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ABSTRACT. We give a new proof of a recent result of Munteanu—Wang relating
scalar curvature to volume growth on a 3-manifold with non-negative Ricci
curvature. Our proof relies on the theory of u-bubbles introduced by Gromov
[Geom. Funct. Anal. 28 (2018), pp. 645-726] as well as the almost splitting
theorem due to Cheeger—Colding [Ann. of Math. (2) 144 (1996), pp. 189-237].

1. INTRODUCTION
In this note we give a new proof of (and slightly generalize) the following volume
growth estimate recently proven by Munteanu-Wang [MW22| Theorem 5.6].

Theorem 1.1. Let (M3, g) be a complete non-compact 3-manifold with Ric, > 0.
Then

(1.1) liminf Ry(z) < C(wo, M, g) < 00

d(zg,z)—00

for all xg € M. Moreover, if

(1.2) Ry(z) > d(x,x0)” "

outside a compact set K for some xg € M and 0 < o < 2, then
(1.3) Vol(B,(xg)) < C(xg, M, g)r*+e

for all r > 0.

(We note that Theorem [[.Ihere considers the optimal rang of o while [MW22,
Theorem 5.6] only proves Theorem [I1]for 0 < o < 1) The proof of Theorem [L.1]
given by Munteanu—Wang is based on their analysis of certain harmonic functions
on such manifolds (see also their earlier work [MW23] as well as [CL21]). Our
proof is rather different and instead relies on the theory of p-bubbles introduced
by Gromov [Grolg].
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'When « > 2, any estimate from the scalar curvature inequality (1.2) would be weaker than
the Bishop—Gromov cubic volume growth estimate from non-negative Ricci; moreover, by (L.1)) it
is not possible that (1.2} holds with a < 0.

20n the other hand, we point out that [MW22] Theorem 5.6] does consider a certain notion
of negativity of the Ricci curvature at infinity, so in that respect [MW22, Theorem 5.6] is more
general than Theorem [1.1l Moreover, [MW22| Theorem 5.6] yields a more explicit estimate for
the constant C(zo, M, g) than we do here.
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The techniques used here are inspired by our recent article on (non-compact)
stable minimal hypersurfaces in 4-manifolds [CLS22] (see also [CL23]). We note
that in this paper it is necessary to handle the possibility that B, (z9) C M may
have many connected components (even when (M, g) has only one end). (In [CLS22]
this issue was avoided since all that was needed was an efficient cutoff function.)
Here we use the almost splitting theorem of Cheeger—Colding to show that even
if there are many components of B,.(zo) they do not contribute too much to the
volume growth.

We note that Theorem [L.1]is related to well-known conjectures of Yau [Yau92]
and Gromov [Gro86]. Yau has conjectured that if (M™,g) has Ric, > 0, then
fBr(xo) R, < Cr"=2 for all » > 0 while Gromov has conjectured that if (M, g)

satisfies Ric, > 0 and R,(z) > 1 then Vol(B,(zg)) < Cr"2. For some works
related to these conjectures we refer to [Pet08l[Nab20,Xu20l Zhu22]

2. PROOF OF MAIN RESULT

By using the splitting theorem [CGT72], it is easy to see that Theorem [L.1] holds
for complete 3-manifolds with Ric, > 0 and two (or a priori more) ends, so it
suffices to handle the case when M has one end.

A key tool is the following result which is a consequence of the theory of y-bubbles
due to Gromov [Grol§|. See, for example, [CLS22, Lemma 5.3] (with references to
[CL20]) for a proof.

Lemma 2.1 (u-bubble diameter bound). Let (N3, g) be a 8-manifold with boundary
satisfying Ry > 1. Then there are universal constants L > 0 and ¢ > 0 such that if
there is a p € N with dy(p,ON) > L/2, then there is an open set Q C By, ;2(ON)NN
and a smooth surface ¥ such that 00 = ¥ U IN and each component of ¥ has
diameter at most c.

Let L and ¢ denote the constants from Lemma 2.1l Note that we are free to
make L larger, so we will assume L > c. The following is the main geometric result
used in the proof of Theorem [1.1l

Lemma 2.2. Let (M3, g) be a complete 3-manifold with Ric, > 0 and one end.
Let x € M. There is an ro(xz, M, g) > 0 and a universal constant C > 0 so that if

Ry 1B, 0 sy @\ Bo(2) 2 L

for some r > rg and some ay,as € [L,2L], then
VO](El \ EQ) S C,
where Ey and Eo are the unique unbounded components of M \ B,yq,(x) and M \

By ta,+a, () Tespectively.

