MEAN CURVATURE FLOW WITH GENERIC LOW-ENTROPY INITIAL DATA

OTIS CHODOSH, KYEONGSU CHOI, CHRISTOS MANTOULIDIS, and FELIX SCHULZE

Abstract

We prove that sufficiently low-entropy closed hypersurfaces can be perturbed so that their mean curvature flow encounters only spherical and cylindrical singularities. Our theorem applies to all closed surfaces in \mathbb{R}^3 with entropy at most 2 and to all closed hypersurfaces in \mathbb{R}^4 with entropy at most $\lambda(\mathbb{S}^1 \times \mathbb{R}^2)$. When combined with recent work of Daniels and Holgate, this strengthens Bernstein and Wang's low-entropy Schoenflies-type theorem by relaxing the entropy bound to $\lambda(\mathbb{S}^1 \times \mathbb{R}^2)$. Our techniques, based on a novel density drop argument, also lead to a new proof of generic regularity result for area-minimizing hypersurfaces in eight dimensions (due to Hardt, Simon, and Smale).

1. Introduction

Mean curvature flow is the natural heat equation for submanifolds. A family of hypersurfaces $M(t) \subset \mathbb{R}^{n+1}$ flows by mean curvature flow if

$$\left(\frac{\partial}{\partial t}\mathbf{x}\right)^{\perp} = \mathbf{H}_{M(t)}(\mathbf{x}),\tag{1.1}$$

where $\mathbf{H}_{M(t)}(\mathbf{x})$ denotes the mean curvature vector of M(t) at \mathbf{x} . When M(0) is compact, mean curvature flow is guaranteed to become singular in finite time. Understanding the potential singularities is thus a fundamental problem. One approach to this issue is to study the flow in the generic case: a well-known conjecture of Huisken suggests that the singularities of a generic mean curvature flow should be as simple as possible, namely, spherical and cylindrical (see [49, #8]).

The main results of this note completely resolve Huisken's conjecture in three and four dimensions for low-entropy initial data (see (1.2) for the definition of entropy). Informally stated (see Corollaries 1.8 and 1.9 for precise statements), we prove the following results.

DUKE MATHEMATICAL JOURNAL

Advance publication—final volume, issue, and page numbers to be assigned.

© 2023 DOI 10.1215/00127094-2023-0034

Received 15 April 2022. Revision received 21 May 2023.

2020 Mathematics Subject Classification. Primary 53E10; Secondary 35B35.

THEOREM 1.1 (Low-entropy generic flow in \mathbb{R}^3 , informal)

If $M^2 \subset \mathbb{R}^3$ is a closed embedded surface with entropy $\lambda(M) \leq 2$, then there exist arbitrarily small C^{∞} graphs M' over M so that the mean curvature flow starting from M' has only multiplicity-one spherical and cylindrical singularities.

THEOREM 1.2 (Low-entropy generic flow in \mathbb{R}^4 , informal)

If $M^3 \subset \mathbb{R}^4$ is a closed embedded hypersurface with entropy $\lambda(M) \leq \lambda(\mathbb{S}^1 \times \mathbb{R}^2)$, then there exist arbitrarily small C^∞ graphs M' over M so that the mean curvature flow starting from M' has only multiplicity-one spherical and cylindrical singularities.

In an earlier version of this paper, we conjectured that Theorem 1.2 could be combined with a surgery construction to yield a strengthened version of Bernstein and Wang's low-entropy Schoenflies theorem (see [13]; cf. Theorem 1.4 below). This surgery construction has been recently carried out by Daniels and Holgate [35] who showed that if a mean curvature flow has only spherical and neckpinch singularities, then one can construct a mean curvature flow with surgery. As such, combining these results leads to the following.

COROLLARY 1.3 (Strengthened low-entropy Schoenflies-type theorem) If $M^3 \subset \mathbb{R}^4$ is an embedded 3-sphere with entropy $\lambda(M) \leq \lambda(\mathbb{S}^1 \times \mathbb{R}^2)$, then M is smoothly isotopic to the round \mathbb{S}^3 .

See Sections 1.2 and 1.4 for an expanded discussion of this result.

1.1. Previous work on generic mean curvature flow

Trailblazing work of Colding and Minicozzi [32] demonstrated that spheres and cylinders are the only *linearly stable* singularity models for mean curvature flow. In particular, the remaining singularity models are unstable so they should not generically occur (as conjectured by Huisken). In a previous paper [25], the authors introduced new methods to the study of generic mean curvature flow, proving that a large class of singularity models (specifically, singularities with tangent flows modeled on multiplicity-one compact or asymptotically conical self-shrinkers) can be indeed avoided by a slight perturbation of the initial conditions.

In particular, our previous work shows that for a generic initial surface in \mathbb{R}^3 , either the mean curvature flow has only spherical and cylindrical singularities or at the first singular time it has a tangent flow with a cylindrical end or higher multiplicity (both possibilities are conjectured not to happen). We refer the reader to the

introduction to our previous article [25] for further discussion of generic mean curvature flows and related work.

1.1.1. Relationship between this paper and our previous work

In [25], we proved a classification of ancient one-sided flows (analogous to the minimal surface results of Hardt and Simon [37]; see Appendix D for further discussion) which led to a complete understanding of flows on either side of a neighborhood of a nongeneric (compact or asymptotically conical) singularity. In particular, we showed that nearby flows to either side do not have such singularities nearby.

In \mathbb{R}^3 , to understand generic mean curvature flow *without* a low-entropy condition (in contrast with this note), one must work at the first nongeneric time rather than globally in space-time. However, two serious issues arise when working this way. First, there is no partial regularity known for tangent flows past the first singular time without a low-entropy bound. Second, there is the possibility that a small perturbation of the initial data may increase the first singular time slightly without improving the flow in an effective way. To that end, in [25] we had to additionally prove that the nearby flows strictly decrease genus as they avoid the nongeneric singularity. This genus-loss property is crucial for tackling Huisken's conjecture in \mathbb{R}^3 without a low-entropy condition and is a consequence of the classification of ancient one-sided flows, as obtained in [25].

On the other hand, by including a low-entropy condition, here we are able to work *globally* in space-time. This allows for significantly simplified arguments. In fact, the key observation of this paper is that in this setting one can completely avoid the classification of one-sided ancient flows and instead rely on a soft argument based on compactness and a new geometric property of nongeneric shrinkers (see Proposition 2.2). We emphasize that a drawback of the methods used in this note as compared to our previous work is that the arguments used here give no indication as to the local dynamics near a nongeneric singularity (such information was obtained in [25] near asymptotically conical and compact shrinkers; see also [29], [34]).

Remark

After the first version of this paper (as well as our previous paper [25]) was posted, another approach to the generic perturbation of the initial data was pursued by Sun and Xue (see [62], [63]). This approach is in the spirit of local ODE dynamics, as suggested by the Colding–Minicozzi program (cf. [34]). The analytic framework in [62] and [63] has the interesting feature that non-one-sided perturbations are analyzed, but the applications are currently limited to locally perturbing away singularities that

¹At the first singular time, work of Ilmanen [48] and Wang [65] show that the support of any tangent flow is a smooth self-shrinker with only conical/cylindrical ends.

arise at the first singular time. Conversely, our geometric approach (first developed in [25]) is motivated by global results such as the ones stated in Theorems 1.1 and 1.2. Of course, our approach also admits localizations (see Appendix C).

1.2. Entropy

To state our main results, we first recall Colding and Minicozzi's definition in [32] of entropy of $M^n \subset \mathbb{R}^{n+1}$:

$$\lambda(M) := \sup_{\substack{\mathbf{x}_0 \in \mathbb{R}^{n+1} \\ t_0 > 0}} \int_M (4\pi t_0)^{-\frac{n}{2}} e^{-\frac{1}{4t_0}|\mathbf{x} - \mathbf{x}_0|^2}.$$
 (1.2)

By Huisken's monotonicity of Gaussian area, we see that $t \mapsto \lambda(M(t))$ is nonincreasing when M(t) is flowing by mean curvature flow. A computation of Stone [61] shows that the entropies of the self-shrinking cylinders $\mathbb{S}^k(\sqrt{2k}) \times \mathbb{R}^{n-k} \subset \mathbb{R}^{n+1}$ satisfy²

$$2 > \lambda(\mathbb{S}^1) = \sqrt{\frac{2\pi}{e}} \approx 1.52 > \frac{3}{2} > \lambda(\mathbb{S}^2) = \frac{4}{e} \approx 1.47 > \dots > \lambda(\mathbb{S}^n).$$

Several fundamental results have been obtained about hypersurfaces with sufficiently small entropy, starting with work of Colding, Ilmanen, Minicozzi, and White [31], who proved that the round sphere $\mathbb{S}^n(\sqrt{2n})$ has minimal entropy among all closed self-shrinkers. This was extended by Bernstein and Wang [9] who showed that the round sphere minimizes entropy among all closed hypersurfaces (see also [40], [70]). Moreover, Bernstein and Wang [10] have also proved that the cylinder $\mathbb{S}^1(\sqrt{2}) \times \mathbb{R} \subset \mathbb{R}^3$ has the second least entropy among all self-shrinkers in \mathbb{R}^3 (their result crucially relies on Brendle's classification of genus-0 self-shrinkers in [18]).

