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Abstract. Let ' be a smooth, closed, oriented, (n— 1)-dimensional submanifold of R"*'. We
show that there exist arbitrarily small perturbationsT' of U with the property that minimiz-
ing integral n-currents with boundary " are smooth away from a set of Hausdorff dimen-
sion<n-9-¢,, wheree, € (0,1] is a dimensional constant.

This improves on our previous result (where we proved generic smoothness of minimizers
in9 and 10 ambient dimensions). The key ingredients developed here are a new method to
estimate the full singular set of the foliation by minimizers and a proof of superlinear decay
of closeness (near singular points) that holds even across non-conical scales.
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1. INTRODUCTION

In [CMS23] we showed that the smooth, oriented area minimization problem is generi-
cally solvable up to ambient dimension 10:
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Theorem 1.1. Let n+1 € {8,9,10} and T < R™*! be a smooth, closed, oriented, (n—1)-
dimensional submanifold of R"*'. There exist arbitrarily small perturbationsT' of T (as C*
graphs in the normal bundle of T') with the property that there exists a least-area smooth,
compact, oriented hypersurface M' ¢ R"*! withoM' =T".

In this paper, we prove the following sharper geometric measure theory result in all
dimensions, which implies the above theorem when n +1 € {8,9,10}. We will implicitly
assume 71 + 1 = 8 throughout the paper, since otherwise there is nothing to show.

Theorem 1.2. LetT be a smooth, closed, oriented, (n—1)-dimensional submanifold of R"*!.
There exist arbitrarily small perturbations T’ of T (as C* graphs in the normal bundle of T)
such that every minimizing integral n-current with boundary [U'] is of the form [M'] for a
smooth, precompact, oriented hypersurface M' withdM' =T" and

singM' = @ ifn+1<10, else dimysingM' < n-9-¢,

where €, € (0,1] is the dimensional constant defined in (1.3). In fact the singular strata
FEM), € €N, of each such M’ (see Definition 2.§]) can be arranged to satisfy

AOM) =F (M) = F> M) =@, dimy FEM)<l-2—¢, forl =3,
on top of the standard regularity #*(M') = @ for ¢ > n—7.
Remark 1.3. For example, when n+ 1 = 11 this shows that every minimizer M’ forT' has
1Ly M) =L M) =S*M)=¢ and dimyF*(M)<1-¢£19=0.65

(see Remark below). This should be compared with the fact that #* (M) is 3-rectifiable
1Sim93, INV20]. Note that examples of stable hypersurfaces having singular set satisfying
(1.1) have been recently constructed in [Sim23].

The dimensional constant £, comes from the analysis of minimizing cones, and specif-
ically relates to the rate of decay in the radial direction of positive Jacobi fields on n-
dimensional minimizing cones, which can be bounded from above by the constant

(1.2) =2 D a2

. n — 2 4 ) ’
see [SIm08, Wan22] and Lemmal4.3| Specifically, ¢, is given by:
(1.3) £n=%,—1€(0,1].

Remark 1.4. A computation shows that €, decreases toward 0, with initial values:
e7=1,
€5 ~0.58,
€9 = 0.44,
€10 = 0.35.

Theorem follows from the combination of two independent results about families
of minimizers. The first result is a bound on the size of the union of strata for a family of
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pairwise disjoint minimizers. Since it is local, we state it for minimizing boundaries inside
open sets.

Theorem 1.5. Let.% be a family of minimizing boundaries in an open set U < R"*! whose
supports are pairwise disjoint in U. For ¢ € N, we have

FUF) = Ure s FUT) = dimpg F(F) <.

Remark 1.6. Note that:

(@) When ¢ =0, the work of Hardt-Simon [HS85] implies that FO(F) is discrete.
(b) If # is a singleton, Theorem recovers the standard bound on the size of the strata
of a single minimizer (see Remark[2.7).

The second result proves, for families of pairwise disjoint minimizers with prescribed
smooth boundaries, that if one minimizer is near the singular part of another then the
closeness propagates to the boundary with a superlinear rate relating to x, from (1.2).
To state the result we need to consider for smooth, closed, oriented, (1 — 1)-dimensional
I cR™!, the set of all possible minimizers with boundary I':

A (I') = {minimizing integral n-currents 7T in R with T = [T]}.

