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are required in 3D. We prove, among other things, that a
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some p € [1,00) admits a homeomorphic extension h: R3 2
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is nearly sharp, as the bound ¢ = %p cannot be improved due
to the Holder embedding. The case ¢ = 3 gains an additional
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interest as it also provides an L!-variant of the celebrated
Beurling-Ahlfors quasiconformal extension result.
© 2024 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Throughout this paper B denotes the unit ball in R?® and S = 0B. We study the
following 3D—-Sobolev homeomorphic extension problem.

Problem 1. Suppose that a homeomorphism ¢: S 2% S admits a continuous extension
to B in the Sobolev space W14(B, R?) for some ¢ € [1,00). Does the map ¢ also admit
a homeomorphic extension to B of class W14(B, R3)?

Every boundary homeomorphism ¢: S 2% S extends as a homeomorphism to the ball
B. On the other hand, according to a famous result of Gagliardo [13], for 1 < ¢ < o0,
the mapping ¢ is the Sobolev trace of some (possibly non-homeomorphic) mapping in
WL4(B,R3) if and only if it belongs to the fractional Sobolev space Wlf%’q(S, R3); that
is,

[p(z) — @ (y)|?
//dedy<oo. (1.1)

S S

Note that the 2D result [31] that every boundary homeomorphism ¢: 9D =% 9D extends
as a W1%-homeomorphism, ¢ < 2, to the unit disk D C R? has no counterpart in higher
dimensions. Indeed, there are boundary homeomorphisms from S onto itself that do not
even admit a continuous Sobolev extension in W14(B, R?) for any ¢ > 1, see Example 3.1.

First we give a discrete variant of (1.1); that is, we characterize the boundary home-
omorphisms that admit a Sobolev extension in W14(B, R?) when ¢ > 2.

Theorem 1.1. Let p: S ®% S be a homeomorphism and q € (2,00). Suppose that Dy, is
a dyadic decomposition of S into closed bi-Lipschitz squares of diameter c27%. Then ¢
satisfies (1.1) if and only if

iZk(q*S) Z [ diam @(Qj)}q < 0. (1.2)
k=1

Q; €Dy,

For the precise definition of Dy, we refer to Definition 2.1.

The corresponding 2D—Sobolev homeomorphic extension problem [22] has an easy
answer thanks to the available analytic methods of constructing 2D-Sobolev homeo-
morphisms. Indeed, let D be the unit disk in R? and ¢ € [1,00) then a boundary
homeomorphism ¢: D 2% dD admits a homeomorphic extension to D in W14(D, R2)
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if and only if it admits a continuous extension to D in W4(D,R?). This follows from
the Rad4-Kneser-Choquet (RKC) theorem [11] for ¢ < 2. The RKC theorem asserts
that a homeomorphic boundary value ¢: D % 9D admits a homeomorphic har-
monic extension of . The harmonic extension belongs to W14(D,R?) for all ¢ < 2
and to W12(D,R?) exactly when is in the trace space of W12(DD,R?). Similarly the
g-harmonic variants of the RKC theorem [2] solve the 2D extension problem for g > 2.
An analogous approach fails in higher dimensions. Indeed, Laugesen [23] constructed a
self-homeomorphism of the sphere S in R3 whose harmonic extension to the ball B is not
injective. Thus, the 3D extension problem requires new methods of constructing Sobolev
homeomorphisms.

Our main result tells us that the searched homeomorphic extension exists if the bound-
ary homeomorphism satisfies a strengthened version of the condition (1.2).

Theorem 1.2. Let q € (1,00). Suppose that Dy, is a dyadic decomposition of S into closed

onto

bi-Lipschitz squares of diameter c27%. If a homeomorphism ¢: S ® S satisfies

Q; €Dy

D 2M N (1 (0(0Q))]" < o0, (1.3)
k=1

then it admits a homeomorphic extension h: B ** B in W14(B,R?).

Here H! stands for 1-dimensional Hausdorff measure and so H!(p(0Q;)) measures
the length of the curve ¢(9Q;).

For a Sobolev homeomorphism ¢: S % S the trivial radial extension h(z) = |z|o(x)
produces a self homeomorphism of B which has the same Sobolev regularity as the
given boundary map ¢. Clearly, such an extension is far from being optimal. Our next
result, however, nearly characterizers the first order Sobolev spaces that admit a Sobolev
homeomorphic extension to B.

onto

Theorem 1.3. Let : S 2% S be a homeomorphism in W1P(S,R3) for some p € [1,00).
Then ¢ admits a homeomorphic estension h: B 2% B in W14(B,R3) for 1 < ¢ < %p.

For the sharpness of this result we refer to the general embedding result by Sickel and
Triebel [28, Theorem 3.2.1]. Namely for p € (1, 00) we have W1P(S,;R3) C Wlf%’q(S, R3)
if and only if ¢ < %p. Even assuming that the mappings are homeomorphisms does not
improve the inclusion at least when p > 2, see Example 3.2. We do not know if one can
take ¢ = %p in Theorem 1.3.

Theorem 1.3 follows from Theorem 1.2. On the contrary there are self homeomor-
phisms of S which satisfy (1.3) and do not belong to any Sobolev class WP(S,R?),
p = 1, see Example 3.3.

In topology and analysis, a number of extension problems have been studied. A
demand for Sobolev homeomorphic extension problems comes from the variational
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approach to Geometric Function Theory (GFT) [4,15,21,26] and mathematical mod-
els of Nonlinear Elasticity (NE) [3,6,9]. Both theories enquire into homeomorphisms

onto

h: X 22'Y of smallest stored energy

Ex[h] = /E(z,h,Dh)dm, E: X x Y x R™"
X

where the so-called stored energy function E characterizes the mechanical and elastic
properties of the material occupying the domains. In a pure displacement setting, typi-
cally an orientation-preserving boundary homeomorphism ¢: 0X 2% JY is given. The
class of admissible deformations consists of Sobolev homeomorphisms or just Sobolev
mappings h: X 2% Y with non-negative Jacobian determinant .J,(z) = det Dh(z) > 0
(an axiomatic assumption in NE) which coincides with ¢ on the boundary and having
a finite stored energy. In such variational problems, a first issue to address is the non-
emptiness of the class of admissible deformations; that is, to solve the corresponding
Sobolev homeomorphic extension problem.

Note that an arbitrary orientation-preserving Sobolev homeomorphism A need not be
strictly orientation-preserving in the sense that Jy(z) = det Dh(xz) > 0 almost every-
where. For every ¢ < 3, there even exists a homeomorphism h: B 2> B in W4(B, R3)
with Jp,(z) = 0 for almost every « € B, see [14]. However, the homeomorphic extensions
h: B 2 B constructed in Theorem 1.3 and Theorem 1.2 are piecewise linear. Thus,
they are strictly orientation-preserving provided that the given boundary homeomor-
phism itself preserves the orientation. In particular, these homeomorphisms have finite
distortion. The theory of mappings of finite distortion arose out of a need to extend the
ideas and applications of the classical theory of quasiconformal mappings to the degen-
erate elliptic setting [15,21]. We recall that a homeomorphism h: X ®*% Y of Sobolev
class W2} (X, R") defined on a domain X C R” has finite distortion if

|Dh(z)|" < K(x)Jn(2) (1.4)

for some measurable function 1 < K(z) < oo. Here, |Dh(z)| is the operator norm of
the weak differential Dh(z): X — R"™ of h at a point x € X. We obtain quasiconformal
mappings if K € L>°(X). There are several other distortion functions of great interest in
GFT. Each of them is designed to measure the deviation from conformality of a given
mapping h: X — R"™ in terms of the tangent linear map Dh(z): R™ — R™. The most
interesting, from the applied point of view, is the inner distortion function. In NE one
is typically provided information not only on the differential matrix, but also on its
(n — 1) x (n — 1)-minors; that is, the cofactor matriz D*h called co-differential of h.
Now, for a homeomorphism h € VVIEC1
distortion function, to be the smallest K,(z) = K, (z, f) > 1 satistying

(X,R™) of finite distortion we introduce its inner

[DFf(2)|" = K, (x) - T ()"
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The most pronounced extension result in GFT is the Beurling- Ahlfors quasiconformal
extension theorem [7]. It states that a self-homeomorphism of the unit disk D is quasi-
conformal if and only if the boundary correspondence homeomorphism ¢: 9D =% 9D
is quasisymmetric. The Beurling-Ahlfors result has found a number of applications in
Teichmiiller theory, Kleinian groups, conformal welding and dynamics, see e.g. [4,19].
It has generalized to the n-dimensional quasiconformal maps as well, first for n = 3
by Ahlfors [1] and then for n = 4 by Carleson [8]. A full n-dimensional version of the
Beurling-Ahlfors extension is due to Tukia and Vaiséla [30]. Their extension uses, among
other things, Sullivan’s theory [29] of deformations of Lipschitz embeddings. Moreover,
Astala, Iwaniec, Martin and Onninen [5], as a part of their studies of deformations
with smallest mean distortion, characterizes self homeomorphisms of the unit circle that
admit a homeomorphic extension to the unit disk D with integrable distortion. This
L'-Beurling-Ahlfors extension theorem enjoys the following 3D-variant.

Theorem 1.4. Let 1p: S 2% S be an orientation-preserving homeomorphism. Suppose
that the inverse ~' = ¢ satisfies (1.3) with ¢ = 3. Then v admits a homeomorphic

onto

extension f: B 22 B with integrable inner distortion.

Theorem 1.4 is actually a relatively straightforward consequence of Theorem 1.2,
thanks to an important connection between the conformal energy of a homeomorphism
and the inner distortion function of the inverse mapping. Indeed it is easy to see, at
least formally, that the pullback of the 3-form K, (y, f) dy € A®B by the inverse mapping

“1:B % B is equal to |[Df~!(x)[>dz € A3B. This observation is the key to the
identity,

/|Dh(m)|3dx:/KI(y,f)dy, where h = f~1: B 2% B. (1.5)
B B

The optimal Sobolev regularity of deformations to guarantee the identity is well-
understood today, [10,16,17,24]. In particular, if a homeomorphism h: B 2% B of finite
distortion belongs to the Sobolev class W13(B, R3), then the inverse f = h~! has inte-
grable inner distortion. Thus, Theorem 1.4 simply follows from Theorem 1.2. It is worth
noting that the borderline case in Theorem 1.3 (p = 3 and q = 2), if true, would have
an interesting corollary. Namely, a homeomorphism v: R? 2% R2 of locally integrable
distortion would then admit a homeomorphic extension f: R3 2% R3 with locally inte-
grable inner distortion.

Acknowledgements. We would like to thank the referee for their many insightful com-
ments and suggestions which particularly helped in improving the presentation of the
paper considerably.
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2. A discrete characterization, proof of Theorem 1.1

Let I = [a,b]? be an initial square in R2. The standard dyadic decomposition of 1
consists of closed squares Q C I with sides parallel to the sides of I and of side length
Q) =2"%(b—a), k=1,2,3,...; refers to the k-th generation in the construction. That
is, the squares in the k-th generation have the form

QjZQ—k(H+Uj)CH, for some vje]RQ.

They cover I and have side length 27%(b — a). The collection of the k-th generation
squares are denoted by Dy. There are 22% squares in Dj,. The interiors of the squares in
the same generation Dy, are pairwise disjoint.

Let Q3 = [0,1]3 be the unit cube in R3. We define the k-th generation dyadic de-
composition of 0Q? as follows: first we divide each of the six faces of OQ into the k-th
generation squares and then the k-th generation dyadic decomposition of OQ? simply
consists of the union of these closed squares.

Now, since B is a bi-Lipschitz equivalent with Q2, defining a k-th generation dyadic

decomposition of OB = S can be easily induced from the above case.

Definition 2.1. Let ®: R3 — R? be a bi-Lipschitz map which takes Q% onto B. Then the
k-th generation dyadic decomposition of S, denoted by Dy, consists of CIJ(Qj), where Qj
is a k-th generation dyadic square of Q3.

Theorem 2.2. Let o: R? — R? be a homeomorphism, Igr = [-R, R]?> C R? for R > 0
and let N € N. Denote the collection of k-th generation dyadic squares of I by ﬁ,iv
Then, for 2 < q < oo we have

) — o)
//Wdzdy<oo for every R > 0 (2.1)
IrIr
if and only if
ng(q—?’) Z [diam @(Qj)]q < oo forevery NeN. (2.2)
k=1

Qjeﬁ{g’

Proof. First we assume the condition (2.1) with R = 2'2. Now, the mapping ¢: R? — R?
admits an extension f: R? — R3 in WhP(Ig x [-R, R],R?) which is continuous and
agrees with ¢ on R? x {0} (see (1.1) and the paragraph before). It suffices to prove (2.2)
with N = 1.

