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Abstract. Let ° be a smooth, closed, oriented, (n°1)-dimensional submanifold of Rn+1. We
show that there exist arbitrarily small perturbations °0 of °with the property that minimiz-
ing integral n-currents with boundary °0 are smooth away from a set of Hausdorff dimen-
sion … n °9°"n, where "n 2 (0,1] is a dimensional constant.

This improves on our previous result (where we proved generic smoothness of minimizers
in 9 and 10 ambient dimensions). The key ingredients developed here are a new method to
estimate the full singular set of the foliation by minimizers and a proof of superlinear decay
of closeness (near singular points) that holds even across non-conical scales.
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1. INTRODUCTION

In [CMS23] we showed that the smooth, oriented area minimization problem is generi-
cally solvable up to ambient dimension 10:
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Theorem 1.1. Let n + 1 2 {8,9,10} and ° Ω Rn+1 be a smooth, closed, oriented, (n ° 1)-
dimensional submanifold ofRn+1. There exist arbitrarily small perturbations °0 of ° (as C1

graphs in the normal bundle of °) with the property that there exists a least-area smooth,
compact, oriented hypersurface M 0 ΩRn+1 with @M 0 = °0.

In this paper, we prove the following sharper geometric measure theory result in all
dimensions, which implies the above theorem when n + 1 2 {8,9,10}. We will implicitly
assume n +1   8 throughout the paper, since otherwise there is nothing to show.

Theorem 1.2. Let ° be a smooth, closed, oriented, (n°1)-dimensional submanifold ofRn+1.
There exist arbitrarily small perturbations °0 of ° (as C1 graphs in the normal bundle of °)
such that every minimizing integral n-current with boundary Ç°0É is of the form ÇM 0É for a
smooth, precompact, oriented hypersurface M 0 with @M 0 = °0 and

sing M 0 =; if n +1 … 10, else dimH sing M 0 … n °9°"n

where "n 2 (0,1] is the dimensional constant defined in (1.3). In fact the singular strata
S

`(M 0), ` 2N, of each such M 0 (see Definition 2.6) can be arranged to satisfy

S
0(M 0) =S

1(M 0) =S
2(M 0) =;, dimH S

`(M 0) … `°2°"n for `  3,

on top of the standard regularity S
`(M 0) =; for `> n °7.

Remark 1.3. For example, when n +1 = 11 this shows that every minimizer M 0 for °0 has

(1.1) S
0(M 0) =S

1(M 0) =S
2(M 0) =; and dimH S

3(M 0) … 1°"10 º 0.65

(see Remark 1.4 below). This should be compared with the fact that S
3(M 0) is 3-rectifiable

[Sim93, NV20]. Note that examples of stable hypersurfaces having singular set satisfying
(1.1) have been recently constructed in [Sim23].

The dimensional constant "n comes from the analysis of minimizing cones, and specif-
ically relates to the rate of decay in the radial direction of positive Jacobi fields on n-
dimensional minimizing cones, which can be bounded from above by the constant

(1.2) ∑n = n °2
2

°

s
(n °2)2

4
° (n °1) 2 (1,2];

see [Sim08, Wan22] and Lemma 4.3. Specifically, "n is given by:

(1.3) "n = ∑n °1 2 (0,1].

Remark 1.4. A computation shows that "n decreases toward 0, with initial values:

"7 = 1,

"8 º 0.58,

"9 º 0.44,

"10 º 0.35.

Theorem 1.2 follows from the combination of two independent results about families
of minimizers. The first result is a bound on the size of the union of strata for a family of
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pairwise disjoint minimizers. Since it is local, we state it for minimizing boundaries inside
open sets.

Theorem 1.5. Let F be a family of minimizing boundaries in an open set U ΩRn+1 whose
supports are pairwise disjoint in U . For ` 2N, we have

S
`(F ) =[T2F S

`(T ) =) dimH S
`(F ) … `.

Remark 1.6. Note that:

(a) When `= 0, the work of Hardt–Simon [HS85] implies that S
0(F ) is discrete.

(b) If F is a singleton, Theorem 1.5 recovers the standard bound on the size of the strata
of a single minimizer (see Remark 2.7).

The second result proves, for families of pairwise disjoint minimizers with prescribed
smooth boundaries, that if one minimizer is near the singular part of another then the
closeness propagates to the boundary with a superlinear rate relating to ∑n from (1.2).
To state the result we need to consider for smooth, closed, oriented, (n °1)-dimensional
°µRn+1, the set of all possible minimizers with boundary °:

M (°) = {minimizing integral n-currents T in Rn+1 with @T = Ç°É}.