Proof. Let Ey be the unique unbounded component of M \ B,.(x), and E;, Ey as
in the statement. By [And90, Corollary 1.5] (or [SY82l[Liul3]), we have by (M) <
oo. Then by [CLS22| Proposition 3.2], 0F} are connected so long as r > rg for
ro(z, M, g) > 0 fixed.

Let v : Ry — M be a geodesic ray associated with the unique end of M. For
all » > 79, vy N OB, (z) lies on the boundary of the unique unbounded component

3Added in proof: there has recently been related work in these directions, see [WXZZ22] and
[2Z23].
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of M \ B,(xz). We apply Lemma [21] to Eyx for kK = 0, 1. As in the proof of
[CLS22, Lemma 5.4], we obtain a connected surface ¥, in By 5(90E) N Ey with
diam(X¥y) < ¢ that separates OFj from the end of M. Choose t; € Ry with
Y(tr) € Xi, for k = 0,1. Note that dg(v(to),v(t1)) < a1 + ag < 4L so dg(xo,z1) <
4L+ 2¢ =: D for any zg € ¥y and z; € X;.

We now define some constants. Let b = 3¢, A = 2v/b%2 + D2. Fix R € R such
that

(2.1) R>A+4+4L, /b¥*+ (2R+D)>+1<2D +2R.
Then take § € (0,1) such that

L
(22) 6 < VB + D% 145 +6V/6(D+R) <e. 20+220+6y/6(D+R) < 3.

Note that all constants here are numerical (i.e., independent of (M, g) and rg).

By the Cheeger—Colding almost splitting theorem [CC96, Theorem 6.62], as-
suming rq is sufficiently large depending on D, R, d, there is a length space (Y, d)
with

dar(Bpyr(v(t)) C (M, dg), Bpyr(y,0) C (Y XR,d x dpyc)) < 6.

(See Definition [A.2 for the definition of the Gromov—Hausdorff distance.) Below
we fix (Y, d) with this property.
Claim 1. diam(Y,d) <b.

Proof. By the definition of D, we have Yo U Xy C Bpygr(7y(t1)). Since X is
connected and separating, and Bpir(y(t1)) D X1 is connected, Bpyr(v(t1)) \ 1
has two components. Let €2;, i = 1,2, denote the two components. Let

[+ Bpyr(y(t1)) = Bp+r(y,0)
be a §-Gromov-Hausdorff approximation (cf. Definition [A.T)) given by the almost
splitting theorem. Then,

Bs(f(1)) U Bs(f(%1)) UBs(f(€2))
covers Bpir(y,0). Let

S = Bs(f(B2s(X1))) € Bp+r(y,0),
and let
Ai := Bpr(y,0) N Bs(f(£2:)) \ S.
Then
Bpi+r(y,0) = A1 USUAs.
We first show an upper bound for the (extrinsic) diameter of S. Suppose p, ¢ € S.
Then there are p’, ¢’ € Bys(21) and p”, ¢” € 1 so that

d(p,q) < d(f(p'), f(d")+26 <d(p',q')+35 <d®",q") + 76 < c+T6.

Hence,
diam(S) < ¢+ 74.

Second, we show a lower bound for the diameter of A;. Note that the length of
a component of y in €; is at least L/2. Then we can take p, q € Q; \ Bss(X1) with
d(p,q) > L/2 — 56. For any x € Bas(X1), we have

d(f(p)7 f(l‘)) Z d(p7 JJ) -9 2 d(p7 E1) -3 2 20
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(and similarly for ¢q). Thus there are p’, ¢’ € A; satisfying
d(p',q') = d(f(p), f(q)) — 26 > d(p,q) — 36 > L/2 — 8.

Hence,
diam(A;) > L/2 — 84.
Third, we show that A; and A are separated by a positive distance. Let p € Ay
and ¢ € Ay. Then there are p’ € Q3 \ B2s(21) and ¢’ € Qs \ Bas(21) satisfying (by
the fact that ¥ is separating ©; and €5)

d(p,q) = d(f(p'), f(¢')) — 26 = d(p',¢') — 35 > 6.
Hence,
d(A1,A2) > 6.
Finally, we show that
diam(Y, d) < 2¢ + 146 + 61/3(D + R).