Subsequent work of Bernstein and Wang provides a robust picture of hypersurfaces with sufficiently small entropy (see [11], [12], [14]; see also [15]). In particular, they obtained the following low-entropy Schoenflies result.

THEOREM 1.4 (Bernstein and Wang [13]) If $M^3 \subset \mathbb{R}^4$ has $\lambda(M) \leq \lambda(\mathbb{S}^2 \times \mathbb{R})$, then M is smoothly isotopic to the round \mathbb{S}^3 .

In [13], this is proved by flowing M by mean curvature flow and then smoothing out any potential nongeneric singularities to construct the desired isotopy. Our previous work [25] on generic mean curvature flow gave an alternative approach to this result by showing that if one perturbs M slightly, the mean curvature flow directly *provides* the isotopy.

²Note that $\lambda(\mathbb{S}^k(\sqrt{2k}) \times \mathbb{R}^{n-k}) = \lambda(\mathbb{S}^k)$.

THEOREM 1.5 ([25])

If $M^3 \subset \mathbb{R}^4$ has $\lambda(M) \leq \lambda(\mathbb{S}^2 \times \mathbb{R})$, then after a small C^{∞} -perturbation to a nearby hypersurface M', the mean curvature flow M'(t) is completely smooth until it disappears in a round point.

One of the consequences of this paper is a simplified proof of Theorem 1.5 (see also the stronger version stated in Corollary 1.3).

1.3. Main results

We now describe our main results in full generality. We construct generic mean curvature flows of sufficiently low-entropy hypersurfaces in all dimensions. To quantify the low-entropy condition, we provide several definitions.³ Let \mathcal{S}_n denote the set of smooth self-shrinkers in \mathbb{R}^{n+1} with $\lambda(\Sigma) < \infty$, that is, properly embedded hypersurfaces Σ satisfying $\mathbf{H} + \frac{\mathbf{x}^{\perp}}{2} = 0$ with finite Gaussian area. Let \mathcal{S}_n^* denote the nonflat elements of \mathcal{S}_n . For $\Lambda > 0$, let

$$\mathscr{S}_n(\Lambda) := \{ \Sigma \in \mathscr{S}_n : \lambda(\Sigma) < \Lambda \}, \qquad \mathscr{S}_n^*(\Lambda) := \mathscr{S}_n(\Lambda) \cap \mathscr{S}_n^*.$$

We also define

$$\mathcal{S}_n^{\text{gen}} := \left\{ O\left(\mathbb{S}^j(\sqrt{2j}) \times \mathbb{R}^{n-j}\right) \in \mathcal{S}_n : j = 1, \dots, k, \ O \in O(n+1) \right\}$$

to be the set of (round) self-shrinking spheres and cylinders in \mathbb{R}^{n+1} .

Similarly, we let \mathcal{RMC}_n denote the space of regular minimal cones in \mathbb{R}^{n+1} , that is, the set of $\mathcal{C} \subset \mathbb{R}^{n+1}$ with $\mathcal{C} \setminus \{\mathbf{0}\}$ a smooth properly embedded hypersurface invariant under dilations and having vanishing mean curvature. Let \mathcal{RMC}_n^* denote the nonflat elements of \mathcal{RMC}_n . Define

$$\mathcal{RMC}_n(\Lambda) := \{ \mathcal{C} \in \mathcal{RMC}_n : \lambda(\mathcal{C}) < \Lambda \}, \quad \mathcal{RMC}_n^*(\Lambda) := \mathcal{RMC}_n(\Lambda) \cap \mathcal{RMC}_n^*.$$

For a dimension $n \ge 2$ and entropy bound $\Lambda \in (\lambda(\mathbb{S}^n), 2]$, our first hypothesis is

For
$$3 \le k \le n$$
, $\mathcal{RMC}_k^*(\Lambda) = \emptyset$ $(\dagger_{n,\Lambda})$

while our second hypothesis is

$$\mathcal{S}_{n-1}^*(\Lambda) \subset \mathcal{S}_{n-1}^{\text{gen}}.$$
 $(\dagger \dagger_{n,\Lambda})$

Finally, we define certain notation that will be used throughout.

³The definitions here are closely related to the hypotheses $(\star_{n,\Lambda})$, $(\star\star_{n,\Lambda})$ introduced by Bernstein and Wang (cf. [12], [13]), but our second hypothesis is less restrictive.

Definition 1.6

For a closed embedded hypersurface $M^n \subset \mathbb{R}^{n+1}$ we denote by $\mathfrak{F}(M)$ the set of cyclic⁴ unit-regular integral Brakke flows \mathcal{M} with $\mathcal{M}(0) = \mathcal{H}^n \lfloor M$, and for each $\mathcal{M} \in \mathfrak{F}(M)$, we define $\operatorname{sing}_{\mathrm{gen}} \mathcal{M} \subset \operatorname{sing} \mathcal{M}$ to be the set of singular points (\mathbf{x}, t) so that some⁵ tangent flow to \mathcal{M} at (\mathbf{x}, t) is a multiplicity-one flow associated to elements of $\mathcal{S}_n^{\mathrm{gen}}$.

Having given these definitions, we can now state our main technical result. By convention, we take $\lambda(\mathbb{S}^0) = 2$. Everywhere below, M is taken to be closed and embedded.

THEOREM 1.7

Assume that $n \geq 2$ and that $\Lambda \in (\lambda(\mathbb{S}^n), \lambda(\mathbb{S}^{n-2})]$ satisfy hypotheses $(\dagger_{n,\Lambda})$ and $(\dagger\dagger_{n,\Lambda})$. If $M^n \subset \mathbb{R}^{n+1}$ has $\lambda(M) \leq \Lambda$, then there exist arbitrarily small C^{∞} graphs M' over M so that $\lambda(M') < \Lambda$ and all $\mathcal{M}' \in \mathfrak{F}(M')$ have $\operatorname{sing} \mathcal{M}' = \operatorname{sing}_{\operatorname{gen}} \mathcal{M}'$. In particular, the level set flow of M' does not fatten.

See [25, Section 1.2] for a discussion of results related to the regularity of flows satisfying sing $\mathcal{M}' = \operatorname{sing}_{\text{gen}} \mathcal{M}'$.

In low dimensions, the hypotheses $(\dagger_{n,\Lambda})$ and $(\dagger\dagger_{n,\Lambda})$ can be understood more concretely. This leads to the following results.

COROLLARY 1.8

If $M^2 \subset \mathbb{R}^3$ has $\lambda(M) \leq 2$, then there exist arbitrarily small C^{∞} graphs M' over M so that the level-set flow of M' is nonfattening and the associated Brakke flow $\mathcal{M}' \in \mathfrak{F}(M')$ has $\operatorname{sing} \mathcal{M}' = \operatorname{sing}_{\operatorname{gen}} \mathcal{M}'$.

Proof

Condition $(\dagger_{2,2})$ is vacuous while $(\dagger\dagger_{2,2})$ holds by the classification of self-shrinking curves (see [1]).

COROLLARY 1.9

If $M^3 \subset \mathbb{R}^4$ has $\lambda(M) \leq \lambda(\mathbb{S}^1 \times \mathbb{R}^2)$, then there exist arbitrarily small C^∞ graphs M' over M so that the level-set flow of M' is nonfattening and the associated Brakke flow $\mathcal{M}' \in \mathfrak{F}(M')$ has $\operatorname{sing} \mathcal{M}' = \operatorname{sing}_{\operatorname{gen}} \mathcal{M}'$.

⁴Recall that an integral varifold V is *cyclic* if the unique mod 2 flat chain [V] has $\partial[V] = 0$. Work of White [69] shows that this property is preserved under varifold (and Brakke flow) convergence.

⁵Note that if some tangent flow is a multiplicity-one element of $\mathcal{S}_n^{\text{gen}}$, then all are by [30] and [33] (cf. [8]).

Proof

By the resolution of the Willmore conjecture (see [53]), $\mathcal{RMC}_3^*(\Lambda_{\mathcal{C}}) = \emptyset$ for

$$\Lambda_{\mathcal{C}} = \frac{2\pi^2}{4\pi} \approx 1.57 > \lambda(\mathbb{S}^1) \approx 1.52.$$

Thus, $(\dagger_{3,\Lambda})$ holds for all $\Lambda \leq \Lambda_{\mathcal{C}}$. Furthermore, by the classification of low-entropy shrinkers in \mathbb{R}^3 from [10], it holds that $\mathscr{S}_2^*(\lambda(\mathbb{S}^1)) = \mathscr{S}_2^{\text{gen}}$. Thus, $(\dagger\dagger_{3,\lambda(\mathbb{S}^1)})$ holds.

1.4. Generic mean curvature flow with surgery

As already observed in [25], we can apply Corollary 1.9 to give direct proofs of Theorems 1.4 and 1.5. Moreover, Daniels and Holgate recently proved that if an initial hypersurface admits a (cyclic, unit-regular, integral) Brakke flow with only⁶ spherical-and neckpinch-type singularities⁷ then it is possible to construct a smooth mean curvature flow with surgery starting from this initial condition (see [35] for the precise definition of mean curvature flow with surgery).