Theorem 1.7. Let (°s)s2[°±,±] be a smooth deformation of °0 = °, a smooth, closed, oriented,
(n °1)-dimensional submanifold of Rn+1. Consider the family

F =[s2[°±,±]M (°s).

and assume the following:

(a) All elements of F with distinct boundaries have pairwise disjoint supports.
(b) All elements of F have multiplicity-one up to their boundary.
(c) All elements of F are near their boundary graphical over a fixed hypersurface ß

with nonempty boundary; specifically, there exists h : F ! C1(ß) so that for all
s 2 [°±,±], Ts 2M (°s):

graphßh(Ts) Ω sptTs , @(graphßh(Ts)) = °s .

(d) The graph map h : F !C1(ß) is increasing along °with a definite rate Æ> 0 in the
sense that for all s j 2 [°±,±], Ts j 2M (°s j ), j = 1,2,

s1 < s2 =) h(Ts2 )°h(Ts1 )  Æ(s2 ° s1) on °.

For convenience, denote
sptF =[s2[°±,±] [Ts2M (°s ) sptTs ,

singF =[s2[°±,±] [Ts2M (°s ) singTs .

Then, the timestamp function
t : sptF ! [°±,±],

t(x) = s for all x 2 sptTs , Ts 2M (°s), s 2 [°±,±],

is Æ-Hölder on singF for every Æ 2 (0,∑n +1) with ∑n as in (1.2).

Theorems 1.5 and 1.7 imply:
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Corollary 1.8. Let (°s)s2[°±,±], (M (°s))s2[°±,±] be as in Theorem 1.7. Then,

S
0(Ts) =S

1(Ts) =S
2(Ts) =;, dimH S

`(Ts) … `°9°"n for `  3,

for all Ts 2M(°s) for a.e. s 2 [°±,±], where "n > 0 is as in (1.3).

All these tools can be put together to yield Theorem 1.2.

Remark 1.9. These same improved regularity results should hold for homological mini-
mizers in Riemannian manifolds under generic perturbations of the metric, similarly to
[CMS23].

Remark 1.10. As already pointed out in our previous work [CMS23], there is a connection
to the recent work of Figalli–Ros-Oton–Serra [FROS20] on generic regularity for free bound-
aries in the obstacle problem. That work, too, relies on a subtle derivation of superlinear
Hölder-continuity estimate on a timestamp function for a foliation to prove the smallness
of a spacetime singular set across all time parameters t . In our previous work [CMS23], both
of these tools were coupled with a maximal density drop argument. This prevented us from
estimating the singular set in high dimensions (as we do here) since it was hard to iterate the
estimate in that form. Here, we develop new techniques that allow us to iterate the density
drop argument at an earlier stage. This then allows us to obtain stronger results (analogous
to the full dimensional range of [FROS20]).

1.1. Organization. Section 2 contains the basic definitions. In Section 3 we estimate the
dimension of the foliation singular strata and in Section 1.7 we prove the super-linear sep-
aration estimates (even across non-conical scales). In Section 5 we combine these pieces
to estimate the size of the singular strata of generic minimizers. Finally in Section 6 we
construct the foliations to which the previous results apply.

1.2. Acknowledgements. O.C. was supported by a Terman Fellowship and an NSF grant
(DMS-2304432). C.M. was supported by an NSF grant (DMS-2147521). We are grateful to
the referee for their careful reading and helpful suggestions.

2. DEFINITIONS

Let us collect the definitions we are going to use. Below, U Ω Rn+1 is open and T is any
minimizing integral n-current in U (see [Sim83, §33], with A =U ).

Remark 2.1. For notational simplicity, for minimizing integral n-currents T of the form
ÇMÉ for a smooth hypersurface M with or without boundary we will use the definitions
below with M instead of with ÇMÉ.

Definition 2.2. We denote

regT = {x 2U \ sptT \ spt@T : sptT \Br (x) is a smooth hypersurface

without boundary for some r > 0},

and
singT =U \ sptT \ (spt@T [ regT ).
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In Section 4 we will want to study subsets of regT with effective regularity:

Definition 2.3. For x 2 regT , we define the regularity scale at x, rT (x) 2 (0,1], as the supre-
mum of r 2 (0,1) so that @T = 0 in Br (x) and T bBr (x) is supported on a smooth hypersurface
with second fundamental form |A| … r°1. For all other x 2 sptT , we set rT (x) = 0. We also
denote, for ±> 0, the following effective portion of regT :

R ±(T ) = {x 2 regT : rT (x)   ±}.

Remark 2.4. One can show ([CMS23, Lemma 2.4]) that rT (x) is continuous in both x and
T , provided T varies among minimizing integral n-currents with the flat distance and the
Hausdorff distance on their boundaries (if the boundaries are nontrivial).

