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VOLUME GROWTH OF 3-MANIFOLDS WITH SCALAR

CURVATURE LOWER BOUNDS

OTIS CHODOSH, CHAO LI, AND DOUGLAS STRYKER

(Communicated by Jiaping Wang)

Abstract. We give a new proof of a recent result of Munteanu–Wang relating
scalar curvature to volume growth on a 3-manifold with non-negative Ricci
curvature. Our proof relies on the theory of µ-bubbles introduced by Gromov
[Geom. Funct. Anal. 28 (2018), pp. 645–726] as well as the almost splitting
theorem due to Cheeger–Colding [Ann. of Math. (2) 144 (1996), pp. 189–237].

1. Introduction

In this note we give a new proof of (and slightly generalize) the following volume
growth estimate recently proven by Munteanu–Wang [MW22, Theorem 5.6].

Theorem 1.1. Let (M3, g) be a complete non-compact 3-manifold with Ricg ≥ 0.
Then

(1.1) lim inf
d(x0,x)→∞

Rg(x) ≤ C(x0, M, g) < +∞

for all x0 ∈ M . Moreover, if

(1.2) Rg(x) ≥ d(x, x0)
−α

outside a compact set K for some x0 ∈ M and 0 ≤ α < 2, then

(1.3) Vol(Br(x0)) ≤ C(x0, M, g)r1+α

for all r > 0.

(We note that Theorem 1.1 here considers the optimal range1 of α while [MW22,
Theorem 5.6] only proves Theorem 1.1 for 0 ≤ α ≤ 1.2) The proof of Theorem 1.1
given by Munteanu–Wang is based on their analysis of certain harmonic functions
on such manifolds (see also their earlier work [MW23] as well as [CL21]). Our
proof is rather different and instead relies on the theory of µ-bubbles introduced
by Gromov [Gro18].
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1When α ≥ 2, any estimate from the scalar curvature inequality (1.2) would be weaker than
the Bishop–Gromov cubic volume growth estimate from non-negative Ricci; moreover, by (1.1) it
is not possible that (1.2) holds with α < 0.

2On the other hand, we point out that [MW22, Theorem 5.6] does consider a certain notion
of negativity of the Ricci curvature at infinity, so in that respect [MW22, Theorem 5.6] is more
general than Theorem 1.1. Moreover, [MW22, Theorem 5.6] yields a more explicit estimate for
the constant C(x0, M, g) than we do here.
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The techniques used here are inspired by our recent article on (non-compact)
stable minimal hypersurfaces in 4-manifolds [CLS22] (see also [CL23]). We note
that in this paper it is necessary to handle the possibility that ∂Br(x0) ⊂ M may
have many connected components (even when (M, g) has only one end). (In [CLS22]
this issue was avoided since all that was needed was an efficient cutoff function.)
Here we use the almost splitting theorem of Cheeger–Colding to show that even
if there are many components of Br(x0) they do not contribute too much to the
volume growth.

We note that Theorem 1.1 is related to well-known conjectures of Yau [Yau92]
and Gromov [Gro86]. Yau has conjectured that if (Mn, g) has Ricg ≥ 0, then´

Br(x0)
Rg ≤ Crn−2 for all r > 0 while Gromov has conjectured that if (M, g)

satisfies Ricg ≥ 0 and Rg(x) ≥ 1 then Vol(Br(x0)) ≤ Crn−2. For some works
related to these conjectures we refer to [Pet08,Nab20,Xu20,Zhu22].3

2. Proof of main result

By using the splitting theorem [CG72], it is easy to see that Theorem 1.1 holds
for complete 3-manifolds with Ricg ≥ 0 and two (or a priori more) ends, so it
suffices to handle the case when M has one end.

A key tool is the following result which is a consequence of the theory of µ-bubbles
due to Gromov [Gro18]. See, for example, [CLS22, Lemma 5.3] (with references to
[CL20]) for a proof.

Lemma 2.1 (µ-bubble diameter bound). Let (N3, g) be a 3-manifold with boundary
satisfying Rg ≥ 1. Then there are universal constants L > 0 and c > 0 such that if
there is a p ∈ N with dN (p, ∂N) > L/2, then there is an open set Ω ⊂ BL/2(∂N)∩N
and a smooth surface Σ2 such that ∂Ω = Σ ⊔ ∂N and each component of Σ has
diameter at most c.

