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Abstract

We prove that sufficiently low-entropy closed hypersurfaces can be perturbed so
that their mean curvature flow encounters only spherical and cylindrical singular-
ities. Our theorem applies to all closed surfaces in R3 with entropy at most 2 and
to all closed hypersurfaces in R* with entropy at most A(S' x R?). When combined
with recent work of Daniels and Holgate, this strengthens Bernstein and Wang’s
low-entropy Schoenflies-type theorem by relaxing the entropy bound to A(S! x R?).
Our techniques, based on a novel density drop argument, also lead to a new proof of
generic regularity result for area-minimizing hypersurfaces in eight dimensions (due
to Hardt, Simon, and Smale).

1. Introduction
Mean curvature flow is the natural heat equation for submanifolds. A family of hyper-
surfaces M(¢) C R"*! flows by mean curvature flow if

(a%x)L = Hy() (%), (1.1)

where Hjy(;)(x) denotes the mean curvature vector of M(¢) at x. When M (0) is com-
pact, mean curvature flow is guaranteed to become singular in finite time. Under-
standing the potential singularities is thus a fundamental problem. One approach to
this issue is to study the flow in the generic case: a well-known conjecture of Huisken
suggests that the singularities of a generic mean curvature flow should be as simple
as possible, namely, spherical and cylindrical (see [49, #8]).

The main results of this note completely resolve Huisken’s conjecture in three and
four dimensions for low-entropy initial data (see (1.2) for the definition of entropy).
Informally stated (see Corollaries 1.8 and 1.9 for precise statements), we prove the
following results.
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THEOREM 1.1 (Low-entropy generic flow in R3, informal)

If M? C R3 is a closed embedded surface with entropy M(M) < 2, then there exist
arbitrarily small C*® graphs M’ over M so that the mean curvature flow starting
from M’ has only multiplicity-one spherical and cylindrical singularities.

THEOREM 1.2 (Low-entropy generic flow in R*, informal)

If M3 C R* is a closed embedded hypersurface with entropy A(M) < A(S! x R?),
then there exist arbitrarily small C* graphs M' over M so that the mean curvature
flow starting from M’ has only multiplicity-one spherical and cylindrical singulari-
ties.

In an earlier version of this paper, we conjectured that Theorem 1.2 could be
combined with a surgery construction to yield a strengthened version of Bernstein
and Wang’s low-entropy Schoenflies theorem (see [13]; cf. Theorem 1.4 below). This
surgery construction has been recently carried out by Daniels and Holgate [35] who
showed that if a mean curvature flow has only spherical and neckpinch singularities,
then one can construct a mean curvature flow with surgery. As such, combining these
results leads to the following.

COROLLARY 1.3 (Strengthened low-entropy Schoenflies-type theorem)
If M3 C R* is an embedded 3-sphere with entropy A(M) < A(S' x R?), then M is
smoothly isotopic to the round S>.

See Sections 1.2 and 1.4 for an expanded discussion of this result.

1.1. Previous work on generic mean curvature flow

Trailblazing work of Colding and Minicozzi [32] demonstrated that spheres and cylin-
ders are the only linearly stable singularity models for mean curvature flow. In par-
ticular, the remaining singularity models are unstable so they should not generi-
cally occur (as conjectured by Huisken). In a previous paper [25], the authors intro-
duced new methods to the study of generic mean curvature flow, proving that a large
class of singularity models (specifically, singularities with tangent flows modeled
on multiplicity-one compact or asymptotically conical self-shrinkers) can be indeed
avoided by a slight perturbation of the initial conditions.

In particular, our previous work shows that for a generic initial surface in R3,
either the mean curvature flow has only spherical and cylindrical singularities or at
the first singular time it has a tangent flow with a cylindrical end or higher multi-
plicity (both possibilities are conjectured not to happen). We refer the reader to the
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introduction to our previous article [25] for further discussion of generic mean curva-
ture flows and related work.

1.1.1. Relationship between this paper and our previous work

In [25], we proved a classification of ancient one-sided flows (analogous to the mini-
mal surface results of Hardt and Simon [37]; see Appendix D for further discussion)
which led to a complete understanding of flows on either side of a neighborhood of a
nongeneric (compact or asymptotically conical) singularity. In particular, we showed
that nearby flows to either side do not have such singularities nearby.