As such, Corollaries 1.8 and 1.9 combined with [35, Theorem 1.2] yield the following generic surgery construction.

COROLLARY 1.10 (Generic mean curvature flow with surgery)

Assume that $n \geq 2$ and that $\Lambda \in (\lambda(\mathbb{S}^n), \lambda(\mathbb{S}^{n-2})]$ satisfy $(\dagger_{n,\Lambda})$ and $(\dagger \dagger_{n,\Lambda})$. If $M^n \subset \mathbb{R}^{n+1}$ has $\lambda(M) \leq \Lambda$, then there is an arbitrarily small C^{∞} graph M' over M and a smooth mean curvature flow with surgery starting from M'.

In particular, when $M^3 \subset \mathbb{R}^4$ is an embedded 3-sphere with $\lambda(M) \leq \lambda(\mathbb{S}^1 \times \mathbb{R}^2)$, the mean curvature flow with surgery can be used (see [35, Theorem 6.4]) to construct an isotopy to the round 3-sphere. This yields the strengthened version of the lowentropy Schoenflies theorem stated in Corollary 1.3.

Remark

In the setting of 2-convex mean curvature flow with surgery (see [3], [4], [17], [19]–[21], [38], [39], [44]), the surgery to isotopy construction has been studied in several works (see [22], [23], [45], [54], [55]). (We also mention related work using Ricci flow with surgery in [24] and [52] and singular Ricci flow in [5]–[7].)

⁶The spherical and neckpinch singularities are the tangent flows for which a canonical neighborhood theorem is proved, thanks to [27] and [28].

Note that if \mathcal{M}' is such a Brakke flow in \mathbb{R}^{n+1} and $\operatorname{sing} \mathcal{M}' = \operatorname{sing}_{\operatorname{gen}} \mathcal{M}'$, then the condition " \mathcal{M}' has only spherical and neckpinch singularities" is a consequence of $\lambda(\mathcal{M}') < \lambda(\mathbb{S}^{n-2})$.

1.5. Generic regularity of area-minimizing hypersurfaces in eight dimensions

We remark that the study of generic mean curvature flow in our previous work [25] can be viewed as the parabolic analogue of the work of Hardt and Simon [37] and Smale [60] concerning the generic regularity of area-minimizing hypersurfaces in eight dimensions. In particular, the existence and uniqueness of the ancient one-sided mean curvature flow (see [25]) is a direct analogue of the existence and uniqueness of the foliation on either side of a regular area-minimizing cone, as proved in [37] (see also [67]).

In this paper, we develop a new technique based on density drop that avoids the classification of the ancient one-sided flow. As one might expect, this also yields a new proof of the generic regularity results of Hardt and Simon [37] and Smale [60] that avoids the need to classify the foliation. This is discussed further in Appendix D.

1.6. Organization

See [25, Section 2] for the conventions used in this paper. In Section 2, we prove entropy drop near nongeneric singularities and we use this to prove Theorem 1.7 in Section 3. Appendices A and B recall some standard stability results. Appendix C contains a localized perturbative result. In Appendix D, we discuss how the arguments here relate to generic regularity of area-minimizing hypersurfaces in eight dimensions.

2. Entropy drop near nongeneric singularities

LEMMA 2.1

Assume that $(\dagger_{n,\Lambda})$ holds for some $\Lambda \leq 2$. Suppose that V is an F-stationary cyclic integral n-varifold in \mathbb{R}^{n+1} satisfying $F(V) < \Lambda$. Then there is $\Sigma \in \mathcal{S}_n(\Lambda)$ so that $V = \mathcal{H}^n | \Sigma$.

Proof

This follows from the proofs of [12, Lemma 3.1 and Proposition 3.2] except that the cyclic property of V is used to rule out three half-spaces as a potential iterated tangent cone (cf. [69, Corollary 4.5]).

Recall that Huisken (see [42], [43]) has classified the cylinders $\mathbb{S}^k(\sqrt{2k}) \times \mathbb{R}^{n-k}$ as the unique smooth embedded self-shrinkers with nonnegative mean curvature $H \geq 0$ (the technical assumption of bounded curvature was later removed by Colding and Minicozzi [32]). The following result can be viewed as a geometric consequence of Huisken's result. It will serve as our key mechanism for perturbing away "nongeneric" singularities.

PROPOSITION 2.2

For $\Sigma \in \mathcal{S}_n^*$, fix an open set $\Omega \subset \mathbb{R}^{n+1}$ with $\Sigma = \partial \Omega$. Assume that there is a space-time point $(\mathbf{x}_0, t_0) \in (\mathbb{R}^{n+1} \times \mathbb{R}) \setminus (\mathbf{0}, 0)$ so that

$$\sqrt{t_0 - t} \; \Sigma + \mathbf{x}_0 \subset \sqrt{-t} \; \bar{\Omega} \tag{2.1}$$

for all $t < \min\{0, t_0\}$. Then one of the following holds:

- (1) $\Sigma = \mathbb{S}^n(\sqrt{2n}), or$
- (2) $\Sigma = O(\hat{\Sigma} \times \mathbb{R}) \text{ for } \hat{\Sigma} \in \mathcal{S}_{n-1}^* \text{ and } O \in O(n+1).$

Note that if we replaced condition (2.1) with

$$\sqrt{t_0 - t} \; \Sigma + \mathbf{x}_0 \subset \sqrt{-t} \; \Omega \tag{2.2}$$

(i.e., if we replaced the closure of Ω with the interior of Ω), we could use an inductive argument to conclude that $\Sigma \in \mathcal{S}_n^{\text{gen}}$.

Let us give the geometric intuition underlying our proof strategy. Let \mathcal{M}_0 denote the space-time track of $t\mapsto \sqrt{-t}\,\Sigma$, and let \mathcal{M} denote the space-time track of $t\mapsto \sqrt{t_0-t}\,\Sigma+\mathbf{x}_0$. For $\lambda\in(0,1]$, let \mathcal{M}_λ be the parabolic rescaling of \mathcal{M} by a factor of λ ; thus, $\mathcal{M}_1=\mathcal{M}$ and, as $\lambda\to0$, $\mathcal{M}_\lambda\to\mathcal{M}_0$ smoothly locally away from $(\mathbf{0},0)$. Note that \mathcal{M}_0 is invariant under parabolic dilations, so \mathcal{M}_λ always lies weakly to one side of \mathcal{M}_0 .

If \mathcal{M}_{λ} touches \mathcal{M}_{0} for some $\lambda > 0$ (equivalently, for all $\lambda > 0$ due to \mathcal{M}_{0} 's parabolic dilation invariance), it is then a simple consequence of the strong maximum principle and monotonicity that Σ splits a line.

Otherwise, \mathcal{M}_{λ} was disjoint from \mathcal{M}_0 for all $\lambda \in (0,1]$. It is then standard to use the height of \mathcal{M}_{λ} over \mathcal{M}_0 at time t=-1, for $\lambda>0$ small, to produce a kernel element of the linearized operator that is everywhere nonnegative (\mathcal{M}_{λ} always lies weakly to one side of \mathcal{M}_0). By studying the geometry of parabolic dilations, the kernel element produced is $\mathbf{x}_0 \cdot \nu_{\Sigma}$ if $\mathbf{x}_0 \neq \mathbf{0}$ or $\mathbf{x} \cdot \nu_{\Sigma}$ if $\mathbf{x}_0 = \mathbf{0}$ ($\Longrightarrow t_0 \neq 0$). It turns out that the former case implies splitting once again, while the latter implies the mean-convexity of Σ .

The proof we give below is a more succinct version of the argument above: it handles both cases in a unified way.

Proof of Proposition 2.2

Observe that the set $\bigcup_{t<0} \sqrt{-t} \,\bar{\Omega} \times \{t\}$ is invariant under parabolic dilation around the space-time origin. We thus conclude that for all $\lambda \in [0, \infty)$ and $t < \min\{0, \lambda^2 t_0\}$,

$$\sqrt{\lambda^2 t_0 - t} \Sigma + \lambda \mathbf{x}_0 \subset \sqrt{-t} \,\bar{\Omega}.$$

In particular, taking t = -1 and $\lambda > 0$ small, we have that

$$\lambda \mapsto \Sigma_{\lambda} := \sqrt{1 + \lambda^2 t_0} \, \Sigma + \lambda \mathbf{x}_0 \subset \bar{\Omega}$$

is a 1-parameter family of hypersurfaces with $\Sigma_0 = \Sigma = \partial \Omega$. The normal speed at $\lambda = 0$ is $\mathbf{x}_0 \cdot \nu_{\Sigma} \ge 0$ (where ν_{Σ} is the unit normal pointing into Ω). Because (cf. [32, Theorem 5.2])

$$\Delta_{\Sigma}(\mathbf{x}_0 \cdot \nu_{\Sigma}) - \frac{1}{2} \mathbf{x} \cdot \nabla_{\Sigma}(\mathbf{x}_0 \cdot \nu_{\Sigma}) + |A_{\Sigma}|^2 (\mathbf{x}_0 \cdot \nu_{\Sigma}) = 0,$$

the maximum principle implies that either $\mathbf{x}_0 \cdot \nu_{\Sigma} > 0$ along Σ or $\mathbf{x}_0 \cdot \nu_{\Sigma} = 0$ along Σ . (Note that Σ is connected thanks to the Frankel property of shrinkers; cf. [25, Corollary C.4].)