In Theorem 1.5 we will want to study refined subsets of singT called singular strata.
Note that singT Ω sptT \ spt@T in Definition 2.2. Since minimizing integral n-currents T
decompose locally away from spt@T into sums of integer multiples of minimizing bound-
aries (by [Sim83, §27]) with pairwise disjoint supports (by [Sim87]), in the rest of this sec-
tion we take T to be a minimizing boundary in U (see [Sim83, §37]). For all other T , one
combines the definitions by taking unions over all balls away from spt@T .

It is well-known (see [Sim83, §35]) that, when T is a minimizing boundary, blow-ups at
x 2 singT are n-dimensional minimizing cones C ΩRn+1.

Definition 2.5. The spine of a cone C Ω Rn+1 is the largest subspace ¶ Ω Rn+1 such that
C = ¶£C0 for a cone C0 Ω Rn+1°k , k = dimspineC . Equivalently, ¶ is the set of points
under which C is invariant by translation (see [Whi97, §3]).

Definition 2.6. For each ` 2N, we define the `-th singular stratum of T to be

S
`(T ) = {x 2 singT : dimspineC … ` for all tangent cones C of T at x}.

Remark 2.7. It is well-known (cf. [Whi97, §4]) that

(a) dimH S
`(T ) … ` for all ` 2N,

(b) S
0(T ) is discrete, and

(c) S
`(T ) =; for `> n °7.

Note that (a) and (c) together imply the celebrated result that dimH singT … n °7.

We will also need to study more effective subsets of the singular strata:

Definition 2.8. For ` 2N, "> 0, we also set

S
`
" (T ) = {x 2 singT : all tangent cones C of T at x are   " from splitting an R`+1}.

That is, x 2S
`
" (T ) if x 2 singT and each tangent cone C of T at x satisfies

dB1(0)(C ,Ç¶É£C0)   "

for all (`+1)-dimensional subspaces ¶ Ω Rn+1 and all minimizing cones C0 Ω Rn°`; here,
dB1(0) denotes the flat metric for integral n-currents in B1(0) (see [Sim83, §31]).

This definition is inspired by the quantitative strata defined by Cheeger–Naber [CN13]
but is a distinct notion: we are only studying the symmetries at the tangent cone level, i.e.,
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after blowing up, whereas the quantitative strata of Cheeger–Naber study the symmetries
on intervals of scales before any blow-ups.

Remark 2.9. Note that:

(a) S
`
"2

(T ) ΩS
`
"1

(T ) ΩS
`(T ) for all 0 < "1 < "2, and

(b) S
`(T ) =[">0S

`
" (T ).

Finally, we will also need the following definition:

Definition 2.10. We say that T and T 0 cross smoothly at p 2 regT \ regT 0 if, for all suf-
ficiently small r > 0, there are points of regT 0 on both sides of regT within Br (p) and vice
versa; that is, for small enough r > 0 that Br (p)\regT and Br (p)\regT 0 each consist of pairs
of components U± and U 0

±, respectively, then the sets

regT \U 0
+, regT \U 0

°, regT 0 \U+, regT 0 \U°

are all nonempty.

3. PROOF OF THEOREM 1.5

Lemma 3.1. Let ∞> 0 and "> 0 be given. There exists ¥= ¥(n,∞,") 2 (0,1) with the following
property.

Consider any minimizing cone C in Rn+1 with dimspineC … `, and that C is   " from
splitting an R`+1. Let S Ω B̄1(0) be the set of all points x 2 B̄1(0)\ singT , where T is any
minimizing boundary in Rn+1 that does not cross C smoothly, and where

£T (x)  £C (0)°¥.

Then, S ΩU∞(¶) for some … `-dimensional subspace¶ΩRn+1.

Proof. Suppose, for contradiction, that this failed with ¥ = j°1, j = 2,3, . . . and cones C j .
Passing to a subsequence (not labeled), we can assume that C j ! C . Since C is   " from
splitting an R`+1, we have that dim¶… ` for¶ := spineC .

The contradiction hypothesis guarantees that for each j there exist T j , x j as above, with

(3.1) £T j (x j )  £C j (0)° j°1,

(3.2) x j 62U∞(¶).

By (3.1) and the upper semicontinuity of density, we have£T (x)  £C (0). Since T does not
smoothly cross C (or else some T j would), [CMS23, Proposition 3.3] implies T = C and
x 2¶. On the other hand, by (3.2) implies that x 62U∞(¶), a contradiction. ⇤

Proof of Theorem 1.5. We may suppose that U = B1(0) since Hausdorff dimension upper
bounds are preserved under countable unions and scaling.

The theorem will follow if we show that, for all ±> 0,

(3.3) H
`+±(S `(F )) = 0.

So let’s fix ±> 0 going forward.
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We will need the 1-approximation to Hausdorff measure H
d , for d > 0 real, denoted

H
d
1. It is defined for all A Ω Rn+1 by H

d
1(A) = inf{!d

P1
j=1( 1

2 diamC j )d }, where the inf is
taken among all covers {C j } j=1,2,... of A and!d is usually taken to be the volume of the unit
d-ball when d is an integer and its analytic extension to all d > 0 via the ° function, though
the particular choice doesn’t matter (see [Sim83, §2]).