In R3, to understand generic mean curvature flow without a low-entropy condi-
tion (in contrast with this note), one must work at the first nongeneric time rather
than globally in space-time. However, two serious issues arise when working this
way. First, there is no partial regularity known for tangent flows past the first singu-
lar time without a low-entropy bound.' Second, there is the possibility that a small
perturbation of the initial data may increase the first singular time slightly without
improving the flow in an effective way. To that end, in [25] we had to additionally
prove that the nearby flows strictly decrease genus as they avoid the nongeneric sin-
gularity. This genus-loss property is crucial for tackling Huisken’s conjecture in R3
without a low-entropy condition and is a consequence of the classification of ancient
one-sided flows, as obtained in [25].

On the other hand, by including a low-entropy condition, here we are able to
work globally in space-time. This allows for significantly simplified arguments. In
fact, the key observation of this paper is that in this setting one can completely avoid
the classification of one-sided ancient flows and instead rely on a soft argument based
on compactness and a new geometric property of nongeneric shrinkers (see Proposi-
tion 2.2). We emphasize that a drawback of the methods used in this note as compared
to our previous work is that the arguments used here give no indication as to the local
dynamics near a nongeneric singularity (such information was obtained in [25] near
asymptotically conical and compact shrinkers; see also [29], [34]).

Remark

After the first version of this paper (as well as our previous paper [25]) was posted,
another approach to the generic perturbation of the initial data was pursued by Sun
and Xue (see [62], [63]). This approach is in the spirit of local ODE dynamics, as
suggested by the Colding—Minicozzi program (cf. [34]). The analytic framework in
[62] and [63] has the interesting feature that non-one-sided perturbations are analyzed,
but the applications are currently limited to locally perturbing away singularities that

I At the first singular time, work of TImanen [48] and Wang [65] show that the support of any tangent flow is a
smooth self-shrinker with only conical/cylindrical ends.
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arise at the first singular time. Conversely, our geometric approach (first developed in
[25]) is motivated by global results such as the ones stated in Theorems 1.1 and 1.2.
Of course, our approach also admits localizations (see Appendix C).

1.2. Entropy
To state our main results, we first recall Colding and Minicozzi’s definition in [32] of
entropy of M" C R"+1:

n —Lx—xo?
AM):= sup / (4rty)" 2e atg X —xol”, (1.2)
xoeRn+1 /M
t0>0
By Huisken’s monotonicity of Gaussian area, we see that # — A(M(¢)) is nonincreas-
ing when M (¢) is flowing by mean curvature flow. A computation of Stone [61] shows
that the entropies of the self-shrinking cylinders SK (v/2k) x R?7% ¢ R"*+1 satisfy’

2 4
2>A(ShH = ,/—” A 1.52>%>A(Sz):— ~ 147> > A(S").
e e

Several fundamental results have been obtained about hypersurfaces with sufficiently
small entropy, starting with work of Colding, Ilmanen, Minicozzi, and White [31],
who proved that the round sphere S$”(+/2n) has minimal entropy among all closed
self-shrinkers. This was extended by Bernstein and Wang [9] who showed that the
round sphere minimizes entropy among all closed hypersurfaces (see also [40], [70]).
Moreover, Bernstein and Wang [10] have also proved that the cylinder S'(v/2) xR C
R3 has the second least entropy among all self-shrinkers in R (their result crucially
relies on Brendle’s classification of genus-0 self-shrinkers in [18]).

Subsequent work of Bernstein and Wang provides a robust picture of hypersur-
faces with sufficiently small entropy (see [11], [12], [14]; see also [15]). In particular,
they obtained the following low-entropy Schoenflies result.

THEOREM 1.4 (Bernstein and Wang [13])
If M3 CR* has A(M) < A(S? x R), then M is smoothly isotopic to the round S3.

In [13], this is proved by flowing M by mean curvature flow and then smoothing
out any potential nongeneric singularities to construct the desired isotopy. Our pre-
vious work [25] on generic mean curvature flow gave an alternative approach to this
result by showing that if one perturbs M slightly, the mean curvature flow directly
provides the isotopy.

2Note that A(SK (v/2k) x R"—K) = A(SK).
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THEOREM 1.5 ([25])

If M3 C R* has A(M) < A(S? x R), then after a small C®-perturbation to a nearby
hypersurface M’, the mean curvature flow M’ (t) is completely smooth until it disap-
pears in a round point.

One of the consequences of this paper is a simplified proof of Theorem 1.5 (see
also the stronger version stated in Corollary 1.3).