In the first case (i.e., $\mathbf{x}_0 \cdot \nu_{\Sigma} > 0$), each component of Σ is a graph over the \mathbf{x}_0^{\perp} -hyperplane. By [64] (cf. [36]), each component of Σ must be a hyperplane, so there is only one component and Σ is a flat hyperplane. This contradicts the assumption that $\Sigma \in \mathcal{S}_n^*$ (the set of nonflat shrinkers).

In the second case (i.e., $\mathbf{x}_0 \cdot \nu_{\Sigma} = 0$), we see that $\mathbf{x}_0 \in T_p \Sigma$ for all $p \in \Sigma$. In particular, if $\mathbf{x}_0 \neq \mathbf{0}$, then Σ splits a line in the \mathbf{x}_0 -direction. It thus remains to consider the situation in which $\mathbf{x}_0 = \mathbf{0}$. If this is the case, then it must hold that $t_0 \neq 0$ and we have

$$\tilde{\Sigma}_{\mu} := (1 + \mu t_0) \Sigma \subset \bar{\Omega}$$

for $\mu \geq 0$ sufficiently small. The normal speed at $\mu = 0$ is $t_0 \mathbf{x} \cdot \nu_{\Sigma} \geq 0$. Using the shrinker equation, we thus find that $t_0 H_{\Sigma} \geq 0$. Since $t_0 \neq 0$, we can assume that $H_{\Sigma} \geq 0$. Thus, up to a rotation, $\Sigma = \mathbb{S}^k(\sqrt{2k}) \times \mathbb{R}^{n-k}$ for $k = 1, \ldots, n$ by [32, Theorem 10.1]. This completes the proof.

Recall the definition of smoothly crossing Brakke flows in Definition B.1.

PROPOSITION 2.3

Fix $n \geq 2$, $\varepsilon > 0$, and $\Lambda \in (\lambda(\mathbb{S}^n), 2]$ so that $(\dagger_{n,\Lambda})$ and $(\dagger \dagger_{n,\Lambda})$ hold. There is $\delta = \delta(n, \varepsilon, \Lambda) > 0$ with the following property.

Consider $\Sigma \in \mathcal{S}_n^*(\Lambda - \varepsilon) \setminus \mathcal{S}_n^{\text{gen}}$ and $\tilde{\mathcal{M}}$ an ancient cyclic unit-regular integral n-dimensional Brakke flow in \mathbb{R}^{n+1} with $\lambda(\tilde{\mathcal{M}}) \leq F(\Sigma)$ so that $\tilde{\mathcal{M}}$ does not smoothly cross the flow $(-\infty,0) \ni t \mapsto \mathcal{H}^n \lfloor \sqrt{-t} \Sigma$. Then $\Theta_{\tilde{\mathcal{M}}}(\mathbf{x},t) \leq F(\Sigma) - \delta$ for all $(\mathbf{x},t) \in (\mathbb{R}^{n+1} \times \mathbb{R}) \setminus (\mathbf{0},0)$.

Proof

We argue by contradiction. Consider a sequence of $\Sigma_i \in \mathscr{S}_n^*(\Lambda - \varepsilon) \setminus \mathscr{S}_n^{\mathrm{gen}}$ and \mathcal{M}_i ancient cyclic unit-regular integral Brakke flows in \mathbb{R}^{n+1} with $\lambda(\tilde{\mathcal{M}}_i) \leq F(\Sigma)$ so that

 $\tilde{\mathcal{M}}_i$ does not smoothly cross the flow $(-\infty,0) \ni t \mapsto \mathcal{H}^n \lfloor \sqrt{-t} \Sigma_i$ and so that there are points $(\mathbf{x}_i,t_i) \in (\mathbb{R}^{n+1} \times \mathbb{R}) \setminus (\mathbf{0},0)$ with

$$\Theta_{\tilde{\mathcal{M}}_i}(\mathbf{x}_i, t_i) \ge F(\Sigma_i) - o(1) \tag{2.3}$$

as $i \to \infty$. We can assume that $|(\mathbf{x}_i, t_i)| = 1$.

By Lemma 2.1 and Allard's theorem (see [2], [57]), we can pass to a subsequence so that Σ_i converges in C_{loc}^{∞} to $\Sigma \in \mathcal{S}_n(\Lambda)$. By Brakke's theorem (see [16], [68]), Σ is nonflat. Because cylinders are isolated in C_{loc}^{∞} by [30], we thus see that $\Sigma \in \mathcal{S}_n^*(\Lambda) \setminus \mathcal{S}_n^{\text{gen}}$. Note that $F(\Sigma_i) \to F(\Sigma)$.

We now pass to a further subsequence so that $(\mathbf{x}_i, t_i) \to (\mathbf{x}_0, t_0) \in \mathbb{R}^{n+1} \times \mathbb{R}$ with $|(\mathbf{x}_0, t_0)| = 1$ and the Brakke flows $\tilde{\mathcal{M}}_i$ converge to an ancient cyclic unit-regular integral Brakke flow $\tilde{\mathcal{M}}$ with $\lambda(\tilde{\mathcal{M}}) \leq F(\Sigma)$. By upper semicontinuity of Gaussian density, (2.3) implies that $\Theta_{\tilde{\mathcal{M}}}(\mathbf{x}_0, t_0) \geq F(\Sigma)$. Because $\lambda(\tilde{\mathcal{M}}) \leq F(\Sigma)$, $\tilde{\mathcal{M}}$ is a self-similar flow around (\mathbf{x}_0, t_0) . By stability of smoothly crossing flows, Lemma B.2, $\tilde{\mathcal{M}}$ does not smoothly cross $(-\infty, 0) \ni t \mapsto \mathcal{H}^n \lfloor \sqrt{-t} \Sigma$.

Consider any tangent flow to $\tilde{\mathcal{M}}$ at $t=-\infty$. By Huisken's monotonicity formula and Lemma 2.1, there is a smooth shrinker $\tilde{\Sigma}$ so that this tangent flow at $t=-\infty$ corresponds to some $\tilde{\Sigma} \in \mathcal{S}_n(\Lambda)$ with multiplicity one. By the Frankel property for self-shrinkers (cf. [25, Corollary C.4]) and the strong maximum principle, if $\tilde{\Sigma} \neq \Sigma$, then the flows $t \mapsto \mathcal{H}^n \lfloor \sqrt{-t} \, \Sigma$ and $t \mapsto \mathcal{H}^n \lfloor \sqrt{-t} \, \tilde{\Sigma}$ smoothly cross each other at some point. This contradicts the stability of smooth crossings.

We conclude that any tangent flow to $\tilde{\mathcal{M}}$ at $t = -\infty$ is the flow associated to Σ . Since $\tilde{\mathcal{M}}$ is self-similar around (\mathbf{x}_0, t_0) , we find that

$$\tilde{\mathcal{M}}(t) = \mathcal{H}^n | (\sqrt{t_0 - t} \Sigma + \mathbf{x}_0)$$

for $t < t_0$. Since $\tilde{\mathcal{M}}$ does not smoothly cross $t \mapsto \mathcal{H}^n \lfloor \sqrt{-t} \Sigma$, we see that there is an open set $\Omega \subset \mathbb{R}^{n+1}$ with $\partial \Omega = \Sigma$ so that

$$\sqrt{t_0 - t} \, \Sigma + \mathbf{x}_0 \subset \sqrt{-t} \, \bar{\Omega}$$

for $t < \min\{0, t_0\}$. We can thus apply Proposition 2.2 to conclude that (up to a rotation) $\Sigma = \hat{\Sigma} \times \mathbb{R}$ for $\hat{\Sigma} \in \mathcal{S}_{n-1}^*(\Lambda)$. By hypothesis $(\dagger \dagger_{n,\Lambda})$, $\hat{\Sigma} \in \mathcal{S}_{n-1}^{\text{gen}}$ so $\Sigma = \hat{\Sigma} \times \mathbb{R} \in \mathcal{S}_n^{\text{gen}}$. This is a contradiction.

3. Proof of Theorem 1.7

For $M' \subset \mathbb{R}^{n+1}$ a smooth closed hypersurface, recall that $\mathfrak{F}(M')$ is the set of cyclic unit-regular integral Brakke flows \mathcal{M}' with $\mathcal{M}'(0) = \mathcal{H}^n \lfloor M'$. Note that [46] and [69] imply that $\mathfrak{F}(M') \neq \emptyset$ (see also [41, Appendix B]).

We define

$$\mathcal{D}(M') := \sup \{ \Theta_{\mathcal{M}'}(\mathbf{x}, t) : \mathcal{M}' \in \mathfrak{F}(M'), (\mathbf{x}, t) \in \operatorname{sing} \mathcal{M}' \setminus \operatorname{sing}_{\operatorname{gen}} \mathcal{M}' \}.$$

Recall that by convention $\sup \emptyset = -\infty$.