Note that if¶ΩRn+1 is any subspace with dim¶… `, then for ∞> 0,

(3.4) H
`+±
1 (U2∞(¶)\B1(0)) …Cn,`,±∞

± for all ∞> 0;

this can be seen, e.g., by constructing an explicit covering of U2∞(¶)\B1(0). Now fix ∞ 2
(0,1), depending only on n, `, ±, so that

(3.5) Cn,`,±∞
± … 1

2 ·2°`°±!`+±.

Suppose, for contradiction, that (3.3) fails. By Remark 2.9, the set

S
`
" (F ) =[T2F S

`
" (T )

would then satisfy

(3.6) H
`+±(S `

" (F )) > 0,

for some "> 0, which we also fix. This now determines ¥= ¥(n,∞,") per Lemma 3.1. Using
this ¥, define, for k 2N,

S
`,k
" (F ) :=[T2F {y 2S

`
" (F )\ singT : 1+k¥…£T (y) < 1+ (k +1)¥}

so that,

(3.7) S
`
" (F ) =[1

k=0S
`,k
" (F ).

It follows from (3.6) and (3.7) that, for some k 2N,

(3.8) H
`+±(S `,k

" (F )) > 0.

Since U = B1(0) is bounded, [Sim83, 3.6 (2)] applies and guarantees that

limsup
∏!0

H
`+±
1 (S `,k

" (F )\B∏(x))

!`+±∏`+±
  2°`°± for H

`+± a.e. x 2S
`,k
" (F ).

Fix any x as above. Then there is a sequence ∏i ! 0 such that

(3.9) lim
i
∏°`°±

i H
`+±
1 (S `,k

" (F )\B∏i (x))   2°`°±!`+±.

Since x 2S
`
" (T ) for some T 2F , after passing to a subsequence (not labeled) we have

(¥x,∏i )#T !C ,

for a minimizing cone C that’s   " from splitting a R`+1. Choose a … `-dimensional sub-
space¶ by applying Lemma 3.1 to C (with ∞," as fixed above).

We claim that, for i sufficiently large,

(3.10) ∏°1
i (S `,k

" (F )°x)\B1(0) ΩU2∞(¶),



8 O. Chodosh, C. Mantoulidis & F. Schulze

Indeed, if we show this, then (3.4) and (3.5) imply

H
`+±
1 (∏°1

i (S `,k
" (F )°x)\B1(0)) …H

`+±
1 (U2∞(¶)\B1(0)) … 1

2 ·2°`°±!∞+±,

in contradiction to (3.9).
It remains to verify (3.10). Suppose it failed with i !1. Then, there would exist

(3.11) yi 2∏°1
i (S `,k

" (F )°x)\B1(0) \U2∞(¶).

By our definition of S
`,k
" (F ), we have yi 2 sing(¥x,∏i )#Ti for some Ti 2F and

£(¥x,∏i )#Ti (yi )   1+k¥ £C (0)°¥.

Passing to a subsequence we find (¥x,∏i )#Ti ! T a minimizing boundary in Rn+1 which
does not cross C smoothly (otherwise, some Ti would cross T smoothly, which is impos-
sible since elements of F have pairwise disjoint supports) and yi ! y with

£T (y)   1+k¥ £C (0)°¥.

By choice of ¶ above—based on Lemma 3.1—we find that y 2U∞(¶). This contradicts the
choice of yi in (3.11). ⇤

4. PROOF OF THEOREM 1.7

Lemma 4.1. There exists Ωn > 0 with the following property.
If T is a minimizing boundary in B2(0) ΩRn+1, and sptT \ B̄1/2(0) 6=;, then

R Ωn (T )\@B1(0) 6=;.

Proof. Suppose, for contradiction, that for each j = 1,2, . . . we could find T j as above, ex-
cept with

(4.1) R 1/ j (T j )\@B1(0) =;.

We can pass to a subsequence (not denoted) along which T j ! T , a minimizing boundary
with

sptT \ B̄1/2(0) 6=; .

Note that sptT \@B1(0) 6=; by monotonicity, and thus [ j=1,2,...R 1/ j (T )\@B1(0) 6=; since
dimH singT … n °7. In particular, we must have R1/ j (T )\@B1(0) 6=; for some j , contra-
dicting (4.1) and Remark 2.4. ⇤
Lemma 4.2. Let A > 1, Ω 2 (0,Ωn) be given, with Ωn as in Lemma 4.1. There exists L =
L(n, A,Ω) with the following properties.