Let L and c denote the constants from Lemma 2.1. Note that we are free to
make L larger, so we will assume L ≫ c. The following is the main geometric result
used in the proof of Theorem 1.1.

Lemma 2.2. Let (M3, g) be a complete 3-manifold with Ricg ≥ 0 and one end.
Let x ∈ M . There is an r0(x, M, g) > 0 and a universal constant C > 0 so that if

Rg |Br+a1+a2 (x)\Br(x)≥ 1

for some r ≥ r0 and some a1, a2 ∈ [L, 2L], then

Vol(E1 \ E2) ≤ C,

where E1 and E2 are the unique unbounded components of M \ Br+a1(x) and M \
Br+a1+a2(x) respectively.

Proof. Let E0 be the unique unbounded component of M \ Br(x), and E1, E2 as
in the statement. By [And90, Corollary 1.5] (or [SY82,Liu13]), we have b1(M) <
∞. Then by [CLS22, Proposition 3.2], ∂Ek are connected so long as r ≥ r0 for
r0(x, M, g) > 0 fixed.

Let γ : R+ → M be a geodesic ray associated with the unique end of M . For
all r > r0, γ ∩ ∂Br(x) lies on the boundary of the unique unbounded component

3Added in proof: there has recently been related work in these directions, see [WXZZ22] and
[ZZ23].
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of M \ Br(x). We apply Lemma 2.1 to Ek for k = 0, 1. As in the proof of
[CLS22, Lemma 5.4], we obtain a connected surface Σk in BL/2(∂Ek) ∩ Ek with
diam(Σk) ≤ c that separates ∂Ek from the end of M . Choose tk ∈ R+ with
γ(tk) ∈ Σk, for k = 0, 1. Note that dg(γ(t0), γ(t1)) ≤ a1 + a2 ≤ 4L so dg(x0, x1) ≤
4L + 2c =: D for any x0 ∈ Σ0 and x1 ∈ Σ1.

We now define some constants. Let b = 3c, A = 2
√

b2 + D2. Fix R ∈ R such
that

(2.1) R ≥ A + 4L,
√

b2 + (2R + D)2 + 1 < 2D + 2R.

Then take δ ∈ (0, 1) such that

(2.2) δ <
√

b2 + D2, 14δ + 6
√
δ(D + R) < c, 2c + 22δ + 6

√
δ(D + R) <

L

2
.

Note that all constants here are numerical (i.e., independent of (M, g) and r0).
By the Cheeger–Colding almost splitting theorem [CC96, Theorem 6.62], as-

suming r0 is sufficiently large depending on D, R, δ, there is a length space (Y, d)
with

dGH(BD+R(γ(t1)) ⊂ (M, dg), BD+R(y, 0) ⊂ (Y × R, d × dEuc)) < δ.

(See Definition A.2 for the definition of the Gromov–Hausdorff distance.) Below
we fix (Y, d) with this property.

Claim 1. diam(Y, d) ≤ b.

Proof. By the definition of D, we have Σ0 ∪ Σ1 ⊂ BD+R(γ(t1)). Since Σ1 is
connected and separating, and BD+R(γ(t1)) ⊃ Σ1 is connected, BD+R(γ(t1)) \ Σ1

has two components. Let Ωi, i = 1, 2, denote the two components. Let

f : BD+R(γ(t1)) → BD+R(y, 0)

be a δ-Gromov–Hausdorff approximation (cf. Definition A.1) given by the almost
splitting theorem. Then,

Bδ(f(Ω1)) ∪ Bδ(f(Σ1)) ∪ Bδ(f(Ω2))

covers BD+R(y, 0). Let

S := Bδ(f(B2δ(Σ1))) ⊂ BD+R(y, 0),

and let
Λi := BD+R(y, 0) ∩ Bδ(f(Ωi)) \ S.

Then
BD+R(y, 0) = Λ1 ∪ S ∪ Λ2.