1.3. Main results

We now describe our main results in full generality. We construct generic mean cur-
vature flows of sufficiently low-entropy hypersurfaces in all dimensions. To quantify
the low-entropy condition, we provide several definitions.’ Let 8, denote the set of
smooth self-shrinkers in R”*! with A(Z) < oo, that is, properly embedded hypersur-
faces X satisfying H + % = 0 with finite Gaussian area. Let &, denote the nonflat
elements of §,,. For A > 0, let

Su(AN) = {268,, I)L(E)<A}, 8:(A):= Sn(A)DS,’{.
We also define
8¢ .= {0(S/ (V2j)xR" /)€ 8,:j=1,....k, 0 O(n + 1)}

to be the set of (round) self-shrinking spheres and cylinders in R* 1.

Similarly, we let RME, denote the space of regular minimal cones in R*T1,
that is, the set of € C R**! with € \ {0} a smooth properly embedded hypersurface
invariant under dilations and having vanishing mean curvature. Let RME,; denote
the nonflat elements of RME,. Define

RME,(A) = {‘6’ € RME, : A(€) < A}, RME; (A) := RME,(A) N RME;.
For a dimension n > 2 and entropy bound A € (A(S"), 2], our first hypothesis is
For3 <k <n, RME}(A) =0 (Tn,A)
while our second hypothesis is
8 (A) C 85", (FFn,A)
Finally, we define certain notation that will be used throughout.

3The definitions here are closely related to the hypotheses (*,,. o), (**,,.a) introduced by Bernstein and Wang
(cf. [12], [13]), but our second hypothesis is less restrictive.
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Definition 1.6

For a closed embedded hypersurface M” C R"*! we denote by F(M) the set of
cyclic* unit-regular integral Brakke flows M with M (0) = #" | M, and for each M €
§(M), we define sing,,, M C sing M to be the set of singular points (x,) so that
some” tangent flow to M at (X, ) is a multiplicity-one flow associated to elements of
85"

Having given these definitions, we can now state our main technical result. By
convention, we take A(S°) = 2. Everywhere below, M is taken to be closed and
embedded.

THEOREM 1.7

Assume that n > 2 and that A € (A(S"), A(S"™?)] satisfy hypotheses (in.a) and
(tTn.a)- If M™ CR" Y has A(M) < A, then there exist arbitrarily small C* graphs
M' over M so that A(M") < A and all M" € F(M') have sing M’ = sing,, M'. In
particular, the level set flow of M’ does not fatten.

See [25, Section 1.2] for a discussion of results related to the regularity of flows
satisfying sing M’ = sing,., M'.

In low dimensions, the hypotheses (7,,o) and (¥, ,A) can be understood more
concretely. This leads to the following results.

COROLLARY 1.8

If M2 C R3 has A(M) <2, then there exist arbitrarily small C*® graphs M’ over
M so that the level-set flow of M’ is nonfattening and the associated Brakke flow
M’ € F(M') has sing M" = sing,,,, M.

Proof
Condition (2,2) is vacuous while (12,2) holds by the classification of self-shrinking
curves (see [1]). O

COROLLARY 1.9

If M3 CR* has A(M) < A(S! x R?), then there exist arbitrarily small C*® graphs
M’ over M so that the level-set flow of M’ is nonfattening and the associated Brakke
flow M" € F(M') has sing M" = sing,e, M.

4Recall that an integral varifold V is cyclic if the unique mod 2 flat chain [V'] has d[V'] = 0. Work of White
[69] shows that this property is preserved under varifold (and Brakke flow) convergence.
SNote that if some tangent flow is a multiplicity-one element of & 5" then all are by [30] and [33] (cf. [8]).
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Proof
By the resolution of the Willmore conjecture (see [53]), RME] (Ae) = @ for

2 2

Ae =L~ 157> A" ~ 1.52.

4w
Thus, (f3,4) holds for all A < Ae. Furthermore, by the classification of low-entropy
shrinkers in R? from [10], it holds that 83 (A(S')) = 85°". Thus, ({13 4(s1)) holds.

O

1.4. Generic mean curvature flow with surgery
As already observed in [25], we can apply Corollary 1.9 to give direct proofs of The-
orems 1.4 and 1.5. Moreover, Daniels and Holgate recently proved that if an initial
hypersurface admits a (cyclic, unit-regular, integral) Brakke flow with only® spherical-
and neckpinch-type singularities’ then it is possible to construct a smooth mean cur-
vature flow with surgery starting from this initial condition (see [35] for the precise
definition of mean curvature flow with surgery).

