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We study the basic question of characterizing which boundary 
homeomorphisms of the unit sphere can be extended to a 
Sobolev homeomorphism of the interior in 3D space. While 
the planar variants of this problem are well-understood, 
completely new and direct ways of constructing an extension 
are required in 3D. We prove, among other things, that a 
Sobolev homeomorphism ϕ : R2 onto−−→ R2 in W 1,p

loc (R2, R2) for 
some p ∈ [1, ∞) admits a homeomorphic extension h : R3 onto−−→
R3 in W 1,q

loc (R3, R3) for 1 � q < 3
2 p. Such an extension result 

is nearly sharp, as the bound q = 3
2 p cannot be improved due 

to the Hölder embedding. The case q = 3 gains an additional 
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interest as it also provides an L1-variant of the celebrated 
Beurling-Ahlfors quasiconformal extension result.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

Throughout this paper B denotes the unit ball in R3 and S = ∂B. We study the 
following 3D–Sobolev homeomorphic extension problem.

Problem 1. Suppose that a homeomorphism ϕ : S onto−−→ S admits a continuous extension 
to B in the Sobolev space W 1,q(B, R3) for some q ∈ [1, ∞). Does the map ϕ also admit 
a homeomorphic extension to B of class W 1,q(B, R3)?

Every boundary homeomorphism ϕ : S onto−−→ S extends as a homeomorphism to the ball 
B. On the other hand, according to a famous result of Gagliardo [13], for 1 < q < ∞, 
the mapping ϕ is the Sobolev trace of some (possibly non-homeomorphic) mapping in 
W 1,q(B, R3) if and only if it belongs to the fractional Sobolev space W 1− 1

q ,q(S, R3); that 
is,

∫
S

∫
S

|ϕ(x) − ϕ(y)|q
|x − y|q+1 dx dy < ∞ . (1.1)

Note that the 2D result [31] that every boundary homeomorphism ϕ : ∂D onto−−→ ∂D extends 
as a W 1,q-homeomorphism, q < 2, to the unit disk D ⊂ R2 has no counterpart in higher 
dimensions. Indeed, there are boundary homeomorphisms from S onto itself that do not 
even admit a continuous Sobolev extension in W 1,q(B, R3) for any q > 1, see Example 3.1.

First we give a discrete variant of (1.1); that is, we characterize the boundary home-
omorphisms that admit a Sobolev extension in W 1,q(B, R3) when q > 2.

Theorem 1.1. Let ϕ : S onto−−→ S be a homeomorphism and q ∈ (2, ∞). Suppose that D̃k is 
a dyadic decomposition of S into closed bi-Lipschitz squares of diameter c2−k. Then ϕ
satisfies (1.1) if and only if

∞∑
k=1

2k(q−3)
∑

Q̃j∈D̃k

[
diam ϕ(Q̃j)

]q
< ∞ . (1.2)

For the precise definition of D̃k we refer to Definition 2.1.
The corresponding 2D–Sobolev homeomorphic extension problem [22] has an easy 

answer thanks to the available analytic methods of constructing 2D-Sobolev homeo-
morphisms. Indeed, let D be the unit disk in R2 and q ∈ [1, ∞) then a boundary 
homeomorphism ϕ : ∂D onto−−→ ∂D admits a homeomorphic extension to D in W 1,q(D, R2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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if and only if it admits a continuous extension to D in W 1,q(D, R2). This follows from 
the Radó-Kneser-Choquet (RKC) theorem [11] for q � 2. The RKC theorem asserts 
that a homeomorphic boundary value ϕ : ∂D onto−−→ ∂D admits a homeomorphic har-
monic extension of D. The harmonic extension belongs to W 1,q(D, R2) for all q < 2
and to W 1,2(D, R2) exactly when is in the trace space of W 1,2(D, R2). Similarly the 
q-harmonic variants of the RKC theorem [2] solve the 2D extension problem for q > 2. 
An analogous approach fails in higher dimensions. Indeed, Laugesen [23] constructed a 
self-homeomorphism of the sphere S in R3 whose harmonic extension to the ball B is not 
injective. Thus, the 3D extension problem requires new methods of constructing Sobolev 
homeomorphisms.

Our main result tells us that the searched homeomorphic extension exists if the bound-
ary homeomorphism satisfies a strengthened version of the condition (1.2).

Theorem 1.2. Let q ∈ (1, ∞). Suppose that D̃k is a dyadic decomposition of S into closed 
bi-Lipschitz squares of diameter c2−k. If a homeomorphism ϕ : S onto−−→ S satisfies

∞∑
k=1

2k(q−3)
∑

Q̃j∈D̃k

[
H1(

ϕ(∂Q̃j)
)]q

< ∞ , (1.3)

then it admits a homeomorphic extension h : B onto−−→ B in W 1,q(B, R3).

Here H1 stands for 1-dimensional Hausdorff measure and so H1(
ϕ(∂Q̃j)

)
measures 

the length of the curve ϕ(∂Q̃j).
For a Sobolev homeomorphism ϕ : S onto−−→ S the trivial radial extension h(x) = |x|ϕ(x)

produces a self homeomorphism of B which has the same Sobolev regularity as the 
given boundary map ϕ. Clearly, such an extension is far from being optimal. Our next 
result, however, nearly characterizers the first order Sobolev spaces that admit a Sobolev 
homeomorphic extension to B.

Theorem 1.3. Let ϕ : S onto−−→ S be a homeomorphism in W 1,p(S, R3) for some p ∈ [1, ∞). 
Then ϕ admits a homeomorphic extension h : B onto−−→ B in W 1,q(B, R3) for 1 � q < 3

2p.

For the sharpness of this result we refer to the general embedding result by Sickel and 
Triebel [28, Theorem 3.2.1]. Namely for p ∈ (1, ∞) we have W 1,p(S, R3) ⊂ W 1− 1

q ,q(S, R3)
if and only if q � 3

2p. Even assuming that the mappings are homeomorphisms does not 
improve the inclusion at least when p � 2, see Example 3.2. We do not know if one can 
take q = 3

2p in Theorem 1.3.
Theorem 1.3 follows from Theorem 1.2. On the contrary there are self homeomor-

phisms of S which satisfy (1.3) and do not belong to any Sobolev class W 1,p(S, R3), 
p � 1, see Example 3.3.

In topology and analysis, a number of extension problems have been studied. A 
demand for Sobolev homeomorphic extension problems comes from the variational 
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approach to Geometric Function Theory (GFT) [4,15,21,26] and mathematical mod-
els of Nonlinear Elasticity (NE) [3,6,9]. Both theories enquire into homeomorphisms 
h : X onto−−→ Y of smallest stored energy

EX[h] =
∫
X

E(x, h, Dh) dx , E : X × Y × Rn×n

where the so-called stored energy function E characterizes the mechanical and elastic 
properties of the material occupying the domains. In a pure displacement setting, typi-
cally an orientation-preserving boundary homeomorphism ϕ : ∂X onto−−→ ∂Y is given. The 
class of admissible deformations consists of Sobolev homeomorphisms or just Sobolev 
mappings h : X onto−−→ Y with non-negative Jacobian determinant Jh(x) = det Dh(x) � 0
(an axiomatic assumption in NE) which coincides with ϕ on the boundary and having 
a finite stored energy. In such variational problems, a first issue to address is the non-
emptiness of the class of admissible deformations; that is, to solve the corresponding 
Sobolev homeomorphic extension problem.

Note that an arbitrary orientation-preserving Sobolev homeomorphism h need not be 
strictly orientation-preserving in the sense that Jh(x) = det Dh(x) > 0 almost every-
where. For every q < 3, there even exists a homeomorphism h : B onto−−→ B in W 1,q(B, R3)
with Jh(x) = 0 for almost every x ∈ B, see [14]. However, the homeomorphic extensions 
h : B onto−−→ B constructed in Theorem 1.3 and Theorem 1.2 are piecewise linear. Thus, 
they are strictly orientation-preserving provided that the given boundary homeomor-
phism itself preserves the orientation. In particular, these homeomorphisms have finite 
distortion. The theory of mappings of finite distortion arose out of a need to extend the 
ideas and applications of the classical theory of quasiconformal mappings to the degen-
erate elliptic setting [15,21]. We recall that a homeomorphism h : X onto−−→ Y of Sobolev 
class W 1,1

loc (X, Rn) defined on a domain X ⊂ Rn has finite distortion if

|Dh(x)|n � K(x)Jh(x) (1.4)

for some measurable function 1 � K(x) < ∞. Here, |Dh(x)| is the operator norm of 
the weak differential Dh(x) : X → Rn of h at a point x ∈ X. We obtain quasiconformal
mappings if K ∈ L∞(X). There are several other distortion functions of great interest in 
GFT. Each of them is designed to measure the deviation from conformality of a given 
mapping h : X → Rn in terms of the tangent linear map Dh(x) : Rn → Rn. The most 
interesting, from the applied point of view, is the inner distortion function. In NE one 
is typically provided information not only on the differential matrix, but also on its 
(n − 1) × (n − 1)–minors; that is, the cofactor matrix D�h called co-differential of h. 
Now, for a homeomorphism h ∈ W 1,1

loc (X, Rn) of finite distortion we introduce its inner 
distortion function, to be the smallest K

I
(x) = K

I
(x, f) � 1 satisfying

|D�f(x)|n = K
I
(x) · Jf (x)n−1
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The most pronounced extension result in GFT is the Beurling-Ahlfors quasiconformal 
extension theorem [7]. It states that a self-homeomorphism of the unit disk D is quasi-
conformal if and only if the boundary correspondence homeomorphism ϕ : ∂D onto−−→ ∂D

is quasisymmetric. The Beurling-Ahlfors result has found a number of applications in 
Teichmüller theory, Kleinian groups, conformal welding and dynamics, see e.g. [4,19]. 
It has generalized to the n-dimensional quasiconformal maps as well, first for n = 3
by Ahlfors [1] and then for n = 4 by Carleson [8]. A full n-dimensional version of the 
Beurling-Ahlfors extension is due to Tukia and Väisälä [30]. Their extension uses, among 
other things, Sullivan’s theory [29] of deformations of Lipschitz embeddings. Moreover, 
Astala, Iwaniec, Martin and Onninen [5], as a part of their studies of deformations 
with smallest mean distortion, characterizes self homeomorphisms of the unit circle that 
admit a homeomorphic extension to the unit disk D with integrable distortion. This 
L1–Beurling-Ahlfors extension theorem enjoys the following 3D-variant.

Theorem 1.4. Let ψ : S onto−−→ S be an orientation-preserving homeomorphism. Suppose 
that the inverse ψ−1 = ϕ satisfies (1.3) with q = 3. Then ψ admits a homeomorphic 
extension f : B onto−−→ B with integrable inner distortion.

Theorem 1.4 is actually a relatively straightforward consequence of Theorem 1.2, 
thanks to an important connection between the conformal energy of a homeomorphism 
and the inner distortion function of the inverse mapping. Indeed it is easy to see, at 
least formally, that the pullback of the 3-form K

I
(y, f) dy ∈ ∧3B by the inverse mapping 

f−1 : B onto−−→ B is equal to |Df−1(x)|3 dx ∈ ∧3B. This observation is the key to the 
identity,

∫
B

|Dh(x)|3 dx =
∫
B

K
I
(y, f) dy , where h = f−1 : B onto−−→ B . (1.5)

The optimal Sobolev regularity of deformations to guarantee the identity is well-
understood today, [10,16,17,24]. In particular, if a homeomorphism h : B onto−−→ B of finite 
distortion belongs to the Sobolev class W 1,3(B, R3), then the inverse f = h−1 has inte-
grable inner distortion. Thus, Theorem 1.4 simply follows from Theorem 1.2. It is worth 
noting that the borderline case in Theorem 1.3 (p = 3 and q = 2), if true, would have 
an interesting corollary. Namely, a homeomorphism ψ : R2 onto−−→ R2 of locally integrable 
distortion would then admit a homeomorphic extension f : R3 onto−−→ R3 with locally inte-
grable inner distortion.

Acknowledgements. We would like to thank the referee for their many insightful com-
ments and suggestions which particularly helped in improving the presentation of the 
paper considerably.
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2. A discrete characterization, proof of Theorem 1.1

Let I = [a, b]2 be an initial square in R2. The standard dyadic decomposition of I
consists of closed squares Q̃ ⊂ I with sides parallel to the sides of I and of side length 
l(Q̃) = 2−k(b − a), k = 1, 2, 3, . . . ; refers to the k-th generation in the construction. That 
is, the squares in the k-th generation have the form

Q̃j = 2−k(I + vj) ⊂ I , for some vj ∈ R2 .

They cover I and have side length 2−k(b − a). The collection of the k-th generation 
squares are denoted by D̃k. There are 22k squares in D̃k. The interiors of the squares in 
the same generation D̃k are pairwise disjoint.

Let Q3 = [0, 1]3 be the unit cube in R3. We define the k-th generation dyadic de-
composition of ∂Q3 as follows: first we divide each of the six faces of ∂Q into the k-th 
generation squares and then the k-th generation dyadic decomposition of ∂Q3 simply 
consists of the union of these closed squares.

Now, since B is a bi-Lipschitz equivalent with Q3, defining a k-th generation dyadic 
decomposition of ∂B = S can be easily induced from the above case.

Definition 2.1. Let Φ: R3 → R3 be a bi-Lipschitz map which takes Q3 onto B. Then the 
k-th generation dyadic decomposition of S, denoted by D̃k, consists of Φ(Q̃j), where Q̃j

is a k-th generation dyadic square of ∂Q3.

Theorem 2.2. Let ϕ : R2 → R2 be a homeomorphism, IR = [−R, R]2 ⊂ R2 for R > 0
and let N ∈ N. Denote the collection of k-th generation dyadic squares of IN by D̃N

k . 
Then, for 2 < q < ∞ we have

∫
IR

∫
IR

|ϕ(x) − ϕ(y)|q
|x − y|q+1 dx dy < ∞ for every R > 0 (2.1)

if and only if

∞∑
k=1

2k(q−3)
∑

Q̃j∈D̃N
k

[
diam ϕ(Q̃j)

]q
< ∞ for every N ∈ N . (2.2)

Proof. First we assume the condition (2.1) with R = 212. Now, the mapping ϕ : R2 → R2

admits an extension f : R3 → R3 in W 1,p(IR × [−R, R], R3) which is continuous and 
agrees with ϕ on R2 × {0} (see (1.1) and the paragraph before). It suffices to prove (2.2)
with N = 1.

Fix Q̃k,j ∈ D̃1
k for some k ∈ N and j ∈ {1, . . . , 22k}. We denote the centre of Q̃k,j ⊂ R2

by x◦. Let B3
R be the 3-dimensional ball in R3 centred at x◦ with radius R > 0 and

B2
R = B3

R ∩ (R2 × {0}) . (2.3)
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Choose η ∈ (2, q). According to the Sobolev imbedding theorem on spheres [15, Lemma 
2.19] there is a constant C > 0 such that for a.e. s ∈ (0, R) we have

diam f(∂B3
s) � C s1− 2

η

⎛
⎜⎝ ∫

∂B3
s

|Df |η

⎞
⎟⎠

1
η

.

This is the moment where we used the assumption q > 2. By (2.3) we always have

diam f(∂B2
s) � diam f(∂B3

s) .

Since ϕ : R2 onto−−→ R2 is a homeomorphism we get

diam ϕ(B2
s) = diam ϕ(∂B2

s) .