Suppose otherwise for contradiction. Then ¢+ 75+3,/5(D + R) < 1 diam(Y, d).

By Proposition [A.3] (using 96 < D + R) and the diameter bound for S, we have
S C B, 1513 /507 W 0)-

By Proposition [A.4,

Bpir(y;0)\ Bc+75+3\/m(y7 0)

is path connected and does not contain S. Hence, (without loss of generality)

A C Bc+76+3\/m(y’ 0).
But then
dlam(Ag) S diam(Bc+75+3\/w—+m(y, 0)) S 2c =+ 145 =+ 6\/ 5(D =+ R)
Thus (2.2) implies that
diam(Ag) < L/2 — 86,
which contradicts the diameter lower bound. O
Claim 2. Bpyr(v(t1)) C By pgpe (Y |-t 1<D+R)-

Proof. Let o denote the segment of v in Bpr(7y(t1)). Note that diam(c) = 2D +
2R.

We first show that in Y x R, Bpyr(y,0) C B, zyp2(f(0)). Suppose for contra-
diction that there is a point p € Bpyr(y,0) satisfying

d(p, f(o)) > Vb2 + D2
Let 7 denote the projection to R in ¥ x R. Then
dg(m(p),7(f(0))) > D.
Since D > 4, f is a J-approximation, and ¢ is connected, we have
diamg (7(f(0))) <2R+ D.
Then

diam(f(0)) < /b? + (2R + D)2,
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By ([2.1) and 4 < 1, we have

diam(o) < /b2 + (2R+ D)? + 6 < 2D + 2R,
which yields a contradiction.
Take z € Bpyr(y(t1)). By the above, there is an 2’ € ¢ with d(f(2), f(2)) <
Vb? + D2. Then
d(z,0) < d(z,2") <d(f(2), f(z') + 0 < Vb2 + D2 +6.
The claim follows. O
Claim 3. F1 \ by C BA(’}/ ||t—t1|<D+R)-
Proof. Let ' € E; \ Eb.
Ifd(z',2) < R+ c+r, then
d(a’, (1)) < d(z’, Zo) + diam(Zo) + d(y(t0), V(t1))
<(R+c)+c+4L
=R+ D.

Then by Claim 2} we have d(2',7 |14, |<p+r) < A.
Now, suppose for contradiction that d(z’,z) > R+c+r. Take the radial geodesic
i from z to 2/, and let z” be the point on p with

d(z",z) =R+ c+r.
By the above observation (since R > L, we still have z” € E; \ E3), we have
d(=", ¥ i1, |<Dyr) < A
However, since 8By 14, +a, (%) separates '’ from v (by the definition of F»), we have
d(@", 7 |jt—t,|<p+r) = R+c—ay —az > R+ c—4L.
Since R > A + 4L, we reach a contradiction. O

By Claim [3] the diameter of E; \ Ey is bounded from above by 24 + 2D + 2R
(which is bounded by a universal constant). Since Ricy > 0, the Bishop—Gromov
inequality yields a universal constant C' so that

VOI(El \ Eg) S C,
as desired. O

We can now prove the main result.

Proof of Theorem [L1l We assume M has one end. Let ro(zo, M, g) and Cy be the
constants in Lemma [2.2] where we assume K C B, (zo).

First, assume (L.2). Take r > 0 very large (so that r'~®/2
Then

> 1g). Set g :=r"%.

R;>1 on BY,_,,(x0).
Let k € N so that ro < r1=%/2 — kL < ro+ L. Set
P =12 kL +iL.
Let E; be the unique unbounded component of M \ Fi (x0). By Lemma [2.2] (with

a1 = ag = L), we have
VOIg(Ei \ Ei+1) S C1
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for1<i<k-—1,s0
VOlg(EZ‘ \ Ei+1) S 017‘3(1/2.