Theorem 1.7. Let (I';) se[—5,5) be a smooth deformation of 'y = I', a smooth, closed, oriented,
(n - 1)-dimensional submanifold of R"*1. Consider the family

F = Use[—6,6]'/l(rs)-
and assume the following:

(@) All elements of F with distinct boundaries have pairwise disjoint supports.

(b) All elements of # have multiplicity-one up to their boundary.

(c) All elements of . are near their boundary graphical over a fixed hypersurface £
with nonempty boundary; specifically, there exists h : % — C*(Z) so that for all
se[-6,6], Tse M Ty):

graphy h(T) c spt Ty, d(graphs h(Ts)) =Ts.

(d) The graph map h: % — C®(Z) is increasing along T with a definite rate a > 0 in the

sense that for all s; € [-6,6], Ts; € ,///(st), j=12,
§1< S = h(Ts,) — h(Ts) = a(s2—s1) onT.
For convenience, denote
Spt-F = Use[-5,6] UTse.r s SPL T,
sing.# = Uge[-6,6) YT,e. i (r,) SING Ts.
Then, the timestamp function
t:spt.# — [-6,6],
tx) = s forallxe sptTs, Ts€ .4 (Ty), s€[-6,0],

is a-Holder on sing.% for every a € (0,x, + 1) withx, as in (1.2).

Theorems|1.5|and[1.7]imply:
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Corollary 1.8. Let (I'y)se-5.5], (# (T's))se[-5,5) be as in Theorem Then,
FOUTy) = FNTy) = F*(Ty) = @, dimp F(Ty) <0 —9—¢, for € =3,
forall Ts € M(Ts) fora.e. s€ [—6,0], wheree, >0 is as in (1.3).
All these tools can be put together to yield Theorem|[1.2]

Remark 1.9. These same improved regularity results should hold for homological mini-
mizers in Riemannian manifolds under generic perturbations of the metric, similarly to
ICMS23].

Remark 1.10. As already pointed out in our previous work [CMS23], there is a connection
to the recent work of Figalli-Ros-Oton-Serra [FROS20] on generic regularity for free bound-
aries in the obstacle problem. That work, too, relies on a subtle derivation of superlinear
Hélder-continuity estimate on a timestamp function for a foliation to prove the smallness
of a spacetime singular set across all time parameters t. In our previous work [CMS23], both
of these tools were coupled with a maximal density drop argument. This prevented us from
estimating the singular set in high dimensions (as we do here) since it was hard to iterate the
estimate in that form. Here, we develop new techniques that allow us to iterate the density
drop argument at an earlier stage. This then allows us to obtain stronger results (analogous
to the full dimensional range of [FROS20] ).

1.1. Organization. Section 2] contains the basic definitions. In Section 3] we estimate the
dimension of the foliation singular strata and in Section[1.7jwe prove the super-linear sep-
aration estimates (even across non-conical scales). In Section [5|we combine these pieces
to estimate the size of the singular strata of generic minimizers. Finally in Section [6| we
construct the foliations to which the previous results apply.

1.2. Acknowledgements. O.C. was supported by a Terman Fellowship and an NSF grant
(DMS-2304432). C.M. was supported by an NSF grant (DMS-2147521). We are grateful to
the referee for their careful reading and helpful suggestions.

2. DEFINITIONS

Let us collect the definitions we are going to use. Below, U c R"*! is open and T is any
minimizing integral n-current in U (see [Sim83, §33], with A = U).

Remark 2.1. For notational simplicity, for minimizing integral n-currents T of the form
[M] for a smooth hypersurface M with or without boundary we will use the definitions
below with M instead of with [M].

Definition 2.2. We denote
regT ={xe UnsptT \sptoT: sptT N B,(x) is a smooth hypersurface
without boundary for some r > 0},

and
singT=UnsptT\(sptdT uregT).



Improved generic regularity 5

In Section[4we will want to study subsets of reg T with effective regularity:

Definition 2.3. Forx e regT, we define the regularity scale atx, rr(x) € (0,1], as the supre-
mumofr € (0,1) sothatdT =0 in B, (x) and T | B, (x) is supported on a smooth hypersurface
with second fundamental form | A| < r~L. For all otherx e sptT, we set rr(x) = 0. We also
denote, for 6 > 0, the following effective portion of reg T':

R>s5(T)={xeregT :rr(x) =0}.