As such, Corollaries 1.8 and 1.9 combined with [35, Theorem 1.2] yield the fol-
lowing generic surgery construction.

COROLLARY 1.10 (Generic mean curvature flow with surgery)

Assume that n > 2 and that A € (A(S"), A(S"~2)] satisfy (tn,n) and (Tn,a). If M" C
R has M(M) < A, then there is an arbitrarily small C* graph M’ over M and a
smooth mean curvature flow with surgery starting from M’.

In particular, when M3 C R* is an embedded 3-sphere with A(M) < A(S! x R?),
the mean curvature flow with surgery can be used (see [35, Theorem 6.4]) to construct
an isotopy to the round 3-sphere. This yields the strengthened version of the low-
entropy Schoenflies theorem stated in Corollary 1.3.

Remark

In the setting of 2-convex mean curvature flow with surgery (see [3], [4], [17], [19]-
[21], [38], [39], [44]), the surgery to isotopy construction has been studied in several
works (see [22], [23], [45], [54], [55]). (We also mention related work using Ricci
flow with surgery in [24] and [52] and singular Ricci flow in [5]-[7].)

The spherical and neckpinch singularities are the tangent flows for which a canonical neighborhood theorem is
proved, thanks to [27] and [28].

"Note that if M’ is such a Brakke flow in R”T! and sing M’ = sing,., M, then the condition “M” has only
spherical and neckpinch singularities” is a consequence of A(M’) < A(S"72).
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1.5. Generic regularity of area-minimizing hypersurfaces in eight dimensions

We remark that the study of generic mean curvature flow in our previous work [25]
can be viewed as the parabolic analogue of the work of Hardt and Simon [37] and
Smale [60] concerning the generic regularity of area-minimizing hypersurfaces in
eight dimensions. In particular, the existence and uniqueness of the ancient one-sided
mean curvature flow (see [25]) is a direct analogue of the existence and uniqueness of
the foliation on either side of a regular area-minimizing cone, as proved in [37] (see
also [67]).

In this paper, we develop a new technique based on density drop that avoids the
classification of the ancient one-sided flow. As one might expect, this also yields a
new proof of the generic regularity results of Hardt and Simon [37] and Smale [60]
that avoids the need to classify the foliation. This is discussed further in Appendix D.

1.6. Organization

See [25, Section 2] for the conventions used in this paper. In Section 2, we prove
entropy drop near nongeneric singularities and we use this to prove Theorem 1.7
in Section 3. Appendices A and B recall some standard stability results. Appendix C
contains a localized perturbative result. In Appendix D, we discuss how the arguments
here relate to generic regularity of area-minimizing hypersurfaces in eight dimen-
sions.

2. Entropy drop near nongeneric singularities

LEMMA 2.1
Assume that (t,,A) holds for some A < 2. Suppose that V is an F -stationary cyclic
integral n-varifold in R"*1 satisfying F(V) < A. Then there is £ € 8,(A) so that
V==#"x.

Proof

This follows from the proofs of [12, Lemma 3.1 and Proposition 3.2] except that the
cyclic property of V' is used to rule out three half-spaces as a potential iterated tangent
cone (cf. [69, Corollary 4.5]). O

Recall that Huisken (see [42], [43]) has classified the cylinders Sk (\/ﬁ) x Rk
as the unique smooth embedded self-shrinkers with nonnegative mean curvature H >
0 (the technical assumption of bounded curvature was later removed by Colding and
Minicozzi [32]). The following result can be viewed as a geometric consequence of
Huisken’s result. It will serve as our key mechanism for perturbing away “nongeneric”
singularities.
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PROPOSITION 2.2
For ¥ € 8, fix an open set Q@ C R"*! with ¥ = 9Q. Assume that there is a space-
time point (Xg,t9) € (R"™1 x R) \ (0,0) so that

Vio—1Z+X0C/—1Q 2.1)

forall t <min{0,ty}. Then one of the following holds:
€)) 3 = S"(+/2n), or
(2) E=0XxR)for¥e8;  and O € O(n+1).

Note that if we replaced condition (2.1) with
Vig—t X +xX0 C /-t Q2 (2.2)

(i.e., if we replaced the closure of €2 with the interior of £2), we could use an inductive
argument to conclude that ¥ € 85"

Let us give the geometric intuition underlying our proof strategy. Let M denote
the space-time track of ¢ — ~/—tX, and let M denote the space-time track of ¢
1o —t X + xg. For A € (0, 1], let M, be the parabolic rescaling of M by a factor of
A; thus, M; = M and, as A — 0, M) — Mg smoothly locally away from (0, 0). Note
that M is invariant under parabolic dilations, so M) always lies weakly to one side
of Mo.