Take a minimizing boundary T in B2A(0) with 0 2 sptT . Then, for every minimizing
boundary T 0 in B2A(0) not crossing T smoothly, and with sptT 0 \ B̄1/2(0) 6=;,

d(R AΩ(T )\@B A(0),sptT 0) … L ·d(R Ω(T )\@B1(0),sptT 0).

Proof. Without loss of generality, we may suppose T , T 0 have connected supports.
Suppose, for contradiction, that for each j = 1,2, . . . we could find T j ,T 0

j as above, except
with

(4.2) j ·d(R Ω(T j )\@B1(0),sptT 0
j ) < d(R AΩ(T j )\@B A(0),sptT 0

j ).
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Since the right hand side is uniformly bounded from above, we can pass to a subsequence
(not denoted) along which T j ,T 0

j ! T , a minimizing boundary with 0 2 sptT .
For each j , let x j 2R Ω(T j ) be the point on sptT j attaining the distance on the left hand

side of (4.2). Passing to a further subsequence (not labeled), x j ! x 2 R Ω(T ) by Remark
2.4. Then, by renormalizing by the right hand side of (4.2), we obtain a nonnegative Jacobi
field on regT that equals zero at x.

On the other hand, by Lemma 4.1, regT also contains points in R AΩ(·)\@B A(0), and
the limiting Jacobi field isn’t everywhere zero on the component by (4.2). This contradicts
the maximum principle. ⇤

Lemma 4.3. For every nonflat minimizing cone C in Rn+1, every positive Jacobi field u on
regC , every r 2 [1,1), and every Ω 2 (0,Ωn) with Ωn as in Lemma 4.1:

sup
R rΩ(C )\@Br (0)

u … Hr°∑n inf
R Ω(C )\@B1(0)

u,

where H = H(n,Ω).

Proof. This follows from our proof of [CMS23, Corollary 3.11]. ⇤

Lemma 4.4. Let ∏ 2 (0,∑n +1), Ω 2 (0,Ωn) be given, with Ωn as in Lemma 4.1. There exist
±= ±(n,∏,Ω) 2 (0, 1

2 ), A = A(n,∏,Ω) 2 (1, (2±)°1) with the following property.
Consider any minimizing boundary T in B±°1 (0), with 0 2 singT satisfying

£T (0,1)  £T (0,2)°±.

Then, for every minimizing boundary T 0 in B±°1 (0) not crossing T smoothly, and with sptT 0\
B̄±(0) 6=;, we also have:

A°1d(R AΩ(T )\@B A(0),sptT 0) … A°∏d(R Ω(T )\@B1(0),sptT 0),

and all sets above are nonempty.

Proof. Without loss of generality, we may suppose T , T 0 have connected supports.
First we choose A = A(n,∏,Ω) sufficiently large so that

(4.3) H A∏ … 1
2 A1+∑n

with H = H(n,Ω) as in Lemma 4.3.
We argue by contradiction. By Lemma 4.1, R Ω(T )\@B1(0), R AΩ(T )\@B A(0) are both

nonempty for ± … 1
2 . So let’s assume that T j and T 0

j are as above with ± = j°1 and j large
enough that j > 2A, and

(4.4) £T j (0,2)°£T j (0,1) … j°1,

(4.5) sptT 0
j \ B̄ j°1 (0) 6=;,

but

(4.6) A°∏d(R Ω(T j )\@B1(0),sptT 0
j ) < A°1d(R AΩ(T j )\@B A(0),sptT 0

j ).
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Note that (4.4) implies that, after perhaps passing to a subsequence (not labeled), T j !
C , a nonflat minimizing cone C . Then, (4.5), the strong maximum principle, and the
connectedness of regC , imply that T 0

j !C as well.
One may now construct a positive Jacobi field on regC that reflects (4.6). Since this con-

struction is standard, we will omit the technical details and refer the reader to the deriva-
tion of [Sim87, (10)] on [Sim87, p. 333]. Fix some arbitrary open U b regC , which we may
take to be connected since regC is. Since T j ,T 0

j converge locally smoothly to C away from
singC , the height functions h j ,h0

j of regT j , regT 0
j over U satisfy h j ,h0

j ! 0 smoothly on U .
Moreover, u j = h j °h0

j has a fixed sign since T j ,T 0
j do not cross smoothly. It is not hard to

see that u j satisfies an elliptic equation of the form

¢C u j +|AC |2u j = divC (a j ·rC u j )+b j ·rC u j + c j u j on U ,

where a j ,b j ,c j ! 0 smoothly on U . Now the connectedness of U and the standard Har-
nack inequality for divergence-form elliptic equations allows us to renormalize u j and,
after passing to a subsequence (not labeled), obtain a positive Jacobi field, i.e., a solution
u > 0 of

¢C u +|AC |2u = 0 on U .

At this point we may apply this process with an exhaustion of regC by such precompact
U ’s and have u be defined over all of regC .