We first show an upper bound for the (extrinsic) diameter of S. Suppose p, q ∈ S.
Then there are p′, q′ ∈ B2δ(Σ1) and p′′, q′′ ∈ Σ1 so that

d(p, q) ≤ d(f(p′), f(q′)) + 2δ ≤ d(p′, q′) + 3δ ≤ d(p′′, q′′) + 7δ ≤ c + 7δ.

Hence,
diam(S) ≤ c + 7δ.

Second, we show a lower bound for the diameter of Λi. Note that the length of
a component of γ in Ωi is at least L/2. Then we can take p, q ∈ Ωi \ B5δ(Σ1) with
d(p, q) ≥ L/2 − 5δ. For any x ∈ B2δ(Σ1), we have

d(f(p), f(x)) ≥ d(p, x) − δ ≥ d(p,Σ1) − 3δ ≥ 2δ
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(and similarly for q). Thus there are p′, q′ ∈ Λi satisfying

d(p′, q′) ≥ d(f(p), f(q)) − 2δ ≥ d(p, q) − 3δ ≥ L/2 − 8δ.

Hence,
diam(Λi) ≥ L/2 − 8δ.

Third, we show that Λ1 and Λ2 are separated by a positive distance. Let p ∈ Λ1

and q ∈ Λ2. Then there are p′ ∈ Ω1 \ B2δ(Σ1) and q′ ∈ Ω2 \ B2δ(Σ1) satisfying (by
the fact that Σ1 is separating Ω1 and Ω2)

d(p, q) ≥ d(f(p′), f(q′)) − 2δ ≥ d(p′, q′) − 3δ ≥ δ.

Hence,
d(Λ1,Λ2) ≥ δ.

Finally, we show that

diam(Y, d) ≤ 2c + 14δ + 6
√

δ(D + R).

Suppose otherwise for contradiction. Then c+7δ+3
√

δ(D + R) < 1
2 diam(Y, d).

By Proposition A.3 (using 9δ ≤ D + R) and the diameter bound for S, we have

S ⊂ B
c+7δ+3

√
δ(D+R)

(y, 0).

By Proposition A.4,

BD+R(y, 0) \ B
c+7δ+3

√
δ(D+R)

(y, 0)

is path connected and does not contain S. Hence, (without loss of generality)

Λ2 ⊂ B
c+7δ+3

√
δ(D+R)

(y, 0).

But then

diam(Λ2) ≤ diam(B
c+7δ+3

√
δ(D+R)

(y, 0)) ≤ 2c + 14δ + 6
√
δ(D + R).

Thus (2.2) implies that
diam(Λ2) < L/2 − 8δ,

which contradicts the diameter lower bound. !

Claim 2. BD+R(γ(t1)) ⊂ B2
√

b2+D2(γ ||t−t1|≤D+R).

Proof. Let σ denote the segment of γ in BD+R(γ(t1)). Note that diam(σ) = 2D +
2R.

We first show that in Y ×R, BD+R(y, 0) ⊂ B√
b2+D2(f(σ)). Suppose for contra-

diction that there is a point p ∈ BD+R(y, 0) satisfying

d(p, f(σ)) >
√

b2 + D2.

Let π denote the projection to R in Y × R. Then

dR(π(p), π(f(σ))) > D.

Since D > δ, f is a δ-approximation, and σ is connected, we have

diamR(π(f(σ))) ≤ 2R + D.

Then
diam(f(σ)) ≤

√
b2 + (2R + D)2.
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By (2.1) and δ < 1, we have

diam(σ) ≤
√

b2 + (2R + D)2 + δ < 2D + 2R,

which yields a contradiction.
Take z ∈ BD+R(γ(t1)). By the above, there is an z′ ∈ σ with d(f(z), f(z′)) ≤√

b2 + D2. Then

d(z, σ) ≤ d(z, z′) ≤ d(f(z), f(z′)) + δ ≤
√

b2 + D2 + δ.

The claim follows. !
Claim 3. E1 \ E2 ⊂ BA(γ ||t−t1|<D+R).

Proof. Let x′ ∈ E1 \ E2.
If d(x′, x) ≤ R + c + r, then

d(x′, γ(t1)) ≤ d(x′,Σ0) + diam(Σ0) + d(γ(t0), γ(t1))

≤ (R + c) + c + 4L

= R + D.