Remark 2.4. One can show (ICMS23, Lemma 2.4]) that rr(X) is continuous in both x and
T, provided T varies among minimizing integral n-currents with the flat distance and the
Hausdorff distance on their boundaries (if the boundaries are nontrivial).

In Theorem we will want to study refined subsets of sing T’ called singular strata.
Note that sing T < spt T \ sptdT in Definition[2.2| Since minimizing integral n-currents T
decompose locally away from sptdT into sums of integer multiples of minimizing bound-
aries (by [Sim83, §27]) with pairwise disjoint supports (by [Sim87]), in the rest of this sec-
tion we take T to be a minimizing boundary in U (see [Sim83, §37]). For all other T, one
combines the definitions by taking unions over all balls away from sptoT.

It is well-known (see [Sim83} §35]) that, when T is a minimizing boundary, blow-ups at
x € sing T are n-dimensional minimizing cones € < R"*!.

Definition 2.5. The spine of a cone € < R"*! is the largest subspace I1 ¢ R"*! such that

€ =1 x 6, for a cone 6y c R"™'%, k = dimspine€¢. Equivalently, I1 is the set of points
under which € is invariant by translation (see [Whi97, §3]).

Definition 2.6. For each ¢ € N, we define the ¢ -th singular stratum of T to be
FUT) = {xe sing T : dimspine € < ¢ for all tangent cones € of T atx}.
Remark 2.7. It is well-known (cf. [Whi97, §4]) that
(a) dimy PY(T) </ foralll €N,
(b) #°T) is discrete, and
© FSUT) =@ for>n-17.
Note that (a) and (c) together imply the celebrated result that dimysingT < n—7.

We will also need to study more effective subsets of the singular strata:
Definition 2.8. For/ €N, € >0, we also set
%Z(T) = {xesing T : all tangent cones € of T atx are= ¢ from splitting an RO
That is, x € yf (T) ifxesing T and each tangent cone € of T atx satisfies
dp,0)(6,[11] x 6y) = €

for all (¢ +1)-dimensional subspaces Il c R™ ! and all minimizing cones 6y C R"; here,
dp, 0) denotes the flat metric for integral n-currents in By (0) (see [SIm83} §31]).

This definition is inspired by the quantitative strata defined by Cheeger—Naber [CN13]
but is a distinct notion: we are only studying the symmetries at the tangent cone level, i.e.,
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after blowing up, whereas the quantitative strata of Cheeger—-Naber study the symmetries
on intervals of scales before any blow-ups.

Remark 2.9. Note that:
(@) FL(T) c FET) < LUT) forall0 < e, <&, and
(b) FUT) = UesoFL (D).

Finally, we will also need the following definition:

Definition 2.10. We say that T and T' cross smoothly at p € regT nregT' if, for all suf-
ficiently small r > 0, there are points of reg T’ on both sides of reg T within B,(p) and vice
versa; that is, for small enough r > 0 that B, (p) \reg T and B, (p) \reg T' each consist of pairs
of components Uy and U, respectively, then the sets

regTNU,, regTNU., regT' nU,, regT' nU-

are all nonempty.

3. PROOF OF THEOREM[L.5]

Lemma3.1. Lety >0 ande > 0 be given. There existsn =n(n,y,€) € (0,1) with the following

property.

Consider any minimizing cone € in R""! with dimspine€ < ¢, and that € is = € from
splitting an R*'. Let % < B,(0) be the set of all pointsx € B;(0) nsing T, where T is any
minimizing boundary in R"*! that does not cross € smoothly, and where

O1r(X) = 04(0) — 1.
Then, & < U, (Il) for some < ¢-dimensional subspaceIl c R,
Proof. Suppose, for contradiction, that this failed with n = j~!, j = 2,3,... and cones €.
Passing to a subsequence (not labeled), we can assume that €; — 6. Since € is = ¢ from

splitting an R‘*!, we have that dimII < ¢ for I1:= spine 6.
The contradiction hypothesis guarantees that for each j there exist T}, x; as above, with

(3.1 Or; (x;) >®<gj(0)—j_1,

(3.2) x; & Uy (TD).