If M) touches My for some A > O (equivalently, for all A > 0 due to My’s
parabolic dilation invariance), it is then a simple consequence of the strong maximum
principle and monotonicity that X splits a line.

Otherwise, M, was disjoint from Mg for all A € (0, 1]. It is then standard to
use the height of M, over My at time ¢ = —1, for A > 0 small, to produce a kernel
element of the linearized operator that is everywhere nonnegative (M, always lies
weakly to one side of My). By studying the geometry of parabolic dilations, the kernel
element produced is Xg - vy if Xg 7# 0 or X - vy if X9 =0 (= 1o # 0). It turns out
that the former case implies splitting once again, while the latter implies the mean-
convexity of X.

The proof we give below is a more succinct version of the argument above: it
handles both cases in a unified way.

Proof of Proposition 2.2
Observe that the set U;<g+/—t 2 x {t} is invariant under parabolic dilation around the
space-time origin. We thus conclude that for all A € [0, c0) and 7 < min{0, A7},

\/Azlo—lz—f—AXoC\/—lQ.

In particular, taking # = —1 and A > 0 small, we have that
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A 2=+ A2 + Axg C Q

is a 1-parameter family of hypersurfaces with ¥y = ¥ = d2. The normal speed at
A =01is xg - vy > 0 (where vy is the unit normal pointing into €2). Because (cf. [32,
Theorem 5.2])

1
Ax(Xo-vs) — PR Vs(xo-vs) + |4z |*(Xo - vg) =0,

the maximum principle implies that either xo - vy > 0 along X or X¢ - vy = 0 along
3. (Note that ¥ is connected thanks to the Frankel property of shrinkers; cf. [25,
Corollary C.4].)

In the first case (i.e., Xo - vy > 0), each component of ¥ is a graph over the X(J)‘-
hyperplane. By [64] (cf. [36]), each component of ¥ must be a hyperplane, so there is
only one component and X is a flat hyperplane. This contradicts the assumption that
¥ € 8. (the set of nonflat shrinkers).

In the second case (i.e., Xo - vz = 0), we see that xo € T, X for all p € X. In
particular, if xo 7 0, then X splits a line in the Xo-direction. It thus remains to consider
the situation in which xo = 0. If this is the case, then it must hold that ¢y % 0 and we
have

S =14 put)TCQ

for u > 0 sufficiently small. The normal speed at u = 0 is foXx - vy > 0. Using the
shrinker equation, we thus find that tg Hx > 0. Since #y # 0, we can assume that
Hy > 0. Thus, up to a rotation, ¥ = S¥(v/2k) x R" ¥ for k = 1,...,n by [32, The-
orem 10.1]. This completes the proof. O

Recall the definition of smoothly crossing Brakke flows in Definition B.1.

PROPOSITION 2.3
Fixn>2,e>0, and A € (A(S"),2] so that (tn,A) and (1Tn.A) hold. There is § =
8(n,e, N) > 0 with the following property.

Consider ¥ € 8*(A — &) \ 85" and M an ancient cyclic unit-regular integral
n-dimensional Brakke flow in R"*1 with )L(J\Z) < F(X) so that M does not smoothly
cross the flow (—00,0) 3 t — H" | /—t X. Then O ;(x,1) < F(X) =4 forall (x,1) €
(R"*1 xR) \ (0,0).

Proof
We argue by contradiction. Consider a sequence of X; € $¥(A —¢) \ 85" and M;
ancient cyclic unit-regular integral Brakke flows in R* ™1 with A(M;) < F(X) so that



MEAN CURVATURE FLOW WITH GENERIC LOW-ENTROPY INITIAL DATA 11

M; does not smoothly cross the flow (—00,0) 3t — H"|/—t X; and so that there
are points (x;, ;) € (R*T1 x R) \ (0,0) with

0 4, (%i.1) > F(Z5) —o(1) (23)

as i — o0o. We can assume that |(x;,#;)| = 1.

By Lemma 2.1 and Allard’s theorem (see [2], [57]), we can pass to a subsequence
so that ¥; converges in C50 to X € §,(A). By Brakke’s theorem (see [16], [68]),
¥ is nonflat. Because cylinders are isolated in C5S by [30], we thus see that X €
S*X(A)\ 85" Note that F(Z;) — F(X).

