different values of the physical quantities involved and, in particular, in the limit of very large values of the gas parameter g, that
is, small Mach number (incompressible limit). The tests show, among other things, a surprising property, namely, that compressibility acts in
favor of stability. In other words, all other parameters being fixed, S will reach the rest in a shorter time for “large” g, rather than “small” a.

The plan of the paper is as follows. After formulating the problem in Sec. I1, including the definition of weak solution, in Sec. I we prove
a characterization (Subsection 111 A) and the existence (Subsection III C) of steady-state solutions, along with some comments about their
uniqueness (Subsections III B and I1I D). Successively, in Sec. [V, we study the large-time behavior of weak solutions and prove there our
main result on the attainability of steady states. Finally, Sec. V is dedicated to the numerical tests mentioned previously.

Il. FORMULATION OF THE PROBLEM

Let 5 be a finite rigid body, with an interior hollow cavity C filled with a viscous fluid. In mathematical terms, C is an open simply
connected”’ domain of R? completely surrounded by a domain B in such a way that C ¢ B, Cn B =@, and Cu B is bounded, connected
and open (see Fig. 1).

0 o

FIG. 1. Setting.
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The body B is constrained at all times to rotate around a horizontal axis, a, and we indicate by O the orthogonal projection of the center
of mass G of B on a. Our objective is to study the motion of coupled system body-fluid and, in particular, its behavior for large times. To this
end, let F = {0, ¢;} be the fixed (inertial) frame with e; and e; directed, respectively, along a and the downward vertical, so that, indicating
by g the acceleration of gravity, in the frame J we have

g=ge, g=1gl (2.1)
Further, let @ = w(t)es be the angular velocity of B, set
0 -0 0
Alw)=lw 0 o0 (2.2)
0 0 0

and denote by Q = Q(¢), t > 0, the family of proper orthogonal transformations solving the following IVP:

Q=A-Q Q(0)=Q,

with
cosd -—sindy 0
Qo =]sin9% cosd% 0| some I e[0,2m).

0 0 1

Putting
t
9(t) = f w(s)ds+ 9, t>0,
0

we obtain

cos 9(t) —sin9(¢) 0O
Q(t) =|sin 9(t) cos 9(t) 0] (2.3)
0 0 1

Let By, Co be arbitrarily fixed reference configurations of 3 and C, respectively, and set, for all ¢ > 0,

C(t):={ye R : y=Q(t)-x, xe Co},
B(t):={yeR’: y=Q(t)-x, x¢ Bo}, (24)
S(t) == B(t) u C(¢).

Then, the equations of motion of the coupled system body-liquid in the frame F (that is, in the y-variable) are given by’’

Or(rw) +div (rw ® w) =div§(w) —-Vp(r)+rger
Or +div (rw) =0 } (1) € U0 C(t) x {t}

w=w(t)esxy (y,1)€UsodC(t) x {t}
d ~ _ -
CE(](t)wnueg-/C(t)ryxwdy) —e3~[(/s(t)rydy) xgel] :gfs(t)ryz dy.

Here, r = r(y,t), w = w(y,t) are density and velocity fields of the fluid, while S is the viscous part of Cauchy stress tensor. Moreover, denoting
by r5(y) the density of B, we set

(2.5)

o {r(y, t)  ifyecC(t)
rs(y) ify e B(t)

and

1= [ re(n@)dy

where 8(y) = dist(y,a).
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In order to convert the problem into an equivalent one where the domain of the fluid does not change with time, we define
o(x.1) = r(Q(t) - x,1), u(x,1) = Q" (1) - w(Q(t) - x,1), (1) € Co x (0,00),
S(u) = Q" (1) -S(Q(1) - u) - Q(1), g(£) = Q" (1) -G 05(x:1) := r5(Q(1) - x), 1 € (0,00),

so that, recalling that
Q(t)-e3 =3, forallt >0, (2.6)

the system (2.5), in terms of the x-variable and fields ¢ and u, thus becomes”!

O(ou) +div (ov @ u) + pwes x u =divS(u) — Vp(o) + 08

00 +div (pv) =0 } (x,t) € Co x (0,00)

u=w(t)esxx (xt)edCx(0,00) 2.7)
£(1w+e3-/0x><udx):e3-|:(/'§xd_x)><g:|,
dt Co So
where
V= U-— we; XX, (2.8)
and
__Joxt) ifxeCo
®osx  ifxe B
1= [ 0s(x)8(x) dx.
By
Moreover,

S(u) =2uD(u) + (/\ - %/,t)]l divu

where D denotes the symmetric part of Vu, I the identity matrix, while > 0 and A > 0 are (constant) shear and bulk viscosity coefficients.
Also, observing that, by (2.2) and (2.3), Q" - Q = A(w) we derive

£=0"-Q-g=A(w) g,

namely,
g+twesxg=0, te(0,00).

For the pressure p we assume the following constitutive law
p(0) = ad’, (2.9

for some a > 0 and y > 3/2. Further, we endow (2.7) with the initial conditions

0(0,x) = 05(x),  0(0,x)u(0,x) = (ou)o(x)
so that, integrating (2.7); over (0,¢) x Cp for arbitrary ¢ € R we deduce the equation of conservation of mass for the fluid
fc o(tx) dx = fc 00(x) dx. (2.10)
The unknowns of (2.7) areu: (0, T) x Co = R, 0: (0,T) x (By U Cy) - Rand g : (0, T) — R?, while we assume that the density ¢ , of B is

prescribed. However, instead of the unknown u, sometime we may find it more appropriate to use the velocity v defined in (2.8).
If we formally multiply (2.7); by u, (2.7)4 by w and integrate by parts, we deduce the energy inequality:

%(Idt|w|2+8tf oluf’ dx)+/S(v):V'v ax+0; [ Po) dv<as [ ox-g dx
Co Co Co So

which, after integration, leads to

[H“’@M; ot ax+ [ plo(e))ax- fsfx-gdx]

t=0
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+[TfS('u):Vvdxdt§0,
0o Jeo

a
P(o) = ——¢".
(0) ,1°

Our primary objective is to investigate the long-time behavior of the system (2.7)-(2.9) in the class of weak solutions, which we defined
next.

where

Definition 2.1. A quadruple (0,v, w, g) is a renormalized weak solution to (2.7) on time interval (0, T) if !

o The momentum equation (2.7); is fulfilled in a weak sense, i.e.
T T T
/ fou‘at(pdxdt+f 0’v®u:V(pdxdt—f owes x u - @ dxdt
0 Co 0 Co 0 Co

+[OT_/COP(O)diV‘dedt‘[OT/COS(u):V(pdxdt
:7/0‘T/Cl)0g~(pdxdt7fco(gu)o.q,(o)dxdt 2.11)

forallg € CZ([0,T) x Co), ¢lac, = 0.
o The continuity equation is fulfilled in a renormalized weak sense, i.e.

/()-T];Ob(0)8:¢dxdt+/()-T/;0b(0)v.V(dedt

+/OT/;O(b(O)_b’(p)p)divv(pdxdt: —/Cooogo(o)dx (2.12)

forall g € CZ°([0,T) x Co) and any b € C'[0, 00), |b'(2)2] < c\/l7].
o The equations (2.7)34 are fulfilled.
o The energy inequality

E(o(1),u(1),w(1),g(7)) < 8(00, (Ool;)o,wo,go) - /;T/COS(U) : Vo dxdt

is fulfilled for almost all T € [0, T), where

i

0+ 5 [Lou’ dx+ [ Po)~P (@)(0-0) ~P(@) d
—fsb‘x-gdx,

Eomwg) =1
(2.13)

and 0 = ﬁfcoo dx is constant in time due to (2.10).

Remark 2.2. As shown in Ref. 13, a sufficiently smooth weak solution defined as above solves, in fact, (2.7) pointwise.

Remark 2.3. Our definition of weak solution allows us to deduce a weak formulation for a larger class of test functions. Precisely, take

¢ =@, +nes x x whereg, € C; ([0,T) x Co) andn e C([0,T)). (2.14)
We multiply (2.7)4 by n to get
Ic'oq—f noi(ou) x x-esdx = f noxdx x g-es. (2.15)
Co So

Since, by definition,
les = /onx (e3 x x) dx,
B

the term on the left hand side of (2.15) is equal to

[ on@u) - (es x %) d,
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where u is extended to wes x x on By. Further, the right hand side of (2.15) can be rewritten as
fSOWEg- (es x x) dx,
so that, (2.15) can be equivalently formulated as follows
(’)t./saq(b‘u) -(e3 x x) dx - [50&71 (0u) - (e3 x x) dx = [Son’o‘g- (e3 x x) dx (2.16)
Next, we observe that
[s nowes x u-(e3 x x)dx = /s nowes x (v + wez xx) - (e3 x x) dx
o o
= /s no(es xv) - (wes x x) dx = /C n0(v2, —v1,0) - (wes x x) dx.

Furthermore,

[906(11 Qu):V(nes x x)dx = fcaoq('v Qu):V(es xx) dx = /;Donviuj(‘)i(xz,—xl,o)j dx

= fCDOW(—Muz +vyuy) dx = fcooq(vz,—vl,o) - (wes x x) dx,

from which we deduce
- ['5(1)@14) : V(nes x x) dx + /ﬁwe3 xu-(nesxx)dx=0 (2.17)
So So

Also, we observe that since S is a symmetric tensor whereas V (es x x) is antisymmetric, we get
fc S(v) : V(res x x) dx = 0.
o
Thus, adding (2.11) with @ = @, (2.16) and (2.17), we obtain
8t/;05u~(pdx— fsﬂﬁu-&(pd.x— fsnb‘(v®u) :Vedx
+/;'5we3xu‘(pdx+/SS(v):V(pdx:_/sb‘g-(pdx, (2.18)

where @ is a test function of the form (2.14). Note that the energy inequality may be deduced formally from (2.18) by taking ¢ = u.

Ill. STEADY STATES

One may expect that, for sufficiently large times, the generic weak solution may approach some steady state [namely, a time-independent
solution of (2.7)] in a suitable topology. This will be investigated in Sec. I'V. Therefore, the main goal of this section is to find and characterize
all possible steady states, in the class of renormalized weak solutions. Before performing this study, however, we would like to make some
simple but important remarks concerning the class of irrotational solutions to (2.7), that is, those for which w(¢) = 0 for all ¢ > 0.

From what we presented at the beginning of Sec. 11, in those motions where w(t) = 0, we have

Q(t) = Qq, forall t >0, (3.1)
implying that
y=Qo-x, (3.2)
and, moreover,
0=r(Qo-x), u=Qp - w(Qo-x), 05=r5(Qo-x),g=Q & (3.3)

We notice that, by (2.4) and (3.1), in such a case the position of the body (as well as that of the cavity) is time independent in the original frame
F. We also notice that the system of Eq. (2.5) [or, equivalently (2.7)] might seem overdetermined. However, this is not the case, because,
in general, we cannot expect that motions with w(t) = 0 may occur for any Qo (that is, any orientation of 5). Therefore, Qo (namely, 9)
becomes a further unknown, which thus makes the problem well-defined.
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A. Characterization

With these premises, we now turn to the characterization of steady-state solutions. From (2.7) we derive that they must satisfy the
following set of equations

div (v ® u) + gwes x u + Vp(@) — divS(u) —og} inC
in

div (ov) =0
ulpe = wes x x (3.4)
e3~( Sﬁxdx)xg:O
0 wez x g =0.