By (3.1) and the upper semicontinuity of density, we have @1 (x) = @ (0). Since T does not
smoothly cross € (or else some T; would), [CMS23, Proposition 3.3] implies T = 6 and
x € I1. On the other hand, by (3.2) implies thatx ¢ U, (II), a contradiction. O

Proof of Theorem[1.5. We may suppose that U = B;(0) since Hausdorff dimension upper
bounds are preserved under countable unions and scaling.
The theorem will follow if we show that, for all 6 > 0,

(3.3) (T =0.
So let’s fix 6 > 0 going forward.
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We will need the co-approximation to Hausdorff measure %, for d > 0 real, denoted
A4 1t is defined for all A c R™*! by #4(A) = inflw, Z‘;"Zl (% diam Cj)d}, where the inf is
taken among all covers {C;} j=12,... of Aand wg is usually taken to be the volume of the unit
d-ball when d is an integer and its analytic extension to all d > 0 via the I function, though
the particular choice doesn’t matter (see [Sim83} §2]).

Note that if [T R"*! is any subspace with dimII < ¢, then for y > 0,

(3.4) FE5 (Uzy (1) N By (0)) < Cyy ,67° for all y > 0;

this can be seen, e.g., by constructing an explicit covering of U,y (IT) N B1(0). Now fix y €
(0,1), depending only on n, ¢, §, so that

3.5) CnesY’ <327 Pwpss.
Suppose, for contradiction, that (3.3) fails. By Remark the set
FUF) = Ures FL(T)
would then satisfy
(3.6) F(FL(F)) >0,

for some € > 0, which we also fix. This now determines n = n(n, Yy, €) per Lemma Using
this n, define, for k € N,

S”f'k(ﬂ) ‘=Urez{y€ Sﬁf(ﬂ) NsingT:1+kn<O¢(y) <1+ (k+1)n}

so that,

(3.7) FUF) =02 LR ).
It follows from and that, for some k€ N,

(3.8) A (PLR(T)) > 0.

Since U = B;(0) is bounded, [Sim83, 3.6 (2)] applies and guarantees that

. AL SR F) N BLx)
limsup

IS >2707% for /0 a.e.xe LK ().
A—0 Wets

Fix any x as above. Then there is a sequence A; — 0 such that

(3.9) mA; 0750 (P F) N By, ) 227 P wyys.
1

Sincex € yf (T) for some T € .#, after passing to a subsequence (not labeled) we have
(T’X,/li)#T - Cg’

for a minimizing cone % that’s > ¢ from splitting a R“*!. Choose a < ¢-dimensional sub-
space I1 by applying Lemma(3.1]to € (with y, € as fixed above).
We claim that, for i sufficiently large,

(3.10) A HFLR(F) - %) 0 B1(0) < Uny (I,
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Indeed, if we show this, then (3.4) and (3.5) imply
LGP ATHFLHT) -0 N B1(0) < 5P (Uzy (D N B1(0) < 327 Py,

in contradiction to (3.9).

It remains to verify (3.10). Suppose it failed with i — co. Then, there would exist
(3.11) i € A;HFLH(F) %) 1 B (0)\ Upy (TD).
By our definition of x""“ (#), we have y; € sing(nx 1,)# T; for some T; € .# and

Oys0 T (Vi) = 1+ kn = O (0) = 1.

Passing to a subsequence we find (x,)#T; — T a minimizing boundary in R"*! which

does not cross € smoothly (otherwise, some T; would cross T smoothly, which is impos-
sible since elements of .%# have pairwise disjoint supports) and y; — y with

Or(y) =1+ kn =04 (0) —1.

By choice of IT above—based on Lemma M—we find that y € U, (I). This contradicts the
choice of y; in (3.11). 0J

4. PROOF OF THEOREM[L.7]

Lemma 4.1. There exists p,, >0 with the following property.
If T is a minimizing boundary in B,(0) c R, and spt T N B1,2(0) # @, then

R>p,(T)NOB1(0) # @.

Proof. Suppose, for contradiction, that for each j =1,2,... we could find T; as above, ex-
cept with

4.1) R=1/j(Tj)NOB1(0) = @.

We can pass to a subsequence (not denoted) along which T; — T, a minimizing boundary
with

sptTNB12(0)# 3.
Note that spt TndB;(0) # @ by monotonicity, and thus U =15 %>1,;(T)N0B;(0) # @ since
dimpysing T < n—7. In particular, we must have %,,;(T) N 0B1(0) # @ for some j, contra-
dicting (4.1) and Remark[2.4] O

Lemma 4.2. Let A> 1, p € (0,p,) be given, with p, as in Lemmal[4.1. There exists L =
L(n, A, p) with the following properties.