Then by Claim 2, we have d(x′, γ ||t−t1|<D+R) ≤ A.
Now, suppose for contradiction that d(x′, x) > R+c+r. Take the radial geodesic

µ from x to x′, and let x′′ be the point on µ with

d(x′′, x) = R + c + r.

By the above observation (since R > L, we still have x′′ ∈ E1 \ E2), we have

d(x′′, γ ||t−t1|<D+R) ≤ A.

However, since ∂Br+a1+a2(x) separates x′′ from γ (by the definition of E2), we have

d(x′′, γ ||t−t1|<D+R) ≥ R + c − a1 − a2 ≥ R + c − 4L.

Since R ≥ A + 4L, we reach a contradiction. !
By Claim 3, the diameter of E1 \ E2 is bounded from above by 2A + 2D + 2R

(which is bounded by a universal constant). Since Ricg ≥ 0, the Bishop–Gromov
inequality yields a universal constant C so that

Vol(E1 \ E2) ≤ C,

as desired. !
We can now prove the main result.

Proof of Theorem 1.1. We assume M has one end. Let r0(x0, M, g) and C1 be the
constants in Lemma 2.2, where we assume K ⊂ Br0(x0).

First, assume (1.2). Take r > 0 very large (so that r1−α/2 > r0). Set g̃ := r−αg.
Then

Rg̃ ≥ 1 on Bg̃
r1−α/2(x0).

Let k ∈ N so that r0 ≤ r1−α/2 − kL < r0 + L. Set

ri := r1−α/2 − kL + iL.

Let Ei be the unique unbounded component of M \ B
g̃
ri

(x0). By Lemma 2.2 (with
a1 = a2 = L), we have

Volg̃(Ei \ Ei+1) ≤ C1
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for 1 ≤ i ≤ k − 1, so
Volg(Ei \ Ei+1) ≤ C1r

3α/2.

Note that

Bg
r (x0) = Bg̃

r1−α/2(x0) ⊂ (M \ E1) ∪
k−1⋃

i=1

(Ei \ Ei+1).

Moreover, by the choice of k, there is a constant V (M, g) > 0 so that

Volg(M \ E1) ≤ V.

Hence, we have (since k ≤ r1−α/2/L)

Volg(Br(x0)) ≤ V + C1kr3α/2 ≤ V +
C1

L
r1+α.

Then we have

lim
r→∞

1

r1+α
Volg(Br(x0)) < +∞

and (since α < 2)

lim
r→0

1

r1+α
Volg(Br(x0)) = 0,

so the conclusion holds.
Now, assume for contradiction that (1.1) fails at some x0 ∈ M . Let

f1(r) := inf
M\Br(x0)

Rg.

By construction, f1 is non-negative and increasing. By the contradiction assump-
tion, we have

lim
r→∞

f1(r) = +∞.

Assuming r0 sufficiently large, we have f(r0) ≥ 1. On [r0,∞), we define a function
f to be the largest nondecreasing, piecewise constant function taking the values
{4jf1(r0)} → ∞ so that the preimage of each value has length at least 1 and
f ≤ f1. Then f is non-negative, increasing, has

lim
r→∞

f(r) = +∞,

and satisfies
f(r + 1) ≤ 4f(r) ∀ r ≥ r′0.

Moreover, Rg(x) ≥ f1(d(x0, x)) ≥ f(d(x0, x)). Starting with r0, we inductively
define

ri := ri−1 + 2Lf(ri−1)
−1/2.

Suppose for contradiction that ri ≤ N < +∞ for all i. Then

ri − ri−1 = 2Lf(ri−1)
−1/2 ≥ 2Lf(N)−1/2 > 0,

which yields a contradiction. Hence, ri → +∞. We also have,

ri − ri−1 = 2Lf(ri−1)
−1/2 ≤ 1

(by assuming r0 sufficiently large). Let Ei be the unique unbounded component of
M \ Bri(x0). Let gi := f(ri−1)g. Then

Rgi ≥ 1 on M \ Bgi

ri−1f(ri−1)1/2(x).