Next using the fact that the vertical distance is within o(1) of the distance in (4.6) over
the subsets R Ω(C ) of controlled curvature, we obtain, using Remark 2.4,

(4.7) A°∏ inf
R Ω(C )\@B1(0)

u … A°1 sup
R AΩ(C )\@B A(0)

u;

where u is the positive Jacobi field constructed on regC . By Lemma 4.3 with r = A, (4.7)
implies

(4.8) A°∏ inf
R Ω(C )\@B1(0)

u … H A°1°∑n inf
R Ω(C )\@B1(0)

u.

After canceling out the common term from both sides, (4.8) contradicts (4.3). ⇤

We now come to the main proof of this section.

Proof of Theorem 1.7. LetÆ 2 (0,∑n+1). Fix Ω 2 (0,Ωn), ∏ 2 (Æ,∑n+1). Then let ±= ±(n,∏,Ω)
and A = A(n,∏,Ω) be as in Lemma 4.4, and L = L(n, A,Ω) = L(n,∏,Ω) be as in Lemma 4.2.

Using the compactness of F and the upper semicontinuity of density, there exists £ 2
(1,1) such that

(4.9) £T (y) …£ for all T 2F , y 2 singT.

Using assumption (b), there exists r > 0 such that

(4.10) T bB2r (y) is a minimizing boundary for all T 2F , y 2 singF .

(we are not necessarily assuming that y 2 singT ) and, again by the compactness of F ,

(4.11) £T (y,2r ) … 2£ for all T 2F .



Improved generic regularity 11

Then, let ∞ 2 (0,±) be such that

(4.12) 2∞∏°Æ < 1.

Claim 4.5. For sufficiently large m 2N, we have for all y 2 singTs, y
0 2 sptTs0 ,

|y0 °y| < ∞m =) |s0 ° s| < 2m∞m∏.

Proof. Suppose not. Then, perhaps after passing to a subsequence of m’s, there would
exist ym 2 singTsm , y

0
m 2 sptTs0m violating the estimate, i.e., so that

(4.13) |y0
m °ym | < ∞m ,

(4.14) |s0m ° sm |  2m∞m∏.

We may assume m is large enough that

(4.15) ∞m°1 < r±.

For each q = 0,1,2, . . ., define

Tm,q = (¥ym ,Aq∞m°1 )#Tsm ,

T 0
m,q = (¥ym ,Aq∞m°1 )#Ts0m .

x
0
m,q = (¥ym ,Aq∞m°1 )#(y

0
m).

Observe that

(4.16) Tm,q+1 = (¥0,A)#Tm,q , T 0
m,q+1 = (¥0,A)#T 0

m,q ,

and, using A > 1 and (4.13),

(4.17) kx
0
m,qk= A°q∞1°mky

0
m °ymk< ∞ =) sptT 0

m,q \B∞(0) 6=;.

Let Q be the largest integer satisfying AQ∞m°1 < r±, i.e.,

(4.18) AQ∞m°1 < r±… AQ+1∞m°1.

For all q = 0, . . . ,Q, Tm,q , T 0
m,q are minimizing boundaries in B±°1 (0) by (4.15), and not

smoothly crossing by (a). Moreover, for q = 0, . . . ,Q °1, there are two mutually exclusive
possibilities:

(A) £Tm,q (0, A)°£Tm,q (0,1) < ±. Then by Lemma 4.4, (4.16), and (4.17),

d(R Ω(Tm,q+1)\@B1(0),sptT 0
m,q+1)

= A°1d(R AΩ(Tm,q )\@B A(0),sptT 0
m,q )

… A°∏d(R Ω(Tm,q )\@B1(0),sptT 0
m,q ),

(B) £Tm (0, A)°£Tm (0,1)   ±. Then by Lemma 4.2 and (4.16),

d(R Ω(Tm,q+1)\@B1(0),sptT 0
m,q+1)

= A°1d(R AΩ(Tm,q )\@B A(0),sptT 0
m,q )

… (L/A)d(R Ω(Tm,q )\@B1(0),sptT 0
m,q ).
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Let Q A,QB denote the number of times that possibilities (A), (B) occur, respectively. Obvi-
ously, Q A +QB =Q, and by the monotonicity formula together with (4.10), (4.11), we also
have that QB … 2£±°1. In particular, by (4.16) and the crude initial estimate

d(R Ω(Tm,0)\@B1(0),sptT 0
m,0) … 2

we deduce after Q iterations that

A°Q∞1°md(R AQ∞m°1Ω(Tsm )\@B AQ∞m°1 (ym),sptTs0m )

= d(R Ω(Tm,Q )\@B1(0),sptT 0
m,Q )

… (A°∏)Q A (L/A)QB d(R Ω(Tm,0)\@B1(0),sptT 0
m,0)

= (A°∏)Q (L A∏°1)QB d(R Ω(Tm,0)\@B1(0),sptT 0
m,0)

… 2(A°∏)Q (max{L A∏°1,1})2£±°1
.