For fixed r ∈ (0, R/2), the above estimates give

diam ϕ(B2
r) � C s1− 2

η

⎛
⎜⎝ ∫

∂B3
s

|Df |η

⎞
⎟⎠

1
η

for a.e. s ∈ (r, R)

and

[
diam ϕ(B2

r)
]η

2r∫
r

ds

sη−2 � C

∫
B3

2r\B3
r

|Df |η . (2.4)

Thus

diam ϕ(B2
r) � Cr1− 3

η

⎛
⎜⎝∫
B3

2r

|Df |η

⎞
⎟⎠

1
η

and

diam ϕ(Q̃k,j) � C2−k(1−3/η)

⎛
⎜⎝ ∫
B3

23−k

|Df |η

⎞
⎟⎠

1
η

. (2.5)

The k-th dyadic decomposition D̃k = {Q̃k,j : k ∈ N , j = 1, . . . , 22k} of I1 ⊂ R2 defines 
a corresponding Whitney decomposition of I1 × [0, 2] ⊂ R3,

Wk = {Q̃3
k,j : k ∈ N , j = 1, . . . , 22k}
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where

Q̃3
k,j = Q̃k,j × [2−k+1, 2−k+2] .

Let x ∈ Q̃3
k,j and c = 211. Then B3

c2−k (x) = B3(x, c2−k) ⊃ B3
23−k and so

diam ϕ(Q̃k,j) � C2−k(1−3/η)

⎛
⎜⎝ ∫

B3
c2−k (x)

|Df |η

⎞
⎟⎠

1
η

by (2.5). In particular, we have

diam ϕ(Q̃k,j) � C2−k
[
Mc|Df |η(x)

] 1
η for all x ∈ Q̃3

k,j . (2.6)

Here Mc denotes the Hardy-Littlewood maximal operator,

Mc|Df |η(x) = sup
r<c

1
|B3

r (x)|

∫
B3

r (x)

|Df |η .

Raising the estimate (2.6) to the power q and then integrating it over the cube Q̃3
k,j we 

have

2−3k
[

diam ϕ(Q̃k,j)
]q � C2−qk

∫
Q̃3

k,j

[
Mc|Df |η(x)

] q
η .

Thus,

∞∑
k=1

22k∑
j=1

2k(q−3)[ diam ϕ(Q̃k,j)
]q � C

∞∑
k=1

22+2k∑
j=1

∫
Q3

k,j

[
Mc|Df |η(x)

] q
η

= C

∫
I1×[0,2]

[
Mc|Df |η(x)

] q
η .

Since q/η > 1 we can use the boundedness of the Hardy-Littlewood maximal function 
in L

q
η for the function |Df |η to obtain

∞∑
k=1

22k∑
j=1

2k(q−3)[ diam ϕ(Q̃k,j)
]q � C

∫
Ic×[−2c,2c]

|Df |q

as claimed.
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Secondly we assume (2.2) for N = 1 and some q ∈ (1, ∞). Our goal is show that

∫
I1

∫
I1

|ϕ(x) − ϕ(y)|q
|x − y|q+1 dx dy < ∞ .

We say that two dyadic squares on the same level k are neighbours if their boundaries 
have at least one intersection point. We also define the dyadic distance d∗(S, S′) of two 
squares S, S′ ∈ D̃1

k as the number of neighbours one has to travel through to reach S′

from S, so that two dyadic neighbours themselves have a distance of 0. If S, S′ ∈ D̃1
k are 

such squares then we denote S|S′ if the dyadic distance between S and S′ is either 1 or 
2. We first note that

∫
I1

∫
I1

|ϕ(x) − ϕ(y)|q
|x − y|q+1 dx dy �

∞∑
k=1

∑
S|S′

∫
S

∫
S′

|ϕ(x) − ϕ(y)|q
|x − y|q+1 dx dy (2.7)

where the inner sum is taken over all pairs S, S′ ∈ D̃1
k for which S|S′ holds. This is due 

to the geometric fact that for every pair of points x, y ∈ I1 there are dyadic squares with 
S|S′ so that x ∈ S and y ∈ S′.

Let now S|S′ with x ∈ S ∈ D̃1
k and y ∈ S′ ∈ D̃1

k. Denote by S1 ∈ D̃1
k and S2 ∈ D̃1

k

two different dyadic squares so that (S, S1, S2, S′) form a sequence of dyadic squares for 
which each successive pair is a neighbour. Then we simply estimate that

|ϕ(x) − ϕ(y)| � diam ϕ(S) + diam ϕ(S1) + diam ϕ(S2) + diam ϕ(S′)

�
∑

d∗(S,Q̃)�2

diam ϕ(Q̃).

Note that the sum in the last expression has at most 49 terms. Hence if we sum this 
expression over all dyadic squares S, every dyadic square will be repeated at most 49
times. Plugging this into (2.7) and using (2.2) gives

∫
I1

∫
I1

|ϕ(x) − ϕ(y)|q
|x − y|q+1 dx dy �

∞∑
k=1

∑
S∈D̃1

k

∫
S

∫
S′

49p [diam ϕ(S)]q

2−(q+1)k
dx dy

� 49q
∞∑

k=1

2−2k2−2k

2−(q+1)k

∑
S∈D̃1

k

[
diam ϕ(S)

]q

< ∞. �
Clearly, Theorem 1.1 is an immediate consequence of Theorem 2.2.
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3. Examples

An arbitrary homeomorphism ϕ : ∂D onto−−→ ∂D admits a homeomorphic extension to 
the unit disk D ⊂ R2 in the Sobolev class W 1,q(D, R2) for all q < 2. Our next example 
shows that such a result has no 3D counterpart.

Example 3.1. There is a Sobolev homeomorphism ϕ : S onto−−→ S such that ϕ 	∈
W 1− 1

q ,q(S, R3) for any q > 1 and hence it does not admit a continuous extension 
f : B → R3 in W 1,q(B, R3).

Proof. We simplify our writing here and construct a Sobolev homeomorphism ϕ : [0, 1] ×
[0, 1] onto−−→ [0, 1] × [0, 2] with ϕ(0, 0) = ϕ(1, 1). Note that this causes no loss of generality 
due to a suitable bilipschitz change of variables in both domain and target side, and the 
fact that the 2D sphere may be appropriately covered by such atlases.

Let s : R → R be a 1-periodic piecewise linear “saw” function defined by

s(x) =
{

2x for x ∈ [0, 1
2 ],

2 − 2x for x ∈ [ 1
2 , 1].

We set sk(x) = s(x10k) and obtain a 10−k-periodic saw function. By induction we choose 
an increasing sequence of integers nk such that

10−kq10(q−1) 1
2 nk � 2k and

(k−1∑
j=1

10−j · 2 · 10nj

)
10− 1

2 nk � 1
810−k.

(3.1)

We set

rk = 10− 1
2 nk and φ(x) =

∞∑
j=1

10−jsnj
(x).

Note that φ, being a uniform limit of continuous functions, is also continuous. It is not 
difficult to check that the mapping ϕ : [0, 1]2 onto−−→ [0, 1] × [0, 2], defined by

ϕ(x1, x2) = [x1, x2 + φ(x1)] is a homeomorphism.

We estimate ∫
(0,1)2×(0,1)2

|ϕ(x) − ϕ(y)|q
|x − y|q+1 dx dy

� C

∫
2 2

(|φ(x1) − φ(y1)| − |x2 − y2|)q

|x − y|q+1 dx dy

(3.2)
(0,1) ×(0,1)
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and note that the term |x2−y2|q

|x−y|q+1 � 1
|x−y| in the last integral is integrable. Therefore, it 

suffices to show that the integral

∫
(0,1)2×(0,1)2

|φ(x1) − φ(y1)|q
|x − y|q+1 dx dy (3.3)

diverges.
For that, let us fix k ∈ N and denote

A1 :=
{

x1 ∈ [0, 1] : x1 ∈ [−1
810−nk + j10−nk , 1

810−nk + j10−nk ] for j ∈ N ∪ {0}
}

,

i.e. snk
(x1) ∈ [0, 14 ] for every x1 ∈ A1 and

A2 = {y1 ∈ [0, 1] : y1 ∈ [ 3
810−nk + j10−nk , 5

810−nk + j10−nk ] for j ∈ N ∪ {0}},

i.e. snk
(y1) ∈ [ 3

4 , 1] for every y1 ∈ A2. Given x1 ∈ A1 we set

A2(x1) = A2 ∩ (x1 − rk, x1 + rk).

It is easy to see that for every x1 ∈ A1 and y1 ∈ A2 we have

10−k|snk
(x1) − snk

(y1)| � 1
210−k.

Further for every x1 and y1 we have

∣∣∣ ∞∑
j=k+1

10−jsnj
(x1) −

∞∑
j=k+1

10−jsnj
(y1)

∣∣∣ � ∞∑
j=k+1

10−j � 1
810−k.

The function 10−jsnj
is Lipschitz with Lipschitz constant 10−j 1

10−nj /2 . Hence in view 

of (3.1), for every x1 and y1 with |x1 − y1| < rk we have

∣∣∣k−1∑
j=1

10−jsnj
(x1) −

k−1∑
j=1

10−jsnj
(y1)

∣∣∣ � k−1∑
j=1

10−j · 2 · 10nj · |x1 − y1| � 1
810−k.

It follows that for every x1 ∈ A1 and y1 ∈ A2 with |x1 − y1| < rk we have
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|φ(x1) − φ(y1)| �10−k|snk
(x1) − snk

(y1)|

−
∣∣∣ ∞∑
j=k+1

10−jsnj
(x1) −

∞∑
j=k+1

10−jsnj
(y1)

∣∣∣

−
∣∣∣k−1∑
j=1

10−jsnj
(x1) −

k−1∑
j=1

10−jsnj
(y1)

∣∣∣
�1

410−k.

To show (3.3) we estimate the integral

C

∫
A1

∫
A2(x1)

1∫
0

1∫
0

10−kq(
|x1 − y1| + |x2 − y2|

)q+1 dx2 dy2 dy1 dx1.

Since applying a change of variables s = x2 − y2 and t = x2 + y2 we obtain

1∫
0

1∫
0

1(
|a| + |x2 − y2|

)q+1 dx2 dy2 � C

3
2∫

1
2

1 dt

1
2∫

− 1
2

1(
|a| + |s|

)q+1 ds

� C
1

|a|q

we may estimate (3.3) from below by the integral

C

∫
A1

∫
A2(x1)

10−kq

|x1 − y1|q dy1 dx1. (3.4)

We use again a change of variables s = x1 − y1 and t = x1 + y1. Since |A1| � 1
4 and 

|A2| � 1
4 it is not difficult to see that the sets A1 + A2 and A1 − A2 are large enough, i.e. 

they occupy a large percentage of each interval of size much bigger than 10−nk . Together 
with the fact that rk = 10− 1

2 nk is much bigger than the period of snk
which is 10−nk we 

may estimate the integral (3.4) from below as

C

rk∫
rk/2

10−kq

|s|q ds � C
10−kq

rq−1
k

.

By (3.1) we finally conclude that the integral (3.3) diverges as we wanted. �
The following example shows the sharpness of Theorem 1.3.
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Example 3.2. Let p � 2 and q > 3
2p. There is a Sobolev homeomorphism ϕ : S onto−−→ S

such that ϕ ∈ W 1,p(S, R3) but ϕ /∈ W 1− 1
q ,q(S, R3). Hence such a ϕ does not admit a 

continuous extension h : B → R3 in the Sobolev class W 1,q(B, R3).

Proof. For simplicity we give a formula for ϕ from D onto itself and not from S onto S. 
It is clear that this causes no loss of generality due to a suitable bilipschitz change of 
variables. Given our p � 2 and q > 3

2p we choose α > 0 such that

1 − 2
p

< α < 1 − 3
q

.

We set

ϕ(x) = x

|x| |x|α.

A simple computation gives that ϕ ∈ W 1,p(D, R2). Either by a direct computation we 
also obtain that ϕ /∈ W 1− 1

q ,q(D, R2) (see e.g. [27, Lemma 1, page 44]) or assuming 
by contradiction that ϕ ∈ W 1− 1

q ,q(D, R2). In the latter case ϕ admits a continuous 
extension h : D× (−1, 1) → R3 in the Sobolev class W 1,q(D× (−1, 1), R3). In particular, 
h is locally (1 − 3

q )-Hölder continuous but this is impossible because h = ϕ on D × {0}
is just (1 − 2

α )-Hölder continuous. �
Theorem 1.3 follows from Theorem 1.2. In the following example we show that on 

the contrary there is a homeomorphism ϕ : S onto−−→ S which satisfy the condition (1.3)
in Theorem 1.3 and does not belong to any Sobolev class W 1,p(S, R3), p � 1. Again, 
we define ϕ only on [0, 1]2, and a bilipschitz change of variables easily generalizes this 
homeomorphism from S onto S.

Example 3.3. Consider

ϕ(x, y) = [g(x), y] where g(x) = x + C(x) (3.5)

and C is Cantor function. Not the standard 1/3 Cantor function, but 1/K Cantor func-
tion (for K � 2), i.e. in each step we remove the middle 1/K-part of the interval. It 
is not difficult to show that this Cantor function is Hölder continuous with exponent 
α = log 1

2
log( 1

2 (1− 1
K )) . Let us note that

lim
k→∞

α = lim
K→∞

log 1
2

log(1
2 (1 − 1

K ))
= 1.

Let D̃k, k ∈ N, be the collection of k-th generation dyadic square of [0, 1]2 into (2k)2

squares of sidelength 2−k. It is easy to see that H 1(ϕ(∂Q̃k,j)) < ∞ for all k and j by 
(3.5). Using Hölder continuity of h we get
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∞∑
k=0

22k∑
j=1

2−(3−q)kH 1(ϕ(∂Q̃k,j))q � C
∞∑

k=0

22k2−(3−q)k[2−αk]q.

This sum is finite whenever q(1 − α) < 1, which we can guarantee by choosing K large 
enough at the start, in which case also (1.3) holds. By Theorem 1.2 we obtain that we 
can extend this boundary homeomorphism as a W 1,q homeomorphism inside. However, 
the mapping ϕ does not belong to W 1,1

loc ([0, 1]2, R2) as it fails the ACL condition on all 
vertical segments (it just has bounded variation).

4. Structure of the proof of Theorem 1.2

In this section we give a brief overview of the arguments we need to prove our main 
extension result, Theorem 1.2.

Before we address the case of extending a boundary map ϕ from the unit sphere 
to itself, we aim to first describe an extension method which extends a homeomorphic 
boundary map ϕ : R2 → R2 as a homeomorphism of the upper half space to itself. This 
will comprise the majority of the proof (Sections 5 to 8), while the topological arguments 
used to extend this method to the spherical case will be explained in Section 9.

Recalling that S0 = [0, 1]2 is the unit square in the plane, our aim is to define a con-
tinuous injective extension h : [0, 1]3 → R3

+ which agrees with a given homeomorphism 
ϕ on [0, 1]2 ×{0} (this is identified with S0). The construction of h is split into two parts: 
First we construct a monotone extension of ϕ in Sections 5 to 7 and then describe how 
this monotone extension may be modified to be injective in Section 8. Here monotonicity 
is in the sense of Morrey, meaning that the preimage of each point is connected.

The basic idea is to decompose the domain space [0, 1]3 dyadically into cubes Uk,j . 
Recall the original standard dyadic decomposition of S0 into dyadic squares Q̃k,j . We 
define Uk,j = Q̃k,j × [2−k, 2−(k−1)]. Thus Uk,j is a cube of side length 2−k and the union 
of all such cubes decompose the domain space [0, 1]3. The idea is to map each cube to a 
‘cylindrical’ region Vk,j in the target.

To define the region Vk,j, we consider the dyadic squares Q̃k,j ⊂ R2 on the domain 
side. For each such square, we will define a curve Γk,j on the target side as a piecewise 
linear approximation of the image curve ϕ(∂Q̃k,j). Section 5 will explain the precise 
details, but in particular we get that the curves Γk,j form a tiling of the plane on each 
dyadic level k, and satisfy the total estimate

∞∑
k=1

4k∑
m=1

2k(q−3)H1(Γk,j)q < ∞. (4.1)

The top face of Vk,j will be the horizontal region bounded by the curve Γk,j ×{2−(k−1)}, 
and the bottom face will consist of the union of the regions bounded by Γ̂(m)

k,j × {2−k}, 
where Γ̂(m)

k,j for m = 1, . . . , 4 denote the four dyadic children of Γk,j. See Fig. 1.
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Fig. 1. The cube Uk,j and its image set Vk,j defined as a region spanned by the curve Γk,j × {2−(k−1)} and 
its corresponding curve Γ̂k,j × {2−k} on the next level.