We work with a renormalized weak solution, i.e. a quadruple (9, v, w, g) (recall v = u — we; x x) which satisfies (3.4) and
div (b(0)v) + (0b'(0) - b(0)) divw = 0, V be C'(R)

in distributional sense. The system (3.4) is complemented with the conservation of mass (2.10):

fc o(x) dx = fc 0y(x) dx := M. (3.5)
We also recall that the gravity has prescribed magnitude, i.e.,

gl =gl = & (3.6)

Now, since g - e3 = 0, from the last equation in (3.4) we get w = 0, and so, arguing exactly as in Ref. 13 (Lemma 1), we show that v = 0.
Consequently, (3.4) reduces to a system of only two relevant equations:

vp(o(x)) = o(x)g in Co,

_ (3.7)
e - (/ o(x)xdx) xg=0.
So
Since w = 0, by what we just proved and what we remarked at the beginning of this section, by (3.1)-(3.3) we deduce
0:=1(Qo-x), 0:=75(Qo-x), u=zw=0, g=Q; -3, (3.8)

for some Qo to be found, where, from (3.7),, r; satisfies

pr(rs(QO . x)) = 7’5(@0 . x) 8>

and where we have emphasized that the derivatives are taken with respect to the x-variable. Employing (3.2), (3.8), and (2.1) in the latter, we
show (derivatives now taken with respect to the y-variable)

Qo - [Vyp(r:(3) ~1:(y) g 1] = 0,

which, recalling that p(;) = ar!, is in turn equivalent to
dr’™! _y-1

dy ay

Integrating both sides of this equation, and assuming that the cavity is convex we conclude

re=r:(y1) = [(ya_ylgyWC) ]H, (3.9)

for some constant ¢ € R.
We next investigate the class of all possible Qy compatible with steady-state solutions, that is, the equilibrium configurations of the
pendulum. From (3.7), and (3.8) we obtain

e;-[fso?((@m x)xxg dx] =0. (3.10)
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In this integral we now perform the change of variable (3.2). Thus, taking into account (3.8)4, (2.6), and (3.9) and that
T T = T —
xxg=(Qy y)x(Q-8)=Q - (yx2)
we show that (3.10) is equivalent to

e3'|:‘/s ?(y)yxfg‘dy:lzo, (3.11)

where
Seq = Beq U Ceq;
By:={yeR’: y=Qo-x, x€ By}, (3.12)
Ceq = {yeR3 :y=Qo-x, xeCo}.

The relation (3.11) expresses the vanishing of the axial component of the angular moment of the coupled system S at equilibrium in the fixed
frame F. By keeping in mind (3.9) and (2.1), we show that (3.11), in turn, is equivalent to the following one

J.

which tells us that the center of mass C of the coupled system must belong to the vertical plane containing the rotation axis a. Now, in any

rs(y1)y2 dy + fB r5(y)y2dy =0, (3.13)
q eq

e

such equilibrium configurations Seq, the position y. (= (TC)) in the fixed (inertial) frame is given by

1
Yc = ﬂ(fceqfs(yl)ydw fgeqrs(y)ydy),

with M = M + m, and m mass of B. Since we chose O as the orthogonal projection of the center of mass G of 3 on a = e3, we have

f r5(y)y3dy =0.
By

Therefore, collecting the above results we conclude with the following characterization of steady states.
Theorem 3.1. The quadruple (05, Us == Vs + wse3 X X, ws,gs) is a renormalized weak solution to (3.4) if and only if the following conditions
(i)-(iii) are met:

(i) ws=0,u;=0.
Setting y = Qo - x:
(ii) o, =rs(y,), wherers(y,) is given in (3.9), and g = gey;
(iii) The rotation matrix Qo is determined by the request that the center of mass C of S is located in the vertical plane, V, containing the
rotation axis a, and precisely at the point y . that, in the fixed (inertial) frame, is given by

1
Ye= ﬂ[(/cmrs()’l))h dy + /Beqrs(y)yl dy)el + (»/;e,,rS(yl)yS dy)63], (3.14)

with Beg and Ceq given in (3.12).

Finally, the constant c in (3.9) is obtained by the condition

/C rs(y1) dy = M. (3.15)

B. Some relevant consequences of Theorem 3.1

We would like to analyze some interesting conclusions that can be drawn as corollary to the previous theorem.

We begin to observe that from (3.14) it follows that, in general, in the equilibrium configuration, y. = 0C is not aligned with g (namely,
e1). In fact, this alignment occurs if and only if
J.

e

rs(y1)ysdy = 0. (3.16)
q
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(@ (b)

FIG. 2. (a) Bis ahomogeneous spherical shell with the cavity (blue) being the inner sphere. In this case y and g are parallel with same orientation; (b) /3 is a homogeneous
sphere with an off-centered interior spherical cavity (blue). y and g are not parallel.

The validity or invalidity of (3.16) may depend on the location of the cavity with respect to O (or, equivalently, G) and its shape. In particular,
(3.16) holds if G and Cqq are such that (-, y3) € Cy = (-, —y3) € Cey, but may not hold otherwise. A simple example is shown in Fig. 2.
We shall next consider the case when the system S possesses some suitable symmetries. Precisely, let G # O, and suppose the cavity C is

a body of revolution around the axis e := O_)G/ |O_)G| Moreover, denote by « € [0, 277) the angle between e and g.