Take a minimizing boundary T in B24(0) with 0 € sptT. Then, for every minimizing
boundary T' in B> 4(0) not crossing T smoothly, and with spt T' N B1,»(0) # @,

Ad(R5pp(T) NOBA0),spt T') < L-d(Rs,(T) N OB, (0),spt T').

Proof. Without loss of generality, we may suppose T, T' have connected supports.
Suppose, for contradiction, that for each j =1,2,... we could find T}, T]'. as above, except

with

4.2) j+d(R=p(Tj)N 0B (0),spt T)) < d(R>4p(Tj) N0BA(0),spt T)).
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Since the right hand side is uniformly bounded from above, we can pass to a subsequence
(not denoted) along which T7, T]’. — T, aminimizing boundary with 0 e spt T

For each j, letx; € % ,(T};) be the point on spt T} attaining the distance on the left hand
side of (4.2). Passing to a further subsequence (not labeled), x j — X€ X>p(T) by Remark
Then, by renormalizing by the right hand side of (4.2), we obtain a nonnegative Jacobi
field on reg T that equals zero at x.

On the other hand, by Lemma@ reg T also contains points in %> 4,(-) N 0B4(0), and
the limiting Jacobi field isn’t everywhere zero on the component by (4.2). This contradicts
the maximum principle. 0J

Lemma 4.3. For every nonflat minimizing cone € in R"*1, every positive Jacobi field u on
regé, everyr € [1,00), and every p € (0, p,) with p, as in Lemmal4.1}

sup us< Hr™*n inf u,
Rrp(€)NOB-(0) R>p(€)NOB1(0)
where H = H(n, p).
Proof. This follows from our proof of [CMS23, Corollary 3.11]. O

Lemma 4.4. Let A € (0,x,+1), p € (0,p,) be given, with p, as in Lemma There exist
0=06(n,A,p)e (0, %), A=An,A,p)e(1, 26)™Y) with the following property.
Consider any minimizing boundary T in Bs-1(0), with 0 € sing T satisfying
07r0,1)=067(0,2) -9.

Then, for every minimizing boundary T' in Bs-1(0) not crossing T smoothly, and withspt T'n
B5(0) # @, we also have:

A7 d(R5 4p(T) NOBA(0),spt T') < A1 d (R, (T) N 3B, (0),spt T'),

and all sets above are nonempty.

Proof. Without loss of generality, we may suppose T, T’ have connected supports.
First we choose A = A(n, A, p) sufficiently large so that

4.3) HA < 1Al

with H = H(n, p) as in Lemmal4.3

We argue by contradiction. By Lemma@ R>p(T)NOB1(0), Z>4p(T) NOBA(0) are both
nonempty for 6 < % So let’s assume that T; and T ]’ are as above with § = j~! and j large
enough that j > 2A, and

(4.4) 07,(0,2)-07,0,1) <,
(4.5) sptT; N B;-1(0) # @,
but

(4.6) AT d(Rp(T)) N OB, (0),spt T)) < A~ d(PR ap (Tj) N0BA(0),spt T)).
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Note that (4.4) implies that, after perhaps passing to a subsequence (not labeled), T; —
¥, a nonflat minimizing cone ¥. Then, (4.5), the strong maximum principle, and the
connectedness of reg €, imply that T]’, — % as well.

One may now construct a positive Jacobi field on reg €6 that reflects (4.6). Since this con-
struction is standard, we will omit the technical details and refer the reader to the deriva-
tion of [Sim87, (10)] on [Sim87, p. 333]. Fix some arbitrary open U & reg¢, which we may
take to be connected since reg ¢ is. Since T}, T]’. converge locally smoothly to € away from
sing€, the height functions £, h; of reg T;,reg T]'. over U satisfy h;, h; — 0 smoothly on U.
Moreover, uj = hj— h; has a fixed sign since T}, T]’. do not cross smoothly. It is not hard to
see that u; satisfies an elliptic equation of the form

2 .
Acgu1+|A<€| u] :le(ﬁ(a]V%u1)+b]v%u]+c]u] on U;

where a;j, bj,cj — 0 smoothly on U. Now the connectedness of U and the standard Har-
nack inequality for divergence-form elliptic equations allows us to renormalize u; and,
after passing to a subsequence (not labeled), obtain a positive Jacobi field, i.e., a solution
u>0of
Aeu+ IAchZu =0onU.