We aim to define the extension h so that it maps each horizontal section of Uk,j to 
the horizontal section of Vk,j of the same height. The horizontal sections of Vk,j will still 
need to be defined, however, and to do this we will need to construct an appropriate 
homotopy between the curve Γk,j to the curve Γ̂k,j which we define as the outer boundary 
of 

⋃4
m=1 Γ̂(m)

k,j , i.e. the curve corresponding to Γk,j on the next dyadic level. In terms of 
estimating the Sobolev norm of h, our main goal is to show the following.

Goal: The map h : Uk,j → Vk,j will be a Lipschitz mapping. The Lipschitz constant 
of the map should be estimated from above by a uniform constant times the quantity 
(H1(Γk,j) +

∑4
m=1 H1(Γ̂(m)

k,j ))2k, or possibly this quantity added together with the same 
quantity over all of the neighbours of Γk,j .

After Sections 5 to 7 we will have defined the monotone extension h on each dyadic 
cube Uk,j so that the goal estimate above holds, and this extension is further modified 
into an injective extension h in Section 8 with the same estimates still holding. The 
W 1,q-norm of h can then be estimated by estimating the differential |Dh| above by the 
Lipschitz constant of h. Combined with the goal estimate this gives

∫
Uk,j

|Dh(z)|q dz � 2k(q−3)

(
H1 (Γk,j) +

4∑
m=1

H1
(

Γ̂(m)
k,j

))q

.

Combined with (4.1) this will yield that h belongs to the Sobolev space W 1,q([0, 1]3) as 
desired. The proof of Theorem 1.2 is then finished in Section 9 where we explain the 
slight changes in the arguments needed for the spherical case.

5. Decomposition of the domain and target side

In this section we start with the standard dyadic decomposition D̃k of the boundary 
and define a modification of it in order to control the lengths of the image curves of 
the image grid under the given boundary map ϕ. Furthermore, we will define piecewise 
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linear replacements of these image curves. These divisions on the domain and target side 
will be used in later sections to assist in defining the extension map we use to prove our 
main result, Theorem 1.2. We also show in this section that Theorem 1.3 follows from 
Theorem 1.2.

Lemma 5.1. Let D̃k = {Q̃k,j : k ∈ N, j = 1 . . . 22k} be the dyadic decomposition of the 
unit square Q0 = [0, 1]2 into closed squares of side length 2−k for each fixed k. Let p > 1
and ϕ : Q0 → Q0 be a homeomorphism in the space ϕ ∈ W 1,p(3Q0, R2). Then there 
exists a set of closed quadrilaterals Dk = {Qk,j : k ∈ N, j = 1 . . . 22k} such that

(1) For each point ṽ ∈ Q0 which is a vertex of a dyadic square of side length 2−k

in D̃k, there exists exactly one corresponding point v ∈ Q0 which is a vertex of a 
quadrilateral from Dk. The vertices v of a quadrilateral Qk,j in Dk are exactly the 
points which correspond to the vertices ṽ of the dyadic square Q̃k,j. Moreover, for 
the coordinates of these points v = [v1, v2] and ṽ = [ṽ1, ̃v2] we have (see Fig. 2)

v1 − ṽ1 ∈
[2−k

10 − 2−k

40 ,
2−k

10

]
and v2 − ṽ2 ∈

[2−k

10 − 2−k

40 ,
2−k

10

]
(5.1)

for all pairs of corresponding vertices.
(2) The quadrilaterals Qk,j for each fixed level k are thus mutually disjoint apart from 

their boundaries.
(3) If we inherit the parent-child relation between dyadic squares from D̃ to D, then 

the following holds. The children Q1, . . . Q4 ∈ Dk+1 of a given square Q ∈ Dk (i.e. 
Q = Q1 ∪Q2 ∪Q3 ∪Q4) need not be contained in Q nor does their union need to cover 
Q. However, for Q̂ = ∪4

i=1Qi the boundaries ∂Q and ∂Q̂ always intersect exactly at 
two points.

(4) For each k, j we have the inequality

2−k

∫
∂Qk,j

|Dϕ(t)|pdt � C

∫
2Qk,j

|Dϕ(z)|pdz. (5.2)

Proof. (1) and (4): Let us first explain that it is possible to choose the grid so that (1) 
is satisfied and we have the key inequality (5.2).

This follows essentially from [18, Section 4.2] and therefore we only explain how to 
apply this approach here: All of our cubes in the r = 2−k grid are of type A since we 
can freely move points outside of Q0. We would like to apply analogy of [18, Lemma 4.9]
for M = 0 and ε = 1

10 . The only difference is that in [18, Lemma 4.9] they choose

[v1, v2] ∈ Iε =
{

[ṽ1 + t, ṽ2 + t] : |t| � ε2−k
}
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Fig. 2. Given a dyadic cube Q̃k,j with vertices ṽ1, ̃v2, ̃v3, ̃v4 we construct a quadrilateral Qk,j with vertices 
v1, v2, v3, v4. Each vi is close to ṽi, it is slightly shifted to the top and to the right from ṽi.

Fig. 3. Boundaries of Q and Q̂ = ∪4
i=1Qi intersect at two points S and T . Note here that Q1, . . . , Q4 refer 

to quadrilaterals which form the set Q̂ which is the (almost square) octagon in the middle.

but we would like to make this choice in the subset of Iε (of length 1/8 times the original 
length)

[v1, v2] ∈ I =
{

[ṽ1 + t, ṽ2 + t] : t ∈ [ 1
10 2−k − 1

40 2−k, 1
10 2−k]

}
.

This does not change anything substantial in the proof there, it only affects some mul-
tiplicative constants - use 82 25

εr instead of 25
εr in the definition of Γ(A, B, M) and then 

the proof carries through with obvious minor modifications. Then we can finish this step 
by applying analogy of [18, Lemma 4.13 and Lemma 4.16] (again with slightly increased 
multiplicative constant) to get our (5.2).

(2): This is easy to see from the definition of vertices of Qk,j in step (1) (see Fig. 2).
(3): Let Q and Q̂ =

⋃4
i=1 Qi be as in the statement part (3) (see Fig. 3).

Let us define notation for certain vertices here, consult Fig. 3 for specific positions. 
Here vQ̃ is a vertex of Q̃, v1

Q and v2
Q are vertices of Q and v1

Q̂
, v2

Q̂
, v3

Q̂
are vertices of Q̂

(in fact the corresponding part of Q̂ is given by two segments v1
Q̂

v2
Q̂

and v2
Q̂

v3
Q̂

). From 
(5.1) we obtain for the x-coordinates of these points that

(v1
Q)1 − (vQ̃)1, (v2

Q)1 − (vQ̃)1 ∈
[2−k

− 2−k

,
2−k ]
10 40 10
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and similarly from (5.1) for the choice of Dk+1

(v1
Q̂

)1 − (vQ̃)1, (v2
Q̂

)1 − (vQ̃)1, (v3
Q̂

)1 − (vQ̃)1 ∈
[2−(k+1)

10 − 2−(k+1)

40 ,
2−(k+1)

10

]
.

It follows that the distance of this side of Q (=segment v1
Qv2

Q) and this side of Q̂ (=union 

of segments v1
Q̂

v2
Q̂

and v2
Q̂

v3
Q̂

) is at least 2−k

10 − 2−k

40 − 2−(k+1)

10 = 2−k

40 and thus these two 

sides do not intersect. By a similar reasoning on other sides we obtain that ∂Q and ∂Q̂

intersect at exactly two points S and T as in Fig. 3.
Let us also note that the distance of S and v1

Q (and similarly distance of S and vQ̂1
) 

is at least 2−k

40 and thus these intersection points are not too close to the vertices of ∂Q

and ∂Q̂. �
Definition 5.2. Note that conditions (1)-(3) above do not involve the boundary map ϕ. 
Hence we may define that any set Dk of quadrilaterals Qk,j satisfying the conditions 
(1)-(3) is called a good modification of the standard dyadic decomposition of Q0.

Proof of Theorem 1.3. Note that the statement is obvious if p � q as we can use the 
trivial radial extension. In the following we thus assume that p < q.

Given a homeomorphism ϕ ∈ W 1,p
loc (R2, R2) we were able to find in Lemma 5.1 a 

good modification Dk of the dyadic grid so that (5.2) holds. We could start with a 
homeomorphism ϕ ∈ W 1,p(S, S) and some analogy of dyadic grid on S. Analogously 
to the proof of Lemma 5.1 we can find a good modification Dk of this grid on S so 
that an analogy of (5.2) holds for ϕ. In fact the whole statement can be also obtained 
locally using a bilipschitz change of variables. Given k, our dyadic grid Dk contains 
bi-Lipschitz squares of diameter ≈ 2−k and of perimeter H1(∂Qk,j) ≈ 2−k. Moreover, 
there are approximately 22k such squares, let us denote by nk here the total amount of 
bi-Lipschitz squares in Dk.

In view of Theorem 1.2 it is now enough to show finiteness of (1.3). Using Hölder’s 
inequality, (5.2), q/p � 1 and p > 2

3q we obtain

∞∑
k=1

nk∑
j=1

2−(3−q)kH 1(ϕ(∂Qk,j))q �
∞∑

k=1

nk∑
j=1

2−(3−q)k
( ∫
∂Qk,j

|Dϕ|
)q

�
∞∑

k=1

nk∑
j=1

2−(3−q)k
(( ∫

∂Qk,j

|Dϕ|p
) 1

p (2−k)1− 1
p

)q

� C
∞∑

k=1

2−(3−q)k2−k(q− q
p )

nk∑
j=1

((
2k

∫
2Qk,j

|Dϕ|p
) 1

p
)q

� C

∞∑
k=1

2−k(3− q
p )2k q

p

nk∑
j=1

∫
|Dϕ|p
2Qk,j
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� C
∞∑

k=1

2−k(3−2 q
p ) < ∞. �

The aim of the next lemma is to consider the modified dyadic grid given by Lemma 5.1. 
For each level k, we then look at the image of the grid of level k under ϕ (specifically 
the set ϕ(∪j∂Qk,j)). The aim is to modify this “image grid” so that instead of general 
Jordan curves it consists of curves which are piecewise linear. It is necessary to preserve 
both the topology of the image grid and the lengths of the image curves. This piecewise 
linear approximation will simplify future computations.

Lemma 5.3. Let p � 1 and ϕ : Q0 → Q0 be a homeomorphism in the space ϕ ∈
W 1,p(Q0, R2). Let Dk be the set of modified dyadic quadrilaterals given by Lemma 5.1. In 
particular, the Jordan curves ϕ(∂Qk,j) for each Qk,j ∈ Dk each have finite length. Then 
for each quadrilateral Qk,j there exists a corresponding closed Jordan curve Γk,j ⊂ Q0

on the image side such that.

(1) Each of the curves Γk,j is piecewise linear.
(2) Each point on the curve Γk,j is of distance at most 2−k from the set ϕ(∂Qk,j).
(3) The inequality H 1(Γk,j) � H 1(ϕ(∂Qk,j)) holds.
(4) Γk,j passes through the four points ϕ(v), where v ranges over the four vertices of the 

quadrilateral Qk,j. These four points are called the vertices of Γk,j.
(5) If two quadrilaterals Qk,j , Qk,j′ ∈ Dk share a common side with endpoints v1, v2, 

then the subarcs of their corresponding image curves Γk,j , Γk,j′ with endpoints at the 
common vertices ϕ(v1) and ϕ(v2) are the same.

(6) Apart from the cases where two curves Γk,j, Γk,j′ at the same level k share either a 
single vertex or a single subarc between two vertices as before, these Jordan curves 
are mutually disjoint (for each fixed level k).

(7) For every Qk,j ∈ Dk and Qk+1,j′ ∈ Dk (see Fig. 3) we know that

Γk,j ∩ Γk+1,j′ = ϕ(∂Qk,j) ∩ ϕ(∂Qk+1,j′).

That is each Γk,j passes not only through its vertices but also through its intersection 
with grids of step k + 1 and k − 1, i.e. images of boundaries of Dk+1 and Dk−1.

Proof. In this proof we use ideas of [12] and [18] (see also [20] and [25]) where a similar 
piecewise linear approximation of curves was used. The idea is to do this approximation 
in three steps: First we linearize around vertices of the image grid, secondly linearize 
between intersection points of levels k and k + 1 (to ensure that (7) is satisfied), and 
lastly to linearize the remaining non-intersecting curves.

Step 1. Linearization near vertices: Fix k for a moment, and denote by

Vk =
{

ϕ(v) : v is a vertex of some Qk,j

}
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Fig. 4. We replace original curve near vertices (see dotted curves) by segments near vertices.

the set of images of vertices of Dk. Let us also define the image grids

G0 = ∅ and Gk =
⋃
j

ϕ(∂Qk,j).

Let Wk = Gk∩Gk+1 denote the set of intersection points between image grids of successive 
levels. Analogously to the reasoning in the proof of Lemma 5.1 (3), we see that both Vk

and Wk are finite.

We now choose a collection of small balls Bk with centres at each point in Vk. More 
precisely, for each vertex v of some Qk,j we choose r > 0 small enough so that the balls 
B(ϕ(v), 2r) are pairwise disjoint and that these balls do not contain any of the points 
in Wk or Vk+1. Due to the latter property we may also assume that the balls in Bk and 
the balls in Bk+1 do not intersect either, as for each k we may first choose the balls in 
Bk and then later choose the balls in Bk+1 small enough to not intersect the previous 
set of balls.

Furthermore, we may use the uniform continuity of ϕ−1 and ϕ to assume that

|ϕ(x) − ϕ(v)| < 2−k, ∀x ∈ B
(
v, diam(ϕ−1(B(ϕ(v), r))

)
. (5.3)

For each vertex v of the grid Dk we have four sides S1, S2, S3 and S4 of some Qk,j that 
have v as their endpoint (see Fig. 4). On each of these sides we choose points si ∈ Si so 
that pi = ϕ(si) ∈ ∂B(ϕ(v), r) and so that si is furthest away from v with this property 
(e.g. on S3 in Fig. 4 we have three points whose image intersects ∂B(ϕ(v), r)). Now we 
replace ϕ on each segment [si, v] by a segment [pi, ϕ(v)] and we leave ϕ the same outside 
of these four segments (see Fig. 4). In this way we replace ϕ(∂Qk,j) by a curve Γ(∗)

k,j which 
is piecewise linear close to the vertices.

It is easy to see that this new curve Γ(∗)
k,j satisfies an analogy of (2) by (5.3) and it is 

not difficult to see that these new curves are one-to-one (see Fig. 4), i.e. they intersect 
only at original vertices v. These new curves have also length shorter or equal to the 
original H 1(ϕ(∂Qk,j)).

We proceed to do the linearization process of this step on each level k = 1, 2, 3, . . ., 
replacing the collection of all curves ϕ(∂Qk,j) by a new set of curves Γ(∗)

k,j . To reiterate, 
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Fig. 5. We replace curves γm on the sides (see dotted curves) by piecewise linear curves. We may need to 
choose a one-to-one shortening of these replacements, i.e. we ignore some dashed part of the replacement 
of γ3.

on each level k these curves are now linear around the points Vk, but were unchanged 
near the set of intersection points Wk. The properties (2) − (7) are preserved in this 
process and we may continue the linearization to achieve (1) later.

Step 2. Linearization at the intersection points Wk: In the previous step, we avoided 
making any changes near the set of intersection points Wk between curves of level k and 
k + 1. In this step we will, for each level k, linearize the curves Γ(∗)

k,j around the points 
Wk.