(1) Consider the configurations of B (in the inertial frame) where e is parallel to g, namely, e = +e; corresponding to « = 0, 7. Clearly,

these are (the only two) equilibrium configurations, 18, for B, since we have

f rs(y)yidy=0, i=23. (3.17)
Bi

eq

fq, the coupled system S is in equilibrium as well. In fact, denoted by Cﬁ, the

owing to the symmetry properties of C, we deduce

However, when B is in either one of the configurations B

positions of C when B = B,

f rs(n)yidy=0, i=2,3 (3.18)
¢

Therefore, (3.14) follows from (3.17) and (3.18).

(2) Let us comment about the possible uniqueness of the above “vertical” configurations. To this end, denote by G = G(«) the center of
mass of C with the density distribution given in (3.9). In view of Theorem 3.1(iii), equilibrium configurations for « € (0,27) may exist
ifand only if C(«) €V, namely,

Wa i= [M OG(a) + msOG] - €3 = 0, (3.19)

with m 5 mass of B. Since wy = w, = 0, this suggests that, for suitable r; (that is, a, y and M) and C, the location of G(«) may vary with

« in such a way that (3.19) is satisfied also for & close to 0, 7, thus entailing the existence of some other equilibria, around « = 0, 77; see

Remark 3.7. However, the latter circumstance is ruled out if C has suitable symmetry. For example, assume that C is a ball centered at

O', and set R = |0’0|. Because r; = r;(y, ) and of the symmetry properties of C, it follows that G(«) belongs to the straight line parallel

to e; and passing through O’, for any « € [0, 27r). So, denoting by {O’, e} the frame with origin at O and e] parallel to and oriented
—

!

as e, we have O'G = £'e] (= ¢'e;), for some £’ € R. Notice that £’ is independent of a. Setting £ := |OG|, we then infer

— T ’ . A .
OG=00"+0G=(Rcos a+{)e; —R sin ae;, OG = £(cos ae; — sin aey),

and, consequently, condition (3.19) becomes

(MR+mpl)sin a =0, (3.20)

that is satisfied if and only if & = 0, 77, which means that the configurations discussed in (1) are the only possible equilibria for S.
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(3) If G lies outside the cavity C, there exists a “critical angle,” a, > 0, such that no equilibrium is allowed for & € (ac, 7 — ac). In fact, let
I' be the smallest cone having vertex at G and containing C. Then, on the one hand, C must belong to the segment GG which, on the
other hand, must be in the interior of I or, at most, overlap with one of its generatrices. Thus, a. is precisely the least value of & for
whichTnv =.

Suppose now G = O and let C be a ball centered at O. Then, clearly,
/1; re(y)ydy =0, (3.21)
eq

for all B.;. Moreover, by symmetry,

J.

e

rs(n)yidy=0, i=2,3, (3.22)
q

forall Cy. From (3.21) and (3.22) we deduce that (3.13) is satisfied in every position of S, implying the existence of a continuum of equilibrium
configurations.

Throughout this section, we have provided explicit examples of solutions to the steady-state problem (3.7), as a consequence of their
characterization furnished in Theorem 3.1. However, at this stage, we do not know if (3.5)-(3.7) admits a solution for every given 3 and C.
The (positive) answer to this question will be furnished in Sec. I1I C.

C. Existence

Objective of this subsection is to show existence to the problem (3.5)-(3.7). The main question to address here is not to find the distri-
bution of density (this was already done in Sec. 11 B) but, instead, to provide the existence of an orientation of S with respect to g compatible
with a steady state (equilibrium configurations) or, equivalently, the matrix Qo introduced in the previous section.

To reach this objective, we notice, as before, that the first equation in (3.7) entails

0= "1 (V‘lx,g+c) (3.23)
ay .

for some constant ¢ € R. We also recall that we are assuming C convex, and thus supp ¢ has just one connected component; see Ref. 9.
Denote by P the projection RS R3, P (x1,2%2,x3) + (x1,%2,0). The second equation in (3.7) then yields that g is parallel to
73( f S’@(x)x dx) (For simplicity of notation, in what follows we set So = S, B = By, and C = Co.) Thus, setting

1:= P(/Eog(x)x dx),

we infer that (3.5)-(3.7) is equivalent to the following system of four equations

7l yflx ) / —
‘g+c] dx- [g,dx=0
¢\ ( ay . ¢
-1 (3.24)
dg - P /V —x-g+c] xdx]|-1=0
¢ ay .

g” —lgyl =0

for four unknowns: g = (g1,£,0) € R3¢ eR,andd e R.
In view of the above and of what established in Subsection III B, we can then state the following lemma.

Lemma 3.2. Let v, 0, w and g be a renormalized weak solution to (3.4). Then v = 0,w = 0, @ is given by (3.23) and g satisfies (3.24).

Remark 3.3. We would like to explain the meaning of the parameter d. Equation (3.24), can be rearranged as

_ 7=l y-1 .
dg—P(/C A\ ( 2 x g+c)+xdx)+l.

As we know from Subsection 111 A [see (3.14)], the right-hand side of this equation is the vector 0C, with C center of mass of the whole system at

equilibrium. Thus, d # 0 means that 0C and g must be parallel. Moreover, d positive means that the g and OC have the same orientation (Cis
below the hinge), whereas d negative means the opposite (C is above the hinge).
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By using the standard theory associated to the Euler-Lagrange equations, we can show the following result.
Lemma 3.4. Let o, € L'(C) and g, € R* x {0} be a minimizer of the functional
Z:(0.g) = £(0,0,0,8)
with I defined on the set
{oerge® (0}, 020, lgl-lgl [o(x) ar= [o(x) ).

Then o, and g solve the system (3.23) and (3.24).