We first note that ri−1f(ri−1)1/2 ≥ r0. Moreover, we have

dgi(∂Ei−1, ∂Ei) = f(ri−1)
1/2(ri − ri−1) = 2Lf(ri−1)

−1/2f(ri−1)
1/2 = 2L
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and

dgi(∂Ei, ∂Ei+1) = f(ri−1)
1/2(ri+1 − ri) = 2Lf(ri)

−1/2f(ri−1)
1/2 ∈ [L, 2L]

because

2L ≥ 2Lf(ri)
−1/2f(ri−1)

1/2 ≥ 2Lf(ri)
−1/2f(ri − 1)1/2

≥ Lf(ri)
−1/2f(ri)

1/2 = L.

Then by Lemma 2.2 (with a1 and a2 the distances above), we have

Volgi(Ei \ Ei+1) ≤ C1,

so
Volg(Ei \ Ei+1) ≤ C1f(ri−1)

−3/2.

Then

Volg(Brk(x0)) ≤ V + C1

k−1∑

i=1

f(ri−1)
−3/2.

Since ri − ri−1 = 2Lf(ri−1)−1/2, we have

k−1∑

i=1

f(ri−1)
−3/2 =

1

2L

k−1∑

i=1

(ri − ri−1)f(ri−1)
−1.

Then

lim
k→∞

1

rk
Volg(Brk(x0)) ≤

C1

2L
lim

k→∞

1

rk

k∑

i=1

(ri − ri−1)f(ri−1)
−1.

Let ε > 0. Let k ∈ N sufficiently large so that f(rk)−1 < ε/2. Let l ∈ N sufficiently
large so that

f(r0)
−1 rk − r0

rl
< ε/2.

Then
1

rl

l∑

i=1

(ri − ri−1)f(ri−1)
−1 ≤ f(r0)

−1 rk − r0

rl
+ f(rk)−1 < ε.

Hence, we have

lim
k→∞

1

rk
Volg(Brk(x0)) = 0,

which contradicts Yau’s linear volume growth (cf. [SY94, Theorem 4.1]) since M is
non-compact. !

3. Sharpness of main result

We provide an example to demonstrate the sharpness of the growth upper bounds
in Theorem 1.1.

Consider on [1,∞) × S2 the metric

g = dt2 + ρ(t)2ground
S2 .

We glue a compact cap so that positive Ricci curvature is preserved, so it suffices
to study the scalar curvature decay and volume growth on this end.

Let Xi ∈ TpS2 be an orthonormal basis with respect to gS2 . By [Pet16, §4.2.3],
we have

R(t,p)(ρ(t)
−1Xi, ∂t, ∂t, ρ(t)

−1Xi) = −ρ′′(t)/ρ(t)
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and
R(t,p)(ρ(t)

−1X1, ρ(t)
−1X2, ρ(t)

−1X2, ρ(t)
−1X1) = 1/ρ(t)2.

Hence,

Ricg(∂t, ∂t) = −2ρ′′(t)/ρ(t)

Ricg(ρ(t)
−1Xi, ρ(t)

−1Xi) = −ρ′′(t)/ρ(t) + 1/ρ(t)2

Rg = −5ρ′′(t)/ρ(t) + 1/ρ(t)2.

Let 0 < α < 2. Take ρ(t) = tα/2. Then

ρ(t) = tα/2

ρ′(t) =
α

2
tα/2−1

ρ′′(t) =
α

2

(α
2
− 1

)
tα/2−2.

Hence, Ricg > 0 and

Rg = −5α

2

(α
2
− 1

)
t−2 + t−α ≥ t−α.

Take x0 = (1, p0). Then

dg((1, p0), (t, p)) ≤ t − 1 + dS2(p, p0) ≥ t − 1.

Then for x = (t, p) with d(x0, x) ≥ 1, we have

Rg(x) ≥ t−α ≥ (dg(x0, x) + 1)−α ≥ 2−αdg(x0, x)−α.

Finally we compute the volume growth. For r > 2π, we have

Volg(Br(x0)) ≥ Volg([1, r/2] × S2)

= C

ˆ r/2

1
tαdt

=
C

21+α(1 + α)
r1+α − C

1 + α
.