Assume that hypotheses $(\dagger_{n,\Lambda})$ and $(\dagger\dagger_{n,\Lambda})$ hold for $\Lambda \in (\lambda(\mathbb{S}^n), \lambda(\mathbb{S}^{n-2}]$ fixed. Consider a smooth closed hypersurface $M^n \subset \mathbb{R}^{n+1}$ with $\lambda(M) \leq \Lambda$. Flowing M by mean curvature flow for a short time strictly decreases the entropy unless M is homothetic to a self-shrinker. If M is homothetic to a self-shrinker other than $\mathbb{S}^n(\sqrt{2n})$, then by [32], a small C^{∞} -perturbation of M has strictly smaller entropy.

As such, either $M = \mathbb{S}^n(r)$, in which case the Theorem 1.7 trivially holds, or we can perform an initial perturbation and assume that $\lambda(M) \leq \Lambda - 2\varepsilon$ for some $\varepsilon > 0$. Choose a foliation $\{M_s\}_{s \in (-1,1)}$ of a tubular neighborhood of M so that $M_0 = M$ and so that $\lambda(M_s) \leq \Lambda - \varepsilon$. Fix $\delta = \delta(n, \varepsilon, \Lambda) > 0$ from Proposition 2.3.

LEMMA 3.1
We have

$$\limsup_{s \to s_0} \mathcal{D}(M_s) \le \mathcal{D}(M_{s_0}) - \delta$$

for all $s_0 \in (-1, 1)$.

Lemma 3.1 implies Theorem 1.7 by a straightforward iteration argument since by Brakke's regularity theorem (see [16], [68]), if $\mathcal{D}(M') \leq 1$, then $\mathcal{D}(M') = -\infty$ implying that $\operatorname{sing} \mathcal{M}' = \operatorname{sing}_{\operatorname{gen}} \mathcal{M}'$ for all $\mathcal{M}' \in \mathfrak{F}(M')$. Since $\lambda(M') < \Lambda \leq \lambda(\mathbb{S}^{n-2} \times \mathbb{R}^2)$, any $\mathcal{M}' \in \mathfrak{F}(M')$ has only (multiplicity-one) \mathbb{S}^n - and $(\mathbb{S}^{n-1} \times \mathbb{R})$ -type singularities. Thus, the resolution of the mean convex neighborhood conjecture for $\mathbb{S}^{n-1} \times \mathbb{R}$ singularities (see [27], [28]; cf. [41]) implies nonfattening of the flow of M'.

Proof of Lemma 3.1

Assume that there is $s_i \to s_0 \in (-1, 1)$ with $s_i \neq s_0$ but

$$\lim_{i\to\infty}\mathcal{D}(M_{s_i})>\mathcal{D}(M_{s_0})-\delta.$$

Fix $\mathcal{M}_i \in \mathfrak{F}(M_{s_i})$ and $(\mathbf{x}_i, t_i) \in \operatorname{sing} \mathcal{M}_i \setminus \operatorname{sing}_{\operatorname{gen}} \mathcal{M}_i$ with

$$\lim_{i \to \infty} \Theta_{\mathcal{M}_i}(\mathbf{x}_i, t_i) > \mathcal{D}(M_{s_0}) - \delta.$$

Pass to a subsequence \mathcal{M}_i converging to $\mathcal{M} \in \mathfrak{F}(M_{s_0})$ and $(\mathbf{x}_i, t_i) \to (\mathbf{x}_0, t_0) \in \operatorname{sing} \mathcal{M}$. Since $s_i \neq s_0$ for all i, we have that M_{s_i} is disjoint from M_{s_0} for all i. In particular, supp $\mathcal{M}_i \cap \operatorname{supp} \mathcal{M} = \emptyset$ (by the avoidance principle for Brakke flows; see [47, Section 10.6]). Thus, $(\mathbf{x}_i, t_i) \neq (\mathbf{x}_0, t_0)$.

Observe that that if $(\mathbf{x}_0, t_0) \in \operatorname{sing}_{\operatorname{gen}} \mathcal{M}$, then since $\lambda(M) < \Lambda \leq \lambda(\mathbb{S}^{n-2})$, we see that (\mathbf{x}_0, t_0) must be an \mathbb{S}^n - or $(\mathbb{S}^{n-1} \times \mathbb{R})$ -type singularity. Proposition A.1 then implies that $(\mathbf{x}_i, t_i) \in \operatorname{sing}_{\operatorname{gen}} \mathcal{M}_i$, which is a contradiction. Thus, it must hold that $(\mathbf{x}_0, t_0) \in \operatorname{sing} \mathcal{M} \setminus \operatorname{sing}_{\operatorname{gen}} \mathcal{M}$.

Translate (\mathbf{x}_0, t_0) to the space-time origin and parabolically dilate to yield $\tilde{\mathcal{M}}_i$ and $(\tilde{\mathbf{x}}_i, \tilde{t}_i)$ with $|(\tilde{\mathbf{x}}_i, \tilde{t}_i)| = 1$ and

$$\lim_{i\to\infty}\Theta_{\tilde{\mathcal{M}}_i}(\tilde{\mathbf{x}}_i,\tilde{t}_i)>\mathcal{D}(M_{s_0})-\delta.$$

Pass to a subsequence so that $\tilde{\mathcal{M}}_i \rightharpoonup \tilde{\mathcal{M}}$ and $(\tilde{\mathbf{x}}_i, \tilde{t}_i) \to (\tilde{\mathbf{x}}, \tilde{t}) \in (\mathbb{R}^{n+1} \times \mathbb{R}) \setminus (\mathbf{0}, 0)$. By upper semicontinuity of density,

$$\Theta_{\tilde{M}}(\tilde{\mathbf{x}}, \tilde{t}) > \mathcal{D}(M_{s_0}) - \delta.$$
 (3.1)

On the other hand, we can perform the same translation and parabolic dilation to \mathcal{M} and by extracting a further subsequence, the resulting flows converge to a tangent flow to \mathcal{M} at (\mathbf{x}_0, t_0) . By Lemma 2.1, the tangent flow is the multiplicity-one flow associated to a smooth shrinker Σ . Note that

$$F(\Sigma) \leq \lambda(\mathcal{M}) \leq \limsup_{s \to s_0} \lambda(M_s) \leq \Lambda - \varepsilon.$$

Since $(\mathbf{x}_0, t_0) \in \operatorname{sing} \mathcal{M} \setminus \operatorname{sing}_{\operatorname{gen}} \mathcal{M}$, it must hold that $\Sigma \in \mathcal{S}_n^*(\Lambda - \varepsilon) \setminus \mathcal{S}_n^{\operatorname{gen}}$. Huisken's monotonicity formula implies that $\lambda(\tilde{\mathcal{M}}) \leq F(\Sigma) = \Theta_{\mathcal{M}}(\mathbf{x}_0, t_0)$ (cf. the proof of Proposition 10.6 in [25]). Finally, since the supports of \mathcal{M} and \mathcal{M}_i are disjoint, \mathcal{M}_i does not smoothly cross \mathcal{M} . As such (using Lemma B.2), $\tilde{\mathcal{M}}$ does not smoothly cross $t \mapsto \mathcal{H}^n \mid \sqrt{-t} \Sigma$. We can now apply Proposition 2.3 to conclude that

$$\Theta_{\tilde{\mathcal{M}}}(\tilde{\mathbf{x}},\tilde{t}) \leq F(\Sigma) - \delta = \Theta_{\mathcal{M}}(\mathbf{x}_0,t_0) - \delta \leq \mathcal{D}(M_{s_0}) - \delta.$$

This contradicts (3.1), completing the proof.

Appendix A. Stability of generic singularities

Based on [28], the following stability of generic singularities was proved in [56, Proposition 2.3] (see [25, Lemma 10.4] for the simple argument when the singularity is modeled on \mathbb{S}^n). When n = 2, this also follows via density considerations using [10].

PROPOSITION A.1

Suppose that $\mathcal{M}_i \to \mathcal{M}$ are unit-regular integral Brakke flows in \mathbb{R}^{n+1} and that $(\mathbf{x}_i, t_i) \in \operatorname{sing} \mathcal{M}_i$ converge to $(\mathbf{0}, 0) \in \operatorname{sing}_{\operatorname{gen}} \mathcal{M}$. If the singularity at $(\mathbf{0}, 0)$ is modeled on \mathbb{S}^n or $\mathbb{S}^{n-1} \times \mathbb{R}$, then for i sufficiently large $(\mathbf{x}_i, t_i) \in \operatorname{sing}_{\operatorname{gen}} \mathcal{M}_i$.

Appendix B. Stability of crossing points

Definition B.1

Given two integral unit Brakke flows $\mathcal{M}^{(1)}$ and $\mathcal{M}^{(2)}$, we say that $\mathcal{M}^{(1)}$ and $\mathcal{M}^{(2)}$ smoothly cross at (\mathbf{x}, t) if there is r > 0 with

$$\mathcal{M}^{(j)}(s) \lfloor B_r(\mathbf{x}) = \mathcal{H}^n \lfloor \Gamma^{(j)}(s) \rfloor$$

for $s \in (t - r^2, t + r^2)$, where $\Gamma^{(j)}(s)$ are smooth connected mean curvature flows so that in any small neighborhood of **x** there are points of $\Gamma^{(1)}(0)$ on both sides of $\Gamma^{(2)}(0)$.