Fix Qk,j € 25% for some k € N and j € {1,...,2%"}. We denote the centre of Qlw- c R?
by x,. Let IB%% be the 3-dimensional ball in R3 centred at z, with radius R > 0 and

B% = B% N (R? x {0}). (2.3)
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Choose n € (2, q). According to the Sobolev imbedding theorem on spheres [15, Lemma
2.19] there is a constant C' > 0 such that for a.e. s € (0, R) we have

diam f(0B%) < Cs' 77 /|Df|’7 :
oB3

This is the moment where we used the assumption g > 2. By (2.3) we always have
diam f(0B?) < diam f(0B?).

Since ¢: R? 2%y R? is a homeomorphism we get
diam p(B?) = diam ¢(9B?).

For fixed r € (0, R/2), the above estimates give

3=

diam p(B?) < Cs' ™ / |Df|" for a.e. s € (r,R)
oB3
and
2r
. 2\17M ds n
[diam ¢ (B7)] o <C |Df]". (2.4)
r B3, \B3
Thus
g
diam p(B2) < Cr' s /|Df|’7
3
and

3=

diam (Qy, ;) < C27F1=3/m) /|Df|” : (2.5)
3

23—k

The k-th dyadic decomposition Dy, = {Qk}j: keN, j=1,...,22k) of I; C R? defines
a corresponding Whitney decomposition of I; x [0,2] C R3,

We={Qi,: keN, j=1,...,2%}
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where

Qi = Qg x 27FF, 2772,
Let x € sz and ¢ = 2!'. Then B3, , (z) = B3(z,c27%) D B3,_, and so

1
n

diam (O, ;) < C2~H1=3/) / Dfp"

sz—k(x)
by (2.5). In particular, we have
~ 1 ~
diam (Qy ;) < C27* [ML|Df|"(z)] " for all z € Qij . (2.6)

Here M. denotes the Hardy-Littlewood maximal operator,

M (w) = swp e [ DAY

B3(w

Raising the estimate (2.6) to the power ¢ and then integrating it over the cube sz we

have
273 [diam (Qy ;)] ! < 279 / [M.|Df["(x )]%
Q3%
Thus,
0 22k ) 22+2k‘
ZZQk(q 3) [ diam ¢( Q;” C'Z Z / [M.|Df|"(z)]"
k=1j=1 k=1 j=1 Q%
~c¢ [ Mpsr@)t.
]IlX[O,Q]

Since ¢/n > 1 we can use the boundedness of the Hardy-Littlewood maximal function
. 9 . .
in L for the function |Df|" to obtain

00 22k
SN e dam @) <0 [ Ds
k=1j=1 I.x[—2c,2¢]

as claimed.
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Secondly we assume (2.2) for N = 1 and some ¢ € (1,00). Our goal is show that

[o(x) — ()|

I, I,

We say that two dyadic squares on the same level k are neighbours if their boundaries
have at least one intersection point. We also define the dyadic distance d*(S,S’) of two
squares 5,5’ € @i as the number of neighbours one has to travel through to reach S’
from S, so that two dyadic neighbours themselves have a distance of 0. If S, 5’ € 75,% are
such squares then we denote S|S’ if the dyadic distance between S and S’ is either 1 or

2. We first note that
= y)|?
Z// |x7 ‘qﬂ da dy (2.7)
= S Yy

lo(x) — w(y)|?
// |z — y|at! dedy <
]Il ]Il

where the inner sum is taken over all pairs S, S’ € ﬁ,ﬁ for which S|S” holds. This is due
to the geometric fact that for every pair of points x,y € I; there are dyadic squares with
S|S" so that x € S and y € 5’.

Let now S|S’ with z € S € D} and y € S’ € D}. Denote by S; € D}, and Sy € D}
two different dyadic squares so that (.5, S1, Sa, S’) form a sequence of dyadic squares for
which each successive pair is a neighbour. Then we simply estimate that

lo(x) — o(y)] < diam ¢(S) + diam p(S1) + diam p(S3) + diam ¢(S")

< D diamp(Q).

d*(8,Q)<2
Note that the sum in the last expression has at most 49 terms. Hence if we sum this

expression over all dyadic squares .S, every dyadic square will be repeated at most 49
times. Plugging this into (2.7) and using (2.2) gives

(@) — (y)| 497 [ dlamsa S))*
//—|x—y|q+1 dzxdy < Qe e dx dy
I, S S

I
< 497 2 di S)?
= ; 29— (q+1)k 5615;;[ iam ¢(S)]
<oo. O

Clearly, Theorem 1.1 is an immediate consequence of Theorem 2.2.
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3. Examples

An arbitrary homeomorphism ¢: 9D =% D admits a homeomorphic extension to
the unit disk D C R? in the Sobolev class W4(DD,R?) for all ¢ < 2. Our next example
shows that such a result has no 3D counterpart.

Example 3.1. There is a Sobolev homeomorphism ¢: S 2% S such that ¢ ¢
1

Wl_a’q(S,R?’) for any ¢ > 1 and hence it does not admit a continuous extension

f:B —R3in Wh(B,R?).

Proof. We simplify our writing here and construct a Sobolev homeomorphism ¢: [0, 1] x
[0,1] == [0, 1] x [0, 2] with ¢(0,0) = ¢(1,1). Note that this causes no loss of generality
due to a suitable bilipschitz change of variables in both domain and target side, and the
fact that the 2D sphere may be appropriately covered by such atlases.

Let s: R — R be a 1-periodic piecewise linear “saw” function defined by

N[—=

s(xz) =

2x for z € [0, 5],
2—2z forze€[i1].

We set sy (z) = s(210%) and obtain a 10~ *-periodic saw function. By induction we choose
an increasing sequence of integers ny such that

10~*a10a=D3ame > ok and
k—1
—9 5 —ln 1 —k
(Zlo i.92.10 J)lO R
j=1
We set

ri = 1072 and ¢(z 210

Note that ¢, being a uniform limit of continuous functions, is also continuous. It is not
difficult to check that the mapping ¢: [0, 1] 2% [0, 1] x [0, 2], defined by

o(x1,x2) = [x1,22 + P¢(x1)] is a homeomorphism.

We estimate

lo(x) — p(y)]?
oyl W
(0,1)2x(0,1) (32)
(|p(x1) — d(y1)| — |72 —

|z —ylot!

q

(0,1)2x(0,1)?
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and note that the term ||§27;|1{12ﬁ < |1:iy\ in the last integral is integrable. Therefore, it

suffices to show that the integral

o(x </5

(0,1)2x(0,1)*

diverges.
For that, let us fix £ € N and denote

A= {21 €[0,1]: @1 € [-§107™ + 107", £107 " + j10~"™*] for j € NU{0}},

i.e. sp,(z1) € [0, ] for every z; € A; and

Ay ={y1 €10,1] : y1 € [3107™ 4 107", 2107 + j10~"™] for j € N U{0}},

ie. sp, (Y1) € [%, 1] for every y; € Ay. Given z1 € A; we set

Ag(xl) = AN ($1 — Tk, T1 + Tk).

It is easy to see that for every z; € A; and y; € As we have

10_k|8’ﬂk (.’171) Sny, (yl)| 510_

Further for every x; and y; we have
‘ 3 1075, (@)~ > 10 anj(yl)’ SDDRUSESS s
j=k+1 j=k+1 j=k+1

The function 1077s,,, is Lipschitz with Lipschitz constant 1077 ﬁ Hence in view
of (3.1), for every x1 and y; with |z1 — y1| < ri we have

k—1
A 1
’210 5, (1) 210 5n, (U1 ‘\ > 107210 -z — 1| < 51075,
J

1

It follows that for every z; € Ay and y; € Ag with |z — y1| < 7, we have
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[¢(z1) = 6(y1)| 2107 [sp, (21) = s (1)

‘ Z 1077 s, (21) Z 1077 s, (11 ‘

j=k+1 j=k+1
k—1 k—1

- ‘Z 1077 sy, (21) — Z 1077 sy, (yl)‘
j=1 j=1

>-10""%.

RN

To show (3.3) we estimate the integral

1 1 kg
deQ dyg dyl dl’l.
/ / 0/0/ (|1 — y1|+\1‘2—y2|)q+1

Ay A (z1)

Since applying a change of variables s = x5 — y2 and t = x5 + y2 we obtain

11 2 3
1 1
dxgdy220/1dt/7ds
0/0/ (laf + |22 — y2]) " J ) (lal+ 1s) ™

|af?
we may estimate (3.3) from below by the integral

C/ / dyl dl’l.
Jzy — 1|7 —y1|q

Ay Aax(z1)

(3.4)

We use again a change of variables s = x1 — y; and t = x1 + y1. Since |A1] > % and
|As| > i it is not difficult to see that the sets A; + As and A; — A, are large enough, i.e.
they occupy a large percentage of each interval of size much bigger than 10~"*. Together
with the fact that rp = 10~ 2" is much bigger than the period of s,, which is 107"* we

may estimate the integral (3.4) from below as

y 10~F4 10—F4
|3|q q—1

r
’I‘k/Q k

By (3.1) we finally conclude that the integral (3.3) diverges as we wanted. 0O

The following example shows the sharpness of Theorem 1.3.
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Example 3.2. Let p > 2 and ¢ > p. There is a Sobolev homeomorphism ¢: S % S
such that ¢ € WHP(S,R?) but ¢ ¢ W' 49(S,R3). Hence such a ¢ does not admit a
continuous extension h: B — R? in the Sobolev class W14(B, R?).

Proof. For simplicity we give a formula for ¢ from D onto itself and not from S onto S.
It is clear that this causes no loss of generality due to a suitable bilipschitz change of
variables. Given our p > 2 and q > 3 3p we choose a > 0 such that

2 3
l--<a<l--.

We set

A simple computation gives that ¢ € WP(D,R?). Either by a direct computation we
also obtain that ¢ ¢ Wlf%‘q(D,RQ) (see e.g. [27, Lemma 1, page 44]) or assuming
by contradiction that ¢ € Wlfé’q(]D),Rz). In the latter case ¢ admits a continuous
extension h: D x (—1,1) — R? in the Sobolev class W4(D x (—1,1),R3). In particular,
h is locally (1 — —) Holder continuous but this is impossible because h = ¢ on D x {0}
is just (1 — 2)- Holder continuous. O

Theorem 1.3 follows from Theorem 1.2. In the following example we show that on
the contrary there is a homeomorphism ¢: S < S which satisfy the condition (1.3)
in Theorem 1.3 and does not belong to any Sobolev class W1P(S,R?), p > 1. Again,
we define ¢ only on [0,1]%, and a bilipschitz change of variables easily generalizes this
homeomorphism from S onto S.

Example 3.3. Consider

o(x,y) = [g(z),y] where g(z) =z + C(x) (3.5)

and C' is Cantor function. Not the standard 1/3 Cantor function, but 1/K Cantor func-
tion (for K > 2), i.e. in each step we remove the middle 1/K-part of the interval. It
is not difficult to show that this Cantor function is Hoélder continuous with exponent

a= @O(g—?iw Let us note that

1 1
lim o« = lim 983

k—o0 K—oo log( (1 — —)) =1

Let Dy, k € N, be the collection of k-th generation dyadic square of [0, 1]? into (2¥)?
squares of sidelength 27%. Tt is easy to see that s (0(0Qk.;)) < oo for all k and j by
(3.5). Using Holder continuity of h we get
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co 22k 0o
Z Z 90— (3=a)k_ypl (@(anJ))q <C Z 22k2*(3*q)k[27ak]q.
k=0 j=1 k=0

This sum is finite whenever ¢(1 — «) < 1, which we can guarantee by choosing K large
enough at the start, in which case also (1.3) holds. By Theorem 1.2 we obtain that we
can extend this boundary homeomorphism as a W19 homeomorphism inside. However,
the mapping ¢ does not belong to Wli)’cl([O, 1]2,R?) as it fails the ACL condition on all
vertical segments (it just has bounded variation).