This process can be done quite analogously to Step 1. We choose a new set of balls 
B′

k which are centred around points in Wk, and may again assume that the balls within 
each collection and between each successive collection (B′

k and B′
k+1) are disjoint.

We then apply the same linearization process of Step 1 in each of these balls, linearizing 
each of the four parts (two from level k and two from k + 1) which meet at the centre
of each ball. This replaces the curves Γ(∗)

k,j by another set of curves Γ(∗∗)
k,j which are now 

also piecewise linear near the points in Wk. In this modification the properties (2) − (7)
are again preserved for the whole collection of curves.

Step 3. Linearization of sides: Now we need to linearize the curves Γ(∗∗)
k,j in the re-

maining parts which consist of simple Jordan curves between the balls in Bk and B′
k. We 

call γk,m the parts of Γ(∗∗)
k,j where our curve is not piecewise linear yet, these correspond 

to image by ϕ of segments of Qk,j (minus some small segments near vertices of Dk and 
intersection points of Dk and Dk+1).

These γk,m are pairwise disjoint and we can choose 0 < δ < 2−k so that γk,m +
B(0, 2δ) are pairwise disjoint. Furthermore, we may choose δ small enough so that the 
sets γk,m + B(0, 2δ) do not contain points from the curves γk+1,m′ by the fact that the 
sets of curves γk,m and γk+1,m′ are mutually disjoint.

We choose enough division points in γk,m and we connect them by segments (see Fig. 5) 
so that the union of these segments approximates the original curve. We definitely include 
two endpoints aγk,m

and bγk,m
in these division points and we assume that we have so 

many division points so that the union of these segments lies inside γk,m + B(0, δ). It 
follows that these segments for different γk,m do not intersect.

However, it may happen that they intersect (see γ3 in Fig. 5) for a given γk,m. In 
this case we simply choose a shortest path in the union of these segments between the 
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endpoints aγk,m
and bγk,m

and we replace the union of these segment by this shortest path 
(see the right side of Fig. 5). It is not difficult to see that by this replacement we get a 
one-to-one piecewise linear curve that replaces γk,m. Now we call Γk,j the corresponding 
piecewise linear approximation of Γ(∗∗)

k,j . It is now easy to see that we have (1), (2) (using 
δ < 2−k), (3), (4), (5) and (6) for our Γk,j . Property (7) comes from our treatment of 
intersection points in Step 2, and the fact that in this step we chose δ small enough to 
not intersect the curves γk+1,m′ . �

Parametrization of Γk,j : We have constructed a piecewise linear curve Γk,j that ap-
proximated ϕ(∂Qk,j) and passes through the same image vertices Vk and intersection 
points Wk = Gk ∩Gk+1. We know that there are four y ∈ Vk such that y = ϕ(v) for some 
vertex of Qk,j . Further, there are at most 8 points in

Gk+1 ∩ ϕ(∂Qk,j) = Gk+1 ∩ Γk,j

as on the image of each side of Qk,j there are at most two (see Fig. 3 and the proof 
of Lemma 5.1 (3)). Furthermore, we have at most two points in Gk−1 ∩ ϕ(∂Qk,j), see 
Lemma 5.1 (3). Note also that analogously to the proof of Lemma 5.1 (3), there is C > 0
with such that

|ϕ−1(y) − ϕ−1(z)| ≥ C2−k, (5.4)

for any two distinct points y, z ∈ Vk ∪ Wk ∪ Wk−1. Thus the distance between the 
preimages of these points is comparable to the sidelength of Qk,j , i.e. 2−k.

Now we divide Γk,j into at most 4 + 8 + 2 = 14 pieces Pi by these points in Vk ∪
Wk ∪ Wk−1. For points x ∈ ϕ−1(Vk ∪ Wk ∪ Wk−1) we define p(x) = ϕ(x) so that our 
parametrization p has the same value as original mapping ϕ on these “vertices” and 
intersection points. We parametrize the pieces Pi by a constant speed parametrization 
p there, i.e. on each of those pieces it has constant speed which might be different for 
each piece. Since the length of these pieces is bounded by H 1(ϕ(Qk,j)), we obtain using 
(5.4) that

|Dp| � C
H 1(ϕ(Qk,j))

2−k
on the whole Qk,j .

6. The 2D extension

Let S be the square with vertices at {(1, 0), (0, 1), (−1, 0), (0, −1)} and Y be a Jordan 
domain with piecewise linear boundary. Suppose that a boundary homeomorphism ϕ :
∂S → ∂Y is given. We now describe a way to extend ϕ as a homeomorphism of S to Y
with Lipschitz-continuity controlled by the boundary map.

First, we describe an extension Hϕ of ϕ which is a monotone map from S to Y , meaning 
it is continuous and the preimage of every point is connected. The final homeomorphic 
extension will be obtained via an arbitrarily small modification of Hϕ as we are able to 
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describe the points where it fails to be injective and fix them accordingly. However, this 
modification will be done only later in Section 8.

The extension Hϕ will also be called the shortest curve extension of ϕ. To define Hϕ, 
we let ls denote the horizontal line segment which is obtained as the intersection between 
the line {(x, y) : y = s} and S. This segment ls has two endpoints as and bs (from left 
to right) on ∂S. We let As = ϕ(as), Bs = ϕ(bs), and define Ls as the shortest curve in 
ϕ(S) which connects As to Bs.

The map Hϕ is now given by defining it to map each horizontal segment ls to the 
corresponding shortest curve Ls via constant speed parametrization. It is simple to verify 
that this mapping is continuous.

Lemma 6.1. If ϕ : ∂S → ∂Y is Lipschitz with constant L, then the shortest curve exten-
sion Hϕ is also Lipschitz with constant at most CL for a uniform constant C.

Proof. Case 1. Lipschitz continuity in the horizontal direction.

We show that Hϕ satisfies the required Lipschitz-continuity on each of the horizontal 
segments ls. For this, note that the constant speed parametrization on each of these 
segments implies that we only need to show that |Ls| � 2L|ls|, where | · | denotes length. 
The endpoints of ls separate ∂S into two connected components, the shorter of which 
we may call γs. Since Lt is the shortest curve from As to Bs, we find that |ϕ(γs)| � |Ls|. 
However, due to the Lipschitz-continuity of ϕ we must have that |ϕ(γs)| � L|γs|. Thus

|Ls| � |ϕ(γs)| � L|γs| � 2L|ls|,

where the last inequality is due to the fact that ls is the hypotenuse of a right-angled 
triangle with sides given by γs.

Case 2. Lipschitz continuity in the vertical direction.

Let us fix s ∈ (−1, 1) and pick a point z ∈ ls. For small δ we let zδ = z + (0, δ) and our 
aim is to show that |Hϕ(zδ) −Hϕ(z)| � CLδ. As Lipschitz-continuity is a local property, 
we may assume that δ is arbitrarily small. In fact, to simplify calculations we assume 
that δ is very small compared to |ls|, which lets us assume that the trapezium bounded 
by the segments ls and ls+δ is actually a rectangle with longer sides of length |ls| due to 
the fact that these two shapes are bilipschitz-equivalent with a uniform constant (say 2) 
for small enough δ.

Consider the curves Ls and Ls+δ. By choosing δ small enough, we may assume that 
the endpoints As and As+δ lie on the same line segment of the piecewise linear boundary 
∂Y . The same may be assumed for Bs and Bs+δ. Now basic geometry dictates that the 
curves Ls and Ls+δ must each consist of three parts as follows (for a detailed argument, 
see [18]). See also Fig. 6.
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Fig. 6. The shortest curves Ls and Ls+δ, split into three parts.

(1) αs and αs+δ: Curves which start from As and As+δ and do not intersect except at 
their common other endpoint. In fact, if δ is assumed small enough these curves may 
be assumed to be line segments.

(2) A common part of ls and Ls, which is a piecewise linear curve we denote by γ.
(3) βs and βs+δ: Analogously to the first part, these can be assumed to be line segments 

from Bs and Bs+δ respectively which meet at a common point (the other endpoint 
of γ).

We may assume that Hϕ(z) lies on either αs or γ as the case where it lies on βs is 
handled by symmetry. Let D denote the line segment between As and As+δ. Then since 
ϕ is L-Lipschitz-continuous on ∂S, we find that |D| � Lδ. By the triangle inequality 
we obtain that ||αs| − |αs+δ|| � Lδ and using the same argument for the β-curves gives 
||Ls| − |Ls+δ|| � 2Lδ. Let also d denote the distance between z and as, which is also the 
distance from zδ to as+δ.

Suppose first that Hϕ(z) lies on γ. The length of the part of Ls between As and Hϕ(z)
may now be calculated in two ways. The constant speed parametrization tells us that it 
is equal to |Ls|d/|ls|. On the other hand, it is also equal to |αs| + |γ′|, where γ′ denotes 
the part of γ between αs and Hϕ(z). Thus

|αs| + |γ′| = |Ls|d
|ls| .

If Γ denotes the part of Ls+δ between Hϕ(z) and Hϕ(zδ), then we may calculate the 
length of the part of Ls+δ between as+δ and Hϕ(zδ) in two ways similarly as above to 
obtain that

|αs+δ| + |γ′| ± |Γ| = |Ls+δ|d
|ls| .

The ± in this equation is there to account for the two cases on which side of Ls+δ the 
point Hϕ(zδ) lies in comparison to Hϕ(z). In either case, we find by combining the above 
two equalities that
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|Γ| � ||αs| − |αs+δ|| + ||Ls| − |Ls+δ|| d

|ls|
� Lδ + 2Lδ.

This shows that |Hϕ(zδ) − Hϕ(z)| � 3Lδ.
Suppose then that Hϕ(z) lies on αs. The length of the part of αs from As to Hϕ(z)

must then be equal to |Ls|d/|ls| by constant speed parametrization. Let ω be a point on 
αs+δ of distance at most |D| from Hϕ(z), which is possible to choose due to the concavity 
of αs+δ and αs towards each other (more precisely, concavity towards the interior of the 
region defined by them and D). Let γ∗ denote the part of αs+δ between As+δ and ω, and 
Γ the part of Ls+δ between ω and Hϕ(zδ). Both the part of αs from As to Hϕ(z) and the 
curve γ∗ are shortest curves between their respective endpoints, and since the endpoints 
are connected by curves of length at most |D| � Lδ, we get by triangle inequality that

∣∣∣∣|γ∗| − |Ls|d
|ls|

∣∣∣∣ � 2Lδ.

Thus we find that

|Γ| �
∣∣∣∣ |Ls+δ|d

|ls| − |γ∗|
∣∣∣∣

� ||Ls| − |Ls+δ|| d

|ls| + 2Lδ

� 4Lδ.

This shows that |Hϕ(zδ) − Hϕ(z)| � 4Lδ and proves our claim.
As a clarifying remark, note that as we approach the top and bottom vertices (0, ±1)

on ∂S the corresponding shortest curves shrink to a single point. In this case the above 
estimates still go through with even some further simplification.

Note: We will use the following consequence of this proof repeatedly in multiple other 
parts of the paper. Given a Jordan domain Y with a piecewise linear boundary and points 
A1, A2, B ∈ ∂Y , suppose that the part of ∂Y between A1 and A2 which does not contain 
B has length δ′. Then if ϕ1, ϕ2 : [0, 1] → Y are the two shortest curves in Y from B to 
A1 and A2 respectively, parametrized with constant speed, then |ϕ1(x) − ϕ2(x)| � Cδ′

for all x ∈ [0, 1]. This claim follows from the above proof, notably the only difference is 
that we start from the same point B instead of two points Bs and Bs+δ but this case is 
even simpler. �
6.1. Lipschitz-continuity in the time variable

Our next aim is to look at a situation where instead of a single given boundary map ϕ, 
we are given a continuous sequence of boundary homeomorphisms ϕt : S → R2, t ∈ [0, 1]
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(not necessarily to the same target domain). The aim is to show that if the dependence 
on t is Lipschitz, meaning that

|ϕt1(z) − ϕt2(z)| � L|t1 − t2| for z ∈ ∂S, (6.1)

then the same estimate holds (up to a uniform constant) for the extensions Hϕt
as well. 

We expect this to be true in the general case, but for our purposes we will only need to 
prove such a result in a few simple cases which are easier to explain. Let us denote by 
S− := {(x, y) ∈ S : x � 0} the union of the two left sides of S and by S+ the union of 
the two right sides.

Lemma 6.2. Suppose that Y ⊂ C is a piecewise linear Jordan domain and ϕt : ∂S → ∂Y

are given boundary homeomorphisms so that (6.1) is valid. Suppose also that the maps 
ϕt(z) are equal on one half of S, say ϕt(z) = ϕ0(z) for all z ∈ S+. Then Hϕt

(z) is 
CL-Lipschitz in (z, t), where C is a uniform constant.

Proof. Let z ∈ S. We consider the horizontal segment l passing through z and its two 
endpoints a and b. Fixing the point t1 ∈ (0, 1), by continuity we choose t2 ∈ (0, 1) close 
enough to t1 so that ϕt1(b) and ϕt2(b) lie on the same segment on ∂Y . By our assumptions 
also ϕt1(a) = ϕt2(a). For ϕt1 , we let Lt1 denote the shortest curve from ϕt1(a) to ϕt1(b)
in Y . Similarly Lt2 is the shortest curve from ϕt1(a) to ϕt2(b). Then Hϕt1

(z) lies on Lt1

and Hϕt2
(z) lies on Lt2 and the exact positioning of these points on these curves is again 

determined by the constant-speed parametrization on the horizontal segment l. But this 
situation is essentially exactly the same as in the second case of the proof of Lemma 6.1
(see note at the end of that proof), and we may apply the same proof to show that

|Hϕt1
(z) − Hϕt2

(z)| � 4L|t1 − t2|. �
We now address how the shortest curve extension behaves with respect to a changing 

target boundary.

Definition 6.3. Let us first define that a simple modification of a piecewise linear Jordan 
curve ϕ : S → ∂Y is any other piecewise linear curve ϕ∗ obtained as follows. Let P be a 
vertex of ϕ and let P1 = ϕ(s1) and P2 = ϕ(s2) be its two neighbouring vertices. We pick 
another point Q on the ray 

−−→
P1P and define ϕ∗ as the piecewise linear curve through the 

vertices of ϕ with P replaced with Q.
Regarding parametrization we require that ϕ(s) = ϕ∗(s) for all s except for those in 

the preimage of the segments P1P and PP2 under ϕ, and moreover that these preimages 
are either both contained in S+ or both in S−.

Next, a homotopy ϕt : ∂S → R2, t ∈ [0, 1] of piecewise linear Jordan curves is called a 
simple homotopy if for all t1 and t2 > t1 sufficiently close to t1, the curve ϕt2 may be 
obtained from ϕt1 via a simple modification as described above.
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Lemma 6.4. If a homotopy ϕt : S → R2, t ∈ [0, 1] of piecewise linear Jordan curves 
is simple and Lipschitz-continuous in (z, t) with constant L, then the shortest curve 
extensions Hϕt

are also Lipschitz-continuous in (z, t) with constant CL for a uniform 
constant C.

Proof. We aim to use the same types of arguments as in the proof of Lemma 6.1 to 
obtain Lipschitz estimates for Hϕt

in t, but we must elaborate further as we are dealing 
with two shortest curves within two different domains. However, it is enough to show 
Lipschitz-estimates locally and hence we are able to use the condition of ϕt being a simple 
homotopy to deduce that on the given time interval the two image domains are similar 
apart from one added or removed triangle (this triangle is ΔPQP2 in Definition 6.3).

Let thus z ∈ S and t1, t2 ∈ [0, 1]. Let l be the horizontal segment in S which passes 
through z and let a and b be its endpoints from left to right. Suppose that we are in the 
case where the mappings ϕti

are equal on S−, so that ϕt1(a) = ϕt2(a). Let Yti
be the 

Jordan domain bounded by ϕti
(∂S) and Lti be the shortest curve within the closure of 

Yti
between ϕti

(a) and ϕti
(b). We also let pti

:= ϕti
(b).