Proof. In particular, for fixed ¢,, g, is a minimizer of the smooth functional

Lo, :8 = Z(008)

where, for simplicity, we assume g € R? as only the first and second components of g matter. We also assume that g satisfies the constraint
(3.6). Then the standard results for Lagrangian multipliers yields

—P( JEEE dx) “2ig. =0
s
for some A € R. We get (3.24), assuming ¢ is given by (3.23) and d = —2A. Likewise, for fixed g, 0, is a minimizer of the functional

g : 0~ I(0.8,)

where ¢ ranges in the nonempty closed convex set

K::{OELy, f@dx:fpo dx, ononC}.
c c

According to Ref. 2, (Corollary 2.184 and Example 2.186), the minimizer g, satisfies
0507 (0,) + Nk (o)) (3.25)

where 0 denotes Frechét derivative and Nx (o;) is the normal cone defined by

Ni(o) = {n et ¥f ek [n(x)(7(x) - 0o(w)) dx <o},

We now analyze the structure of Nx. First, let # be a constant. Then

[:n(x)(f(x) -0,(x)) dx=0 forall f €K,

which implies that every constant function belongs to Nx. Next, let 7 € N, and let us show that #|supp o, must be a constant. Suppose otherwise.
Without loss of generality, we may assume |, app 0,11 4% = 0. Consequently, there exist ¢ > 0 and sets A, B ¢ supp ¢ of positive measure such

that 1|4 > & #|p < —¢, 0,Jaus > e and |A| = |B|. Take f = ¢, + e(), — x5) Where x; is the characteristic function of the set S. Then

[ 1) - 0(x)) ax >0,

which yields that # is not in Nk: a contraddiction. Summing up, we can thus state that every function in N is constant on supp ¢, and every
constant belongs to Nx. Consequently, (3.25) yields
P'(0,) -P'(0) —x-g,+A=0onsupp o,

for some A € R. Since P'(o,) = %oy_l, this equation implies (3.23) with ¢ = (P’@;%. o

We are now in a position to show our existence result.

Theorem 3.5. Suppose C convex. Then (3.5)-(3.7) has at least one solution.

00:0€°€} €20 Joqusdeq 02
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Proof. Inview of Lemmas 3.2 and 3.4, we only have to prove that the functional

0.8+ £(0,0,0,8)

has at least one minimizer in the set
A={(0.0) cL'(0)x @ x {01,020, [0 dx= [0y dxlg]-lg,|}

We begin to show that for a fixed g, the functional
Ig: 0~ £(0:0,0,8)

defined on
Ao = {peLV(C),ozo,fodx: foodx}
C C

attains there a minimum. Consider the function

P (2) = P(z) - P'(0)(z - 0) - P(0), forz € [0, 00),
+00, forz € (—o0,0).

and redefine 7, in the following way
Ig:0m fc(P“’(o) +0x-g) dx.

Owing to Ref. 11 (Theorem 6.54), this functional is lower semicontinuous, and since A is convex and closed, we obtain the existence of a
minimizer by the direct method of calculus of variations; see Ref. 11 (Sec. 3.2). Next, consider the function

f g~ min &(0,0,0,2),
0

defined in E := {g € R* x {0}, g| = |g,|} with values in R. In order to show the theorem, it remains to prove that f attains a minimum in E.
Since E is compact, it suffices to check that f is continuous there. The definition of £ yields

[£(0,0,0,8,) - £(0,0,0,8,)| < clg, — &,

with ¢ independent of ¢ (but dependent on g,), from which it follows that
m(i)n £(0,0,0,8,) < m(i,n £(0,0,0,8,) +clg; — &l

Interchanging the role of g, and g,, we deduce the opposite inequality, which furnishes the desired continuity and thus completes the proof
of the theorem. o

D. Further comments about uniqueness

We shall now provide a result regarding the uniqueness of the “vertical” equilibrium configurations that relates to what discussed in

Sec. I11 B(1). To this end, set
-1 )/—1
Ii(g) =P /y\ —x- dx
(2) ( . ( a x g+c)+x )

where the constant ¢ is determined uniquely by (3.24);. The following result holds.

Theorem 3.6. Assume the cavity C is such that, for any g € R* x {0}, |g| = |g,}»
(11(g).1) > 0. (3.26)

Then, the corresponding d is not 0. Assume, further, we are in a class of solutions such that

00:0€°€} €20 Joqusdeq 02

|d| > 62 >0, (3.27)
and
IT1(g,) - 11(g,)| < dilg, — &, (3.28)
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for some 8, > 281 > 0. Then, there are at most two solutions to (3.24), one with d < 0 and the other with d > 0.

Proof. We begin to notice that condition (3.26) is guaranteed once we know, for example, that every x € C satisfies (x,1) > 0. From (3.24)
we get

I(g) +1
LR
I,

which, by (3.26), implies |d| > 0. We distinguish the two cases d > 0 and d < 0, and begin to treat the case d > 0 first. Let g c,diand g),0,dy
be two solutions to (3.24). Employing (3.28), we infer

s ) 1= 1] Ny ~Tig )] 00
|2l 1ol 1ol

|g1 _g2|~

On the other hand, from (3.24), we show

0= (dig, - dog, - (T1(g,) - 11(g,)). &, — &)
=dilg, 7g2|2 +(di - d2)(g,,8, — &) — (TI(g,) - 11(g,). 8, - &)
> (6, - 201)lg, _g2|2 > (62 - 201)lg, _gz|2

and thus, assuming d > 0 and &, — 26; > 0, there is at most one solution. Note that the same conclusion holds also in the case d < 0. O

Remark 3.7. The assumptions of Theorem 3.6 are rather significant. In fact, they ensure that the center of mass of the whole system does
not vary too much for different directions of gravity. We now show that these assumptions are somehow also necessary, by bringing an example
that shows that, if they are violated, the conclusion of the theorem is not true. Let consider C = (—1,1) x (=1,1) x (-1,1), y = 2, and a = ;. The
total mass is assumed to be 4. Furthermore, the body is such that 1 = (1,0,0). Then g, = (1,0,0) and g, = (-1,0,0) are two solutions for which
the appropriate ¢, and c; is both equal to 1. However, for g, we have

11
II(g,) +1=(11/3,0,0) = 38

and for g, we have

5
(g,) +1=(-5/3,0,0) = ggz

and we have two solutions for which d > 0 (namely, di = % and d, = g). Notice that in this case, 81 = 2, |d| = 11/3, so that |d| < 281, and (3.28)
is violated, for all §, > 26.