4. Structure of the proof of Theorem 1.2

In this section we give a brief overview of the arguments we need to prove our main
extension result, Theorem 1.2.

Before we address the case of extending a boundary map ¢ from the unit sphere
to itself, we aim to first describe an extension method which extends a homeomorphic
boundary map ¢ : R? — R? as a homeomorphism of the upper half space to itself. This
will comprise the majority of the proof (Sections 5 to 8), while the topological arguments
used to extend this method to the spherical case will be explained in Section 9.

Recalling that Sy = [0, 1]? is the unit square in the plane, our aim is to define a con-
tinuous injective extension h : [0,1]* — R?% which agrees with a given homeomorphism
@ on [0,1]2 x {0} (this is identified with Sp). The construction of h is split into two parts:
First we construct a monotone extension of ¢ in Sections 5 to 7 and then describe how
this monotone extension may be modified to be injective in Section 8. Here monotonicity
is in the sense of Morrey, meaning that the preimage of each point is connected.

The basic idea is to decompose the domain space [0, 1]* dyadically into cubes Uy, ;.
Recall the original standard dyadic decomposition of Sy into dyadic squares Qk,j' We
define Uy ; = Qkyj x [27F, 2*(’“1)]. Thus Uy ; is a cube of side length 2% and the union
of all such cubes decompose the domain space [0, 1]3. The idea is to map each cube to a
‘cylindrical’ region Vj ; in the target.

To define the region Vj ;, we consider the dyadic squares le’ C R? on the domain
side. For each such square, we will define a curve I';, ; on the target side as a piecewise
linear approximation of the image curve p(8Qy ;). Section 5 will explain the precise
details, but in particular we get that the curves I'y ; form a tiling of the plane on each
dyadic level k, and satisfy the total estimate

oo 4k

DD MR, ;)T < o (4.1)

k=1m=1

The top face of V4 ; will be the horizontal region bounded by the curve Ty ; x {27 (+=1}

A

and the bottom face will consist of the union of the regions bounded by ng) x {27F},

where f‘;f;) for m =1,...,4 denote the four dyadic children of Iy, ;. See Fig. 1.
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Tij x {2-6-D}

[/‘Yk. J

T, x {27%}

Fig. 1. The cube Uy, ; and its image set V}, ; defined as a region spanned by the curve I'y ; X {27 =D} and
its corresponding curve ') ; x {27} on the next level.

We aim to define the extension h so that it maps each horizontal section of Uy ; to
the horizontal section of V}, ; of the same height. The horizontal sections of V;, ; will still
need to be defined, however, and to do this we will need to construct an appropriate
homotopy between the curve I' ; to the curve f‘lw' which we define as the outer boundary
of Uizl f,(:;.), i.e. the curve corresponding to I'; ; on the next dyadic level. In terms of
estimating the Sobolev norm of h, our main goal is to show the following.

Goal: The map h : U, ; — Vi, will be a Lipschitz mapping. The Lipschitz constant
of the map should be estimated from above by a uniform constant times the quantity
H (Th)+ 30, Hl(f,(:;)))Zk, or possibly this quantity added together with the same
quantity over all of the neighbours of I'y, ;.

After Sections 5 to 7 we will have defined the monotone extension h on each dyadic
cube Uy ; so that the goal estimate above holds, and this extension is further modified
into an injective extension h in Section 8 with the same estimates still holding. The
Wh4norm of h can then be estimated by estimating the differential |Dh| above by the
Lipschitz constant of h. Combined with the goal estimate this gives

4 q
[ Dbz < 2K (Hl (D) + > H! (fé’??)> -
Uk,j m=1

Combined with (4.1) this will yield that h belongs to the Sobolev space W4([0,1]3) as
desired. The proof of Theorem 1.2 is then finished in Section 9 where we explain the
slight changes in the arguments needed for the spherical case.

5. Decomposition of the domain and target side

In this section we start with the standard dyadic decomposition Dy, of the boundary
and define a modification of it in order to control the lengths of the image curves of
the image grid under the given boundary map ¢. Furthermore, we will define piecewise
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linear replacements of these image curves. These divisions on the domain and target side
will be used in later sections to assist in defining the extension map we use to prove our
main result, Theorem 1.2. We also show in this section that Theorem 1.3 follows from
Theorem 1.2.

Lemma 5.1. Let Dy, = {Qj : k € N,j = 1...22*} be the dyadic decomposition of the
unit square Qo = [0, 1]? into closed squares of side length 27 for each fized k. Let p > 1
and ¢ : Qo — Qo be a homeomorphism in the space ¢ € WP(3Qq,R?). Then there
exists a set of closed quadrilaterals Dy = {Qk; : k € N,j =1...2%} such that

(1) For each point © € Qo which is a vertex of a dyadic square of side length 27"
in Dy, there exists exactly one corresponding point v € Qo which is a vertex of a
quadrilateral from Dy. The vertices v of a quadrilateral Q. ; in Dy are exactly the
points which correspond to the vertices U of the dyadic square Qk,j. Moreover, for
the coordinates of these points v = [vy,v2] and ¥ = [01, V2] we have (see Fig. 2)

v — U1 €

9=k 99—k ok 2=k 99—k o-k
- } - } (5.1)

0 " 10 10 and vy — U9 € To " 10 10
for all pairs of corresponding vertices.

(2) The quadrilaterals Qg ; for each fized level k are thus mutually disjoint apart from
their boundaries.

(8) If we inherit the parent-child relation between dyadic squares from D to D, then
the following holds. The children Q1,...Q4 € Diy1 of a given square Q € Dy (i.e.
Q = Q1UQ2UQ3UQy) need not be contained in Q nor does their union need to cover
Q. However, for Q = U ,Q; the boundaries 0Q and 3@ always intersect exactly at
two points.

(4) For each k,j we have the inequality

2~k / |Do(t)|Pdt < C / |Dg(2)|Pdz. (5.2)
8Qk,j 2Qk,j

Proof. (1) and (4): Let us first explain that it is possible to choose the grid so that (1)
is satisfied and we have the key inequality (5.2).

This follows essentially from [18, Section 4.2] and therefore we only explain how to
apply this approach here: All of our cubes in the r = 27% grid are of type A since we
can freely move points outside of Q. We would like to apply analogy of [18, Lemma 4.9]
for M =0 and € = %0. The only difference is that in [18, Lemma 4.9] they choose

[v1,v2] € I = {[1 +¢,52 +1] : [t <e27F}



S. Hencl et al. / Journal of Functional Analysis 286 (2024) 110371 17

1'31

Fig. 2. Given a dyadic cube Qk,j with vertices ot 52, 5%, * we construct a quadrilateral Qy ; with vertices
vl 02, 03, v Bach v is close to ©°, it is slightly shifted to the top and to the right from o°.

T 3

Fig. 3. Boundaries of Q and Q = U?ZlQi intersect at two points S and T. Note here that Qq, ..., Q4 refer
to quadrilaterals which form the set @ which is the (almost square) octagon in the middle.

but we would like to make this choice in the subset of I (of length 1/8 times the original
length)

[vi,v9) € I = {[61 +t,02+1] : t € [H27F — L27F Lok},

This does not change anything substantial in the proof there, it only affects some mul-
tiplicative constants - use 8222 instead of 22 in the definition of I'(A, B, M) and then
the proof carries through with obvious minor modifications. Then we can finish this step
by applying analogy of [18, Lemma 4.13 and Lemma 4.16] (again with slightly increased
multiplicative constant) to get our (5.2).

(2): This is easy to see from the definition of vertices of Qy_ ; in step (1) (see Fig. 2).

(3): Let Q and Q = U?:l Q; be as in the statement part (3) (see Fig. 3).

Let us define notation for certain vertices here, consult Fig. 3 for specific positions.

Here vg is a vertex of Q, vy and vf) are vertices of Q and v}, vé, v3 are vertices of Q)

Q

(in fact the corresponding part of Q is given by two segments vév% and vévg) From

(5.1) we obtain for the x-coordinates of these points that

2—k 2—k 2—k
(01 = (b1, (W1 — (b € | T5 ~ 7 10 )
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and similarly from (5.1) for the choice of Dy

9—(k+1) 9—(k+1) 9—(k+1)
1 2 3
(01 = (01, (W) = (v)n, (v = (01 € | *5— ~ 55— —15— -

It follows that the distance of this side of Q (:segment vHvg) and this side of Q (=union

of segments vévé and vév%) is at least 2o — % - * = % and thus these two

sides do not intersect. By a similar reasoning on other sides we obtain that dQ and oQ
intersect at exactly two points S and T as in Fig. 3.
Let us also note that the distance of S and vclg (and similarly distance of S and vy )

is at least 24;; and thus these intersection points are not too close to the vertices of 90Q
and 0Q). O

Definition 5.2. Note that conditions (1)-(3) above do not involve the boundary map ¢.
Hence we may define that any set Dj of quadrilaterals Q) ; satisfying the conditions
(1)-(3) is called a good modification of the standard dyadic decomposition of Q.

Proof of Theorem 1.3. Note that the statement is obvious if p > ¢ as we can use the
trivial radial extension. In the following we thus assume that p < q.

Given a homeomorphism ¢ € Wlf)’cp(RQ,Rz) we were able to find in Lemma 5.1 a
good modification Dy of the dyadic grid so that (5.2) holds. We could start with a
homeomorphism ¢ € WP(S,S) and some analogy of dyadic grid on S. Analogously
to the proof of Lemma 5.1 we can find a good modification Dy of this grid on S so
that an analogy of (5.2) holds for ¢. In fact the whole statement can be also obtained
locally using a bilipschitz change of variables. Given k, our dyadic grid Dy contains
bi-Lipschitz squares of diameter ~ 2=% and of perimeter Hl(ﬁQk,j) ~ 27, Moreover,

22F such squares, let us denote by ny here the total amount of

there are approximately
bi-Lipschitz squares in Dy.
In view of Theorem 1.2 it is now enough to show finiteness of (1.3). Using Holder’s

inequality, (5.2), ¢/p > 1 and p > q we obtain

k=1j=1 k=1j=1 Q. ;
<Y on(( [ ippr) ey
=1j=1 AQk.;
gCiQ*(qu)kQ—k(q—%)nZk(< /Dﬂp)%)
k=1 j=1 2G1;

2

<C§:2—’“(3—%>2k%z / |Dg|?
k=1

I=12q, ;
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The aim of the next lemma is to consider the modified dyadic grid given by Lemma 5.1.
For each level k, we then look at the image of the grid of level k under ¢ (specifically
the set ¢(U;0Qk,;)). The aim is to modify this “image grid” so that instead of general
Jordan curves it consists of curves which are piecewise linear. It is necessary to preserve
both the topology of the image grid and the lengths of the image curves. This piecewise
linear approximation will simplify future computations.

Lemma 5.3. Let p > 1 and ¢ : Qo — Qo be a homeomorphism in the space ¢ €
WP(Qo,R?). Let Dy, be the set of modified dyadic quadrilaterals given by Lemma 5.1. In
particular, the Jordan curves p(0Qy ;) for each Qi ;j € Dy each have finite length. Then
for each quadrilateral Qy. ; there exists a corresponding closed Jordan curve Ty ; C Qo
on the image side such that.

(1) Each of the curves T'y ; is piecewise linear.

(2) Each point on the curve Iy j is of distance at most 2% from the set p(0Qy. ;).

(3) The inequality 7" (Tx ;) < 71 (0(0Qk ;) holds.

4) Tk ;i passes through the four points p(v), where v ranges over the four vertices of the

J
quadrilateral Qg ;. These four points are called the vertices of I'y, ;.

(5) If two quadrilaterals Q ;, Qr ;o € Dy share a common side with endpoints vi,ve,
then the subarcs of their corresponding image curves I'y ;, 'y, j» with endpoints at the
common vertices p(v1) and p(va) are the same.

(6) Apart from the cases where two curves I'y ;, 'y j» at the same level k share either a
single vertex or a single subarc between two vertices as before, these Jordan curves
are mutually disjoint (for each fized level k).

(7) For every Qi ; € Dy and Q11,57 € Dy (see Fig. 3) we know that

Prj NTkg1j = @(0Qk,5) N @(0Qk41,5)-

That is each L'y j passes not only through its vertices but also through its intersection
with grids of step k+1 and k — 1, i.e. images of boundaries of Dyy1 and Dy_1.