The following is a straightforward consequence of Brakke's regularity theorem (see [16], [68]).

LEMMA B.2

For j=1,2, suppose that $\mathcal{M}_i^{(j)} \to \mathcal{M}^{(j)}$ are integral unit-regular n-dimensional Brakke flows in \mathbb{R}^{n+1} . Assume that $\mathcal{M}^{(1)}$ smoothly crosses $\mathcal{M}^{(2)}$ at (\mathbf{x},t) . Then, for i sufficiently large, there is $(\mathbf{x}_i,t_i) \to (\mathbf{x},t)$ so that $\mathcal{M}_i^{(1)}$ smoothly crosses $\mathcal{M}_i^{(2)}$ at (\mathbf{x}_i,t_i) .

Appendix C. Local results

In this appendix, we prove the following local perturbative result.

PROPOSITION C.1

Suppose that $M^n \subset \mathbb{R}^{n+1}$ is a closed embedded hypersurface, and suppose that $\mathcal{M} \in \mathcal{F}(M)$ is a cyclic unit-regular integral Brakke flow starting at M. Assume that for $(\mathbf{x}_0, t_0) \in \operatorname{sing} \mathcal{M}$, the following hold:

- reg $\mathcal{M} \cap \{t < t_0\} \subset \mathbb{R}^{n+1} \times \mathbb{R}$ is connected, and
- any tangent flow \mathcal{N} to \mathcal{M} at (\mathbf{x}_0, t_0) has $\mathcal{N}(-1) = \mathcal{H}^n \lfloor \Sigma$, for $\Sigma \in \mathcal{S}_n^* \setminus \mathcal{S}_n^{\text{gen}}$ that does not split a line.

Then there is $r = r(\mathcal{M}, \mathbf{x}_0, t_0) > 0$ so that for $M_j = \operatorname{graph}_M(u_j)$, $u_j > 0$ with $u_j \to 0$ in C^{∞} , it holds that any

$$(\mathbf{x},t) \in B_r(\mathbf{x}_0) \times (t_0 - r^2, t_0 + r^2)$$

 $has \ \Theta_{\mathcal{M}_j}(\mathbf{x},t) \leq \Theta_{\mathcal{M}}(\mathbf{x}_0,t_0) - r \ for \ j \ sufficiently \ large.$

In particular, no tangent flow to \mathcal{M} at (\mathbf{x}_0, t_0) can arise as the tangent flow to \mathcal{M}_j at some point in $B_r(\mathbf{x}_0) \times (t_0 - r^2, t_0 + r^2)$, for j large.

Proof

If this failed, there is $(\mathbf{x}_j, t_j) \rightarrow (\mathbf{x}_0, t_0)$ with

$$\Theta_{\mathcal{M}_i}(\mathbf{x},t) \ge \Theta_{\mathcal{M}}(\mathbf{x}_0,t_0) - o(1).$$

The assumption on the connectedness of the regular set implies that $\mathcal{M}_j \lfloor \{t < t_0\} \rightharpoonup \mathcal{M} \lfloor \{t < t_0\}$. Thus, by rescaling around (\mathbf{x}_0, t_0) so that (\mathbf{x}_j, t_j) is scaled to a unit distance from $(\mathbf{0}, 0)$, we obtain $\Sigma \in \mathcal{S}_n^* \setminus \mathcal{S}_n^{\mathrm{gen}}$ that does not split a line and an ancient Brakke flow $\tilde{\mathcal{M}}$ that does not smoothly cross $t \mapsto \mathcal{H}^n \lfloor \sqrt{-t} \Sigma$, so that $\lambda(\tilde{\mathcal{M}}) \leq F(\Sigma)$, but for some $(\tilde{\mathbf{x}}, \tilde{t}) \in (\mathbb{R}^{n+1} \times \mathbb{R}) \setminus \{(\mathbf{0}, 0)\}$ it holds that $\Theta_{\tilde{\mathcal{M}}}(\mathbf{x}, t) \geq F(\Sigma)$.

The argument in the second half of the proof of Proposition 2.3 carries over without change to show that there is an open set $\Omega \subset \mathbb{R}^{n+1}$ with $\partial \Omega = \Sigma$ and

$$\sqrt{\tilde{t} - t} \, \Sigma + \tilde{\mathbf{x}} \subset \sqrt{-t} \, \overline{\Omega}$$

for $t < \min\{0, t_0\}$. By Proposition 2.2, we have that either $\Sigma = \mathbb{S}^n(\sqrt{2n}) \in \mathcal{S}_n^{\text{gen}}$ or Σ splits a line. Either case contradicts the assumption that \mathcal{M} has no such tangent flow at (\mathbf{x}_0, t_0) . This completes the proof.

Note that Proposition C.1 does not give any indication as to *how* the perturbation avoids the singularity (the trade-off is that the proof is very short). On the other hand, the results in [25] give a rather *complete* description of how the perturbed flow avoids a compact/asymptotically conical singularity. The works [62] and [63] also obtain some information along these lines, but only as long as the perturbed flow remains graphical over the original flow.

Appendix D. The setting of area-minimizing hypersurfaces

We recall the following fundamental result.

THEOREM D.1 (Hardt and Simon [37, Theorem 2.1])

If $\mathcal{C}^n \subset \mathbb{R}^{n+1}$ is a regular area-minimizing cone, then there exist smooth area-minimizing hypersurfaces S_{\pm} in each component of $\mathbb{R}^{n+1} \setminus \mathcal{C} = U_+ \cup U_-$ so that if S' is area-minimizing and contained in U_{\pm} , then $S' = \lambda S_{\pm}$.

The uniqueness statement in Theorem D.1 implies smoothness of solution to the Plateau problem for seven-dimensional currents in \mathbb{R}^8 with generic boundary data (see [37, Theorem 5.6]). Later, Smale [60] used Theorem D.1 to prove that for (M^8, g) a closed Riemannian manifold and $\alpha \in H_7(M; \mathbb{Z})$, there is a C^k -close metric g' so that the least area representative of α is smooth.

Remark

Besides their role in generic regularity of area-minimizing hypersurfaces in eight-dimensional manifolds, the surfaces S_{\pm} are important objects in their own right (cf. [26], [50], [51], [58], [59], [66]). In our previous paper [25], we proved the parabolic analogue of Theorem D.1 (for compact/asymptotically conical self-shrinkers) by constructing and classifying ancient one-sided flows analogous to the surfaces S_{\pm} .

We explain here how the main idea of this note can be used to prove the generic regularity results from [37] and [60] using the following result in lieu of Theorem D.1 (cf. Proposition 2.3).

PROPOSITION D.2

There is $\delta > 0$ with the following property. Suppose that $\mathcal{C}^7 \subset \mathbb{R}^8$ is a nonflat area-minimizing cone. If S' is area-minimizing with support contained in \bar{U}_{\pm} , where $\mathbb{R}^8 \setminus \mathcal{C} = U_+ \cup U_-$, then

$$\Theta_{S'}(\mathbf{x}) \leq \Theta_{\mathcal{C}}(0) - \delta$$
.

Proof

Using smooth compactness of the links of area-minimizing cones in \mathbb{R}^8 , it suffices to rule out the case where $S' \subset \bar{U}_{\pm}$ is area-minimizing and there is $|\mathbf{x}_0| = 1$ so that

$$\Theta_{S'}(\mathbf{x}_0) = \Theta_{\mathcal{C}}(\mathbf{0}).$$

Because S' is contained in \bar{U}_{\pm} , its tangent cone at ∞ must be \mathscr{C} (e.g., using the Frankel property of minimal hypersurfaces in \mathbb{S}^n). Thus, $S'=\mathscr{C}+\mathbf{x}_0$. This implies that $\mathscr{C}+\lambda\mathbf{x}_0\subset\bar{U}_{\pm}$ as $\lambda\to 0$, so $\mathbf{x}_0\cdot\nu_{\mathscr{C}}\geq 0$. It cannot hold that $\mathbf{x}_0\cdot\nu_{\mathscr{C}}=0$ since \mathscr{C} does not split a line, so $\mathbf{x}_0\cdot\nu_{\mathscr{C}}>0$. This would imply that \mathscr{C} is a graph, which is impossible since \mathscr{C} is nonflat.

Using this, we obtain the following density drop result (cf. Lemma 3.1).