Note that
k—1

BY(x0) = BY,_...2(w0) C (M \ E))U | (Ei \ Eia).
i=1
Moreover, by the choice of k, there is a constant V' (M, g) > 0 so that
Vol,(M \ Ep) < V.
Hence, we have (since k < r'=%/2/L)

C
Voly(Br(20)) <V + Chkr3/?2 <V + flrl"‘a'

Then we have

li —1
1m
r—oo plta

Volgy(By(20)) < +00
and (since a < 2)

1
lim ——

lm g Vol, (B (z0)) =0,

so the conclusion holds.
Now, assume for contradiction that (LI)) fails at some 2o € M. Let

r):= inf R,.
fa(r) oy Tt

By construction, f; is non-negative and increasing. By the contradiction assump-
tion, we have

lim fi(r) = 4o0.

r—00
Assuming rg sufficiently large, we have f(rg) > 1. On [rg, 00), we define a function
f to be the largest nondecreasing, piecewise constant function taking the values
{47 f1(ro)} — oo so that the preimage of each value has length at least 1 and
f < fi. Then f is non-negative, increasing, has

lim f(r) = 4o0,

r—00
and satisfies

fir+1)<4f(r) ¥V r>r|.
Moreover, R,(z) > fi(d(zo,z)) > f(d(xo,x)). Starting with ry, we inductively
define
Ty =i —+ 2Lf(7”i_1)71/2.
Suppose for contradiction that r; < N < +o0o for all 5. Then
i — 11 = 2Lf(rio1) Y2 > 2LF(N) T2 > 0,
which yields a contradiction. Hence, r; — +00. We also have,
ri—Ti—1 = 2Lf(7“i_1)_1/2 <1
(by assuming rg sufficiently large). Let E; be the unique unbounded component of
M\ By, (x¢). Let g; := f(ri—1)g. Then
R, >1 on M\ B” 1)1/2(3:).

ri—1f(ri—

We first note that ri,lf(ri,l)l/z > rg. Moreover, we have

dg,(OE; 1, 0E;) = f(rifl)l/z(ﬁ' —ri-1) = 2Lf(7'i71)_1/2f(7’i71)1/2 =2L
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and

dg, (0F;,0E;11) = f(ric1)"/?(riga —ri) = 2Lf(ri) "2 f(rim1)'/? €

because
2L 2 2Lf (i) M2 f (i) 2 2 2Lf (ri) T2 f (s = 1)
> Lf(ri) "2 f(ri)/? = L.
Then by Lemma [2.2] (with a; and as the distances above), we have
Vol, (E;\ Eiy1) < Ch,

SO
Voly(E; \ Ei1) < C1f(rim1) /2
Then
k—1
VOlg(BTk (l‘o)) <V+C Z f(’l“i_l)_g/Q.
i=1

Since r; — ;1 = 2Lf(ri,1)_1/2 we have

Zf Ti— 1 3/2 QLZ —Ti— 1 7“1—1)71~

Then

lim —Vol g(Br(z0)) <

k—o0 Tk

<Oy
2L &

—>oo Tk

_Z —Ti— 1 Tz—l)_

L,2L)]

4507

Let € > 0. Let k € N sufficiently large so that f(rk)_ < g/2. Let | € N sufficiently

large so that
Tk

—1 —To
— < g/2.
T /

f(ro)

Then

1 l

T
Hence, we have

lim — Vol ¢(Br, (z0)) =0,

k—o0 Tk

_ 1Tk — T _
- —Ti— 1 7’271) 1§f(TO) 1u+f(’rk) 1<€'

which contradicts Yau’s linear volume growth (cf. [SY94, Theorem 4.1]) since M is

non-compact.

3. SHARPNESS OF MAIN RESULT

]

We provide an example to demonstrate the sharpness of the growth upper bounds

in Theorem [L.1]
Consider on [1,00) x S? the metric

g = dt2 +p( )2 round

We glue a compact cap so that positive Ricci curvature is preserved, so it suffices

to study the scalar curvature decay and volume growth on this end.

Let X; € T,,5? be an orthonormal basis with respect to ggz. By [Pet16] §4.2.3],

we have
Riep) (p(t) ™ X1, 04, 00, p(6) 1 Xs) = =0 (1) /(1)
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and

Ris.p) (p() "1 X1, p(t) "1 Xa, p(1) T X, p(1) 71 X0) = /(1)
Hence,

Ric, (91, ,) = ~20(t)/o(1)
Ricy (p(t)~ X, p(t) " X2) = —"(1)/olt) + 1/p(t)?
Ry = =5p"(t)/p(t) + 1/p(t)*.
Let 0 < a < 2. Take p(t) = t*/2. Then

p(t) =t/

1oy Ya/2-1

t) = =t

Pt =3

" _ara )a/2—2
t)=—=(=—-1]|t .