IV. GLOBAL BEHAVIOR OF WEAK SOLUTIONS

For simplicity, in what follow we set Cy = C. We begin by stating an existence result of weak solutions.

Theorem 4.1. Let C be of class Y, for some v >0, and let o, € L"(C), y > 3/2, with 9y|5 = 0,, 0, € R. Further, let uy : S > R3 be such
that gyluo* € L' (C) and uo|s = wes x x for some w € R. Then there exists a weak solution to (2.7) in the sense of Definition 2.1 on the time
interval (0, T), arbitrary T > 0.

Remark 4.2. The proof of this theorem is omitted, since it can be obtained by simply combining the arguments used in Ref. 7 in the case
when the motion of B is prescribed with those of Ref. 14, where the motion of B is a further unknown. The crucial point is to show uniform
estimates to derive the regularity of the pressure by using the Bogovski operator that allows for the passage to the limit in the pressure term. A
detailed treatment of this issue can be found in Refs. 14 and 8.

Remark 4.3. The regularity on C stated in the theorem could be relaxed to assume C to be just of class C** (or even less regular). The method
may be found in Ref. 22.

00:0€°€} €20 Joqusdeq 02
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A. Global estimates

Hereinafter we assume that ¢ and u is a weak solution in the sense of Definition 2.1. Moreover, we assume C is of class C%! and y> %
We recall that, from the energy inequality, we deduce the following estimates

€88 SUP; (000 [O(5 ) |y < €

sup |w(t)]<c
te(0,00)

2
€SS SUPy (9,00 || O(L: ) || (1,-) |1 < ¢
Hu”Lz((O,oo)xC) sc

Hvu||L2((0,<>o)xc) <c

for some ¢ > 0. In order to perform the long-time analysis of our solutions we need some other uniform bounds that we are going to derive.
First, we observe that from (2.7)s we get at once

lg(#)| = |g(0)]| forallt € (0, c0). (4.1)

We next define the sequence
(0,(1), va(t), wn(t)) = (0(n + 1), v(n +1), w(n+1))

and investigate its behavior as n — co. Throughout, we shall use the letter ¢ to denote an arbitrary constant independent of n. We begin to
show higher integrability properties of the density, by adapting a method from Ref. 26 (Sec. 7.9.5). Consider the test function

#(63) = y(0(15), © = B(Su(b(0,)) ~ fesulbulo,) dt)

where y € C°(-1,2), B is the Bogovski operator, S is a mollifying operator with respect to time and

be(0) = o' foro € [0,k)
K’ for o € [k, o0)

for some v € (0, 2y — 1]. Such a ¢ is an admissible test function for (2.7). We thus obtain

[foCP(On)Sa(bk(On)) dxdt = [ffcwp(on)(fcsa(bk(on)) dxdt
+[12fCWS('vn) 1 VO dxdt + /::/;V/Ong'q) dth—[f/CWOn’vn@un:VCD dxdt

2 2 2
- f fonun - OOy dxdt - f f()nun - 0Oy dxdt + f /wonwne3 x Uy - O dxdt
—1Jc -1Jc¢ -1Jc

Every term above, except for the last one, may be estimated similarly as it is done in Ref. 26 (Sec. 7.9.5.2). The last term may be estimated as
follows [compare with the estimate of term J5 in Ref. 26 (Sec. 7.9.5.2)]

2 2 2
|/ fonwneg X t,® dxdt gcf f|1//|on|wn|2\(l>| dxdt+cf f\l//\on|a)nan||(D| dxdt
-1Jc -1Jc¢ -1J¢
< 1 S,x b .
clylp| (k(on))lle( )

6y
L5-3

Thus, one may let & — 0 and k — oo and, in the same fashion as,”* to deduce

1
f f o/ dxdt < c.
0 C

Furthermore, from the energy and Korn’s inequalities we easily derive

T+l 5
f f|an| dxdt - 0
T C
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J. Math. Phys. 64, 111501 (2023); doi: 10.1063/5.0143910 64, 111501-14
Published under an exclusive license by AIP Publishing


https://pubs.aip.org/aip/jmp

Journal of

i : ARTICLE i o
Mathematical Physics pubs.aip.org/aip/jmp

as T — oo. As a result, along a subsequence,

0, - 0, weaklyin L"*"((0,1) x C)

v, - vs = 0 weakly in L2(0, 1; WI’Z(C)) 42)
wn — w5 weakly” in L% (0, 1) '

p(0,) = p(0). weaklyin L'((0,1) x C).

The functions g,, vs, ws and p(o)s solve (3.4) and thus ws = 0. Notice that p(@); denotes a weak limit of p(9,) and since p is nonlinear, it is
not necessarily true that p(9)s = p(0,). We shall address this issue in Subsection IV B.

B. Limit of the pressure term

We will prove that p(9)s = p(9,). To this end, it is sufficient to adapt the method from Ref. 10 (Sec. 4). Let

1
G(Z) = Za, 0<ac< min{g, m}

and consider a function b(z) = G(p(z)) in (2.12) to deduce
{0:G(p(0,))- 9)
1 1
| [6tteyonve dxdes [ [(G(p(0,)) -G (00, )gv dxde] < ol

for some g, > 1 and for ¢ € CZ°((0,1) x C). Consequently

Divix(G(p(0,),0,0,0) is precompact in ngi’ql ((0,1) x C).