Proof. In this proof we use ideas of [12] and [18] (see also [20] and [25]) where a similar
piecewise linear approximation of curves was used. The idea is to do this approximation
in three steps: First we linearize around vertices of the image grid, secondly linearize
between intersection points of levels k and k + 1 (to ensure that (7) is satisfied), and
lastly to linearize the remaining non-intersecting curves.

Step 1. Linearization near vertices: Fix k for a moment, and denote by

Vi = {¢(v) : v is a vertex of some Qy ;}
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Fig. 4. We replace original curve near vertices (see dotted curves) by segments near vertices.

the set of images of vertices of Dy. Let us also define the image grids

Go = 0 and G = | J p(0Qk.;).
J

Let Wy, = GrNGr+1 denote the set of intersection points between image grids of successive
levels. Analogously to the reasoning in the proof of Lemma 5.1 (3), we see that both Vj
and W, are finite.

We now choose a collection of small balls By with centres at each point in V). More
precisely, for each vertex v of some @}, ; we choose r > 0 small enough so that the balls
B(¢(v),2r) are pairwise disjoint and that these balls do not contain any of the points
in Wy or Vi41. Due to the latter property we may also assume that the balls in B;, and
the balls in Biy1 do not intersect either, as for each k£ we may first choose the balls in
By and then later choose the balls in By, small enough to not intersect the previous
set of balls.

Furthermore, we may use the uniform continuity of ¢ 1

and ¢ to assume that
lp(z) — p(v)] < 27k Vo € B(v, diam(go*l(B(cp(v),r))). (5.3)

For each vertex v of the grid Dj, we have four sides S, S2, S3 and S4 of some @), ; that
have v as their endpoint (see Fig. 4). On each of these sides we choose points s; € S; so
that p; = ©(s;) € 0B(p(v),r) and so that s; is furthest away from v with this property
(e.g. on S3 in Fig. 4 we have three points whose image intersects 0B(p(v),r)). Now we
replace ¢ on each segment [s;, v] by a segment [p;, p(v)] and we leave ¢ the same outside
of these four segments (see Fig. 4). In this way we replace ¢(0Qy, ;) by a curve F,(:g which
is piecewise linear close to the vertices.

It is easy to see that this new curve F,(C*g satisfies an analogy of (2) by (5.3) and it is
not difficult to see that these new curves are one-to-one (see Fig. 4), i.e. they intersect
only at original vertices v. These new curves have also length shorter or equal to the
original 1 (0(0Qk,;))-

We proceed to do the linearization process of this step on each level £k = 1,2,3,...,
replacing the collection of all curves p(9Qy, ;) by a new set of curves Fg:; To reiterate,
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Fig. 5. We replace curves 7,, on the sides (see dotted curves) by piecewise linear curves. We may need to
choose a one-to-one shortening of these replacements, i.e. we ignore some dashed part of the replacement
of Y3-

on each level k these curves are now linear around the points Vi, but were unchanged
near the set of intersection points Wy. The properties (2) — (7) are preserved in this
process and we may continue the linearization to achieve (1) later.

Step 2. Linearization at the intersection points Wy: In the previous step, we avoided

making any changes near the set of intersection points Wy between curves of level k and
k + 1. In this step we will, for each level k, linearize the curves 1"5:3 around the points
Wy
This process can be done quite analogously to Step 1. We choose a new set of balls
.. which are centred around points in Wy, and may again assume that the balls within
each collection and between each successive collection (B), and By ) are disjoint.
We then apply the same linearization process of Step 1 in each of these balls, linearizing
each of the four parts (two from level k and two from k + 1) which meet at the centre

) by another set of curves I‘( k. which are now

of each ball. This replaces the curves I‘(
also piecewise linear near the points in Wk In this modification the properties (2) — (7)
are again preserved for the whole collection of curves.

Step 3. Linearization of sides: Now we need to linearize the curves I‘,(:;) in the re-

maining parts which consist of simple Jordan curves between the balls in By, and B),. We

(x ) where our curve is not piecewise linear yet, these correspond

call v, m the parts of I';
to image by ¢ of segments of Qr,; (minus some small segments near vertices of Dy, and
intersection points of Dy and Dy1).

These g, are pairwise disjoint and we can choose 0 < § < 2=k 5o that Ye,m +
B(0,26) are pairwise disjoint. Furthermore, we may choose ¢ small enough so that the
sets Yi.m + B(0,25) do not contain points from the curves yg41,m/ by the fact that the
sets of curves g,y and Yi41,m/ are mutually disjoint.

We choose enough division points in vy, and we connect them by segments (see Fig. 5)
so that the union of these segments approximates the original curve. We definitely include

two endpoints a,, . and b in these division points and we assume that we have so

Yk,m
many division points so that the union of these segments lies inside 7., + B(0,9). It
follows that these segments for different v ,,, do not intersect.

However, it may happen that they intersect (see s in Fig. 5) for a given g . In

this case we simply choose a shortest path in the union of these segments between the
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endpoints a., ,, and b and we replace the union of these segment by this shortest path

Vk,m
(see the right side of Fig. 5). It is not difficult to see that by this replacement we get a
one-to-one piecewise linear curve that replaces v m,m. Now we call I'y, ; the corresponding
piecewise linear approximation of I‘,(:;) It is now easy to see that we have (1), (2) (using
§ < 27%),(3), (4), (5) and (6) for our Iy ;. Property (7) comes from our treatment of
intersection points in Step 2, and the fact that in this step we chose ¢ small enough to

not intersect the curves yg41,m/. O

Parametrization of I';, ;: We have constructed a piecewise linear curve I'y ; that ap-
proximated ¢(0Q ;) and passes through the same image vertices Vi and intersection
points Wi = G, NGr+1. We know that there are four y € Vi such that y = ¢(v) for some
vertex of )i ;. Further, there are at most 8 points in

Grr1 Np(0Qk ;) = Grp1 N T

as on the image of each side of @ ; there are at most two (see Fig. 3 and the proof
of Lemma 5.1 (3)). Furthermore, we have at most two points in Gr_1 N ¢(9Qy,;), see
Lemma 5.1 (3). Note also that analogously to the proof of Lemma 5.1 (3), there is C > 0
with such that

lo™ ' y) — o~ (2)] = C27F, (5.4)

for any two distinct points y,z € Vi U Wy U Wy_1. Thus the distance between the
preimages of these points is comparable to the sidelength of Qy ;, i.e. 27k,

Now we divide I'y ; into at most 4 + 8 4+ 2 = 14 pieces F; by these points in Vj U
Wi U Wy_1. For points x € ¢~ (Vi U Wy, UWy_1) we define p(x) = ¢(x) so that our
parametrization p has the same value as original mapping ¢ on these “vertices” and
intersection points. We parametrize the pieces P; by a constant speed parametrization
p there, i.e. on each of those pieces it has constant speed which might be different for
each piece. Since the length of these pieces is bounded by ! (¢(Qy.;)), we obtain using
(5.4) that

A (0(Qry))

|Dpl < C——2=;

on the whole Qy, ;.

6. The 2D extension

Let S be the square with vertices at {(1,0), (0,1),(—1,0), (0, —1)} and Y be a Jordan
domain with piecewise linear boundary. Suppose that a boundary homeomorphism ¢ :
9S — 0Y is given. We now describe a way to extend ¢ as a homeomorphism of S to Y
with Lipschitz-continuity controlled by the boundary map.

First, we describe an extension H,, of ¢ which is a monotone map from S to Y, meaning
it is continuous and the preimage of every point is connected. The final homeomorphic
extension will be obtained via an arbitrarily small modification of H, as we are able to
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describe the points where it fails to be injective and fix them accordingly. However, this
modification will be done only later in Section 8.

The extension H, will also be called the shortest curve extension of ¢. To define H,,
we let [5 denote the horizontal line segment which is obtained as the intersection between
the line {(z,y) : y = s} and S. This segment I has two endpoints a5 and by (from left
to right) on 9S. We let A, = ¢(as), Bs = ¢(bs), and define L, as the shortest curve in
©(S) which connects A to Bs.

The map H, is now given by defining it to map each horizontal segment [ to the
corresponding shortest curve Ly via constant speed parametrization. It is simple to verify

that this mapping is continuous.

Lemma 6.1. If ¢ : 0S — OY is Lipschitz with constant L, then the shortest curve exten-
sion H, is also Lipschitz with constant at most CL for a uniform constant C.

Proof. Case 1. Lipschitz continuity in the horizontal direction.

We show that H, satisfies the required Lipschitz-continuity on each of the horizontal
segments [;. For this, note that the constant speed parametrization on each of these
segments implies that we only need to show that |Ls| < 2L|l;|, where |- | denotes length.
The endpoints of [s separate S into two connected components, the shorter of which
we may call v,. Since L, is the shortest curve from Ag to B, we find that |p(ys)| = |Ls|-
However, due to the Lipschitz-continuity of ¢ we must have that |p(~,)| < L|vs|. Thus

ILs| < lo(vs)| < Livs| < 2LJL|

where the last inequality is due to the fact that [; is the hypotenuse of a right-angled
triangle with sides given by ~s.

Case 2. Lipschitz continuity in the vertical direction.

Let us fix s € (—1,1) and pick a point z € I;. For small § we let zs = z 4 (0,d) and our
aim is to show that |H,(2s) — H,(2)| < CLJ. As Lipschitz-continuity is a local property,
we may assume that J is arbitrarily small. In fact, to simplify calculations we assume
that § is very small compared to |ls|, which lets us assume that the trapezium bounded
by the segments [ and I, is actually a rectangle with longer sides of length |Is| due to
the fact that these two shapes are bilipschitz-equivalent with a uniform constant (say 2)
for small enough .

Consider the curves L; and Lsis5. By choosing § small enough, we may assume that
the endpoints A5 and Agys lie on the same line segment of the piecewise linear boundary
dY. The same may be assumed for By and Bs,s. Now basic geometry dictates that the
curves Ly and Lgis must each consist of three parts as follows (for a detailed argument,
see [18]). See also Fig. 6.
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Fig. 6. The shortest curves L, and L5, split into three parts.

(1) as and agys: Curves which start from A, and A4 and do not intersect except at
their common other endpoint. In fact, if § is assumed small enough these curves may
be assumed to be line segments.

(2) A common part of [y and Lg, which is a piecewise linear curve we denote by 7.

(3) Bs and Bsys: Analogously to the first part, these can be assumed to be line segments
from B, and Bgys respectively which meet at a common point (the other endpoint

of 7).

We may assume that H,(z) lies on either a, or v as the case where it lies on f, is
handled by symmetry. Let D denote the line segment between A, and Agys. Then since
¢ is L-Lipschitz-continuous on 95, we find that |D| < Lé. By the triangle inequality
we obtain that ||as| — |asts|| < Lo and using the same argument for the S-curves gives
[|Ls| — |Ls+s]| < 2L6. Let also d denote the distance between z and ag, which is also the
distance from zs to asys.

Suppose first that H,(z) lies on . The length of the part of L, between A, and H,(z)
may now be calculated in two ways. The constant speed parametrization tells us that it
is equal to |Ls|d/|ls]. On the other hand, it is also equal to |as| + |7/|, where + denotes
the part of v between o, and H,(z). Thus

AL
s

los| + 17/

If I' denotes the part of Lsis between H,(z) and H,(z5), then we may calculate the
length of the part of L,is between as4s and H, (zs) in two ways similarly as above to
obtain that

|Ls+5‘d
|Ls|

|lasts] + 7| £ 1] = :
The + in this equation is there to account for the two cases on which side of Ls,s the
point H(2s) lies in comparison to H,(z). In either case, we find by combining the above
two equalities that
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IT| < flas| = |esssl| + || Ls| — |Ls+5|||l |

< Lo + 2L96.

This shows that |H,(z5) — Hy(2)| < 3LJ.

Suppose then that H,(z) lies on ;. The length of the part of o, from A to Hy,(%)
must then be equal to |Ls|d/|ls| by constant speed parametrization. Let w be a point on
o515 of distance at most |D| from H,(z), which is possible to choose due to the concavity
of a4 and a, towards each other (more precisely, concavity towards the interior of the
region defined by them and D). Let v* denote the part of a1 5 between A1 5 and w, and
I" the part of L5 between w and H,(zs). Both the part of o from A, to H,(z) and the
curve v* are shortest curves between their respective endpoints, and since the endpoints
are connected by curves of length at most |D| < Ld, we get by triangle inequality that

|Ls|d
5]

- el < o5

Thus we find that

|LS 5|d *
r|\’ +old )

15|

d
< ||Ls‘ - |Ls+6‘|m +2L6

< 4L5.