COROLLARY D.3

There is $\delta > 0$ with the following property. Suppose that $\Sigma = \partial[\Omega] \subset B_2 \subset \mathbb{R}^8$ is an area-minimizing boundary with sing $\Sigma = \{\mathbf{0}\}$. Suppose that $\Omega_1, \Omega_2, \dots \supset \Omega$ is a sequence of sets of finite perimeter in B_2 with $\Sigma_i := \partial[\Omega_i]$ area-minimizing, $\Sigma_i \cap \Sigma = \emptyset$, and $\Omega_i \to \Omega$. Then, for $\mathbf{x}_i \in \Sigma_i \cap B_1$, we have

$$\limsup_{i\to\infty}\Theta_{\Sigma_i}(\mathbf{x}_i)\leq\Theta_{\Sigma}(\mathbf{0})-\delta.$$

Note that this result can be iterated exactly in the proof of Theorem 1.7 to obtain generic regularity of area-minimizing hypersurfaces in eight dimensions.

```
COROLLARY D.4 (cf. [37, Theorem 5.6])
```

For $\Gamma^6 \subset \mathbb{R}^8$ a smooth compact oriented submanifold without boundary, there is an arbitrarily small C^{∞} -perturbation of Γ to Γ' so that any area-minimizing integral current bounded by Γ' is completely smooth.

```
COROLLARY D.5 (cf. [60])
```

For (M^8,g) a closed oriented Riemannian manifold and $\alpha \in H_7(M;\mathbb{Z})$ a codimension-one integral homology class, there is an arbitrarily small C^k -perturbation of g to g' so that there is a unique g'-area-minimizing representative Σ of α and Σ is completely smooth.

Acknowledgments. We would like to thank Richard Bamler for some discussions related to weak flows and surgery constructions. We are also grateful to the referees for many helpful suggestions.

Chodosh's work was partially supported by a Sloan Fellowship, a Terman Fellowship, and National Science Foundation (NSF) grants DMS-1811059 and DMS-2016403. Choi's work was partially supported by Korea Institute for Advanced Study (KIAS) Individual Grant MG078901. Mantoulidis's work was partially supported by NSF grants DMS-2050120 and DMS-2147521. Schulze's work was partially supported by Leverhulme Trust Research Project Grant RPG-2016-174.

For the purpose of open access, the authors have applied a Creative Commons Attribution (CC-BY) license to any Author Accepted Manuscript version arising from this submission.

References

- [1] U. ABRESCH and J. LANGER, *The normalized curve shortening flow and homothetic solutions*, J. Differential Geom. **23** (1986), no. 2, 175–196. MR 0845704. DOI 10.4310/jdg/1214440025. (6)
- [2] W. K. ALLARD, *On the first variation of a varifold*, Ann. of Math. (2) **95** (1972), 417–491. MR 0307015. DOI 10.2307/1970868. (11)
- [3] S. ANGENENT, P. DASKALOPOULOS, and N. SESUM, *Unique asymptotics of ancient convex mean curvature flow solutions*, J. Differential Geom. **111** (2019), no. 3, 381–455. MR 3934596. DOI 10.4310/jdg/1552442605. (7)
- [4] ——, Uniqueness of two-convex closed ancient solutions to the mean curvature flow, Ann. of Math. (2) **192** (2020), no. 2, 353–436. MR 4151080.

 DOI 10.4007/annals.2020.192.2.2. (7)

- [5] R. H. BAMLER and B. KLEINER, *Uniqueness and stability of Ricci flow through singularities*, Acta Math. **228** (2022), no. 1, 1–215. MR 4448680.

 DOI 10.4310/acta.2022.v228.n1.a1. (7)
- [6] ——, *Ricci flow and diffeomorphism groups of 3-manifolds*, J. Amer. Math. Soc. **36** (2023), no. 2, 563–589. MR 4536904. DOI 10.1090/jams/1003. (7)
- [7] ——, *Ricci flow and contractibility of spaces of metrics*, preprint, arXiv:1909.08710v1 [math.DG]. *(7)*
- [8] J. BERNSTEIN and L. WANG, *A remark on a uniqueness property of high multiplicity tangent flows in dimension 3*, Int. Math. Res. Not. IMRN **2015**, no. 15, 6286–6294. MR 3384477. DOI 10.1093/imrn/rnu124. (6)
- [9] ——, A sharp lower bound for the entropy of closed hypersurfaces up to dimension six, Invent. Math. **206** (2016), no. 3, 601–627. MR 3573969.

 DOI 10.1007/s00222-016-0659-3. (4)
- [10] ——, A topological property of asymptotically conical self-shrinkers of small entropy, Duke Math. J. **166** (2017), no. 3, 403–435. MR 3606722. DOI 10.1215/00127094-3715082. (4, 7, 13)
- [11] ——, Hausdorff stability of the round two-sphere under small perturbations of the entropy, Math. Res. Lett. **25** (2018), no. 2, 347–365. MR 3826825.

 DOI 10.4310/MRL.2018.v25.n2.a1. (4)
- [12] ——, *Topology of closed hypersurfaces of small entropy*, Geom. Topol. **22** (2018), no. 2, 1109–1141. MR 3748685. DOI 10.2140/gt.2018.22.1109. (4, 5, 8)
- [13] —, Closed hypersurfaces of low entropy in \mathbb{R}^4 are isotopically trivial, Duke Math. J. **171** (2022), no. 7, 1531–1558. MR 4484213. DOI 10.1215/00127094-2022-0012. (2, 4, 5)
- [14] ——, *Topological uniqueness for self-expanders of small entropy*, Camb. J. Math. **10** (2022), no. 4, 785–833. MR 4524828. DOI 10.4310/CJM.2022.v10.n4.a2. (4)
- [15] J. BERNSTEIN and S. WANG, The level set flow of a hypersurface in \mathbb{R}^4 of low entropy does not disconnect, Comm. Anal. Geom. **29** (2021), no. 7, 1523–1543. MR 4429236. DOI 10.4310/CAG.2021.v29.n7.a1. (4)
- [16] K. A. BRAKKE, *The motion of a surface by its mean curvature*, Ph.D. dissertation, Princeton University, Princeton, 1975. MR 2626191. (11, 12, 14)
- [17] S. BRENDLE, A sharp bound for the inscribed radius under mean curvature flow, Invent. Math. 202 (2015), no. 1, 217–237. MR 3402798.
 DOI 10.1007/s00222-014-0570-8. (7)
- [18] ——, *Embedded self-similar shrinkers of genus 0*, Ann. of Math. (2) **183** (2016), no. 2, 715–728. MR 3450486. DOI 10.4007/annals.2016.183.2.6. (4)
- [19] S. BRENDLE and K. CHOI, Uniqueness of convex ancient solutions to mean curvature flow in \mathbb{R}^3 , Invent. Math. 217 (2019), no. 1, 35–76. MR 3958790.

 DOI 10.1007/s00222-019-00859-4. (7)
- [20] ——, Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions, Geom. Topol. 25 (2021), no. 5, 2195–2234. MR 4310889.
 DOI 10.2140/gt.2021.25.2195. (7)

- [21] S. BRENDLE and G. HUISKEN, Mean curvature flow with surgery of mean convex surfaces in \mathbb{R}^3 , Invent. Math. **203** (2016), no. 2, 615–654. MR 3455158. DOI 10.1007/s00222-015-0599-3. (7)
- [22] R. BUZANO, R. HASLHOFER, and O. HERSHKOVITS, *The moduli space of two-convex embedded tori*, Int. Math. Res. Not. IMRN **2019**, no. 2, 392–406. MR 3903562. DOI 10.1093/imrn/rnx125. (7)
- [23] ——, *The moduli space of two-convex embedded spheres*, J. Differential Geom. **118** (2021), no. 2, 189–221. MR 4278693. DOI 10.4310/jdg/1622743139. (7)
- [24] A. CARLOTTO and C. LI, *Constrained deformations of positive scalar curvature metrics*, to appear in J. Differential Geom., preprint, arXiv:1903.11772v3 [math.DG]. (7)
- [25] O. CHODOSH, K. CHOI, C. MANTOULIDIS, and F. SCHULZE, *Mean curvature flow with generic initial data*, preprint, arXiv:2003.14344v1 [math.DG]. (2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 16)
- [26] O. CHODOSH, Y. LIOKUMOVICH, and L. SPOLAOR, Singular behavior and generic regularity of min-max minimal hypersurfaces, Ars Inven. Anal. 2022, no. 2. MR 4462477. (16)
- [27] K. CHOI, R. HASLHOFER, and O. HERSHKOVITS, *Ancient low-entropy flows, mean-convex neighborhoods, and uniqueness*, Acta Math. **228** (2022), no. 2, 217–301. MR 4448681. DOI 10.4310/acta.2022.v228.n2.a1. (7, 12)
- [28] K. CHOI, R. HASLHOFER, O. HERSHKOVITS, and B. WHITE, Ancient asymptotically cylindrical flows and applications, Invent. Math. 229 (2022), no. 1, 139–241.
 MR 4438354. DOI 10.1007/s00222-022-01103-2. (7, 12, 13)
- [29] K. CHOI and C. MANTOULIDIS, Ancient gradient flows of elliptic functionals and Morse index, Amer. J. Math. 144 (2022), no. 2, 541–573. MR 4401511.