Then

lim
r→∞

r−1−α Volg(Br(x0)) ≥
C

21+α(1 + α)
> 0.

See also the discussion in [MW22] after their statement of Theorem 1.4 for a
related example demonstrating that it is possible to have nearly non-negative Ricci
curvature Ricg ≥ −Cd(x0, x)−2 log d(x0, x) with infM\Br(x0) Rg → ∞ as r → ∞.

Appendix A. Gromov-Hausdorff approximations

We recall the definition of a Gromov-Hausdorff approximation.

Definition A.1. A map f : (X, dX) → (Y, dY ) is an ε-Gromov-Hausdorff approx-
imation if

|dX(x1, x2) − dY (f(x1), f(x2))| < ε

for all x1, x2 ∈ X and
Y ⊂ Bε(f(X)).

We recall a notion of Gromov-Hausdorff distance between metric spaces using
Gromov-Hausdorff approximations.
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Definition A.2. We say dGH((X, dX), (Y, dY )) < ε if there are ε-Gromov-Hausdorff
approximations

f : X → Y and g : Y → X.

Proposition A.3. Let

f : BR(x) ⊂ (X, dX) → BR(y, 0) ⊂ (Y × R, dY × dEuc)

be an ε-Gromov-Hausdorff approximation. Then

d(f(x), (y, 0)) <
√
ε
√

9ε + 8R.

Proof. Let y′ ∈ BR(y, 0). By definition, there is an x′ ∈ BR(x) with d(f(x′), y′) < ε.
Moreover, d(x, x′) < R, so d(f(x), f(x′)) < R + ε. Hence,

d(f(x), y′) ≤ d(f(x), f(x′)) + d(f(x′), y′) < R + 2ε,

which implies
BR(y, 0) ⊂ BR+2ε(f(x)).

Write f(x) = (y0, t0). Without loss of generality (by relabeling plus and minus),
we have t0 ≥ 0. Since (y,−R + ε) ∈ BR(y, 0), we have

(R + 2ε)2 > d(f(x), (y,−R + ε)) = d(y0, y)2 + (t0 + R − ε)2.

Since d(y0, y)2 ≥ 0, we have t0 ≤ 3ε. Since t0 ≥ 0 ≥ −ε, we have

d(y0, y)2 ≤ (R + 2ε)2 − (R − 2ε)2 = 8Rε.

The conclusion follows. !

Proposition A.4. Suppose (X, d) is a path connected metric space. Take any
R > 0 and x ∈ X, and let (X̃, d̃) the ball of radius R > 0 centered at (x, 0) in the
product metric space (X × R, d × dEuc). Let r < min{ 1

2 diam(X), R}. Then the
subset

X̃ \ Br(x, 0) ⊂ X̃

is path connected.

Proof. We first show that the region (X̃ \ Br(x, 0)) ∩ (X̃ × R+) is path connected.
Let (xi, ti) ∈ X̃ \ Br(x, 0) for i = 1, 2 with ti ≥ 0. Let γ(s) = (x(s), t(s)) be any
path in X̃ joining (x1, t1) to (x2, t2). By replacing t(s) by max{t(s), 0}, we obtain
a continuous path in (X̃ \Br(x, 0))∩ (X̃×R+) joining the points, so we can assume
t(s) ≥ 0. Now we take

t̃(s) :=

{√
r2 − d(x(s), x)2 d(x(s), x)2 + t(s)2 ≤ r2

t(s) otherwise.

Since t(s) ≥ 0, t̃(s) is continuous. Moreover, if t̃(s) ̸= t(s), then

d(x(s), x)2 + t̃(s)2 = d(x(s), x)2 + r2 − d(x(s), x)2 = r2,

so γ̃(s) := (x(s), t̃(s)) is a path in (X̃ \Br(x, 0))∩ (X̃ ×R+) joining the two points.
By the same argument for the R− side, we have (X̃ \ Br(x, 0)) ∩ (X̃ × R+) is

path connected.
Since r < 1

2 diam(X) and X is path connected, there is an x′ ∈ X with r <

d(x′, x) < R. Then (x′, s) is a path in X̃ \ Br(x, 0) for s sufficiently small, which
joins the two path connected regions. Hence, the conclusion follows. !
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