This shows that |H,(z5) — H,(2)| < 4L6 and proves our claim.

As a clarifying remark, note that as we approach the top and bottom vertices (0,41)
on 0§ the corresponding shortest curves shrink to a single point. In this case the above
estimates still go through with even some further simplification.

Note: We will use the following consequence of this proof repeatedly in multiple other
parts of the paper. Given a Jordan domain Y with a piecewise linear boundary and points
Ay, Ay, B € Y, suppose that the part of 0Y between A; and As which does not contain
B has length §'. Then if ¢y, : [0,1] — Y are the two shortest curves in Y from B to
Ay and As respectively, parametrized with constant speed, then |¢1(z) — ¢2(z)| < C¥’
for all z € [0,1]. This claim follows from the above proof, notably the only difference is
that we start from the same point B instead of two points Bs and Bsys but this case is
even simpler. 0O

6.1. Lipschitz-continuity in the time variable

Our next aim is to look at a situation where instead of a single given boundary map ¢,
we are given a continuous sequence of boundary homeomorphisms ¢, : S — R?,t € [0, 1]
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(not necessarily to the same target domain). The aim is to show that if the dependence
on t is Lipschitz, meaning that

|01, (2) — @1, (2)] < Llty — to] for z € S, (6.1)

then the same estimate holds (up to a uniform constant) for the extensions H,, as well.
We expect this to be true in the general case, but for our purposes we will only need to
prove such a result in a few simple cases which are easier to explain. Let us denote by
S_:={(z,y) € S:x <0} the union of the two left sides of S and by S; the union of
the two right sides.

Lemma 6.2. Suppose that Y C C is a piecewise linear Jordan domain and @, : S — Y
are given boundary homeomorphisms so that (6.1) is valid. Suppose also that the maps
©i(2) are equal on one half of S, say ¢¢(2) = @o(z) for all z € S. Then H,,(2) is
CL-Lipschitz in (z,t), where C is a uniform constant.

Proof. Let z € S. We consider the horizontal segment [ passing through z and its two
endpoints a and b. Fixing the point ¢; € (0,1), by continuity we choose t2 € (0,1) close
enough to t; so that ;, (b) and 4, (b) lie on the same segment on Y. By our assumptions
also ¢y, (a) = ¢, (a). For ¢y, , we let L' denote the shortest curve from ¢y, (a) to ¢y, (b)
in Y. Similarly L2 is the shortest curve from ¢, (a) to ¢y, (b). Then H,, (z) lies on L
and Hy, (2) lies on L*2 and the exact positioning of these points on these curves is again
determined by the constant-speed parametrization on the horizontal segment [. But this
situation is essentially exactly the same as in the second case of the proof of Lemma 6.1
(see note at the end of that proof), and we may apply the same proof to show that

|Hy,, (2) = Ho,, (2)] <4Llty — 12 O

We now address how the shortest curve extension behaves with respect to a changing
target boundary.

Definition 6.3. Let us first define that a simple modification of a piecewise linear Jordan
curve @ : S — 0Y is any other piecewise linear curve ¢* obtained as follows. Let P be a
vertex of ¢ and let Py = p(s1) and Py = ¢(s2) be its two neighbouring vertices. We pick
another point @ on the ray P; P and define ¢* as the piecewise linear curve through the
vertices of ¢ with P replaced with Q.

Regarding parametrization we require that ¢(s) = ¢*(s) for all s except for those in
the preimage of the segments P; P and PP, under ¢, and moreover that these preimages
are either both contained in Sy or both in S_.

Next, a homotopy ¢; : S — R2,t € [0,1] of piecewise linear Jordan curves is called a
simple homotopy if for all t; and ¢ > ¢; sufficiently close to ¢, the curve ¢, may be
obtained from ¢, via a simple modification as described above.
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Lemma 6.4. If a homotopy ¢, : S — R2,t € [0,1] of piecewise linear Jordan curves
is simple and Lipschitz-continuous in (z,t) with constant L, then the shortest curve
extensions Hy,, are also Lipschitz-continuous in (z,t) with constant CL for a uniform
constant C'.

Proof. We aim to use the same types of arguments as in the proof of Lemma 6.1 to
obtain Lipschitz estimates for H,, in ¢, but we must elaborate further as we are dealing
with two shortest curves within two different domains. However, it is enough to show
Lipschitz-estimates locally and hence we are able to use the condition of ¢; being a simple
homotopy to deduce that on the given time interval the two image domains are similar
apart from one added or removed triangle (this triangle is APQP» in Definition 6.3).

Let thus z € S and t1,t2 € [0, 1]. Let I be the horizontal segment in .S which passes
through z and let a and b be its endpoints from left to right. Suppose that we are in the
case where the mappings ¢, are equal on S_, so that ¢, (a) = ¢, (a). Let Yy, be the
Jordan domain bounded by ¢y, (0S) and L* be the shortest curve within the closure of
Y:, between @, (a) and @4, (b). We also let py, := @y, (D).

By assumption of simpleness of ¢; the only difference between the boundaries of Y,
and Yy, is the addition or removal of a triangle APQ P». The curve 0Y;, traverses straight
from P to P, while Yy, goes through the point ) inbetween.

Due to some distinct geometrical possibilities here, we split the argument into cases
as follows. Recall that the shortest curves L!* and L2 have one common endpoint and
their non-common endpoints are p;, and p.,. We split into cases based on whether one
of these points p;, belongs to the part of the boundary being changed or not.

Case 1. If p;, does not lie on the segment of Y, between P and Ps.

In this case, p;, lies on the common boundary of Y;, and Y;,. We now define another
map on the horizontal segment ! by considering the shortest curve from ¢4, (a) to py, , but
this time within the closure of Y;,. Let this map be called ® : | — Y;, and parametrize
it in constant speed also. Then the result of Lemma 6.1 shows that |H,, (2) — ®(2)| may
be estimated from above in terms of a constant times the length of the boundary of Yy,
between p;, and p.,. But the boundary estimates from before show that this length may
be estimated from above by CL|t; — ta|.
Hence due to the triangle inequality we have

|He.,, (2) = Hp,, (2)] < [Ho,, (2) = ®(2)] + |2(2) — Ho,, (2)].

It remains to consider the quantity [®(z) — Hy, (2)|. This quantity depends on the curves
L' and ®(1). These curves are both shortest curves from ¢, (a) to p;,. However, one is
within the domain Y;, and the other is within the domain Y;,. Thus we are to investigate
how this change of domain affects the behaviour of the shortest curve. We split again
into cases based on a few different geometrical possibilities.
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Fig. 7. Case 1: Two shortest curves between ¢y, (a) to p;, in different domains. Here 9Y,, is denoted by
the black piecewise linear curve, while Y,, is created from Y;, by adding a triangle APQP;. Note that the
segment P Ps is part of a;.

Case 1a. Suppose that the curve L!* does not touch the segment PP,.

Since L' is the shortest curve between ¢4, (a) and ¢y, (b) in Yy, if Y;, C Y, then
®(1) (the shortest curve between the same points in Y;,) must be at least as long as Ltt.
But since L' does not intersect PP, we must have L' C Yy, and thus L' = &(1). If Y,
is not contained in Y;,, which is when @ lies outside of Y;,, then it still must hold that
L' = ®(I) because the shortest curve ®(I) cannot pass through the interior the triangle
APQP;, as it can only enter and exit through the segment PP,. Thus there is nothing
to prove in this case. Case 1b. Suppose that P € L' and Q € ®(]).

Let the part of L't between ¢y, (a) and P be called a; and the part from P to p;, be
called B;. Similarly, let the part of ®(1) from ¢y, (a) to @ be as and from @ to ps, be fa.
Let |[P — Q| =0.

Let us say that a simple curve in Y; does not cross the segment P(Q if that curve is a
uniform limit of curves within Y; \ PQ, parametrizations may be taken in arc length here.
Note that none of the curves a1, as, 81 and (B2 pass through the interior of the triangle
APQP; and also do not cross the segment PQ. Hence within the class of curves in Y;
which do not cross the segment PQ), these curves are also the shortest curves between
their respective endpoints.

We suppose that ®(z) is on 3. The case where it is on «s is proven similarly. We
define a point £ € 31 as the intersection point of 5, with the line passing through ®(z)
and parallel to PQ (see Fig. 7). Due to the fact that $; and 3, are shortest curves in Y;
which do not cross the segment PQ, the segment from ®(z) to & lies entirely between
these two curves and has length smaller than § - this can be argued similarly as the
convexity part in Case 2 of Lemma 6.1. Let 83 be the part of Sy from p;, to ®(z) and
B7 be the part of 51 from p;, to & Then a simple shortest curve estimate shows that

182 = 157 < |®(2) — £ < 6. (6.2)
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Fig. 8. Case 1d: Reduces to pictured possibilities in which the curves L*' and ®(I) are the same.

Similarly, we may find that

IIBz—Iﬁll: (63)

l[a1| = [az]

<9
<4
Now consider the length of the part of H, (1) between p;, and H,, (z), call this length

7. Due to constant speed parametrization, if the distance from a to z is x, we find that
7= (Jax| + |B1])x/]l]. But since < |I| and the estimates (6.3), we find that

(laz| + |P2|)=

< 20.
|

IT =181l = |7 —
However, (6.2) then implies that |7 — |57|| < 3J. This essentially says that the part of
the curve f; between ¢ and H,, (z) has length at most 30, and hence we also have the
Euclidean distance estimate |§ — Hy, (2)| < 36 and finally also |®(z) — Hy, (2)] < 40
from (6.2). Since § < C'L|t; — t3] this is enough.

Case 1c. Suppose Q € ®(I), P ¢ L' but either L't passes through PQ or through QPs.

If L1 passes through PQ, let the intersection point of PQ and L!* be X. This case
can be handled the same way as Case 1b, with X taking the role of P. The case where
L't passes through QP can be handled symmetrically.

Case 1d. Suppose that Q ¢ ®(1).

This case appears either when the point @ is outside the domain Y;, or when L' only
intersects the triangle APQP; at one of the vertices P or Py (see Fig. 8). In all of these
cases the curves L' and ®(I) are the same, and there is nothing to prove. This handles
all the possible options and finishes the proof of Case 1.

Case 2. If p;, lies on a part of 9Yy, which is not on the segments PQ or QFP,. This
case may be treated with the same arguments as Case 1, with ¢; and to interchanged.

This covers the cases where either p;, or p., lies outside the triangle APQPs, leaving
the case where both points lie on respective sides of this triangle.

Case 3. We suppose that p;, lies on the segment PP, and p:, on either PQ or QPs.
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Fig. 9. Case 3a: Shortest curves to p;, and p;, when T is inside of Y,,. In this case, Y is obtained by taking
9dY, and replacing p;, P> with p;, p;, and py, P>. Again Yy, is created from Y, by adding a triangle APQP;.

By symmetry, we may suppose that p;, lies on QP> and that ¢; < to. We now consider
the triangle T'= APQ P>, but must split into cases depending on if this triangle is inside
or outside of Yy, .

Case 3a. If T is inside of Yy,. The shortest curve L must pass through T before it
reaches its endpoint at p;, (see Fig. 9). Moreover, the part of L inside the closure of
T must be a single segment since 1" is convex. Now, the point p;, splits the union of the
segments PQ and QP, into two parts. Let 4 be the part which does not intersect L.

The idea now is to create a new domain Y. We take the Jordan curve 0Y;,, add the
union of p;, p, and 4 to it, and remove the segment of 9Y;, which has the same endpoints
as this union does (either we remove py, Py or p, P). This Jordan curve now defines Y.
An equivalent definition is to cut off from Y;, a region bounded by py, ps, and 4. The key
point is that by this construction the curve L' still lies in the closure of Y. In fact, the
curve L is still the shortest curve from ¢, () to py, within the new domain Y. This is
due to the fact that the shortest curve from ¢y, (a) to py, does not change if we remove
a region of the domain which does not intersect this shortest curve to begin with.