 DOI 10.1353/ajm.2022.0010. (3)
- [30] T. H. COLDING, T. ILMANEN, and W. P. MINICOZZI II, *Rigidity of generic singularities of mean curvature flow*, Publ. Math. Inst. Hautes Études Sci. **121** (2015), 363–382. MR 3349836. DOI 10.1007/s10240-015-0071-3. (6, 11)
- [31] T. H. COLDING, T. ILMANEN, W. P. MINICOZZI II, and B. WHITE, *The round sphere minimizes entropy among closed self-shrinkers*, J. Differential Geom. **95** (2013), no. 1, 53–69. MR 3128979. DOI 10.4310/jdg/1375124609. (4)
- [32] T. H. COLDING and W. P. MINICOZZI II, Generic mean curvature flow, I: Generic singularities, Ann. of Math. (2) **175** (2012), no. 2, 755–833. MR 2993752. DOI 10.4007/annals.2012.175.2.7. (2, 4, 8, 10, 12)
- [33] ——, Uniqueness of blowups and łojasiewicz inequalities, Ann. of Math. (2) **182** (2015), no. 1, 221–285. MR 3374960. DOI 10.4007/annals.2015.182.1.5. (6)
- [34] ——, *Dynamics of closed singularities*, Ann. Inst. Fourier (Grenoble) **69** (2019), no. 7, 2973–3016. MR 4286828. DOI 10.5802/aif.3343. (3)
- [35] J. M. DANIELS-HOLGATE, Approximation of mean curvature flow with generic singularities by smooth flows with surgery, Adv. Math. **410** (2022), part A, no. 108715. MR 4493003. DOI 10.1016/j.aim.2022.108715. (2, 7)
- [36] K. ECKER and G. HUISKEN, *Mean curvature evolution of entire graphs*, Ann. of Math. (2) **130** 91989), no. 3, 453–471. MR 1025164. DOI 10.2307/1971452. (10)

- [37] R. HARDT and L. SIMON, Area minimizing hypersurfaces with isolated singularities, J. Reine Angew. Math. 362 (1985), 102–129. MR 0809969.
 DOI 10.1515/crll.1985.362.102. (3, 8, 15, 16, 17)
- [38] R. HASLHOFER and B. KLEINER, *Mean curvature flow of mean convex hypersurfaces*, Comm. Pure Appl. Math. **70** (2017), no. 3, 511–546. MR 3602529.

 DOI 10.1002/cpa.21650. (7)
- [39] ——, *Mean curvature flow with surgery*, Duke Math. J. **166** (2017), no. 9, 1591–1626. MR 3662439. DOI 10.1215/00127094-0000008X. (7)
- [40] O. HERSHKOVITS and B. WHITE, *Sharp entropy bounds for self-shrinkers in mean curvature flow*, Geom. Topol. **23** (2019), no. 3, 1611–1619. MR 3956898. DOI 10.2140/gt.2019.23.1611. (4)
- [41] ——, Nonfattening of mean curvature flow at singularities of mean convex type, Comm. Pure Appl. Math. **73** (2020), no. 3, 558–580. MR 4057901.

 DOI 10.1002/cpa.21852. (11, 12)
- [42] G. HUISKEN, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. **31** (1990), no. 1, 285–299. MR 1030675. DOI 10.4310/JDG/1214444099. (8)
- [43] ——, "Local and global behaviour of hypersurfaces moving by mean curvature" in *Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, 1990)*, Proc. Sympos. Pure Math. **54**, Amer. Math. Soc., Providence, 1993, 175–191. MR 1216584. DOI 10.1090/pspum/054.1/1216584. (8)
- [44] G. HUISKEN and C. SINESTRARI, *Mean curvature flow singularities for mean convex surfaces*, Calc. Var. Partial Differential Equations **8** (1999), no. 1, 1–14.

 MR 1666878. DOI 10.1007/s005260050113. (7)
- [45] ——, *Mean curvature flow with surgeries of two-convex hypersurfaces*, Invent. Math. **175** (2009), no. 1, 137–221. MR 2461428.

 DOI 10.1007/s00222-008-0148-4. (7)
- [46] T. ILMANEN, "The level-set flow on a manifold" in *Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, 1990)*, Proc. Sympos. Pure Math. 54, Amer. Math. Soc., Providence, 1993, 193–204. MR 1216585.
 DOI 10.1090/pspum/054.1/1216585. (11)
- [47] ——, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. **108** (1994), no. 520. MR 1196160.

 DOI 10.1090/memo/0520. (12)
- [48] ——, Singularities of mean curvature flow of surfaces, preprint, 1995, http://people.math.ethz.ch/~ilmanen/papers/sing.ps. (3)
- [49] ——, Problems in mean curvature flow, preprint, 2003, http://people.math.ethz.ch/~ilmanen/classes/eil03/problems03.ps. (1)
- [50] T. ILMANEN and B. WHITE, *Sharp lower bounds on density for area-minimizing cones*, Camb. J. Math. **3** (2015), no. 1–2, 1–18. MR 3356355.

 DOI 10.4310/CJM.2015.v3.n1.a1. (16)
- [51] Y. LI and Z. WANG, Generic regularity of minimal hypersurfaces in dimension 8, preprint, arXiv:2012.05401v2 [math.DG]. (16)

- [52] F. C. MARQUES, Deforming three-manifolds with positive scalar curvature, Ann. of Math. (2) 176 (2012), no. 2, 815–863. MR 2950765.
 DOI 10.4007/annals.2012.176.2.3. (7)
- [53] F. C. MARQUES and A. NEVES, Min-max theory and the Willmore conjecture, Ann. of Math. (2) 179 (2014), no. 2, 683–782. MR 3152944.
 DOI 10.4007/annals.2014.179.2.6. (7)
- [54] A. MRAMOR, A finiteness theorem via the mean curvature flow with surgery, J. Geom. Anal. **28** (2018), no. 4, 3348–3372. MR 3881975.

 DOI 10.1007/s12220-017-9962-5. (7)
- [55] A. MRAMOR and S. WANG, *Low entropy and the mean curvature flow with surgery*, Calc. Var. Partial Differential Equations **60** (2021), no. 3, art. ID 96.

 MR 4249874. DOI 10.1007/s00526-021-01947-1. (7)
- [56] F. SCHULZE and N. SESUM, *Stability of neckpinch singularities*, preprint, arXiv:2006.06118v1 [math.DG]. (13)
- [57] L. SIMON, *Lectures on Geometric Measure Theory*, Proc. Centre Math. Anal. **3**, Aust. National Univ., Canberra, 1983. MR 0756417. (11)
- [58] ——, A Liouville-type theorem for stable minimal hypersurfaces, Ars Inven. Anal. **2021**, no. 5. MR 4462473. (16)
- [59] ——, Stable minimal hypersurfaces in $\mathbb{R}^{N+1+\ell}$ with singular set an arbitrary closed $K \subset \{0\} \times \mathbb{R}^{\ell}$, Ann. of Math. (2) **197** (2023), no. 3, 1205–1234. MR 4564263. DOI 10.4007/annals.2023.197.3.4. (16)
- [60] N. SMALE, Generic regularity of homologically area minimizing hypersurfaces in eight-dimensional manifolds, Comm. Anal. Geom. 1 (1993), no. 2, 217–228. MR 1243523. DOI 10.4310/CAG.1993.v1.n2.a2. (8, 15, 16, 17)
- [61] A. STONE, A density function and the structure of singularities of the mean curvature flow, Calc. Var. Partial Differential Equations 2 (1994), no. 4, 443–480. MR 1383918. DOI 10.1007/BF01192093. (4)
- [62] A. SUN and J. XUE, *Initial perturbation of the mean curvature flow for asymptotical conical limit shrinker*, preprint, arXiv:2107.05066v1 [math.DG]. (3, 15)
- [63] ——, Initial perturbation of the mean curvature flow for closed limit shrinker, preprint, arXiv:2104.03101v2 [math.DG]. (3, 15)
- [64] L. WANG, A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata **151** (2011), 297–303. MR 2780753. DOI 10.1007/s10711-010-9535-2. (10)
- [65] ——, Asymptotic structure of self-shrinkers, preprint, arXiv:1610.04904v1 [math.DG]. (3)
- [66] Z. WANG, Deformations of singular minimal hypersurfaces, I: Isolated singularities, preprint, arXiv:2011.00548v1 [math.DG]. (16)
- [67] ——, Mean convex smoothing of mean convex cones, preprint, arXiv:2202.07851v1 [math.DG]. (8)
- [68] B. WHITE, A local regularity theorem for mean curvature flow, Ann. of Math. (2) **161** (2005), no. 3, 1487–1519. MR 2180405. DOI 10.4007/annals.2005.161.1487. (11, 12, 14)

- [69] ——, Currents and flat chains associated to varifolds, with an application to mean curvature flow, Duke Math. J. **148** (2009), no. 1, 41–62. MR 2515099.

 DOI 10.1215/00127094-2009-019. (6, 8, 11)
- [70] J. J. ZHU, On the entropy of closed hypersurfaces and singular self-shrinkers, J. Differential Geom. **114** (2020), no. 3, 551–593. MR 4072205. DOI 10.4310/jdg/1583377215. (4)

Chodosh

Department of Mathematics, Stanford University, Stanford, California, USA; ochodosh@stanford.edu

Choi

School of Mathematics, Korea Institute for Advanced Study, Seoul, Republic of Korea; choiks@kias.re.kr

Mantoulidis

Department of Mathematics, Rice University, Houston, Texas, USA; christos.mantoulidis@rice.edu

Schulze

Department of Mathematics, University of Warwick, Coventry, United Kingdom; felix.schulze@warwick.ac.uk