By assumption of simpleness of ϕt the only difference between the boundaries of Yt1

and Yt2 is the addition or removal of a triangle ΔPQP2. The curve ∂Yt1 traverses straight 
from P to P2 while ∂Yt2 goes through the point Q inbetween.

Due to some distinct geometrical possibilities here, we split the argument into cases 
as follows. Recall that the shortest curves Lt1 and Lt2 have one common endpoint and 
their non-common endpoints are pt1 and pt2 . We split into cases based on whether one 
of these points pti

belongs to the part of the boundary being changed or not.

Case 1. If pt1 does not lie on the segment of ∂Yt1 between P and P2.

In this case, pt1 lies on the common boundary of Yt1 and Yt2 . We now define another 
map on the horizontal segment l by considering the shortest curve from ϕt1(a) to pt1 , but 
this time within the closure of Yt2 . Let this map be called Φ : l → Yt2 and parametrize 
it in constant speed also. Then the result of Lemma 6.1 shows that |Hϕt2

(z) −Φ(z)| may 
be estimated from above in terms of a constant times the length of the boundary of Yt2

between pt1 and pt2 . But the boundary estimates from before show that this length may 
be estimated from above by CL|t1 − t2|.

Hence due to the triangle inequality we have

|Hϕt2
(z) − Hϕt1

(z)| � |Hϕt2
(z) − Φ(z)| + |Φ(z) − Hϕt1

(z)|.

It remains to consider the quantity |Φ(z) −Hϕt1
(z)|. This quantity depends on the curves 

Lt1 and Φ(l). These curves are both shortest curves from ϕt1(a) to pt1 . However, one is 
within the domain Yt1 and the other is within the domain Yt2 . Thus we are to investigate 
how this change of domain affects the behaviour of the shortest curve. We split again 
into cases based on a few different geometrical possibilities.
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Fig. 7. Case 1: Two shortest curves between ϕt1 (a) to pt1 in different domains. Here ∂Yt1 is denoted by 
the black piecewise linear curve, while Yt2 is created from Yt1 by adding a triangle ΔP QP2. Note that the 
segment P P2 is part of α1.

Case 1a. Suppose that the curve Lt1 does not touch the segment PP2.
Since Lt1 is the shortest curve between ϕt1(a) and ϕt1(b) in Yt1 , if Yt2 ⊂ Yt1 then 

Φ(l) (the shortest curve between the same points in Yt2) must be at least as long as Lt1 . 
But since Lt1 does not intersect PP2 we must have Lt1 ⊂ Yt2 and thus Lt1 = Φ(l). If Yt2

is not contained in Yt1 , which is when Q lies outside of Yt1 , then it still must hold that 
Lt1 = Φ(l) because the shortest curve Φ(l) cannot pass through the interior the triangle 
ΔPQP2 as it can only enter and exit through the segment PP2. Thus there is nothing 
to prove in this case. Case 1b. Suppose that P ∈ Lt1 and Q ∈ Φ(l).

Let the part of Lt1 between ϕt1(a) and P be called α1 and the part from P to pt1 be 
called β1. Similarly, let the part of Φ(l) from ϕt1(a) to Q be α2 and from Q to pt1 be β2. 
Let |P − Q| = δ.

Let us say that a simple curve in Y1 does not cross the segment PQ if that curve is a 
uniform limit of curves within Y1\PQ, parametrizations may be taken in arc length here. 
Note that none of the curves α1, α2, β1 and β2 pass through the interior of the triangle 
ΔPQP2 and also do not cross the segment PQ. Hence within the class of curves in Y1
which do not cross the segment PQ, these curves are also the shortest curves between 
their respective endpoints.

We suppose that Φ(z) is on β2. The case where it is on α2 is proven similarly. We 
define a point ξ ∈ β1 as the intersection point of β1 with the line passing through Φ(z)
and parallel to PQ (see Fig. 7). Due to the fact that β1 and β2 are shortest curves in Y1
which do not cross the segment PQ, the segment from Φ(z) to ξ lies entirely between 
these two curves and has length smaller than δ - this can be argued similarly as the 
convexity part in Case 2 of Lemma 6.1. Let β∗

2 be the part of β2 from pt1 to Φ(z) and 
β∗

1 be the part of β1 from pt1 to ξ. Then a simple shortest curve estimate shows that

||β∗
2 | − |β∗

1 || � |Φ(z) − ξ| � δ. (6.2)
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Fig. 8. Case 1d: Reduces to pictured possibilities in which the curves Lt1 and Φ(l) are the same.

Similarly, we may find that

||β2| − |β1|| � δ

||α1| − |α2|| � δ.
(6.3)

Now consider the length of the part of Hϕ1(l) between pt1 and Hϕt1
(z), call this length 

τ . Due to constant speed parametrization, if the distance from a to z is x, we find that 
τ = (|α1| + |β1|)x/|l|. But since x � |l| and the estimates (6.3), we find that

|τ − |β∗
2 || =

∣∣∣∣τ − (|α2| + |β2|)x
|l|

∣∣∣∣ � 2δ.

However, (6.2) then implies that |τ − |β∗
1 || � 3δ. This essentially says that the part of 

the curve β1 between ξ and Hϕt1
(z) has length at most 3δ, and hence we also have the 

Euclidean distance estimate |ξ − Hϕt1
(z)| � 3δ and finally also |Φ(z) − Hϕt1

(z)| � 4δ

from (6.2). Since δ � CL|t1 − t2| this is enough.

Case 1c. Suppose Q ∈ Φ(l), P /∈ Lt1 but either Lt1 passes through PQ or through QP2.
If Lt1 passes through PQ, let the intersection point of PQ and Lt1 be X. This case 

can be handled the same way as Case 1b, with X taking the role of P . The case where 
Lt1 passes through QP2 can be handled symmetrically.

Case 1d. Suppose that Q /∈ Φ(l).
This case appears either when the point Q is outside the domain Yt1 or when Lt1 only 

intersects the triangle ΔPQP2 at one of the vertices P or P2 (see Fig. 8). In all of these 
cases the curves Lt1 and Φ(l) are the same, and there is nothing to prove. This handles 
all the possible options and finishes the proof of Case 1.

Case 2. If pt2 lies on a part of ∂Yt2 which is not on the segments PQ or QP2. This 
case may be treated with the same arguments as Case 1, with t1 and t2 interchanged.

This covers the cases where either pt1 or pt2 lies outside the triangle ΔPQP2, leaving 
the case where both points lie on respective sides of this triangle.

Case 3. We suppose that pt1 lies on the segment PP2 and pt2 on either PQ or QP2.



30 S. Hencl et al. / Journal of Functional Analysis 286 (2024) 110371
Fig. 9. Case 3a: Shortest curves to pt1 and pt2 when T is inside of Yt1 . In this case, Ŷ is obtained by taking 
∂Y1 and replacing pt1 P2 with pt1 pt2 and pt2 P2. Again Yt2 is created from Yt1 by adding a triangle ΔP QP2.

By symmetry, we may suppose that pt2 lies on QP2 and that t1 < t2. We now consider 
the triangle T = ΔPQP2, but must split into cases depending on if this triangle is inside 
or outside of Yt1 .

Case 3a. If T is inside of Yt1 . The shortest curve Lt1 must pass through T before it 
reaches its endpoint at pt1 (see Fig. 9). Moreover, the part of Lt1 inside the closure of 
T must be a single segment since T is convex. Now, the point pt2 splits the union of the 
segments PQ and QP2 into two parts. Let γ̂ be the part which does not intersect Lt1 .

The idea now is to create a new domain Ŷ . We take the Jordan curve ∂Yt1 , add the 
union of pt1pt2 and γ̂ to it, and remove the segment of ∂Yt1 which has the same endpoints 
as this union does (either we remove pt1P2 or pt1P ). This Jordan curve now defines Ŷ . 
An equivalent definition is to cut off from Yt1 a region bounded by pt1pt2 and γ̂. The key 
point is that by this construction the curve Lt1 still lies in the closure of Ŷ . In fact, the 
curve Lt1 is still the shortest curve from ϕt1(a) to pt1 within the new domain Ŷ . This is 
due to the fact that the shortest curve from ϕt1(a) to pt1 does not change if we remove 
a region of the domain which does not intersect this shortest curve to begin with.

Let now Φ : l → Ŷ denote the shortest curve from ϕt1(a) to pt2 in the closure of Ŷ , 
parametrized with constant speed. Now we split our estimates via the triangle inequality

|Hϕt2
(z) − Hϕt1

(z)| � |Hϕt2
(z) − Φ(z)| + |Φ(z) − Hϕt1

(z)|.

The quantity |Φ(z) − Hϕt1
(z)| may now be estimated via the arguments of Lemma 6.1, 

since both Φ and Hϕt1
map the horizontal segment l to a shortest curve within Ŷ , and 

the distance between their endpoints pt2 and pt1 is estimated from above by CL|t1 − t2|.
The quantity |Hϕt2

(z) − Φ(z)| is dealt with the same arguments as Case 1, since Φ
and Hϕt2

map the horizontal segment l to shortest curves from ϕt1(a) to pt2 , however 
in different domains Ŷ and Yt2 . The difference between these domains is, again, small.

Case 3b. If T is outside of Yt1 . This case is handled much the same as the previous one, 
only now we create Ŷ from Yt2 by adding pt1pt2 and the part of PP2 which does not 
intersect Lt2 . We also remove either pt2P2 or the two segments of ∂Y2 between pt2 and 
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P to create the Jordan curve that bounds Ŷ . Now the situation is dealt with the same 
arguments as the previous case. �
Lemma 6.5. Suppose that ϕ0, ϕ1 : ∂S → R2 are two piecewise linear embeddings of the 
square ∂S into R2. Let Y0 and Y1 be the Jordan domains bounded by the respective 
image curves ϕ0(∂S) and ϕ1(∂S). Suppose that ϕ0(z) = ϕ1(z) for all z ∈ ∂S− and 
both maps have constant speed on S+. Suppose that the curves ϕ0(S+) and ϕ1(S+) do 
not intersect except for their endpoints. Suppose also that both embeddings ϕ0 and ϕ1
are Lipschitz-continuous with constant L. Then there exists a homotopy ϕt, t ∈ [0, 1]
of piecewise linear curves which is simple, CL-Lipschitz in (z, t), and ϕt lies within the 
region bounded by ϕ0 and ϕ1.

Proof. Let γ0 = ϕ0(S+) and γ1 = ϕ1(S+). We first describe a homotopy γt between 
these two curves, which will then be used to construct ϕt by setting ϕt(S+) = γt and 
fixing a parametrization. On S− we naturally set ϕt ≡ ϕ0.

The curve γt is defined as follows. Let the mutual endpoints of γ0 and γ1 be A and 
B and the domain between these curves be denoted by Ŷ . Let γ1/2 be the shortest path 
from A to B within the closure of Ŷ . We now need to only describe how to deform γ0
to γ1/2 as the case from γ1/2 to γ1 will be handled in the same way.

For t ∈ [0, 1/2], note that 2t varies from 0 to 1. We choose γt as follows. First, travel 
along γ0 starting from A until we have travelled a curve of length 2t|γ0|. We have arrived 
at a point of γ0 which we shall call Pt. For the remainder of the parametrization, we 
take the shortest curve from Pt to B within the closure of Ŷ . This defines γt up to 
parametrization, and the exact parametrization of γt will be defined now.

We divide the time interval [0, 1/2] into intervals [tn, tn+1) so that for all t ∈ [tn, tn+1)
the curve ϕt is obtained from ϕtn

via simple modification, at least as long as we now 
guarantee that the parametrization aligns with the requirements in Definition 6.3. For 
a fixed parameter t, the curves γt and γ0 agree on the initial part of γ0 of length 2t|γ0|. 
For those s ∈ S+ for which ϕ0(s) is on this initial part, we also set ϕt(s) = ϕ0(s). Let 
s2t ∈ S+ be defined so that Pt = ϕt(s2t), and recall that the curves γtn

and γt for 
t ∈ [tn, tn+1) only differ by moving Ptn

to Pt. Let t′ > t be so that P ′ = ϕtn
(s2t′) is the 

next vertex after Ptn
on this curve, so that P ′ is also the next vertex after Pt for ϕt. Now 

if the angle ∠PtPtn
P ′ is concave (above π) towards the interior, then the curves γtn

and 
γt are the same and we may also set the parametrizations ϕtn

and ϕt to be exactly the 
same.

In the case where the angle is convex (less than π), we set ϕt(s) = ϕtn
(s) for all 

s � 2t′. It remains to define ϕt on (2t, 2t′) assuming by induction that ϕtn
is given. Let 

the union of the segments PtPtn
and Ptn

P ′ be U1 and let U2 denote the segment PtP
′. 

We choose a constant speed map Ψt : U1 → U2, and this constant is smaller than one 
because U2 is shorter than U1. Then we define ϕt(s) = Ψt(ϕtn

(s)) for s ∈ (2t, 2t′).
This shows that the Lipschitz constant of ϕt in s decreases as t increases. It remains 

to obtain estimates in t. It is enough to show that |ϕt(s) − ϕtn
(s)| � CL|t − tn| for 
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Fig. 10. Moving the point P to Q through a point P ∗ via two simple modifications.

s ∈ (2t, 2t′). For this, through some simple geometry we see that the distance between the 
points ϕt(s) and ϕtn

(s), which lie on the sides of the triangle ΔPtPtn
P ′, can be estimated 

from above by the length of the side PtPtn
. But |Pt − Ptn

| = |ϕtn
(2t) − ϕtn

(2tn)| �
2L|t − tn|, which finishes the proof. �
Definition 6.6. A homotopy ϕt : ∂S → R2, t ∈ [0, 1] of piecewise linear Jordan curves is 
called a 2-simple homotopy if for all t1 and t2 > t1 sufficiently close to t1, the curve ϕt2

may be obtained from ϕt1 via two successive simple modifications on the same vertex P .

The difference between one and two simple modifications is that in a simple modifica-
tion the point P is only moving along the ray 

−−→
P1P , while after two simple modifications 

the point P may technically move to any other in the plane. In our case, some further 
restrictions will apply as we must also maintain injectivity during this process.

Lemma 6.7. If ϕt : S → R2, t ∈ [0, 1] is a 2-simple homotopy of piecewise linear Jor-
dan curves and Lipschitz-continuous in (z, t) with constant L, then the shortest curve 
extensions Hϕt

are also Lipschitz-continuous in (z, t) with constant CL for a uniform 
constant C.

Proof. Fix t1 and let t2 > t1 be close to t1. Then Definition 6.6 implies that there 
is a simple modification which turns ϕt1 into another curve ϕ∗ and another simple 
modification which turns ϕ∗ into ϕt2 . It is enough to show that we may choose ϕ∗ so 
that the estimate |ϕt2(s) − ϕ∗(s)| � CL|t1 − t2| is satisfied, as then the two simple 
modifications ϕt1 �→ ϕ∗ and ϕ∗ �→ ϕt2 can be seen to be CL-Lipschitz-continuous in 
(z, t) and we may finish by applying the proof of Lemma 6.4 to obtain the desired result.