Let now @ : [ — Y denote the shortest curve from ¢, (a) to py, in the closure of Y,
parametrized with constant speed. Now we split our estimates via the triangle inequality

|Hy,, (2) = Hyp,, (2)| < [Hg,, (2) = ©(2)] + [®(2) — Hy,, (2)]:

The quantity |®(z) — H,,

since both ® and H,, map the horizontal segment [ to a shortest curve within Y, and

()| may now be estimated via the arguments of Lemma 6.1,

the distance between their endpoints p, and py, is estimated from above by C'L|t; — to].
The quantity |Hy,, (2) — ®(2)| is dealt with the same arguments as Case 1, since ®

and H,, map the horizontal segment [ to shortest curves from ¢, (a) to pt,, however

in different domains Y and Y,,. The difference between these domains is, again, small.

Case 3b. If T' is outside of Y¢,. This case is handled much the same as the previous one,
only now we create Y from Y., by adding p,pi, and the part of PP, which does not
intersect L'2. We also remove either p;, P, or the two segments of Y, between p;, and
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P to create the Jordan curve that bounds Y. Now the situation is dealt with the same
arguments as the previous case. 0O

Lemma 6.5. Suppose that g, @1 : 0S — R? are two piecewise linear embeddings of the
square OS into R?. Let Yy and Y; be the Jordan domains bounded by the respective
image curves ¢o(0S) and ¢1(9S). Suppose that ¢o(z) = ¢1(2) for all z € IS_ and
both maps have constant speed on Sy. Suppose that the curves ¢o(Sy) and p1(S4) do
not intersect except for their endpoints. Suppose also that both embeddings pg and ¢1
are Lipschitz-continuous with constant L. Then there exists a homotopy ¢, t € [0,1]
of piecewise linear curves which is simple, C L-Lipschitz in (z,t), and @ lies within the
region bounded by o and @1 .

Proof. Let vo = ¢o(S4+) and 71 = ¢1(S+). We first describe a homotopy v; between
these two curves, which will then be used to construct ¢, by setting ¢;(S+) = v+ and
fixing a parametrization. On S_ we naturally set p; = ¢q.

The curve ~; is defined as follows. Let the mutual endpoints of 7y and ~; be A and
B and the domain between these curves be denoted by Y. Let 71,2 be the shortest path
from A to B within the closure of ¥. We now need to only describe how to deform ~q
to 71,2 as the case from v; /5 to 71 will be handled in the same way.

For t € [0,1/2], note that 2¢ varies from 0 to 1. We choose 7; as follows. First, travel
along o starting from A until we have travelled a curve of length 2¢|g|. We have arrived
at a point of 7y which we shall call P;. For the remainder of the parametrization, we
take the shortest curve from P, to B within the closure of Y. This defines ¥ up to
parametrization, and the exact parametrization of +; will be defined now.

We divide the time interval [0, 1/2] into intervals [t,, tn+1) so that for all ¢t € [t,, tn41)
the curve ¢, is obtained from ¢, via simple modification, at least as long as we now
guarantee that the parametrization aligns with the requirements in Definition 6.3. For
a fixed parameter t, the curves v, and vy agree on the initial part of vy of length 2t|vo|.
For those s € Sy for which @(s) is on this initial part, we also set ¢:(s) = @o(s). Let
sor € Sy be defined so that P, = ¢4(s2:), and recall that the curves v, and - for
t € [tn,tns1) only differ by moving Py, to P;. Let ¢ > t be so that P’ = ¢y, (s2y/) is the
next vertex after P on this curve, so that P’ is also the next vertex after P; for ¢;. Now
if the angle ZP,P;, P’ is concave (above 7) towards the interior, then the curves ~;, and
v¢ are the same and we may also set the parametrizations ¢;, and ¢; to be exactly the
same.

In the case where the angle is convex (less than 7), we set @i(s) = ¢y, (s) for all
s = 2t'. It remains to define ¢; on (2t,2t') assuming by induction that ¢y, is given. Let
the union of the segments P,P;  and P;, P’ be U; and let Uy denote the segment PP’
We choose a constant speed map V¥, : Uy — Us, and this constant is smaller than one
because Us is shorter than U;. Then we define ;(s) = Wy(p, (s)) for s € (2¢,2t').

This shows that the Lipschitz constant of ¢; in s decreases as t increases. It remains
to obtain estimates in ¢. It is enough to show that |p:(s) — ¢y, (s)] < CL|t — t,]| for
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Fig. 10. Moving the point P to @ through a point P* via two simple modifications.

s € (2t,2t"). For this, through some simple geometry we see that the distance between the
points ¢(s) and ¢y, (s), which lie on the sides of the triangle AP, P; P’ can be estimated
from above by the length of the side PP, . But |P; — P, | = |pr, (2t) — o1, (2t,)] <
2L|t — ty|, which finishes the proof. O

Definition 6.6. A homotopy ¢; : 9S — R2,t € [0, 1] of piecewise linear Jordan curves is
called a 2-simple homotopy if for all ¢; and ta > ¢; sufficiently close to t1, the curve ¢y,
may be obtained from ¢, via two successive simple modifications on the same vertex P.

The difference between one and two simple modifications is that in a simple modifica-
tion the point P is only moving along the ray P, P, while after two simple modifications
the point P may technically move to any other in the plane. In our case, some further
restrictions will apply as we must also maintain injectivity during this process.

Lemma 6.7. If ¢, : S — R2,t € [0,1] is a 2-simple homotopy of piecewise linear Jor-
dan curves and Lipschitz-continuous in (z,t) with constant L, then the shortest curve
extensions Hy,, are also Lipschitz-continuous in (z,t) with constant CL for a uniform
constant C.

Proof. Fix t; and let t5 > t; be close to t;. Then Definition 6.6 implies that there
is a simple modification which turns ¢, into another curve ¢* and another simple
modification which turns ¢* into ¢y,. It is enough to show that we may choose ¢* so
that the estimate |¢,(s) — ¢*(s)] < CLI|t; — to] is satisfied, as then the two simple
modifications ¢;, — ¢* and ¢* — ¢4, can be seen to be CL-Lipschitz-continuous in
(z,t) and we may finish by applying the proof of Lemma 6.4 to obtain the desired result.

Let P be the vertex on the curve ¢y, being moved to the vertex @ on ¢y,, and let P;
and P be their shared neighbouring vertices. Let us pick ¢ close enough to ¢; so that
P and @ are on the same side of the segment P; P, eliminating Case 3 in Fig. 10. We
may assume that the ray 131‘6 intersects the segment P, P at a point P* (otherwise we
consider the intersection of P»() and P P, or switch the roles of P and Q). Now due
to the assumption that the homotopy ¢, is Lipschitz continuous in ¢ with constant L,
we have that dist(Q, PyP U PP,) < L|t; — t2| (at least for 5 close enough to t; so that
there is no interference from the rest of the curve). Due to some elementary geometry
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the distance |QP*| from @ to P* must be comparable to the distance from @ to the
segments Py P and PPs, giving that |QP*| < CL|t; — t2|. Now let us compose ¢y, with
a piecewise linear map which is otherwise the identity but sends the segments P;@Q and
QP, to P P* and P*P; respectively. This is a simple modification of ¢, which we call
©*. Each point on the curve ¢, is moved at most a distance of |QP*|, which gives the
desired estimate ¢y, (s) — *(s)| < |QP*| < CL|t; — ta|. Moreover, it is clear that ¢y, is
a simple modification of ¢* as P* lies on P, P. Thus the proof is complete. O

7. The 3D extension

We now proceed to the construction of the extension h into the upper half space,
continuing the proof of Theorem 1.2 along the lines described at the start of Section 4.
The main goal here is to define h precisely on each Uy, ;. Recall the definition of the sets
U, Qr.; and curves 'y, ; from Section 4.

Step 1. We define h on the sides of the top and bottom faces of Uy ;. We wish to
map the top sides dQx; x {27*~1} to the Jordan curve Ty ; and the bottom sides
9Qr.; x {27%} to I'y;. Note that here and what follows we abuse d to mean the 1D
boundary of these sets rather than taking the topological boundary of the sets in 3D
space.

Step 2. We define h on the top and bottom faces of Uy ;. To simplify notation, we set
U, = Qk,j x {t}. Furthermore, let top := 2=~ and bot := 2% so that Uyop is the top
face and Upot is the bottom one. Similarly we set ¢; = h|ay, and hy = h|y, , although only
Ytop and @por have been defined so far. On Uy,p, we simply define hy,, as the shortest
curve extension of ¢,,. Note that this choice also forces us to define hyot On Upor in a
specific way to avoid discontinuity. Indeed, the bottom side Uy is in fact the union of
four top sides of dyadic cubes of the form Ui - on the next level. Thus on U, the
map hpor is defined separately in each of the four squares as the shortest curve extension
of the corresponding boundary values.

Step 3. Let mid := 27%+27%~1 be the middle point of [27%, 2= (*=1] so that U,,;4 is the
middle level of the cube Uy ;. On the sides of Uy,iq and for every parameter ¢t € [bot, mid],
we define ¢ equal to wpe. On Upig we define hy,;q as the shortest curve extension of
©mid- Hence for t € [bot, mid], the mapping h; has the same boundary values on each
level U; but is a different map on the faces Up,;q and Upor. We return to this part in a
later step and describe how to define h; for ¢ € (bot,mid) to give the correct isotopy
between the maps h,iq and hpe;.

Step 4. For t € [mid,top], we will define h; as the shortest curve extension of ;.
However, we have not yet defined ¢, for these parameters. Note that the image of ;)
is I'y, ; and the image of Y.,4q is fk,y* Thus we must define a homotopy ¢; between these
two curves which is what we will do now.

The left part of Fig. 11 depicts the curves I'y; and I’y ;. Since the curves Ty (re-
spectively fk, ;) form a grid topologically equivalent with a dyadical grid, we may abuse
terminology here and talk about vertices and edges of I'y, ; when considered as a topo-
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Fig. 11. On the left, the curve I'y ; and its corresponding curve f‘k,j on the next level. On the right, 'y ;
has been modified to I'y ;. (For interpretation of the colours in the figure(s), the reader is referred to the
web version of this article.)

Fig. 12. The plus-shaped region whose boundary consists of two crosses and curves from the points m; to
m;.

logical square. As in the figure, let us label the vertices of these curves by v; and vy,
j = 1,2,3,4 in corresponding order. We pick one pair of such vertices, say v; and 0.
The vertex vy is the intersection point of two edges of I'; ; as well as two other edges
in the same grid, for a total of four. We let the midpoint of the edges meeting at v, be
my, 7 =1,2,3,4, see Fig. 12. We similarly define four points 7i2; as the midpoints of the
edges in the grid formed by the curves f‘k, ; which meet at 01, numbered correspondingly
to the points m;. We now connect each of the points m; with 7; through a piecewise
linear curve g; which does not intersect either of the grids and has length comparable to
the infimal length of such curves.

Our aim now is to deform the cross formed by the curves with endpoints at my, ..., my
and intersecting at vy, to a cross with the same endpoints but middle point at ©; instead.
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Naturally we wish to introduce no new intersection points during this homotopy and keep
the deformation within the plus-shaped region pictured in Fig. 12. At each point in time
the cross we are considering meets four different dyadic regions in the image side, and we
wish to create this deformation between crosses in a way where we can apply Lemma 6.7
for each of these four regions to obtain the required interior Lipschitz-estimates. Thus it
is necessary to form the homotopy in a way that with respect to each four regions the part
of the border that is deforming behaves as a 2-simple homotopy (see Definition 6.6). A
fixed number of reparametrizations of curves is also needed in the arguments used here,
but we recall that Lemma 6.2 allows us to do so while still maintaining the required
interior estimates.

We first connect the points m; and 9, with a piecewise linear Jordan curve a; which
does not intersect any of the other considered curves and has distance comparable to the
sum of the length of the curve g; from m; to m; and the curve from 7y to 07 which is
part of f‘;wv for some j'. This can be done for example by choosing a curve sufficiently
close to those two curves but not intersecting them or itself. Similarly, we define a curve
g from ms to 91, see again Fig. 12.

Let 1)y be the union of the curves from m; to v; and from vy to mso, parametrized on
[0,1]. Similarly, let ¢; be the union of a; and as. We may assume that o(1/2) = v;
and 97 (1/2) = 97. Using the method of Lemma 6.5 we connect 1y to 1; via a homotopy
1. We define a curve from v; to 01 by ¥(¢) = ¢ (1/2).