Then, using (4.18) we deduce

(4.19) d(R A°1r±Ω(Tsm )\ B̄r±(ym),sptTs0m ) … L0∞m∏,

where L0 = L0(A,∞,±,£,r ). Together (4.14) and (4.19) are in contradiction since they im-
ply the existence of a nonnegative Jacobi field on limm Tsm (this exists after passing to a
subsequence) with an interior vanishing point but which is positive on the boundary by
assumptions (c), (d). ⇤

It follows from the claim that for large m 2N and all x 2 singTs , x
0 2 sptTs0 ,

∞m+1 … |x0 °x| < ∞m =) |t(x
0)° t(x)| < 2m∞m∏

=) |t(x
0)° t(x)|

|x0 °x|Æ < 2m∞m∏∞°(m+1)Æ = ∞°Æ(2∞∏°Æ)m ,

so, in view of (4.12), t is indeed Æ-Hölder on the singular set. ⇤

5. PROOF OF COROLLARY 1.8

Apply Theorem 1.5 to small balls locally away from [s2[°±,±]°s ’s, small enough that each
Ts 2M (°s) restricts to a minimizing boundary in the ball. Then taking countable unions
we deduce that

dimH S
`(F ) … ` for all ` 2N.

Note that, by Theorem 1.7, the measure theoretic result in [FROS20, Proposition 7.7 (a)]
applies to S

`(F ) with `= 0,1,2 (since 2 < 2+"n) and yields a full-measure subset

I` Ω [°±,±], `= 0,1,2,

with the following property:

`= 0,1,2, s 2 I`, Ts 2T (°s) =) S
`(Ts) =;.

Likewise, [FROS20, Proposition 7.7 (b)] applies to S
`(F ) with `  3 (since 3   2+"n) and

yields a full-measure subset
I` Ω [°±,±], `  3,
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with the following property:

`  3, s 2 I`, Ts 2M (°s) =) dimH S
`(Ts) … `°2°"n .

The result follows since the intersection \`I` remains a full-measure subset of [°±,±].

6. PROOF OF THEOREM 1.2

Given all our tools so far, the strategy is straightforward: we would like to construct a
family of boundary perturbations (°s)s2[°±,±] of ° on which to apply Corollary 1.8. The
two main difficulties are the potential non-uniqueness of T among minimiers, and the
possible presence of high multiplicity on T .

For simplicity, we break down the proof into steps.

6.1. Reduction to uniquely minimizing T . It follows from the Hardt–Simon boundary
regularity theorem ([HS79, Corollary 11.2]) that

(6.1) sptT = M̄

for an oriented hypersurface M with nonempty boundary, which satisfies

(6.2) @M Ω °, singT = M̄ \ M ΩRn+1 \°.

In our previous paper we showed that perturbing ° 7! °0 by pushing the components of
@M Ω ° inward along M forces M (°0) to be a singleton; see [CMS23, Lemma A.3]. So
without loss of generality and after relabeling °0 7! °we may assume that

(6.3) M (°) = {T } ( () T is uniquely minimizing).

Note that (6.3) and the compactness theorem for integral n-currents combine to yield

(6.4) °0 ! ° smoothly and T 0 2M (°0) =) T 0 ! T.

6.2. The case of T with multiplicity one. In this case, the Hardt–Simon boundary regu-
larity theorem ([HS79, Corollary 11.2]) further guarantees that

(6.5) T = ÇMÉ, @M = °,

for the same hypersurface M that satisfies (6.1), (6.2).
Next, by the upper semicontinuity of density, together with Remark 2.4 and (6.4), the

fact that T has multiplicity one also implies

(6.6) °0 ! ° smoothly and T 0 2M (°0) =) T 0 also has multiplicity one.

Therefore, all such T 0 themselves have decompositions satisfying (6.1), (6.2), (6.5) with °0

in place of °, T 0 in place of T , and M 0 in place of M .
It follows from (6.4), (6.6), and Allard’s interior ([Sim83, §5]) and boundary ([All75]) reg-

ularity theorems (note that in the multiplicity-one case T has density 1
2 on °) that

(6.7) °0 ! ° smoothly and T 0 = ÇM 0É 2M (°0) =) M 0 ! M locally smoothly

in the sense of smooth embeddings; by “locally smoothly,” we mean the convergence is
smooth on compact subsets of M (including up to °= @M).
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To proceed further we will need to restrict to graphical perturbations °0 of °. Fix ° and
a (incomplete) hypersurface ßwith boundary, such that

@ß= °, ß̄Ω M ,

respecting orientations (e.g., ß= M \U for a small tubular neighborhood U of °). Now let
±> 0 be small enough that each

ßs := graphß s, s 2 [°±,±]

is still a smooth hypersurface with boundary, and denote

°s := @ßs

so that ß0 =ß, °0 = °. Below we will only need the °s , and may discard the ßs .