Let P be the vertex on the curve ϕt1 being moved to the vertex Q on ϕt2 , and let P1
and P2 be their shared neighbouring vertices. Let us pick t2 close enough to t1 so that 
P and Q are on the same side of the segment P1P2, eliminating Case 3 in Fig. 10. We 
may assume that the ray 

−−→
P1Q intersects the segment P2P at a point P ∗ (otherwise we 

consider the intersection of −−→
P2Q and P1P , or switch the roles of P and Q). Now due 

to the assumption that the homotopy ϕt is Lipschitz continuous in t with constant L, 
we have that dist(Q, P1P ∪ PP2) � L|t1 − t2| (at least for t2 close enough to t1 so that 
there is no interference from the rest of the curve). Due to some elementary geometry 
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the distance |QP ∗| from Q to P ∗ must be comparable to the distance from Q to the 
segments P1P and PP2, giving that |QP ∗| � CL|t1 − t2|. Now let us compose ϕt2 with 
a piecewise linear map which is otherwise the identity but sends the segments P1Q and 
QP2 to P1P ∗ and P ∗P2 respectively. This is a simple modification of ϕt2 which we call 
ϕ∗. Each point on the curve ϕt2 is moved at most a distance of |QP ∗|, which gives the 
desired estimate |ϕt2(s) − ϕ∗(s)| � |QP ∗| � CL|t1 − t2|. Moreover, it is clear that ϕt1 is 
a simple modification of ϕ∗ as P ∗ lies on P2P . Thus the proof is complete. �
7. The 3D extension

We now proceed to the construction of the extension h into the upper half space, 
continuing the proof of Theorem 1.2 along the lines described at the start of Section 4. 
The main goal here is to define h precisely on each Uk,j . Recall the definition of the sets 
Uk,j , Q̃k,j and curves Γk,j from Section 4.

Step 1. We define h on the sides of the top and bottom faces of Uk,j. We wish to 
map the top sides ∂Q̃k,j × {2−(k−1)} to the Jordan curve Γk,j and the bottom sides 
∂Q̃k,j × {2−k} to Γ̂k,j . Note that here and what follows we abuse ∂ to mean the 1D 
boundary of these sets rather than taking the topological boundary of the sets in 3D 
space.

Step 2. We define h on the top and bottom faces of Uk,j. To simplify notation, we set 
Ut = Q̃k,j × {t}. Furthermore, let top := 2−(k−1) and bot := 2−k so that Utop is the top 
face and Ubot is the bottom one. Similarly we set ϕt = h|∂Ut

and ht = h|Ut
, although only 

ϕtop and ϕbot have been defined so far. On Utop, we simply define htop as the shortest 
curve extension of ϕtop. Note that this choice also forces us to define hbot on Ubot in a 
specific way to avoid discontinuity. Indeed, the bottom side Ubot is in fact the union of 
four top sides of dyadic cubes of the form Uk+1,j′ on the next level. Thus on Ubot the 
map hbot is defined separately in each of the four squares as the shortest curve extension 
of the corresponding boundary values.

Step 3. Let mid := 2−k+2−k−1 be the middle point of [2−k, 2−(k−1)] so that Umid is the 
middle level of the cube Uk,j . On the sides of Umid and for every parameter t ∈ [bot, mid], 
we define ϕt equal to ϕbot. On Umid we define hmid as the shortest curve extension of 
ϕmid. Hence for t ∈ [bot, mid], the mapping ht has the same boundary values on each 
level Ut but is a different map on the faces Umid and Ubot. We return to this part in a 
later step and describe how to define ht for t ∈ (bot, mid) to give the correct isotopy 
between the maps hmid and hbot.

Step 4. For t ∈ [mid, top], we will define ht as the shortest curve extension of ϕt. 
However, we have not yet defined ϕt for these parameters. Note that the image of ϕtop

is Γk,j and the image of ϕmid is Γ̂k,j . Thus we must define a homotopy ϕt between these 
two curves which is what we will do now.

The left part of Fig. 11 depicts the curves Γk,j and Γ̂k,j . Since the curves Γk,j (re-
spectively Γ̂k,j) form a grid topologically equivalent with a dyadical grid, we may abuse 
terminology here and talk about vertices and edges of Γk,j when considered as a topo-



34 S. Hencl et al. / Journal of Functional Analysis 286 (2024) 110371
Fig. 11. On the left, the curve Γk,j and its corresponding curve Γ̂k,j on the next level. On the right, Γk,j

has been modified to Γ̃k,j . (For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

Fig. 12. The plus-shaped region whose boundary consists of two crosses and curves from the points mi to 
m̂i.

logical square. As in the figure, let us label the vertices of these curves by vj and v̂j , 
j = 1, 2, 3, 4 in corresponding order. We pick one pair of such vertices, say v1 and v̂1. 
The vertex v1 is the intersection point of two edges of Γk,j as well as two other edges 
in the same grid, for a total of four. We let the midpoint of the edges meeting at v1 be 
mj , j = 1, 2, 3, 4, see Fig. 12. We similarly define four points m̂j as the midpoints of the 
edges in the grid formed by the curves Γ̃k,j which meet at v̂1, numbered correspondingly 
to the points mj . We now connect each of the points mj with m̂j through a piecewise 
linear curve gj which does not intersect either of the grids and has length comparable to 
the infimal length of such curves.

Our aim now is to deform the cross formed by the curves with endpoints at m1, . . . , m4
and intersecting at v1, to a cross with the same endpoints but middle point at v̂1 instead. 
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Naturally we wish to introduce no new intersection points during this homotopy and keep 
the deformation within the plus-shaped region pictured in Fig. 12. At each point in time 
the cross we are considering meets four different dyadic regions in the image side, and we 
wish to create this deformation between crosses in a way where we can apply Lemma 6.7
for each of these four regions to obtain the required interior Lipschitz-estimates. Thus it 
is necessary to form the homotopy in a way that with respect to each four regions the part 
of the border that is deforming behaves as a 2-simple homotopy (see Definition 6.6). A 
fixed number of reparametrizations of curves is also needed in the arguments used here, 
but we recall that Lemma 6.2 allows us to do so while still maintaining the required 
interior estimates.

We first connect the points m1 and v̂1 with a piecewise linear Jordan curve α1 which 
does not intersect any of the other considered curves and has distance comparable to the 
sum of the length of the curve g1 from m1 to m̂1 and the curve from m̂1 to v̂1 which is 
part of Γ̂k,j′ for some j′. This can be done for example by choosing a curve sufficiently 
close to those two curves but not intersecting them or itself. Similarly, we define a curve 
α2 from m2 to v̂1, see again Fig. 12.

Let ψ0 be the union of the curves from m1 to v1 and from v1 to m2, parametrized on 
[0, 1]. Similarly, let ψ1 be the union of α1 and α2. We may assume that ψ0(1/2) = v1
and ψ1(1/2) = v̂1. Using the method of Lemma 6.5 we connect ψ0 to ψ1 via a homotopy 
ψt. We define a curve from v1 to v̂1 by Ψ(t) = ψt(1/2).

This homotopy from ψ0 to ψ1 gives one part of the sought homotopy between the two 
crosses. Let β1 denote the curve from m3 to v1 and β2 the curve from m4 to v1. We denote 
by ψ∗

0 the union of β1 and β2, parametrized again on [0, 1] with ψ∗
0(1/2) = v1. We wish 

to construct another simple homotopy ψ∗
t with ψ∗

t (0) = m3, ψ∗
t (1/2) = ψt(1/2) = Ψ(t), 

ψ∗
t (1) = m4, and so that the curve ψ∗

t has no additional intersection points with ψt.
At each time t we must find curves from m3 and m4 to Ψ(t). In order to do this 

we first describe the properties of the curve Ψ(t), as this curve may not be injective. 
Following the construction done in Lemma 6.5, the domain bounded by the two curves 
ψt and ψ1 is decreasing as a function of t. Thus it is not possible for the curve Ψ(t) to 
form a proper loop to intersect itself, but a priori it can be constant on some interval and 
it can also travel backwards along itself. For the moment, let us describe the construction 
of ψ∗

t while assuming that Ψ(t) does not intersect itself or ψ∗
0 .

The idea of the construction of the homotopy ψ∗
t is to add to the initial curve ψ∗

0 a 
part which follows close to the curve Ψ to a certain point and then returns back along 
another path close to Ψ. At t = 1 we will travel the full length of the curve Ψ to the 
point v̂1 and back.

Let us suppose that the homotopy ψ∗
t has been defined up to a point tn where Pn :=

Ψ(tn) is a vertex on the piecewise linear curve given by Ψ. Let Pn+1 be the next vertex 
after Pn on Ψ, and let P 1

n−1 and P 2
n−1 denote the two neighbouring vertices of Pn on 

the curve ψ∗
tn

. The aim now is to “open up” a part of the segment PnPn+1 into two 
segments P 1

nQt and P 2
nQt, but some care must be made to not cause intersections, see 

the rightmost part of Fig. 13 to illustrate this process.
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Fig. 13. Opening up the curve Ψ to create a homotopy of Jordan curves.

More precisely, let us suppose that the angle ∠P 1
n−1PnPn+1 (interpreted as the smaller 

angle of the two choices) is smaller or equal than ∠P 2
n−1PnPn+1 (again, the smaller 

choice). We pick another point P 1
n on the segment PnP 1

n−1 which may be chosen ar-
bitrarily close to Pn. We may let P 2

n := Pn in this case, if the size of the two angles 
∠P 1

n−1PnPn+1 and ∠P 2
n−1PnPn+1 is reversed then so is the role of P 1

n and P 2
n .

For a point tn+1 > tn to be chosen later, we will now define ψ∗
t for t ∈ (tn, tn+1]. For 

t ∈ (tn, tn+1] let Xt denote a point parametrized linearly on PnPn+1 so that Xtn
= Pn

and Xtn+1 = Pn+1. For each t ∈ (tn, tn+1] we now define ψ∗
t by mapping the preimage 

of the segment P 1
nPn to P 1

nXt and the preimage of P 2
nPn to P 2

nXt. This simply corre-
sponds to moving the point Pn along the segment PnPn+1 to the point Xt while keeping 
the parametrization consistent, see Fig. 13. By choosing P 1

n close enough to Pn we can 
guarantee that no new intersection points are created during this process (since by as-
sumption Ψ does not intersect itself), and that the added length is comparable to the 
length of Ψ.

Let us elaborate a bit further on the parametrization of the curves ψ∗
t used here. We 

pick one constant speed parametrization Θ from I := [1/4, 3/4] to the final curve between 
P 1

0 and P 2
0 defined by the process above. This final curve travels arbitrarily close to Ψ

all the way up to v̂1 and then back along a similar curve to P 2
0 . Let us first reparametrize 

the initial curve ψ∗
0 in order to guarantee that a small part is not mapped to Θ in the 

end. We choose ψ∗
0 to map the intervals [1/4, 1/2] and [1/2, 3/4] to the two segments 

P 1
0 P0 and P0P 2

0 , keeping the relation ψ∗
0(1/2) = P0 = v1. The exact parametrization can 

be inherited backwards from the final parametrization Θ, so that the preimage of the 
segments P 1

nXt and XtP
2
n under each curve ψ∗

t for t ∈ [tn, tn+1) is the same set as the 
preimage of the part of Θ between P 1

n to P 2
n . As the latter image curve is longer we may 

guarantee that the Lipschitz-constant of ψ∗
t on [1/4, 3/4] is controlled by the length of 

Θ.
The parametrization in the time variable t can also be chosen based on Θ. In fact, as 

long as we pick the time intervals [tn, tn+1) to have comparable length to the total length 
of the preimage of the segments P 1

n−1P 1
n and P 2

n−1P 2
n under Θ, the Lipschitz constant 

in the time direction will be bounded from above by a constant times the length of Θ.
Thus the boundary curves ψ∗

t have the correct Lipschitz bounds, and we turn our 
attention to interior estimates. Note that there are four different regions meeting at the 
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cross with centre Ψ(t). Let us denote the region which only meets ψt by V 1
t , the region 

which only meets ψ∗
t by V 4

t , and let V 2
t and V 3

t be the two regions which meet one half of 
both of these curves. We let U i

t denote the corresponding dyadic squares on the domain 
side (which, if interpreted as planar sets, are the same set for each t), whose boundaries 
are all identified with S for the sake of constructing the shortest curve extension to V i

t .
In each of the sets V i

t , one part of the boundary is fixed while the deformation of the 
other part is dictated by the homotopies ψt and ψ∗

t . Whichever domain V i
t is chosen, 

locally in t the deformation only consists of moving around the single vertex Ψ(t). Hence 
as long as the preimage (in U i

t ) of the part being deformed corresponds to being either 
contained completely in S+ or completely in S−, this homotopy induces a homotopy on 
∂V 1

t which is at worst a 2-simple homotopy (see Definition 6.6). The preimage being 
contained entirely in S+ or S− happens exactly when the preimage of v1 happens to be 
identified with the vertices (0, ±1) on S, while the opposite is true when Ψ(t) is identified 
with (±1, 0).

If the homotopy of ∂V i
t is indeed 2-simple, then Lemma 6.7 implies that the shortest 

curve extension satisfies the required interior Lipschitz bounds. We need hence address 
the case where Ψ(t) is identified with (±1, 0). Note that in the definition of the shortest 
curve extension which is now applied inside the diamond shaped domain U i

t , there is 
an implicit choice of horizontal/vertical direction based on which two opposing vertices 
we pick as the top and bottom vertices. If we choose the direction where the horizontal 
lines point towards the preimage of Ψ(t), then the condition of the deformation being 
contained inside S+ or S− in Definition 6.3 is satisfied. Naturally we cannot a priori 
choose the orientation to always satisfy this condition as exactly two of the vertices of 
U i

t satisfy this condition and two do not, and eventually we will need to repeat this 
argument with respect to crosses with centres at each of the four vertices of U i

t .
We take care of this issue with the following trick. Let ρ denote a bilipschitz map 

from the square domain bounded by S to the unit disk, and let νt(z) = eiπt/2z denote 
a rotation map on the unit disk. Let H̃0 : U i

t → V i
t denote the shortest curve extension 

of a boundary map ϕ̃0 : ∂U i
t → ∂V i

t . We then define a new map H̃t on U i
t by making a 

change of variables on the domain side in U i
t (identified with S) via the map ρ−1 ◦ νt ◦ ρ, 

and instead of extending ϕ̃ from ∂U i
t we extend the map ϕ̃t := ϕ̃0 ◦ ρ−1 ◦ ν−t ◦ ρ via 

shortest curve extension. Thus H̃t and H̃0 have the same boundary values but differ in 
the interior. In essence, H̃t corresponds to “rotating” the horizontal lines in U i

t by an 
angle πt/2 and constructing the shortest curve extension based on these new curves. But 
we only need to know that for t = 1 the map H̃1 corresponds to constructing the shortest 
curve extension with the horizontal lines in U i

t replaced by vertical lines, which can be 
done by choosing the bilipschitz map ρ accordingly. The homotopy H̃t can be seen to be 
Lipschitz continuous in (z, t) with constant CL, where L is the Lipschitz constant of ϕ̃0. 
This follows from the Lipschitz continuity of ρ, νt and their inverses, and an application 
of Lemma 6.2 since ϕ̃t satisfies the correct bounds in (z, t). The homotopy H̃t can be 
used to temporarily change the direction of horizontal lines in U i

t to suit our purposes, 
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showing that we may reduce to the previous case where the homotopy on the boundary 
is 2-simple.

Let us now address the fact that in general the curve Ψ may intersect itself. Perhaps 
the easiest way to deal with this is to make a slight modification on the construction 
of Lemma 6.5, as the homotopy of curves γt parametrized on [0, 1] constructed in that 
lemma defines Ψ by the relation γt(1/2) = Ψ(t). We will now make a slight perturbation 
of the curves γt to make them mutually non-intersecting, which will guarantee that Ψ(t)
becomes injective.

Note that if two of the curves γt do intersect, they in particular intersect at a vertex 
P of ∂Ŷ , where Ŷ denotes the Jordan domain bounded by the curves γ0 and γ1. At any 
such vertex P we attach to it a small segment PVP facing the interior of Ŷ and bisecting 
the angle of ∂Ŷ at P .