This homotopy from g to ¥, gives one part of the sought homotopy between the two
crosses. Let 1 denote the curve from ms3 to v and S35 the curve from my4 to v1. We denote
by ¢ the union of 8, and fB,, parametrized again on [0, 1] with ¢§(1/2) = v1. We wish
to construct another simple homotopy ©; with ¢} (0) = ms, ¥;(1/2) = :(1/2) = U(¢),
17 (1) = my, and so that the curve vf has no additional intersection points with ;.

At each time ¢ we must find curves from ms and my4 to ¥(t). In order to do this
we first describe the properties of the curve ¥(t), as this curve may not be injective.
Following the construction done in Lemma 6.5, the domain bounded by the two curves
1y and 17 is decreasing as a function of ¢. Thus it is not possible for the curve ¥(t) to
form a proper loop to intersect itself, but a priori it can be constant on some interval and
it can also travel backwards along itself. For the moment, let us describe the construction
of ¢y while assuming that U(¢) does not intersect itself or .

The idea of the construction of the homotopy %} is to add to the initial curve v a
part which follows close to the curve ¥ to a certain point and then returns back along
another path close to W. At ¢t = 1 we will travel the full length of the curve ¥ to the
point 97 and back.

Let us suppose that the homotopy 1} has been defined up to a point ¢,, where P, :=
U(t,) is a vertex on the piecewise linear curve given by W. Let P, 41 be the next vertex
after P, on ¥, and let P! ; and P?_; denote the two neighbouring vertices of P, on
the curve 1} . The aim now is to “open up” a part of the segment P, P, into two
segments P1Q; and P2Q;, but some care must be made to not cause intersections, see
the rightmost part of Fig. 13 to illustrate this process.
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Fig. 13. Opening up the curve ¥ to create a homotopy of Jordan curves.

More precisely, let us suppose that the angle /P! | P, P, 11 (interpreted as the smaller
angle of the two choices) is smaller or equal than /P2 ,P,P,.; (again, the smaller
choice). We pick another point P! on the segment P, P! ; which may be chosen ar-
bitrarily close to P,. We may let P2 := P, in this case, if the size of the two angles
LP} | P,P,i1 and ZP?_| P, P, is reversed then so is the role of P! and P2.

For a point t,4+1 > t, to be chosen later, we will now define v for ¢ € (¢,,t,+1]. For
t € (ty,tnt1] let X; denote a point parametrized linearly on P, P, 1 so that X; = P,
and X, = P,y1. For each t € (t,,t,4+1] we now define ¢} by mapping the preimage
of the segment P! P, to Pl X, and the preimage of P2P, to P2X;. This simply corre-
sponds to moving the point P,, along the segment P, P, 1 to the point X, while keeping
the parametrization consistent, see Fig. 13. By choosing P} close enough to P, we can
guarantee that no new intersection points are created during this process (since by as-
sumption ¥ does not intersect itself), and that the added length is comparable to the
length of W.

Let us elaborate a bit further on the parametrization of the curves v¢; used here. We
pick one constant speed parametrization © from I := [1/4,3/4] to the final curve between
Pg and P§ defined by the process above. This final curve travels arbitrarily close to ¥
all the way up to 91 and then back along a similar curve to P3. Let us first reparametrize
the initial curve 1§ in order to guarantee that a small part is not mapped to © in the
end. We choose 9§ to map the intervals [1/4,1/2] and [1/2,3/4] to the two segments
P§ Py and Py P}, keeping the relation ¢ (1/2) = Py = v1. The exact parametrization can
be inherited backwards from the final parametrization ©, so that the preimage of the
segments Prlet and XtPfL under each curve ¢y for t € [ty,,t,41) is the same set as the
preimage of the part of © between P! to P2. As the latter image curve is longer we may
guarantee that the Lipschitz-constant of ¢} on [1/4,3/4] is controlled by the length of
O.

The parametrization in the time variable ¢ can also be chosen based on ©. In fact, as
long as we pick the time intervals [t,, t,+1) to have comparable length to the total length
of the preimage of the segments P! | P! and P?_,P? under ©, the Lipschitz constant
in the time direction will be bounded from above by a constant times the length of ©.

Thus the boundary curves 9} have the correct Lipschitz bounds, and we turn our
attention to interior estimates. Note that there are four different regions meeting at the
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cross with centre W(t). Let us denote the region which only meets ¢, by V,!, the region
which only meets 1 by V,*, and let V,2 and V;? be the two regions which meet one half of
both of these curves. We let U; denote the corresponding dyadic squares on the domain
side (which, if interpreted as planar sets, are the same set for each t), whose boundaries
are all identified with S for the sake of constructing the shortest curve extension to V.

In each of the sets Vi, one part of the boundary is fixed while the deformation of the
other part is dictated by the homotopies 1; and ;. Whichever domain V! is chosen,
locally in ¢ the deformation only consists of moving around the single vertex ¥(¢). Hence
as long as the preimage (in U}) of the part being deformed corresponds to being either
contained completely in Sy or completely in S_, this homotopy induces a homotopy on
OV} which is at worst a 2-simple homotopy (see Definition 6.6). The preimage being
contained entirely in S; or S_ happens exactly when the preimage of v; happens to be
identified with the vertices (0, +1) on S, while the opposite is true when ¥(¢) is identified
with (£1,0).

If the homotopy of AV}’ is indeed 2-simple, then Lemma 6.7 implies that the shortest
curve extension satisfies the required interior Lipschitz bounds. We need hence address
the case where U(¢) is identified with (£1,0). Note that in the definition of the shortest
curve extension which is now applied inside the diamond shaped domain U}, there is
an implicit choice of horizontal/vertical direction based on which two opposing vertices
we pick as the top and bottom vertices. If we choose the direction where the horizontal
lines point towards the preimage of ¥(¢), then the condition of the deformation being
contained inside Sy or S_ in Definition 6.3 is satisfied. Naturally we cannot a priori
choose the orientation to always satisfy this condition as exactly two of the vertices of
U} satisfy this condition and two do not, and eventually we will need to repeat this
argument with respect to crosses with centres at each of the four vertices of U}.

We take care of this issue with the following trick. Let p denote a bilipschitz map
from the square domain bounded by S to the unit disk, and let v;(z) = ¢™*/2z denote
a rotation map on the unit disk. Let Hy : U} — V;* denote the shortest curve extension
of a boundary map @ : U — OV;'. We then define a new map H, on U} by making a

change of variables on the domain side in U} (identified with S) via the map p~t o, op,

Lov_;0p via

and instead of extending ¢ from U]} we extend the map @; := @g o p~
shortest curve extension. Thus H; and Hy have the same boundary values but differ in
the interior. In essence, H; corresponds to “rotating” the horizontal lines in U by an
angle 7t/2 and constructing the shortest curve extension based on these new curves. But
we only need to know that for ¢ = 1 the map H; corresponds to constructing the shortest
curve extension with the horizontal lines in U} replaced by vertical lines, which can be
done by choosing the bilipschitz map p accordingly. The homotopy H, can be seen to be
Lipschitz continuous in (z,t) with constant C'L, where L is the Lipschitz constant of @g.
This follows from the Lipschitz continuity of p, v; and their inverses, and an application
of Lemma 6.2 since @; satisfies the correct bounds in (z,¢). The homotopy H, can be
used to temporarily change the direction of horizontal lines in U} to suit our purposes,
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showing that we may reduce to the previous case where the homotopy on the boundary
is 2-simple.

Let us now address the fact that in general the curve ¥ may intersect itself. Perhaps
the easiest way to deal with this is to make a slight modification on the construction
of Lemma 6.5, as the homotopy of curves 7; parametrized on [0, 1] constructed in that
lemma defines ¥ by the relation v;(1/2) = ¥(t). We will now make a slight perturbation
of the curves v; to make them mutually non-intersecting, which will guarantee that ¥(t)
becomes injective.

Note that if two of the curves v do intersect, they in particular intersect at a vertex
P of 8Y, where Y denotes the Jordan domain bounded by the curves 7o and 1. At any
such vertex P we attach to it a small segment PVp facing the interior of ¥ and bisecting
the angle of oY at P.

Now for each such segment we consider all the curves ~, which pass through PVp and
let the intersection point of «; with this segment be P;. Thus for those parameters ¢ the
map t — P, defines either an increasing or decreasing parametrization of PVp, which is
not strictly monotone as some interval of parameters is sent to the point P. However, we
may make an arbitrarily small modification to this parametrization to make it strictly
monotone, replacing each point P; with another point P} on PVp.

This gives us a way to replace each of the piecewise linear curves 7; by another curve
~; which, for each segment PVp that intersects 7, passes through the point P instead of
P;. As this modification may be done in an arbitrarily small way we may assume that the
Lipschitz estimates we obtained before for ¢; and for H,, also hold after the modification
up to a multiplicative constant arbitrarily close to 1. Thus although the new homotopy
induced by the curves ~y; is not necessarily simple, it gives the desired Lipschitz-estimates
inside and all of the curves v; are mutually nonintersecting. For further details also see
Section 8 where a similar construction is explained in more depth.

This concludes the construction of the homotopy of the two crosses with centres vy
and 01. After doing this process for every vertex vj. and every curve I'y ; on level k,
we have replaced the curve I', ; with another curve Fk ; with the same vertices as I‘k g
but not intersecting it, see Fig. 11. The homotopy between Flw and Flw is now easy
to construct. Between each pair of neighbouring vertices, say 91 and 05, we deform the
part of f‘kyj into f‘k,j via the method explained in Lemma 6.5. After deforming each four
parts in succession we have deformed Ty, ; into f‘kj

Still in the situation of Fig. 11, we provide a few more details regarding parametriza-
tion and estimates happening here. We may divide the interval [mid, top] into two halves,
on one of which we deform Iy, ; into Ty ; and on the other I j into Fk j- To offer more
details on what happens in the first half, we divide the first half further into four in-
tervals so that on each we move one of the vertices v; to the corresponding point 9;,
j=1,2,34.

In the first half, the length of the relevant curves is always controlled from above by
ITs.j|+ T, plus the same quantity over the neighbours of T’y ;. As the initial curves are
parametrized with constant speed we know by Lemma 6.4 that the Lipschitz-constant of
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the shortest curve extension & in the (z, t)-variables is thus controlled by 2% ([T |+ [T ;)
added with this quantity over the neighbours.

In the second half, each part of f‘k,j having two of the ¢; as endpoints is deformed
to the part of fjk with the same endpoints. Here we are again using Lemma 6.4 and
therefore the Lipschitz-constant is estimated from above by 2%(|T ;| + [Tk.4])-

Step 5. For t € [bot, mid], the situation is as follows. The maps h,;q and hpo: have already
been defined. We interpret these maps as planar maps, identifying the horizontal sections
U, of the cube Uy ; on the domain side with the same square domain which we call /.
Both maps h.,iq and hyor are hence interpreted to be defined on I/ and as they have
the same boundary map @miqa = Ppot, We may interpret them to map U into the same
target domain V bounded by the piecewise linear Jordan curve ¢,,;q4(0U). The difference
between these two maps is that h,,;q is defined by the shortest curve extension of ;4
and hyo is defined as the shortest curve extension of its boundary values in each of the
four child squares of U.

Let us denote by C the cross formed by the two segments between opposing midpoints
of the sides of U. Hence the way h,,;q maps C is determined by the shortest curve
extension and we denote the image cross by Tpig = hmia(C). The way hpo: maps C
is predetermined by the piecewise linear approximations of the original boundary map
defined in Section 5. We denote Tpor = hpot(C).

A key point to note is the following. Let U’ denote one of the four children of U.
Then we claim that h,,;q restricted to U’ is actually the shortest curve extension of
its boundary value on dU’. Let ¢ denote one of the horizontal line segments inside U’
(the meaning of ‘horizontal’ here is as it was used in the definition of the shortest curve
extension), with a and b being its endpoints. Then ¢ is part of a horizontal segment of
U and is mapped to a curve under h,,;q which is the shortest such curve between its
endpoints. This must mean also that the curve is the shortest curve from h,iq(a) to
humia(b) inside u. Moreover, since h,,;q maps each horizontal segment in U to its target
curve with constant speed, h,,;q must also have constant speed on ¢. This cements the
fact that h,,;q on U’ is the shortest curve extension of its boundary values.