We now pass to a further subsequence so that (x;, ;) — (Xo.%9) € R*T1 x R with
|(Xo.10)| = 1 and the Brakke flows JM; converge to an ancient cyclic unit-regular
integral Brakke flow M with A(M) < F(X). By upper semicontinuity of Gaussian
density, (2.3) implies that ® j(Xo,%) > F(X). Because A(M) < F(2), M is a self:
similar flow around (xg, #p). By stability of smoothly crossing flows, Lemma B.2, M
does not smoothly cross (—00,0) 3 ¢ > K| /—t X.

Consider any tangent flow to M att = —oo. By Huisken’s monotonicity formula
and Lemma 2.1, there is a smooth shrinker 3 so that this tangent flow at 1 = —o0
corresponds to some Y € 8,(A) with multiplicity one. By the Frankel property for
self-shrinkers (cf. [25, Corollary C.4]) and the strong maximum principle, if ) # 3,
then the flows 1 — H"|/—1 = and ¢ — H"| /=t ¥ smoothly cross each other at
some point. This contradicts the stability of smooth crossings.

We conclude that any tangent flow to M at t = —oo is the flow associated to .
Since M is self-similar around (xo,20), we find that

M(1) = H" | (V1o —1 = + Xo)

for t < to. Since M does not smoothly cross t — J#"| /—t X, we see that there is an
open set Q@ C R**! with 9Q = X so that

Vio—tZ+x9C V=t Q

for t < min{0, #9}. We can thus apply Proposition 2.2 to conclude that (up to a rota-
tion) ¥ = X xR for X € ¥ (A). By hypothesis (T1,,4), X € 857, s0 X =X xR €
85" This is a contradiction. O

3. Proof of Theorem 1.7
For M’ C R"*! a smooth closed hypersurface, recall that F(M’) is the set of cyclic
unit-regular integral Brakke flows M’ with M’(0) = J" | M’. Note that [46] and [69]
imply that F(M') # @ (see also [41, Appendix B]).

We define
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D(M') :=sup{O ¢ (x,1) : M" € F(M"), (x,1) € sing M" \ sing,, M'}.

Recall that by convention sup @ = —oo.

Assume that hypotheses (1,.4) and (f1,.4) hold for A € (A(S"), A(S" 2] fixed.
Consider a smooth closed hypersurface M C R**1 with A(M) < A. Flowing M by
mean curvature flow for a short time strictly decreases the entropy unless M is homo-
thetic to a self-shrinker. If M is homothetic to a self-shrinker other than S"(+/2n),
then by [32], a small C°°-perturbation of M has strictly smaller entropy.

As such, either M = §"(r), in which case the Theorem 1.7 trivially holds, or we
can perform an initial perturbation and assume that A(M) < A — 2¢ for some ¢ > 0.
Choose a foliation {My}se(—1,1) of a tubular neighborhood of M so that My = M
and so that A(M;) < A —e. Fix § = 8(n, e, A) > 0 from Proposition 2.3,

LEMMA 3.1
We have

limsup O (Ms) < D(My,) -6

S—>S0

forall s € (—1,1).

Lemma 3.1 implies Theorem 1.7 by a straightforward iteration argument since
by Brakke’s regularity theorem (see [16], [68]), if D(M') <1, then D(M') = —c0
implying that sing M" = sing,, M’ for all M’ € F(M’). Since A(M') < A <
A(S"2 x R?), any M’ € F(M’) has only (multiplicity-one) S*- and (S"~! x R)-
type singularities. Thus, the resolution of the mean convex neighborhood conjecture
for S"! x R singularities (see [27], [28]; cf. [41]) implies nonfattening of the flow
of M'.

Proof of Lemma 3.1
Assume that there is s; — 59 € (—1, 1) with s; # 59 but

lim D(My;) > D(M,,) — 6.
1—>00
Fix M; € §(My,) and (x;,t;) € sing M; \singgen M; with
lim ®Mi (x;,t;) > @(Mso) —34.
1—>00

Pass to a subsequence JM; converging to M € §(M,,) and (x;,t;) — (Xo,%0) €
sing M. Since s; # 5o for all i, we have that M, is disjoint from My, for all i. In
particular, supp M; N supp M = @ (by the avoidance principle for Brakke flows; see
[47, Section 10.6]). Thus, (X, ;) 7 (Xo,%0)-
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Observe that that if (Xo,Zo) € singy, M, then since A(M) < A < A(S"72), we
see that (Xg,p) must be an S"- or (S"~! x R)-type singularity. Proposition A.1 then
implies that (X;,;) € singy, M;, which is a contradiction. Thus, it must hold that
(X0, 70) € sing M \ sing,, M.