Now for each such segment we consider all the curves γt which pass through PVP and 
let the intersection point of γt with this segment be Pt. Thus for those parameters t the 
map t → Pt defines either an increasing or decreasing parametrization of PVP , which is 
not strictly monotone as some interval of parameters is sent to the point P . However, we 
may make an arbitrarily small modification to this parametrization to make it strictly 
monotone, replacing each point Pt with another point P ∗

t on PVP .
This gives us a way to replace each of the piecewise linear curves γt by another curve 

γ∗
t which, for each segment PVP that intersects γt, passes through the point P ∗

t instead of 
Pt. As this modification may be done in an arbitrarily small way we may assume that the 
Lipschitz estimates we obtained before for ϕt and for Hϕt

also hold after the modification 
up to a multiplicative constant arbitrarily close to 1. Thus although the new homotopy 
induced by the curves γ∗

t is not necessarily simple, it gives the desired Lipschitz-estimates 
inside and all of the curves γ∗

t are mutually nonintersecting. For further details also see 
Section 8 where a similar construction is explained in more depth.

This concludes the construction of the homotopy of the two crosses with centres v1
and v̂1. After doing this process for every vertex vj and every curve Γk,j on level k, 
we have replaced the curve Γk,j with another curve Γ̃k,j with the same vertices as Γ̂k,j

but not intersecting it, see Fig. 11. The homotopy between Γ̃k,j and Γ̂k,j is now easy 
to construct. Between each pair of neighbouring vertices, say v̂1 and v̂2, we deform the 
part of Γ̃k,j into Γ̂k,j via the method explained in Lemma 6.5. After deforming each four 
parts in succession we have deformed Γ̃k,j into Γ̂k,j .

Still in the situation of Fig. 11, we provide a few more details regarding parametriza-
tion and estimates happening here. We may divide the interval [mid, top] into two halves, 
on one of which we deform Γk,j into Γ̃k,j and on the other Γ̃k,j into Γ̂k,j . To offer more 
details on what happens in the first half, we divide the first half further into four in-
tervals so that on each we move one of the vertices vj to the corresponding point v̂j, 
j = 1, 2, 3, 4.

In the first half, the length of the relevant curves is always controlled from above by 
|Γk,j | +|Γ̂k,j |, plus the same quantity over the neighbours of Γk,j. As the initial curves are 
parametrized with constant speed we know by Lemma 6.4 that the Lipschitz-constant of 
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the shortest curve extension h in the (z, t)-variables is thus controlled by 2k(|Γk,j | +|Γ̂k,j |)
added with this quantity over the neighbours.

In the second half, each part of Γ̃k,j having two of the v̂i as endpoints is deformed 
to the part of Γ̂j,k with the same endpoints. Here we are again using Lemma 6.4 and 
therefore the Lipschitz-constant is estimated from above by 2k(|Γk,j | + |Γ̂k,j |).

Step 5. For t ∈ [bot, mid], the situation is as follows. The maps hmid and hbot have already 
been defined. We interpret these maps as planar maps, identifying the horizontal sections 
Ut of the cube Uk,j on the domain side with the same square domain which we call U . 
Both maps hmid and hbot are hence interpreted to be defined on U and as they have 
the same boundary map ϕmid = ϕbot, we may interpret them to map U into the same 
target domain V bounded by the piecewise linear Jordan curve ϕmid(∂U). The difference 
between these two maps is that hmid is defined by the shortest curve extension of ϕmid

and hbot is defined as the shortest curve extension of its boundary values in each of the 
four child squares of U .

Let us denote by C the cross formed by the two segments between opposing midpoints 
of the sides of U . Hence the way hmid maps C is determined by the shortest curve 
extension and we denote the image cross by Tmid = hmid(C). The way hbot maps C
is predetermined by the piecewise linear approximations of the original boundary map 
defined in Section 5. We denote Tbot = hbot(C).

A key point to note is the following. Let U ′ denote one of the four children of U . 
Then we claim that hmid restricted to U ′ is actually the shortest curve extension of 
its boundary value on ∂U ′. Let � denote one of the horizontal line segments inside U ′

(the meaning of ‘horizontal’ here is as it was used in the definition of the shortest curve 
extension), with a and b being its endpoints. Then � is part of a horizontal segment of 
U and is mapped to a curve under hmid which is the shortest such curve between its 
endpoints. This must mean also that the curve is the shortest curve from hmid(a) to 
hmid(b) inside U ′. Moreover, since hmid maps each horizontal segment in U to its target 
curve with constant speed, hmid must also have constant speed on �. This cements the 
fact that hmid on U ′ is the shortest curve extension of its boundary values.

However, the above argument has the following minor defect. In Section 6, the shortest 
curve extension was defined for a boundary map from a square to a piecewise linear 
Jordan domain. But the map hmid might not map the two line segments making up C
to true Jordan curves as the shortest curve extension may fail to be injective and thus 
the image cross Tmid may touch the boundary in V. Nevertheless, these curves are still 
piecewise linear and are given by a uniform limit of Jordan curves. There is no issue 
defining the notion of shortest curves and shortest curve extensions to areas bounded by 
such degenerate Jordan curves as well, and the estimates we have established before in 
results such as Lemma 6.2 and Lemma 6.4 extend naturally to this setting as well. This 
can be seen by verifying that the proofs go through in the degenerate case as well.

From now the strategy to define a homotopy ht for t ∈ [bot, mid] is as follows. For 
each such t, the map ht on ∂U will have the same boundary values ϕmid. Moreover, we 
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will define a homotopy of crosses Tt between the two crosses Tmid and Tbot. Once such 
a homotopy has been defined and parametrized as a map Φt : C → Tt, for each child U ′

of U we define ht on U ′ as the shortest curve extension of its boundary values on ∂U ′. 
Thus ht will be equal to ϕmid on ∂U and to Φt on C.

To construct the homotopy between the two crosses, we would like to apply the same 
argument from Step 4 which was used to create a homotopy between the crosses depicted 
in Fig. 12. However, in the argument from Step 4 it was essential that the two crosses 
only had two intersection points (on the curves between v1, m1 and v1, m2). In our case, 
the crosses Tmid and Tbot may have arbitrarily many intersection points. To address this 
issue, we define another cross Tfix which satisfies this property respective to both the 
crosses Tmid and Tbot, and then simply deform first Tmid to Tfix and then to Tbot. Due to 
Lemma 6.2, the exact nature of the parametrization Φt does not play a role here and we 
may assume for example that on each of the four arms of C the parametrization always 
has constant speed.

Before defining Tfix, we make a small modification to Tmid in order to replace it 
with a cross Tmid∗ which does not intersect the boundary except at the four endpoints. 
Since the cross Tmid consists of piecewise linear curves, this modification can be done 
by moving each of its vertices that touch the boundary (except for the four endpoints) 
by an arbitrarily small amount towards the interior of V so that the resulting cross does 
not intersect itself nor ∂V. This modification provides a homotopy from Tmid to Tmid∗
which we may, for example, dedicate the first quarter of the interval [bot, mid] towards 
in t. The fact that this modification to the cross may be done in an arbitrarily small 
way guarantees that the Lipschitz estimates (in t) both on C and for the shortest curve 
extensions to the four regions of V can be controlled by above with a constant of our 
choice.

It now remains to define Tfix. Since neither of the crosses Tmid∗ and Tbot touch the 
boundary ∂V except at their common four endpoints, we may choose Tfix for example 
as follows. We pick a point P in V close enough to an image point of a corner of U under 
ϕmid so that P belongs to hmid∗(U ′) ∩ hbot(U ′) for one of the children U ′ of U . Then we 
connect P to the four endpoints of Tmid∗ via piecewise linear curves to form the cross 
Tfix. These curves, if chosen to run sufficiently close along the boundary ∂V, may be 
assumed to satisfy the necessary properties of not intersecting themselves or each other. 
Moreover, they can be chosen so that two of them intersect Tmid∗ and Tbot exactly once 
and two of them do not intersect these crosses (apart from the endpoints). See Fig. 14. 
This means that the crosses Tfix and Tmid∗ are in the same configuration as the crosses 
in Step 4, and the same goes for Tfix and Tbot. Hence we may repeat the argument to 
find a homotopy between these crosses, and extend the boundary values defined by this 
via the shortest curve extension to the whole of U . For each t, we lift the copy of U and 
the map ht to the appropriate horizontal section at height t in Uk,j and Vk,j in order to 
fully define our extension there.

We have thus defined the extension h as a monotone map on each set Uk,j to the image 
set Vk,j . We now return to our original goal of controlling the Lipschitz constant of h in 
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Fig. 14. Constructing an intermediate cross Tfix. The original crosses Tmid∗ and Tbot are denoted in red 
and blue colour and they intersect a lot. Thus we construct a new intermediate cross Tfix denoted in green 
which does not intersect Tmid∗ and Tbot too much.

Uk,j . For the readers convenience, we recall that the goal here amounts to showing that 
the Lipschitz constant of h in Uk,j is controlled from above by 2k|Γk,j | plus possibly the 
same quantity over the dyadic neighbours and children of Uk,j. Note that the quantity 
2k|Γ̂k,j | is equivalent with the Lipschitz constant of a constant speed parametrization of 
Γ̂k,j over the boundary of the dyadic square on generation k.

To justify that this bound is maintained throughout Uk,j, we explain as follows. In 
Step 4, the Lipschitz constant of the boundary value isotopy ϕt is controlled by above 
(in both the space and t variable) by the lengths of the corresponding boundary curves 
and possibly the lengths of the neighbouring curves. Lemma 6.4 then shows that this 
implies the correct Lipschitz estimates for h in the region where t ∈ [mid, top]. In the 
region t ∈ [bot, mid], the map h is defined piecewise as the shortest curve extension yet 
again, so to obtain the correct Lipschitz estimates one needs only estimate the length of 
the boundary curves on the image side. These consist of the original boundary curve ∂V
and the lengths of the crosses Tmid, Tfix and Tbot. The first two can be bounded from 
above by a constant times the length of ∂V (which is the length of Γ̂k,j , while the last 
one is bounded by the lengths of the image curves of the children Γ̂(m)

k,j . Thus we get the 
desired estimate that yields a bound on the W 1,q-norm of h in terms of the quantity on 
the left hand side of (1.3).

8. Making it all injective

Let ϕ : ∂S → ∂Y be a homeomorphic boundary map to a Jordan domain Y with 
piecewise linear boundary. We now describe how to tackle the issue that the shortest 
curve extension Hϕ is not injective but rather a monotone map. The main issue is that 
the images of two horizontal segments ls1 and ls2 of S may intersect each other or 
intersect the boundary of the image domain ∂Y . However, the saving grace is that these 
images are shortest curves between their respective endpoints and thus do not cross, 
allowing us to make a minor modification to the curves so that they do not intersect 
each other or touch the boundary and therefore create a homeomorphic extension H∗

ϕ

of ϕ. This modification is not too difficult for a single map and was done already in 
[18]. However, in our case more details are needed as we need to make this modification 
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consistent in a way that if ϕt is a continuous family of boundary maps, not necessarily 
to the same image domain, then the modified extensions H∗

ϕt
need to be continuous in t

and the modification must be done in a way to preserve the Lipschitz estimates in terms 
of ϕt.

We will now describe a precise way of constructing the injectification of a single 
shortest curve extension Hϕ : S → Y . One may imagine here that Hϕ = Hϕt

for some 
homotopy of maps ϕt but with a specific fixed parameter t. We drop the subscript t for 
ease of presentation, however. We will define this injectification process with dependence 
on certain auxiliary parameters (such as D, defined later), and one should keep in mind 
that these parameters will need to be interpreted as functions of t later. By later fixing 
their dependence on t we will be able to argue that the process ensures both continuity 
in t for the extensions as well as the required Lipschitz-estimates.

Firstly, we may assume here that the boundary map ϕ is also piecewise linear, as such is 
the case in the whole construction done in previous sections, where ϕ is always defined 
piecewise as a constant speed map. When ϕ and ∂Y are piecewise linear, it is not difficult 
to check that then also the shortest curve extension Hϕ becomes a piecewise affine map 
on S.

The aim is to show that the modification from the shortest curve extension Hϕ to 
its homeomorphic variant H∗

ϕ may be done in an arbitrarily small way in the following 
sense. On each horizontal segment ls, the map Hϕ maps ls to a shortest curve Ls with 
constant speed. The map H∗

ϕ instead maps ls to another piecewise linear curve L∗
s, also 

with constant speed, and so that L∗
s may be obtained from Ls by shifting each vertex of 

Ls by a small distance. We will show that such distances can be chosen to be arbitrarily 
small, controlled by a single constant per map, which means that the modified map H∗

ϕt

will also be arbitrarily close to Hϕ which lets us obtain the same Lipschitz-estimates for 
it.

The idea behind modifying the curves Ls to the curves L∗
s is quite simple. At each 

vertex of ∂Y where Ls passes through, we move that vertex of Ls a little bit further 
away from the boundary. For curves Ls′ with s′ > s, this movement should be a little 
bit larger for vertices on ∂Y on the image of the part of ∂S below ls and a little smaller 
for vertices on ∂Y on the image of the part of ∂S above ls. See Fig. 15.

We now begin the precise definitions. Let us define a number D as the minimal length 
between two sides of ∂Y which are not neighbours. Next, for any point P ∈ ∂Y we define 
the inner normal of P , denoted �P , as the ray which starts from the point P , points 
towards the interior of Y near P , and forms equal angles with ∂Y i.e. is an angle bisector 
for the angle of ∂Y formed at P .

For every vertex P ∈ ∂Y , we pick a positive number εP < 1 whose role will become 
apparent later in making the modification process continuous in t. We then define the 
point VP as the point on �P which is of distance εP D/3 away from P . By the definition 
of D, the point VP must be at a distance of at least 2D/3 away from any other side of 
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Fig. 15. Modifying the curves Ls on the segment P VP .

∂Y than the two P lies on. This means that apart from the point P , the segment PVP

cannot intersect ∂Y nor can it intersect any other such segment QVQ for another vertex 
Q of ∂Y .

Note that two of the shortest curves Ls may only intersect at points on ∂Y . Since 
the point VP is inside Y , for each P there must be a unique parameter sP for which 
LsP

passes through VP . We also define ŝP as the parameter for which P is one of the 
endpoints of LŝP

. Thus the curves Ls which intersect the segment PVP are exactly those 
for which s ∈ [sP , ̂sP ]. It can also be possible that sP = ŝP , in which case the segment 
PVP belongs fully to the curve LsP

. This is also the only case in which a curve Ls

intersects PVP more than once. In this case we will not modify the curve LŝP
which is 

equivalent with setting εP = 0.
Suppose that sP > ŝP . For each s ∈ [ŝP , sP ] there is a unique point Xs on PVP

which belongs to Ls. Let fP : [ŝP , sP ] → [0, εP D/3] denote the function which sends s
to |Xs − P |. Now fP is an increasing and surjective piecewise linear function, strictly 
increasing on the preimage of (0, εP D/3], but it is possible that fP sends a nontrivial 
interval of parameters [ŝP , x] to 0. In fact, this happens exactly in the case where there 
are multiple curves Ls that intersect at P .

The idea now is the following. We pick a strictly increasing surjective piecewise linear 
function f∗

P : [ŝP , sP ] → [0, εP D/3] to act as an injective replacement for fP . We wish to 
make a canonical choice here so for an increasing surjective function fP : [0, 1] → [0, 1]
for which f−1({0}) = [0, A] we set

f∗
P (x) =

{
x/(2A) when x ∈ [0, A],
(fP (x) + 1)/2 otherwise.

The way we will modify each curve Ls for s ∈ [ŝP , sP ] is by moving the point Xs on Ls

to a new point X∗
s on PVP so that |X∗

s − P | = f∗
P (s).

If sP < ŝP , we do the exact same process as above only on the interval [sP , ̂sP ]
on which the analogously defined function fP will be decreasing instead of increasing. 
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Similarly we choose f∗
P as a strictly decreasing function. We now define the curves L∗

s. For 
each curve Ls, we make note of all the segments PVP which this curve passes through. 
We only consider segments with sP 	= ŝP as to neglect cases where the segment PVP is 
fully on Ls. On each of the applicable segments PVP intersecting Ls we move the point 
Xs on the curve Ls to X∗

s . Note that the curves LsP
and LŝP

are not modified with 
respect to the process specific to the segment PVP (although they may be changed when 
we repeat this process on other segments QVQ).