We know that .
(Vp(e o)l = |- [ [to,)dive dxdt] < clglus.

for some g, > 1 and for ¢ € C°((0,1) x C). Thus

Curlix(p(0,),0,0,0) is precompact in WI:”“ ((0,1)x C)

The well known div-curl lemma (see Ref. 28) yields
G(p(e,))p(0,) = G(p(0)s)p(0)s (43)
According to Ref. 27 (Theorem 6.2) there exists a parametrized family of probabilistic measures v;x on [0, 00 ) such that
o.(tx)= [ “pdvi(p).

and, according to (4.3), we also have

/0 P dvex(p) = /0 pY dw,x(P)fO p' dvex(p). (4.4)

where we assume for simplicity that p(0) = ¢’. Fix (t,x) and set 6" := [[*p™ dv;.(p). Then (4.4) yields

[ =0 067 - 5)) dvi(p) = 0,

which transforms into

L7 -0 - 0" dvis(p) =0

The integrand is strictly positive for all p # 6 and since v is a probabilistic measure, we get vix = &, (1x) Where &y is a Dirac mass at point a.
Consequently,
0, — 0, stronglyin LY((0,1) x C),

forall g € [1,y + v) yielding p(0)s = p(0,)-
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C. Large-time behavior

In view of what we have proved in the previous subsections, we may now proceed to the limit in (2.7) and deduce that ¢, ws, g, solve
(3.4). Furthermore, (4.2) allows us to pass to a limit also in the energy as follows

tim [ Eo(0).u(1),0(1).8(1)) dt = E(040.0.8,).

ty—o0

We will assume that there is only one solution to (3.7) fulfilling the condition
£(0,,0,0,8;) < E(0y, 4o o, & ).

In such a case, as there is only one possible limit, we immediately get g(t) — g, as t — oo. Due to (2.7); we have ;0 € L*(W™"?) and,
consequently o(t) — g, as t — oco.
We have just proved the following theorem.

Theorem 4.4. Let C be a Lipschitz domain and let the initial conditions 0., vo, wo and g, be the same as in Theorem 4.1. Assume that

there is just one solution to (3.4) for which £(9,,0,0,g,) < (0, t, wo, ). Then every renormalized weak solution to (2.7) tends to (0,,0,0, g, ).
More precisely,
o(t) > o, weaklyinL” ast — oo,
v(ty +1) — 0 stronglyin L>(0,1; W"*(C)) as t, — oo,
w(t) > 0ast — oo,

g(t) > g, ast — oo.

_ Asasimple application of this theorem, consider the case when the cavity C is a sphere S with its center O’ belonging to the straight line
OG, G # O. Then, from Sec. 111 B(3), we know that there are two and only two equilibrium configurations, namely, with the pendulum either
in the straight-down or straight-up position. More precisely, these configurations are characterized by two numbers ¢* > 0 and 0~ < 0, such
that

e
OC* =g ey, (4.5)

corresponding to the case when the center of mass C of the coupled system Sis below (C*) or above (C™) the hinge. Let us denote by (o7, g7)
and (¢;, g, ) the two associated steady-state solutions, and set £* := £(¢7,0,0,g%). Thus, o] = o] = r,, with r, given in (3.9), and

[P - P @) ~0) - @) dx= [ Po) P @0 ~0) - P(0) dx
where S* (resp. S-) denotes the position of the sphere in the straight-down (resp. straight-up) configuration of S. Moreover,

ﬁb‘mg:g/\/lo—éel.
Collecting all the above, using (4.5) and recalling (2.13), we show
EF-& =—gM(os+0)<0. (4.6)
Therefore, if we choose the initial data in such a way that
&t < E(0y> w0, w0, g,) < €, (4.7)

then every (renormalized) weak solution will converge for large times to (¢!,g"), namely, the pendulum will eventually reach the configu-
ration with its center of mass in its lowest position. This will certainly happen, if we start the pendulum from rest (u = 0, wo = 0) and pick
(00, 8,) # (0*,g%), that is, the pendulum is initially away from either straight-down and straight-up configurations (Actually, if S is initially
in one of these two positions with #y and wo both vanishing, it will stay there for all times.). In fact, from Lemma 3.4 we know that any
minimizer of £(p,0,0,g) is a solution to (3.5)-(3.7) and, by Theorem 3.5 that the set of minimizers is not empty. However, from the results
of Sec. I11 B(3) and (4.6), we deduce that (0", g*) is the only minimizer, which proves our claim.

V. NUMERICAL RESULTS

As we mentioned in the introductory section, in Ref. 15 a problem analogous to the one treated here was investigated under the assump-
tion that the fluid filling the cavity was incompressible. One interesting point to investigate is whether there is any quantitative difference
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between the two problems. For example, how the characteristic time taken to reach the terminal state (the rest) depends on the compressibil-
ity of the fluid. Unfortunately, an analytic study of such a question is, to date, beyond our grasp. However, we have performed numerical tests
that may suggest the answer. Objective of this section is to present these findings.

For simplicity, we assume that the flow is two-dimensional - this is a reasonable assumption as the physical phenomenon may hint to
neglect the third dimension.

We propose a mixed finite volume - finite element method for the approximation of the system (2.7) that we are going to describe next.

A. The mixed finite volume - finite element scheme

To begin, let Cj, be a regular and quasi-uniform triangulation of the cavity C and F, be the set of all interior faces of Cj,. Further, we write
h = maxgec,hk as the mesh size, where ki is the diameter of an element K € Cj,. We denote by Qj, the space of piecewise constant functions
and by V), the piecewise linear Crouzeix-Raviart element space:

Qi ={ve L'(C)| vkisaconstant V K € Ch}s

Vi = {'u ¢ I*(C) | vkisa piecewise affine function V K € Cy; f[[v]]dsx =0Voe ]:h},

o

where [[-]]|s represents the jump over the interface o. To specify the homogeneous Dirichlet boundary condition, we define

Vo,h={(pth|/(pde:OVaea(Z}.