Translate (Xo,Zo) to the space-time origin and parabolically dilate to yield M;
and (X;,7;) with |(X;,%;)| = 1 and

zl—lglo ®Mi (ii,fi) > i)(Mso) —34.

Pass to a subsequence so that M; — M and (X;,7;) — (X,7) € (R"T! x R) \ (0,0).
By upper semicontinuity of density,

0 ;(X.1) > D(My,) — 8. (3.1)

On the other hand, we can perform the same translation and parabolic dilation to M
and by extracting a further subsequence, the resulting flows converge to a tangent
flow to M at (Xo,%p). By Lemma 2.1, the tangent flow is the multiplicity-one flow
associated to a smooth shrinker X. Note that
F(2) <AM) <limsupA(M;) <A —e.

S§—>S0
Since (Xo. 7o) € sing M \ sing,, M, it must hold that ¥ € 8(A —¢)\ 8; . Huisken’s
monotonicity formula implies that A(M) < F(Z) = O (Xo.19) (cf. the proof of
Proposition 10.6 in [25]). Finally, since the supports of M and M; are disjoint, M;
does not smoothly cross M. As such (using Lemma B.2), M does not smoothly cross
t > H™| /=t Z. We can now apply Proposition 2.3 to conclude that

© ;(%,7) < F(T) — 8 = O (%0, o) — 8 < D(My,) — 6.

This contradicts (3.1), completing the proof. O

Appendix A. Stability of generic singularities

Based on [28], the following stability of generic singularities was proved in [56,
Proposition 2.3] (see [25, Lemma 10.4] for the simple argument when the singularity
is modeled on S"). When n = 2, this also follows via density considerations using
[10].

PROPOSITION A.1

Suppose that M; — M are unit-regular integral Brakke flows in R"*! and that
(xi,1;) € sing M; converge to (0,0) € sing,, M. If the singularity at (0,0) is mod-
eled on S™ or S*~! x R, then for i sufficiently large (x;,t;) € Singyep Mi.
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Appendix B. Stability of crossing points

Definition B.1
Given two integral unit Brakke flows M) and M@, we say that M) and M
smoothly cross at (x,t) if there is r > 0 with

MDD (5)| B, (x) = H" [T (s)

for s € (t —r2,t + r?), where ') (s) are smooth connected mean curvature flows
so that in any small neighborhood of x there are points of '™ (0) on both sides of
r@(0).

The following is a straightforward consequence of Brakke’s regularity theorem
(see [16], [68]).

LEMMA B.2

For j = 1,2, suppose that Mi(j )~ MWD are integral unit-regular n-dimensional
Brakke flows in R"t1. Assume that MY smoothly crosses M@ at (x,t). Then, for
i sufficiently large, there is (X;,t;) — (X,t) so that Ml(l) smoothly crosses Ml(z) at
(Xi, ;).

Appendix C. Local results
In this appendix, we prove the following local perturbative result.

PROPOSITION C.1

Suppose that M"™ C R" T is a closed embedded hypersurface, and suppose that M €

F (M) is a cyclic unit-regular integral Brakke flow starting at M. Assume that for

(X0, ) € sing M, the following hold:

. reg M N {t <to} CR*™! x R is connected, and

. any tangent flow N to M at (Xo,1o) has N (—1) = H"|Z, for T € 8} \ 85"
that does not split a line.

Then there is r = r(M,Xo,to) > 0 so that for M j = graphy,(u;), u; >0 withu; —

0 in C®°, it holds that any

(Xv[) € Br(XO) X ([0—"2,[0 +r2)

has © u; (X,1) < O (Xo,10) — 1 for j sufficiently large.

In particular, no tangent flow to M at (xo, f) can arise as the tangent flow to M ;
at some point in B, (Xo) x (tg — 12,19 + r?), for j large.
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Proof
If this failed, there is (X;,?;) — (Xo. o) With

O, (x,1) = Oy (X0,10) —0(1).

The assumption on the connectedness of the regular set implies that M ; | {t <to} —
M|{t < to}. Thus, by rescaling around (Xo,#p) so that (x;,¢;) is scaled to a unit
distance from (0,0), we obtain £ € §* \ 85" that does not split a line and an ancient
Brakke flow M that does not smoothly cross ¢ —> H" | «/—t £, so that A(M) < F(Z),
but for some (X,7) € (R"*! x R) \ {(0,0)} it holds that ® ;; (x,7) > F(X).