At this point we may apply this process with an exhaustion of reg ¢ by such precompact
U’s and have u be defined over all of reg¥é.

Next using the fact that the vertical distance is within o(1) of the distance in (4.6) over
the subsets %, (€) of controlled curvature, we obtain, using Remark@
4.7 AA inf u< A™' sup u;

R>p(€)N0B1(0) R>2p(€)NIBA(0)

where u is the positive Jacobi field constructed on reg¢. By Lemma[4.3|with r = A, (4.7)
implies

(4.8) A~ inf u<s HA 1 7n inf u.
R>p(€)NOB1(0) R>p(€)NOB1(0)
After canceling out the common term from both sides, (4.8) contradicts (4.3). O

We now come to the main proof of this section.

Proof of Theorem[1.7. Leta € (0,x,+1). Fixp € (0,p,), A€ (@,x,+1). Thenletd =d(n, A, p)
and A= A(n, A, p) be as in Lemmal4.4} and L = L(n, A, p) = L(n, A, p) be as in Lemma4.2

Using the compactness of .# and the upper semicontinuity of density, there exists © €
(1,00) such that

4.9 Or(y) <Oforall Te.#, yesingT.

Using assumption (b), there exists r > 0 such that

(4.10) T'| Bz, (y) is a minimizing boundary for all T € .#, y € sing.%.

(we are not necessarily assuming that y € sing T') and, again by the compactness of .7,

(4.11) Or(y,2r)<20forall Te 7.
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Then, let y € (0,9) be such that
(4.12) 2y <1,

Claim 4.5. For sufficiently large m € N, we have for ally € sing Ts, y' € spt Ty,

mA

ly —yl<y™ = |’ —s| < 2™y
Proof. Suppose not. Then, perhaps after passing to a subsequence of m’s, there would
existy,, € singTs, , ¥, € spt Ty violating the estimate, i.e., so that

(4.13) Y, —Yml <y™,

(4.14) |, — Sml = 2MymA

We may assume m is large enough that
(4.15) Y"1l <rs.
Foreach g=0,1,2,..., define

Tynq = (y,, aayn-D# o

qu (ny ,Adym= 1)#T/ .
/

Xm,q - (nym,Aqym_l)#(Vm .
Observe that
(4.16) Tin,q+1= 10,8%Tm,q» Try ge1 = M0,4)4 Ty 45
and, using A>1 and (4.13),
(4.17) 1%}, 41l = A~ Ty "y, = ymll <y = spt Ty, ,NBy(0) # @.
Let Q be the largest integer satisfying A%y < 1§, i.e.,
(4.18) Ayl < 5 < AQTLymL

Forall g =0,...,Q, T4, Tm q are minimizing boundaries in Bs-1(0) by (4.15), and not
smoothly crossing by (a). Moreover, for g =0,...,Q — 1, there are two mutually exclusive
possibilities:

@A) or,,,(0,4)-0r, (0,1) <. Then by Lemmal4.4} (4.16), and (4.17),
d(R>p(Tim,q+1) N 0B (0),spt T}, )
= A7 d(R>20(Tim,q) N0BA(0),8pt T}, )
< Ad(R>p(Tin,q) NOB1(0),spt T}, ),
(B) ©71,(0,A) —O7,(0,1) = 5. Then by Lemmamand (4.16),
Ad(R>p(Tm,q+1) N0B1(0),spt Ty, 1)
= A7 d(R> 49Ty, q) N 0BA(0),spL Ty, )
< (L/ A)d(Rp(Tim,q) N OBy (0),spt T}, ).
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Let Q4, Qp denote the number of times that possibilities (A), (B) occur, respectively. Obvi-
ously, Q4 + Qp = Q, and by the monotonicity formula together with (4.10), (4.11), we also
have that Qg <206 1 In particular, by (4.16) and the crude initial estimate