Claim 6.1. After possibly shrinking ±> 0, the family (°s)s2[°±,±] satisfies the assumptions of
Theorem 1.7.

Given Claim 6.1, Corollary 1.8 applies to (°s)s2[°±,±]. Thus, for a.e. s 2 [°±,±], every Ts 2
M (°s) has the desired improved regularity of Theorem 1.2. So it remains to prove Claim
6.1.

Proof of Claim 6.1. By inspecting Corollary 1.8 we see that we need to verify conditions (a),
(b), (c), (d) in Theorem 1.7:

(a) This holds by the well-known cut-and-paste technique for minimizers; see, e.g.,
[CMS23, Lemma 2.8].

(b) This holds, after perhaps shrinking ±, by (6.6).
(c) This holds, after perhaps shrinking ±, by (6.7).
(d) This holds automatically with Æ= 1.

This completes the proof of the claim. ⇤
6.3. The general case. It follows from the Hardt–Simon boundary regularity theorem ([HS79,
Corollary 11.2]) and its refinement by White ([Whi83, Corollary 2]) that

T 2M (°) =) T = T1 + . . .+Tm

with each Ti being a multiplicity-one minimizer satisfying (6.1), (6.2), (6.5) with Ti in place
of T , Mi in place of M , some union of components °i Ω ° in place of °, and

(6.8) M̄ j Ω M̄i \°i for all i < j ;

see also [CMS23, Theorem A.1]. Note that m equals the largest multiplicity of T on regT .
We’ll refer to this as the (Hardt–Simon) “decomposition” of T .

The decomposition above applies to any minimizing T 0 2 M (°0) in place of T , with °0

in place of °, M 0
i in place of Mi , °0i in place of °i , and m0 in place of m.

Claim 6.2. If °0 is sufficiently close to ° in C1, and T 0 2M (°0) is arbitrary, then the decom-
position for T 0 has m0 … m. In fact, either

(a) m0 < m, or
(b) m0 = m and M 0

m has strictly fewer components than Mm, or
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(c) m0 = m and ÇM 0
mÉ is close to ÇMmÉ.

Proof. Throughout, we’ll implicitly use (6.4), the fact that components of any Mi are in
bijection with components of M̄i (see [CMS23, Lemma 2.5]), and the characterization of
m as the top multiplicity of T , and respectively all the same statements for T 0.

It follows from the upper semicontinuity of density that m0 … m. So, going forward we
may assume that (a) fails (otherwise we’re done), and thus m0 = m.

By our decomposition, T has multiplicity … m°1 on the complement of Mm and M̄m \
° = @Mm , so the upper semicontinuity of densities also yields that M 0

m converges to a
subset of Mm . Note that distinct components of M 0

m cannot limit to subsets of the same
component of Mm (this follows as in (b) in [CMS23, Lemma 4.6]), so M 0

m has at most as
many components as Mm . Going forward, we may suppose that (b) fails too (otherwise
we’re done). Then, Mm and M 0

m have the same number of components.
By Allard’s theorem [Sim83, §5] and the interior regularity of minimizers [DG61], it fol-

lows that away from °, T 0 decomposes as a multisheeted graph (the sheets pairwise don’t
intersect, or they overlap) locally over Mm \@Mm with sheet multiplicities equal to the den-
sity of T 0. Since m0 = m and Mm , M 0

m have the same number of components, it follows T 0

is a single graph with multiplicity m locally over Mm \ @Mm . Thus, @M 0
m ! @Mm . This

proves (c). ⇤
Claim 6.3. If T is not of multiplicity one (i.e., m   2), then there exist °0 ! ° so that each
T 0 2M (°0) satisfies (a) or (b) in Claim 6.2.

Proof. Without loss of generality, we may assume that sptT is connected.
Perturb ° 7! °0 so that °m gets pushed off sptT , while all other components of ° stay

fixed. Now suppose, for contradiction, that T̃ 0 = T 0 2M (°0) satisfies (c).
It follows that T 0 °ÇM 0

mÉ is a minimizer with prescribed boundary
Pm°1

i=1 Ç°i É. This is the
same as the boundary of T̃ = T °ÇMmÉ, so T̃ = T̃ 0 by §6.1 (otherwise we’d get a nonunique
minimizer for °), so sptT = sptT 0 by (6.8), a contradiction. ⇤

Note that we can repeatedly invoke Claim 6.3 and §6.1, replacing T 0 7! T at the end of
each step, until T is of multiplicity one, in which case the result follows from §6.2.
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