Step 1. Proving that the curves L∗
s do not intersect ∂Y except at their endpoints.

Fix s and consider the curve Ls. For each vertex P of ∂Y , we consider the seg-
ments PVP . We recall these segments are mutually disjoint. Considering the intersec-
tion points of Ls with all such segments PVP , this splits the curve Ls into segments 
Q0Q1, Q1Q2, . . . , QN−1QN so that Q0, QN are the endpoints of Ls and for each Qj , 
there is a point Pj which is a vertex of ∂Y so that Qj ∈ PjVPj

. Moreover, we assume 
that there are no other such points on Ls.

Consider now a segment QjQj+1 with 0 < j < N −1. During the deformation from Ls

to L∗
s, the point Qj is moved on the segment PjVPj

to another point Q∗
j . Suppose for the 

contrary that the segment Q∗
j Q∗

j+1 intersects the boundary ∂Y . Let Qr
j = (1 −r)Qj +rQ∗

j . 
As neither Q∗

j or Q∗
j+1 belong to ∂Y , there must be a minimal number 0 < r < 1 so that 

Qr
jQr

j+1 intersects ∂Y . We now consider two cases:

(1) If a vertex P of ∂Y intersects Qr
jQr

j+1. Basic geometry dictates that such a vertex 
P cannot share a side with Pj or Pj+1. If P equals Qr

j or Qr
j+1, this contradicts 

the definition of D as then the distance from P to either Pj or Pj+1 would be too 
small, seeing as |Qr

j − Pj | � D/3 holds for all j and r due to Qr
j ∈ PjVPj

. If P is 
strictly between Qr

j and Qr
j+1, then again a simple geometrical argument shows that 

there must be a non-endpoint of QjQj+1 which is on PVP , a contradiction with the 
definition of the points Qj .

(2) If a point X of ∂Y which is not a vertex intersects Qr
jQr

j+1. We obtain a similar 
contradiction as above if X is either of Qr

j or Qr
j+1. In the case where X is strictly 

inside Qr
jQr

j+1, the segment of ∂Y on which X is on must be parallel to Qr
jQr

j+1, 
as otherwise a smaller choice of r would result in the segments still intersecting 
but contradicting the minimality of r. But for any two segments which are parallel 
and intersect each other, one must contain an endpoint of the other one. Thus this 
reduces to one of the cases already considered.

Step 2. Proving that the curves L∗
s do not intersect each other.

If two of the curves L∗
s and L∗

s′ intersected each other with s < s′. Then for all r ∈ (s, s′)
the curve L∗

r would also necessarily intersect both L∗
s and L∗

s′ or either it would provide 
a separation between them. But for r close enough to s, the curves L∗

r and L∗
s may not 
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intersect. This is due to the fact that these curves may be decomposed into the same 
number of segments Ir

j and Is
j , j = 1, . . . , N , and so that Ir

j → Is
j as r → s. This 

convergence implies that for r close enough to s, the segment Ir
j cannot intersect Is

j′

unless j′ ∈ {j − 1, j, j + 1}. However, even in this case these segments may not intersect 
due to geometrical reasons, as the nature of the construction guarantees that Ir

j and Is
j

do not intersect.

Step 3. Uniform estimates in t.

We now describe the process of ensuring that the modification done in the previous 
steps stays continuous in t and has comparable Lipschitz-estimates in each dyadic set to 
the original extension. During the construction made in Section 7, we have created an 
extension h : [0, 1]3 → [0, 1]3 of the boundary map ϕ so that each level [0, 1]2 × {t} is 
mapped to R2 ×{t}. For each t, such a level is divided into a number (depending on t) of 
dyadic squares whose boundaries are mapped to piecewise linear Jordan curves by h on 
the target side. Moreover, inside these squares the map h is defined by the shortest curve 
extension of its boundary values. For each dyadic level, there is a specific parameter t
at which the construction changes from being based on those dyadic squares to being 
based on their children. The exact behaviour of h at this parameter was described in 
Step 5 of Section 7 at the parameter t = mid in the cube Uk,j . We let the sequence of 
such parameters be denoted by t1 > t2 > t3 > . . . corresponding to each dyadic level.

We first describe how to modify the extension h inside each interval Ij = (tj+1, tj ]
without paying mind to the continuity between successive intervals. We focus now on a 
fixed parameter t and a single dyadic square Q̃k,j ×{t} on the domain side and its target 
set, which we interpret as a planar Jordan domain Yt with piecewise linear boundary. We 
may appeal to the fact that boundary of the domain Yt deforms continuously in t and 
the fact that there is an upper bound on the number of vertices of each piecewise linear 
curve to deduce that the quantity D = D(t) as defined earlier on Yt has a uniform lower 
bound for t ∈ Ij . Here we recall that the quantity D and all other quantities introduced 
in the earlier description of the construction need to be interpreted as functions of t.

We now appeal to the behaviour of the piecewise linear curve ∂Yt. In a neighbourhood 
of parameters t where the number of vertices of ∂Yt is constant, the domain Yt changes 
in t only by moving these vertices around in a continuous way. There is hence a corre-
spondence between the segments PVP in t in this neighbourhood and thus to guarantee 
continuity of the modified extension we must simply ensure that the length of each such 
segment is a continuous function in t. This length of PVP was defined as εP D/3. Since 
D is locally bounded from below in t, εP can be chosen for each t in such a way as to 
make εP D a continuous function in t in such a neighbourhood. In fact, we choose εP D

to be a piecewise linear function to maintain Lipschitz-continuity in t as well (we pay 
proper attention to estimates later).

We should pay some special attention here to shortest curves Ls which completely 
contain a segment PVP . This happens only when the shortest curve LŝP

with endpoint 
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P bisects the angle of the boundary at P . In such a case no other curve Ls′ may pass 
through P as these curves have mutually disjoint endpoints, nor may it pass through 
PVP as the shortest curves do not intersect in the interior. At any parameter t where 
this issue happens we may therefore set εP = 0, essentially forgetting about the segment 
PVP altogether, without losing injectivity of the modified extension at this parameter. 
To maintain the continuity of εP D in t near those parameters t for which LŝP

contains 
PVP , we may for example take an already chosen function εP (t) and multiply it with a 
(piecewise linear) function G(t) for which G(t) ∈ [0, 1) and G(t) = 0 exactly for these 
exceptional parameters t.

The number of vertices of ∂Yt does not generally remain constant, as there may be 
new vertices appearing from an edge turning into two edges via a new angle being created 
at a given point P on that edge. The reverse may also happen to reduce the vertex count 
by one, but for the purposes of proving continuity both of these cases are symmetric to 
each other. Let us hence assume that at time T0 the point P = P (T0) lies on an edge 
of ∂YT0 , but on the interval (T0, T1) the point P (t) is a true vertex of ∂Yt. In this case 
we do as before on (T0, T1), choosing εP D to be continuous in terms of t. Moreover, we 
choose εP in such a way that εP D → 0 as t → t0. This means that the segment PVP

shrinks to a point as t → T0, which guarantees continuity at this point also.
For a fixed parameter t, it is clear that as the numbers εP are chosen uniformly small 

enough, for example, by multiplying each with a small constant δt > 0 independent of P , 
the modified extension H∗

ϕ is arbitrarily close to the original extension Hϕ in the Lipschitz 
norm. Moreover as the quantities εP D were chosen to be Lipschitz continuous, choosing 
δt as a piecewise linear function in t with small enough Lipschitz norm guarantees that 
the map (z, t) → H∗

ϕt
(z) may be chosen arbitrarily close to the original map h in the 

Lipschitz norm for t ∈ (tk+1, tk]. This shows that the Lipschitz estimates obtained in the 
previous section may be inherited by the modified extension as well.

Finally, we address the case of the parameters tk where we switch from one dyadic 
level to another (t = mid in Uk,j). We pick a parameter t∗

k < tk slightly below tk so that 
on the level t∗

k the extension h is given by the shortest curve extension in the four dyadic 
children instead. Choosing t∗

k close enough to tk lets us assume that the two maps levels 
t∗
k and tk are arbitrarily close to each other in the Lipschitz norm. Moreover, due to 

this we may assume that the two modified maps are also as close in the Lipschitz norm 
as we want. For the sake of this argument we interpret these modified maps as planar 
maps htk

, ht∗
k

: S → Y from a square to a piecewise Lipschitz Jordan domain, and recall 
that they have the same boundary values. As both of these maps are piecewise linear 
and homeomorphic, for t∗

k close enough to tk we may assume that each of the maps 
h(τ) := (1 − τ)htk

+ τht∗
k

is also homeomorphic for τ ∈ [0, 1] due to the fact that the 
Jacobian determinant of h(τ) must be bounded away from zero for all τ when htk

and 
ht∗

k
are close enough in the Lipschitz norm.

We may then redefine the extension for parameters t ∈ [t∗
k, tk] by setting it equal to 

h(τ) for τ = (t − tk)/(t∗
k − tk). Note that the Lipschitz norm in t may now be very large 

here due to the fact that the denominator t∗
k − tk may be arbitrarily small. To fix this, 
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Fig. 16. The construction of refined dyadic quadrilaterals on the side and top faces.

we rescale the parametrization on the interval (tk+1, tk] on the domain and target side so 
that if M denotes the midpoint of this interval, we scale (t∗

k, tk] to (M, tk] and (tk+1, t∗
k]

to (tk+1, M ]. The length of the interval (M, tk] is hence comparable to 2−k, which means 
that the Lipschitz constant of the map for parameters t ∈ (M, tk] on Uk,j is controlled 
by 2k|Γ̂k,j | as we have wanted. This finishes the construction and the proof.

9. Extending a boundary map of the sphere

In this section we describe how to modify the local extension method constructed in 
Sections 5 to 8 to obtain a proof of Theorem 1.2. We go through the arguments in order 
and explain the changes needed in each part.

Proof of Theorem 1.2. First we must define a dyadic decomposition of the unit sphere. 
For this purpose we embed the boundary of the unit cube smoothly onto the sphere 
and inherit the dyadic decomposition from each face of the unit cube. Thus the dyadic 
decomposition of the sphere splits into six dyadic decompositions of squares, which cor-
respond to the six faces of the unit cube, and we may label the respective sets on the 
sphere as four side faces and one top and bottom face.

The key difference in the spherical case lies in Lemma 5.1, where the dyadic decom-
position is refined on each level. The main issue is that in Lemma 5.1 the vertices of 
the refined quadrilaterals Qk,j were positioned in the same direction (to the right and 
up) with respect to the original dyadic squares, whereas no such uniform direction can 
be chosen on the sphere. Instead we do as follows. For each dyadic quadrilateral Qk,j

belonging to one of the side faces, we apply the same arguments as in Section 5 and 
choose the vertices of its four children in the direction of east and north on the sphere, 
see Fig. 16. Thus on the side faces the construction can proceed as usual.

We turn our attention to the top face. Let us fix a dyadic level k and suppose that 
the choice of quadrilaterals Qk,j has been made. Let us denote by {vm} the collection 
of points that are either vertices of the quadrilaterals Qk,j, midpoints of their sides, or 
intersections of two segments between opposing midpoints. The points {v̂m} will denote 
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Fig. 17. Picking vertices v̂m in three stages.

vertices of the quadrilaterals Qk+1,j which we must now choose. Let us define two sets 
of vertices O and Ô by saying that vm ∈ O if the vertex vm is on the outer boundary of 
the union of all Qk,j on the top face, and likewise v̂m ∈ Ô if v̂m is on the outer boundary 
of the union of all Qk+1,j on the top face. The choices made on the side faces already fix 
the points v̂m ∈ Ô and imply that on each dyadic level k, vertices v̂m ∈ Ô are closer to 
the north pole than the vertices vm ∈ O, and thus belong inside the union of all Qk,j , see 
Fig. 16. On the bottom face this relation is reversed, but these two cases are analogous 
enough that we only need to describe the construction on the top face and the other case 
is done with similar arguments.

For vertices vm /∈ O, we must pick one of four possible directions in which to choose 
v̂m in, corresponding to the four dyadic quadrilaterals meeting at vm. Supposing that 
k � 2, we pick the vertices as follows. For each vertex vm for which vm has a neighbour 
vm′ ∈ O, we choose v̂m to lie inside the same quadrilateral as v̂m′ , see Fig. 17. There 
are four vertices near the corners where the choice of vm′ is not unique and thus we 
have two quadrilaterals to choose from: one in the corner and one adjacent to it. In this 
case we pick v̂m in the quadrilateral adjacent to the corner. For vertices vm not having 
neighbours in O, we can pick the direction in which to choose v̂m arbitrarily.

As we have now chosen the grids on the domain side, we proceed as usual to define 
curves Γk,j on the image side as piecewise linear approximations of the image curves 
of ∂Qk,j under ϕ. Topological information can be preserved here since ϕ is a homeo-
morphism, which means that we can assume that the image grid formed by the Γk,j is 
topologically equivalent to the domain grid. Hence on each dyadic level k the grid formed 
by the Γk,j and the grid on the next level formed by the children Γ̂k,j can be assumed 
to have topologically the same intersection points as the respective grids on the domain 
side.

Due to the appearance of some additional intersection points compared to the argu-
ments in Section 7, we must explain how the homotopy between Γk,j and Γ̂k,j is defined 
in our case. Denote by Vm and V̂m the vertices on the image side corresponding to vm

and v̂m, and abuse notation to define Vm ∈ O if vm ∈ O. First we note that due to the 
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Fig. 18. Deforming the two crosses.

choice of the vertices v̂m before, if v̂m ∈ Ô then at these points we are in the topologically 
correct situation to apply the homotopy construction from Section 7. As in the argument 
presented there, we may deform the cross with centre V̂m into a cross with centre Vm

and having the same endpoints, see Stage 2 in Fig. 18.
At the four vertices in the corners of the top face there is a special situation where 

only three curves meet at vm and v̂m instead of four, so technically we can not apply the 
previous homotopy argument between crosses here. But the “cross” consisting of three 
curves is only easier to deform than one with four. For example, one can add an auxiliary 
curve to both configurations, use the previous argument for four curves, and then forget 
about the auxiliary curves altogether.

Thus we may apply an initial homotopy at the points V̂m ∈ Ô and the side faces to 
replace the grid formed by the curves Γ̂k,j with another grid Ĝ whose outer boundary 
curves and points align with the respective Γk,j and Vm. See Stages 2 and 3 in Fig. 19. 
We must then describe how to deform the parts of the two grids left over inside the top 
face to each other despite the existence of some extra intersection points.

In order to do this we simply define an auxiliary grid with vertices at points we denote 
by Wm as follows. The points Wm will be chosen in the same direction with respect to 
both points Vm /∈ O and V̂m /∈ Ô. Precisely we mean that if the grid Ĝ is identified with 
a square grid of dimensions 2k × 2k, then each point Wm lies in the square to, say, the 
lower right of its respective point V̂m ∈ G. We may make this choice so that Wm also 
lies to the lower right with respect to Vm in the original grid G consisting of the curves 
Γk,j .

The points Wm can then be connected by piecewise linear Jordan curves with lengths 
comparable to the total length of the respective curves Γk,j and Γ̂k,j . This may be 
justified for example by travelling sufficiently close to either of the given grids G and Ĝ. 
These curves form an auxiliary grid G̃ containing the points Wm, and we can moreover 
pick this grid so that each of the curves in G̃ between neighbouring points Wm only 
intersects both grids G and Ĝ at most once.
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Fig. 19. Deformation between the two grids.

It then only remains to apply the arguments of Section 7 concerning the homotopy 
between grids to first deform G to G̃, and then G̃ to Ĝ as the grid G̃ is in the correct 
position w.r.t. the other two grids to apply the usual construction. The rest of the proof 
proceeds the same way. �
Data availability

No data was used for the research described in the article.
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