Ad(R=p(Ti,0) NOB1(0),spt Ty, ) <2
we deduce after Q iterations that
A~ AR poyme1(Ts,,) N OB saym-1 (Ym), spt Ty )
= d(R>p(Tyn,q) N0B1(0),spt T}, )
< (AL AP AR5 (Timy0) NOB1(0),5pt T, o)
= (AMHLAY Y B AR5 (Tm,0) N 0B1(0),spt T, o)
<2(A"MQmax{LAM !, 1)290 ",
Then, using we deduce
4.19) AR p-1,50(Ts,) N Brs(ym),spt Ty ) < L'y™,

where L' = L'(A,y,6,0,r). Together (4.14) and (4.19) are in contradiction since they im-
ply the existence of a nonnegative Jacobi field on lim,, Ts,, (this exists after passing to a
subsequence) with an interior vanishing point but which is positive on the boundary by
assumptions (c), (d). L]

It follows from the claim that for large m € N and all x € sing T, X' € spt Ty,

YTl <X — x| <y = &) - )] < 2My™
|t(X/) —t(x)] m,. .mA.,—(m+Da -a A—aym
<2 = 2 ,
X —x|? Yy Yy “@2y" )
so, in view of (4.12), t is indeed a-Holder on the singular set. O

5. PROOF OF COROLLARY[L.8]

Apply Theorem|1.5]to small balls locally away from Uge[—s,5T's’s, small enough that each
T € # (L) restricts to a minimizing boundary in the ball. Then taking countable unions
we deduce that

dimy & (F) < forall £ eN.
Note that, by Theorem the measure theoretic result in [FROS20, Proposition 7.7 (a)]
applies to &% (%) with £ = 0,1,2 (since 2 < 2 + £,,) and yields a full-measure subset
I[ < [_5)6]y g = 07172)
with the following property:
£=0,12 sel;, T,€ T Ty = S (T) = 0.

Likewise, [FROS20, Proposition 7.7 (b)] applies to ¢ (%) with £ = 3 (since 3 =2 +¢,,) and
yields a full-measure subset
Ipc[-6,6],¢=3,
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with the following property:
0>3,s€l;, Tse M (T = dimy LY (T)<l-2—¢p.

The result follows since the intersection NI, remains a full-measure subset of [, §].

6. PROOF OF THEOREM[L.2]

Given all our tools so far, the strategy is straightforward: we would like to construct a
family of boundary perturbations (I'y)s¢[-s,5) 0f I' on which to apply Corollary The
two main difficulties are the potential non-uniqueness of T among minimiers, and the
possible presence of high multiplicity on T.

For simplicity, we break down the proof into steps.

6.1. Reduction to uniquely minimizing 7. It follows from the Hardt-Simon boundary
regularity theorem ([HS79, Corollary 11.2]) that

(6.1) sptT =M
for an oriented hypersurface M with nonempty boundary, which satisfies
(6.2) OMcT,singT = M\McR"\T.

In our previous paper we showed that perturbing I' — I by pushing the components of
0M c T inward along M forces .# (I'') to be a singleton; see [CMS23, Lemma A.3]. So
without loss of generality and after relabeling I'” — I' we may assume that

(6.3) A (1) ={T} (< T is uniquely minimizing).
Note that (6.3) and the compactness theorem for integral n-currents combine to yield
(6.4) I" - Tsmoothlyand T'e #/1') = T' - T.

6.2. The case of T with multiplicity one. In this case, the Hardt-Simon boundary regu-
larity theorem ([HS79, Corollary 11.2]) further guarantees that
(6.5) T=[M],oM=T,

for the same hypersurface M that satisfies (6.1), (6.2).
Next, by the upper semicontinuity of density, together with Remark [2.4]and (6.4), the
fact that T has multiplicity one also implies

(6.6) I — T smoothly and T' € .# (') = T’ also has multiplicity one.

Therefore, all such T’ themselves have decompositions satisfying (6.1), (6.2), with T’
in place of T', T’ in place of T, and M’ in place of M.

It follows from (6.4), (6.6), and Allard’s interior ([Sim83, §5]) and boundary ([All75]) reg-
ularity theorems (note that in the multiplicity-one case T has density % onT’) that

(6.7) I — T smoothly and T' = [M'] € .#I') = M' — M locally smoothly

in the sense of smooth embeddings; by “locally smoothly,” we mean the convergence is
smooth on compact subsets of M (including up to I = 0M).
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To proceed further we will need to restrict to graphical perturbations I'' of I'. Fix I' and

a (incomplete) hypersurface Z with boundary, such that
0x=T,Zc M,
respecting orientations (e.g., £ = M N U for a small tubular neighborhood U of I'). Now let
0 >0 be small enough that each
2s:=graphss, s€[-0,0]
is still a smooth hypersurface with boundary, and denote
I'y:=0X;

so that 2y = X, I'g =I'. Below we will only need the I's, and may discard the X;.