/=5 (3

Hence, Ricy > 0 and
5
Ry =2 (%—1)t_2+t_a2t_a.

Take o = (1,pp). Then
dy((1,p0), (t,p)) <t —1+ds2(p,po) >t — 1.
Then for x = (¢,p) with d(xo,z) > 1, we have
Ry(x) 217 = (dg(z0,2) +1)7 = 27 %dy(z0, 2)""
Finally we compute the volume growth. For r > 27, we have

Vol, (B, (x)) > Vol,([1,7/2] x S?)

r/2
ZC/ t*dt

1
O e C
21ta(1 4 a) 1+a

Then

. la C
Thﬂn;or 1= Vol (B, (z0)) > a1+ a)
See also the discussion in [MW22] after their statement of Theorem 1.4 for a
related example demonstrating that it is possible to have nearly non-negative Ricci
curvature Ric, > —Cd(zg, ) 2 log d(xo, z) with infan\ B, (z0) g — 00 as 7 — 00.

> 0.

APPENDIX A. GROMOV-HAUSDORFF APPROXIMATIONS
We recall the definition of a Gromov-Hausdorff approximation.
Definition A.1. A map f: (X,dx) — (Y,dy) is an e-Gromov-Hausdorff approz-
imation if
ldx (21, 22) — dy (f(@1), f(@2))] < ¢
for all z1,20 € X and
Y C B:(f(X)).

We recall a notion of Gromov-Hausdorff distance between metric spaces using
Gromov-Hausdorff approximations.
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Definition A.2. Wesay deu((X, dx), (Y,dy)) < ¢ if there are e-Gromov-Hausdorff
approximations
f:X—=Y and ¢g:Y — X.

Proposition A.3. Let
f : BR(J)) C (X,dx) — BR(y,O) C (Y X R,dy X dEuc)
be an e-Gromov-Hausdorff approzimation. Then

d(f(z), (y,0)) < V2V + 8R.

Proof. Lety' € Br(y,0). By definition, there is an ' € Bgr(z) with d(f(z'),y’) < e.
Moreover, d(z,z’) < R, so d(f(x), f(z")) < R+ €. Hence,

d(f(z),y') <d(f(z), f(z') +d(f(z),y) < R+ 2,

which implies

Br(y,0) C Bry2:(f(x)).

Write f(z) = (yo, to). Without loss of generality (by relabeling plus and minus),
we have ty > 0. Since (y,—R+¢) € Br(y,0), we have
(R+2¢)* > d(f(x), (y,—R+¢)) = d(yo,y)* + (to + R — ).
Since d(yo,y)? > 0, we have ty < 3e. Since ty > 0 > —¢, we have
d(yo.y)* < (R+2¢)* — (R — 2¢)* = 8Re.

The conclusion follows. O

Proposition A.4. Suppose (X,d) is a path connected metric space. Take any
R>0 and z € X, and let (X,d) the ball of radius R > 0 centered at (x,0) in the
product metric space (X x R,d x dgyc). Let r < min{} diam(X), R}. Then the
subset

X\ B.(z,0)Cc X

is path connected.

Proof. We first show that the region (X \ B,(x,0)) N (X x R, ) is path connected.
Let (z4,t;) € X \ By(x,0) for i = 1,2 with ¢; > 0. Let v(s) = (z(s),t(s)) be any
path in X joining (z1,t;) to (x2,t2). By replacing t(s) by max{t(s),0}, we obtain
a continuous path in (X \ B,(z,0))N (X xR ) joining the points, so we can assume
t(s) > 0. Now we take

i(s) = { TG da(s) ) 1) < 1

t(s) otherwise.
Since t(s) > 0, £(s) is continuous. Moreover, if #(s) # t(s), then
d(z(s),2)* +#(s)* = d(a(s), 2)* +7° — d(z(s),2)* = 1*,

s0 5(s) := (z(s),1(s)) is a path in (X \ B,(z,0)) N (X x R, ) joining the two points.
By the same argument for the R_ side, we have (X \ B,.(x,0)) N (X x R,) is
path connected.
Since r < 3 diam(X) and X is path connected, there is an 2/ € X with r <
d(z',z) < R. Then (2/,s) is a path in X \ B,(z,0) for s sufficiently small, which
joins the two path connected regions. Hence, the conclusion follows. (Il
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