Now we are ready to introduce the following mixed finite volume - finite element method.
1. Numerical method (compressible solver)

Let At be the time increment, g, = g(0), ) = w(0), and let (0}, u),) be the projection of the initial data (o, u) (0) onto the space Q;, x V.
Then, fork = 1,...,N; = T/At we seek (()I,j, ulfl,gﬁ, w’,j) € Qu x Vj, x R? x R as solutions to the following system of algebraic equations

D,g]; + w§_1e3 X gﬁﬂ/z =0, (5.1a)
k=1 k_ k-1
where g:“/ 2_8& 8, ;3}" and Dtvﬁ = 7"'-_;% ;
f Diot dx + f OF Pyl nds, =0 forallK € Gy (5.1b)
K oK

where v, = u;, — up, up = wyes x x, n is the outer normal vector, and OZP is the so-called upwind value of the density given by

wp _ | lims_o 0, (x + On) ifv,-n>0,
lim;s_ 0;,(x — On) otherwise;

1 k k k— k k k- k k k- k
EfC(Dt(Ohuh)"P+0h "Dty - @ + 0wy, Vil - 9 - 040, 1'V‘P’uh)dx

i fccﬁw’ﬁ"es x uj - g dx + fc(S(uﬁ) : Vg - p(o}) dive) dx = fcdﬁgﬁm - dx, forall g € Voy; (5.1¢)
IB33D,w’,§ + D,(fol,:x x u dx) -e3 = f olhcxdx xgzﬂ/z - e3.
C B+C

Remark 5.1. The scheme (5.1) enjoys the following properties for allk = 1,...,Ny:

o Conservation of mass. Indeed, summing up over all elements leads to the mass conservation.

fcaﬁdﬁfceﬁ’ldx:-cfcoidx'
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o Conservation of gravity in the sense of (4.1), i.e.,
k k-1 0
gyl =gy 1= =gl

kel/2 _ g+l
SR

which can be easily obtained by multiplying (5.1a) with g,
e Positivity preserving of density. We have of > 0 provided ¢}, > 0, for which we refer the proof to Ref. 20 (Lemma 4.1).

B. Numerical experiments

We take the pendulum as a circular plate with a circular cavity in the center

B= {x IRo </ (x1 = L)* + x5 sRl}, C= {x|\/(xl -L)* +x sRo},

with Ry = 0.1, Ry = 0.2, and L be the length of the pendulum, see Fig. 3. In our numerical experiments we set y = 5/3, u = 100, and 5 = 0 if
not otherwise mentioned. Further, we denote ¢ ; as the density of the body B, ¢, = ‘lﬁ J.0(0) dx as the averaged initial density of the fluid in
the cavity C and R, = 0,/0, as the ratio of the densities. The initial data are set as 9(0) = 1,u(0) = 0,w(0) = 0,g(0) = (cos 9, sinJy) with
90 = 7'[/45.

1. Experiment 1: Influence of gas parameters of the compressible solver (5.1)

We show in Figs. 4-6 the evolution of pendulum position (angle 9) for different values of density ratio Rp, gas parameter 4, and pendulum
length L. First of all, in all these numerical experiments we observe the effect of the dissipation due to the viscosity of the fluid. Moreover, we
see larger dissipation effects for:

1. smaller density ratio Rp (fixed gas parameter a and pendulum length L) in Fig. 4;
2. smaller gas parameter a (fixed density ratio Rg and pendulum length L) in Fig. 5;
3. smaller pendulum length L (fixed density ratio Rp and gas parameter a) in Fig. 6.

xl \rg

FIG. 3. Pendulum with a cavity.
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FIG. 6. Evolution of pendulum position (angle ) for different pendulum length L with fixed density ratio R = 1 and gas parameter a = 10.

2. Experiment 2: Comparison with an incompressible solver

To compare the damping effects of compressible and incompressible fluids, we also introduce an incompressible solver which replaces
the Navier-Stokes part of the compressible solver (5.1), that is (5.1b) and (5.1¢), by it incompressible counterpart, while keeping the method
of g, and wj, unchanged.

a. Incompressible solver. Let uj, g}, ) be given in the same way as the compressible solver. Let ¢, be the density of the incompressible
fluid in the cavity C. For k = 1,...,N; we seek (pf, uk, g’,j, wk) € X, x Vj, x R? x R such that the following system of algebraic equations hold:

k k—1 k+1/2
D:ig, +wy, “e3 xg, / =0,

1 1 e -
oc [P St vul g Sol v ah ) ax o [ul e xuf g
+fC(S(uﬁ):pr—Pﬁdinp—qhdivuﬁ)dx= fcocgzﬂ/z_,pdx, YV qn € Xy, @ € Vo

1333thﬁ+Dt(/ch>< ulﬁ dx).e3 = (fggxdx+ /ocxdx) Xg2+1/2.e3,
C B C

where Xj, := {v € L*(C)| vk isaconstant V K € Cy; [,vdx = 0}.

We show in Fig. 7 the evolution of pendulum positions (represented by the angle 9) obtained by the compressible solver and the incom-
pressible solver. Here we have used same parameters for both solvers: L = 0.4, y = 100, # = 0, 0 ; = 1, and initial fluid density ¢, = 1.0. Note
that the only difference relies on the gas parameter a(= 0.1,20,100) in the compressible solver, which is not needed in the incompressible
solver. Here, let us point out that larger gas parameter a means smaller Mach number. Obviously, Fig. 7 tells that compressible fluids brings
more damping.
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