Claim 6.1. After possibly shrinkingd > 0, the family (I's) sc(—5,5) Satisfies the assumptions of
Theorem[L.Z.

Given Claim 6.1} Corollary[1.8|applies to (I's)se[-5,5- Thus, for a.e. s € [-6,6], every Ts €
A (T's) has the desired improved regularity of Theorem|1.2| So it remains to prove Claim
6.1

Proof of Claim|6.1] By inspecting Corollary[l.8|we see that we need to verify conditions (a),
(b), (¢), (d) in Theorem|[1.7;
(@) This holds by the well-known cut-and-paste technique for minimizers; see, e.g.,
ICMS23, Lemma 2.8].
(b) This holds, after perhaps shrinking &, by (6.6).
(c) This holds, after perhaps shrinking &, by (6.7).
(d) This holds automatically with a = 1.

This completes the proof of the claim. U

6.3. The general case. It follows from the Hardt-Simon boundary regularity theorem ([HS79,
Corollary 11.2]) and its refinement by White ([Whi83, Corollary 2]) that

Te#T) = T=T1+...+ Ty,

with each T; being a multiplicity-one minimizer satisfying (6.1), (6.2), (6.5) with T; in place
of T, M; in place of M, some union of components I'; c T" in place of I', and

(6.8) Mjc M;\T;foralli< j;

see also [CMS23, Theorem A.1]. Note that m equals the largest multiplicity of T onregT.
We'll refer to this as the (Hardt-Simon) “decomposition” of T.

The decomposition above applies to any minimizing 7’ € .# (I') in place of T, with T’
in place of I, M in place of M;, I'; in place of I';, and m’ in place of m.

Claim 6.2. IfI" is sufficiently close toT in C*®, and T' € .# (') is arbitrary, then the decom-
position for T' has m' < m. In fact, either

(@) m' <m, or
(b) m' = m and M,,, has strictly fewer components than M,,, or
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(c) m'=m and [M),] is close to [Mp,].

Proof. Throughout, we'll implicitly use (6.4), the fact that components of any M; are in
bijection with components of M; (see [CMS23, Lemma 2.5]), and the characterization of
m as the top multiplicity of T, and respectively all the same statements for T".

It follows from the upper semicontinuity of density that m’ < m. So, going forward we
may assume that (a) fails (otherwise we're done), and thus m' = m.

By our decomposition, T has multiplicity < m — 1 on the complement of M,,, and M,, N
I' = 0M,;,, so the upper semicontinuity of densities also yields that M,, converges to a
subset of M,,. Note that distinct components of M}, cannot limit to subsets of the same
component of My, (this follows as in (b) in [CMS23| Lemma 4.6]), so M,, has at most as
many components as M,,. Going forward, we may suppose that (b) fails too (otherwise
we're done). Then, M,, and M}, have the same number of components.

By Allard’s theorem [Sim83, §5] and the interior regularity of minimizers [DG61], it fol-
lows that away from I', T’ decomposes as a multisheeted graph (the sheets pairwise don’t
intersect, or they overlap) locally over M,,,\0M,,, with sheet multiplicities equal to the den-
sity of T’. Since m' = m and M,,, M, have the same number of components, it follows 7"
is a single graph with multiplicity m locally over M,, \ dM,,. Thus, dM,, — 0M,,. This
proves (c). 0

Claim 6.3. If T is not of multiplicity one (i.e., m = 2), then there exist ' — T so that each
T' € .4 (") satisfies (a) or (b) in Claim[6.2.

Proof. Without loss of generality, we may assume that spt T is connected.

Perturb I' — I so that I';,, gets pushed off spt T, while all other components of I stay
fixed. Now suppose, for contradiction, that T’ = T" € .# (I"') satisfies (c).

It follows that T’ — [[M,’n]] is a minimizer with prescribed boundary Zﬁ_ll [T;1. This is the
same as the boundary of T = T — [M,,,], so T = T’ by (otherwise we'd get a nonunique
minimizer for I'), so spt T = spt T’ by (6.8), a contradiction. L]

Note that we can repeatedly invoke Claim [6.3]and replacing T’ — T at the end of
each step, until T is of multiplicity one, in which case the result follows from
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