The argument in the second half of the proof of Proposition 2.3 carries over with-
out change to show that there is an open set 2 C R"*! with dQ = ¥ and

Vi—tT+xCV/—tQ

for t < min{0,#y}. By Proposition 2.2, we have that either ¥ = S*(+/2n) € 85" or X
splits a line. Either case contradicts the assumption that M has no such tangent flow
at (xg, fp). This completes the proof. O

Note that Proposition C.1 does not give any indication as to how the perturbation
avoids the singularity (the trade-off is that the proof is very short). On the other hand,
the results in [25] give a rather complete description of how the perturbed flow avoids
a compact/asymptotically conical singularity. The works [62] and [63] also obtain
some information along these lines, but only as long as the perturbed flow remains
graphical over the original flow.

Appendix D. The setting of area-minimizing hypersurfaces
We recall the following fundamental result.

THEOREM D.1 (Hardt and Simon [37, Theorem 2.1])

If €" C R"! is a regular area-minimizing cone, then there exist smooth area-
minimizing hypersurfaces S+ in each component of R"*1 \ € = U U U_ so that if
S’ is area-minimizing and contained in Uy, then S’ = AS+.

The uniqueness statement in Theorem D.1 implies smoothness of solution to
the Plateau problem for seven-dimensional currents in R® with generic boundary
data (see [37, Theorem 5.6]). Later, Smale [60] used Theorem D.1 to prove that for
(M8, g) aclosed Riemannian manifold and o € H;(M ; Z), there is a C ¥ -close metric
g’ so that the least area representative of « is smooth.
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Remark

Besides their role in generic regularity of area-minimizing hypersurfaces in eight-
dimensional manifolds, the surfaces Sy are important objects in their own right (cf.
[26], [50], [511, [58], [59], [66]). In our previous paper [25], we proved the parabolic
analogue of Theorem D.1 (for compact/asymptotically conical self-shrinkers) by con-
structing and classifying ancient one-sided flows analogous to the surfaces S+.

We explain here how the main idea of this note can be used to prove the generic
regularity results from [37] and [60] using the following result in lieu of Theorem D.1
(cf. Proposition 2.3).

PROPOSITION D.2

There is 8§ > 0 with the following property. Suppose that €7 C R® is a nonflat area-
minimizing cone. If S’ is area-minimizing with support contained in Uy, where R8 \
€=U UU_, then

BO5/(x) < O¢(0) — 4.

Proof
Using smooth compactness of the links of area-minimizing cones in R3, it suffices to
rule out the case where S’ C Uy is area-minimizing and there is x| = 1 so that

Os'(x0) = O¢(0).

Because S’ is contained in Uy, its tangent cone at co must be € (e.g., using the
Frankel property of minimal hypersurfaces in S*). Thus, S’ = € + xg. This implies
that € + Axg C Uy as A — 0, s0 Xg - ve > 0. It cannot hold that xq - ve = 0 since
€ does not split a line, so X - ve > 0. This would imply that € is a graph, which is
impossible since € is nonflat. O

Using this, we obtain the following density drop result (cf. Lemma 3.1).

COROLLARY D.3

There is § > 0 with the following property. Suppose that ¥ = 9[Q] C B, C R® is
an area-minimizing boundary with sing ¥ = {0}. Suppose that Q1,Q2,,--- D Qisa
sequence of sets of finite perimeter in By with X; := 0[Q;] area-minimizing, ¥; N
3 =0, and Q2; — Q. Then, for x; € ¥; N By, we have

limsup Oy, (x;) < Ox(0) — 4.

i—>00
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Note that this result can be iterated exactly in the proof of Theorem 1.7 to obtain
generic regularity of area-minimizing hypersurfaces in eight dimensions.

COROLLARY D.4 (cf. [37, Theorem 5.6])

For T'® C R® a smooth compact oriented submanifold without boundary, there is an
arbitrarily small C*®-perturbation of T’ to T’ so that any area-minimizing integral
current bounded by T is completely smooth.

COROLLARY D.5 (cf. [60])

For (M3, g) a closed oriented Riemannian manifold and o € H7(M ;Z) a codimen-
sion-one integral homology class, there is an arbitrarily small C*-perturbation of g
to g’ so that there is a unique g’'-area-minimizing representative ¥ of a and X is
completely smooth.
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