However, the above argument has the following minor defect. In Section 6, the shortest
curve extension was defined for a boundary map from a square to a piecewise linear
Jordan domain. But the map h,,;q might not map the two line segments making up C
to true Jordan curves as the shortest curve extension may fail to be injective and thus
the image cross T)n;q may touch the boundary in V. Nevertheless, these curves are still
piecewise linear and are given by a uniform limit of Jordan curves. There is no issue
defining the notion of shortest curves and shortest curve extensions to areas bounded by
such degenerate Jordan curves as well, and the estimates we have established before in
results such as Lemma 6.2 and Lemma 6.4 extend naturally to this setting as well. This
can be seen by verifying that the proofs go through in the degenerate case as well.

From now the strategy to define a homotopy h; for ¢ € [bot, mid] is as follows. For
each such t, the map h; on Ol will have the same boundary values ¢,,;q. Moreover, we
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will define a homotopy of crosses T; between the two crosses Ty,;q and Tpo:. Once such
a homotopy has been defined and parametrized as a map ®; : C — Ty, for each child U’
of U we define h; on U’ as the shortest curve extension of its boundary values on OU’.
Thus h; will be equal to @9 on OU and to ®; on C.

To construct the homotopy between the two crosses, we would like to apply the same
argument from Step 4 which was used to create a homotopy between the crosses depicted
in Fig. 12. However, in the argument from Step 4 it was essential that the two crosses
only had two intersection points (on the curves between v, mq and v1, mg). In our case,
the crosses T),;q and Ty, may have arbitrarily many intersection points. To address this
issue, we define another cross T'y;, which satisfies this property respective to both the
crosses T,iq and Tyo, and then simply deform first 1,34 to Ti, and then to Tpoe. Due to
Lemma 6.2, the exact nature of the parametrization ®; does not play a role here and we
may assume for example that on each of the four arms of C the parametrization always
has constant speed.

Before defining T't;,, we make a small modification to T},;s in order to replace it
with a cross T},;q4« which does not intersect the boundary except at the four endpoints.
Since the cross T),;q consists of piecewise linear curves, this modification can be done
by moving each of its vertices that touch the boundary (except for the four endpoints)
by an arbitrarily small amount towards the interior of V so that the resulting cross does
not intersect itself nor ). This modification provides a homotopy from Ti,;q to Tinid«
which we may, for example, dedicate the first quarter of the interval [bot, mid] towards
in ¢t. The fact that this modification to the cross may be done in an arbitrarily small
way guarantees that the Lipschitz estimates (in ¢) both on C and for the shortest curve
extensions to the four regions of V can be controlled by above with a constant of our
choice.

It now remains to define T';,. Since neither of the crosses Ti,iq« and o touch the
boundary 9V except at their common four endpoints, we may choose T’;, for example
as follows. We pick a point P in V close enough to an image point of a corner of I under
©mid so that P belongs to hyiax(U') N hpot(U') for one of the children U’ of U. Then we
connect P to the four endpoints of T,;q4« via piecewise linear curves to form the cross
T'tiz. These curves, if chosen to run sufficiently close along the boundary 0V, may be
assumed to satisfy the necessary properties of not intersecting themselves or each other.
Moreover, they can be chosen so that two of them intersect T},;4« and Tp,; exactly once
and two of them do not intersect these crosses (apart from the endpoints). See Fig. 14.
This means that the crosses Ty;, and Tjiq4« are in the same configuration as the crosses
in Step 4, and the same goes for T';; and Tp.:. Hence we may repeat the argument to
find a homotopy between these crosses, and extend the boundary values defined by this
via the shortest curve extension to the whole of . For each ¢, we lift the copy of & and
the map h; to the appropriate horizontal section at height ¢ in U ; and V} ; in order to
fully define our extension there.

We have thus defined the extension i as a monotone map on each set Uy, ; to the image
set Vi ;. We now return to our original goal of controlling the Lipschitz constant of h in
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Fig. 14. Constructing an intermediate cross Tf;,. The original crosses Ty, iq« and Tyt are denoted in red
and blue colour and they intersect a lot. Thus we construct a new intermediate cross Ts;, denoted in green
which does not intersect T),;4« and Tpo+ too much.

Uy,;. For the readers convenience, we recall that the goal here amounts to showing that
the Lipschitz constant of h in Uy ; is controlled from above by 2’“|Fk7j| plus possibly the
same quantity over the dyadic neighbours and children of U ;. Note that the quantity
2k|fk, ;| is equivalent with the Lipschitz constant of a constant speed parametrization of
f‘k7 ; over the boundary of the dyadic square on generation k.

To justify that this bound is maintained throughout Uy ;, we explain as follows. In

g
Step 4, the Lipschitz constant of the boundary value isotopy ¢; is controlled by above
(in both the space and t variable) by the lengths of the corresponding boundary curves
and possibly the lengths of the neighbouring curves. Lemma 6.4 then shows that this
implies the correct Lipschitz estimates for h in the region where t € [mid, top]. In the
region t € [bot, mid], the map h is defined piecewise as the shortest curve extension yet
again, so to obtain the correct Lipschitz estimates one needs only estimate the length of
the boundary curves on the image side. These consist of the original boundary curve 9V
and the lengths of the crosses Tiniq, Tfiz and Tpoe. The first two can be bounded from
above by a constant times the length of 0V (which is the length of f‘;w-, while the last
one is bounded by the lengths of the image curves of the children f‘;:r;) Thus we get the
desired estimate that yields a bound on the W1 9-norm of h in terms of the quantity on
the left hand side of (1.3).

8. Making it all injective

Let ¢ : S — 0Y be a homeomorphic boundary map to a Jordan domain Y with
piecewise linear boundary. We now describe how to tackle the issue that the shortest
curve extension H, is not injective but rather a monotone map. The main issue is that
the images of two horizontal segments l;, and ls, of S may intersect each other or
intersect the boundary of the image domain 0Y. However, the saving grace is that these
images are shortest curves between their respective endpoints and thus do not cross,
allowing us to make a minor modification to the curves so that they do not intersect
each other or touch the boundary and therefore create a homeomorphic extension HZ
of ¢. This modification is not too difficult for a single map and was done already in
[18]. However, in our case more details are needed as we need to make this modification
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consistent in a way that if ¢, is a continuous family of boundary maps, not necessarily
to the same image domain, then the modified extensions H;, need to be continuous in ¢
and the modification must be done in a way to preserve the Lipschitz estimates in terms
of .

We will now describe a precise way of constructing the injectification of a single
shortest curve extension H, : § — Y. One may imagine here that H, = H,, for some
homotopy of maps ¢; but with a specific fixed parameter ¢t. We drop the subscript ¢ for
ease of presentation, however. We will define this injectification process with dependence
on certain auxiliary parameters (such as D, defined later), and one should keep in mind
that these parameters will need to be interpreted as functions of ¢ later. By later fixing
their dependence on t we will be able to argue that the process ensures both continuity
in t for the extensions as well as the required Lipschitz-estimates.

Firstly, we may assume here that the boundary map ¢ is also piecewise linear, as such is
the case in the whole construction done in previous sections, where ¢ is always defined
piecewise as a constant speed map. When ¢ and 0Y are piecewise linear, it is not difficult
to check that then also the shortest curve extension H, becomes a piecewise affine map
on S.

The aim is to show that the modification from the shortest curve extension H, to
its homeomorphic variant H; may be done in an arbitrarily small way in the following
sense. On each horizontal segment [, the map H, maps /5 to a shortest curve L, with
constant speed. The map H instead maps [s to another piecewise linear curve L, also
with constant speed, and so that L¥ may be obtained from L by shifting each vertex of
L, by a small distance. We will show that such distances can be chosen to be arbitrarily
small, controlled by a single constant per map, which means that the modified map Hg,
will also be arbitrarily close to H, which lets us obtain the same Lipschitz-estimates for
it.

The idea behind modifying the curves Lg to the curves L} is quite simple. At each
vertex of 0Y where L, passes through, we move that vertex of Ly a little bit further
away from the boundary. For curves Ly with s’ > s, this movement should be a little
bit larger for vertices on JY on the image of the part of S below I5 and a little smaller
for vertices on JY on the image of the part of 95 above l,. See Fig. 15.

We now begin the precise definitions. Let us define a number D as the minimal length
between two sides of Y which are not neighbours. Next, for any point P € 9Y we define
the inner normal of P, denoted {p, as the ray which starts from the point P, points
towards the interior of Y near P, and forms equal angles with JY i.e. is an angle bisector
for the angle of JY formed at P.

For every vertex P € JY, we pick a positive number ep < 1 whose role will become
apparent later in making the modification process continuous in t. We then define the
point Vp as the point on £p which is of distance epD/3 away from P. By the definition
of D, the point Vp must be at a distance of at least 2D /3 away from any other side of
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Fig. 15. Modifying the curves Ly on the segment PVp.

dY than the two P lies on. This means that apart from the point P, the segment PVp
cannot intersect JY nor can it intersect any other such segment QVy for another vertex
Q of OY.

Note that two of the shortest curves Lg may only intersect at points on JY. Since
the point Vp is inside Y, for each P there must be a unique parameter sp for which
L, passes through Vp. We also define §p as the parameter for which P is one of the
endpoints of L;,. Thus the curves Ls which intersect the segment PVp are exactly those
for which s € [sp, §p]. It can also be possible that sp = §p, in which case the segment
PVp belongs fully to the curve L,,. This is also the only case in which a curve L,
intersects PVp more than once. In this case we will not modify the curve Lz, which is
equivalent with setting ep = 0.

Suppose that sp > §p. For each s € [§p, sp| there is a unique point X; on PVp
which belongs to Ls. Let fp : [§p, sp] — [0,epD/3] denote the function which sends s
to |Xs — P|. Now fp is an increasing and surjective piecewise linear function, strictly
increasing on the preimage of (0,epD/3], but it is possible that fp sends a nontrivial
interval of parameters [$p, z] to 0. In fact, this happens exactly in the case where there
are multiple curves L; that intersect at P.

The idea now is the following. We pick a strictly increasing surjective piecewise linear
function f} : [$p,sp] — [0,epD/3] to act as an injective replacement for fp. We wish to
make a canonical choice here so for an increasing surjective function fp : [0,1] — [0, 1]
for which f=1({0}) = [0, A] we set

N Yy when x € [0, A],
fP(x) = { (fp(ac) + 1)/2 otherwise.

The way we will modify each curve Ly for s € [$p, sp] is by moving the point X, on L,
to a new point X} on PVp so that | X} — P| = f5(s).

If sp < §p, we do the exact same process as above only on the interval [sp, §p]
on which the analogously defined function fp will be decreasing instead of increasing.
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Similarly we choose f}, as a strictly decreasing function. We now define the curves L%. For
each curve Ly, we make note of all the segments PVp which this curve passes through.
We only consider segments with sp # §p as to neglect cases where the segment PVp is
fully on Lg. On each of the applicable segments PVp intersecting Ly we move the point
X, on the curve Ly to X7. Note that the curves Ly, and L;, are not modified with
respect to the process specific to the segment PVp (although they may be changed when
we repeat this process on other segments QVg).

Step 1. Proving that the curves L¥ do not intersect JY except at their endpoints.

Fix s and consider the curve Lgs. For each vertex P of 0Y, we consider the seg-
ments PVp. We recall these segments are mutually disjoint. Considering the intersec-
tion points of L, with all such segments PVp, this splits the curve Ly into segments
QoQ1,Q1Q2,...,Qn_1QN so that Qp,Qy are the endpoints of L, and for each Q;,
there is a point P; which is a vertex of Y so that Q; € P;Vp,. Moreover, we assume
that there are no other such points on L.

Consider now a segment Q;Q ;41 with 0 < j < N —1. During the deformation from L,
to L}, the point @); is moved on the segment P;Vp, to another point Q5. Suppose for the
contrary that the segment Q7Q7  intersects the boundary 9Y. Let Q} = (1-7)Q;+rQ;}.
As neither @} or ], belong to Y, there must be a minimal number 0 <7 <1 so that
Q;Qj 1 intersects JY. We now consider two cases:

(1) If a vertex P of Y intersects Q7Q% 4. Basic geometry dictates that such a vertex
P cannot share a side with P; or Pjyq. I P equals Q7 or Q7,,, this contradicts
the definition of D as then the distance from P to either P; or P;;; would be too
small, seeing as |Q} — P;| < D/3 holds for all j and r due to Q} € P;Vp,. If P is
strictly between Q7 and @7, then again a simple geometrical argument shows that
there must be a non-endpoint of Q;Q;+1 which is on PVp, a contradiction with the
definition of the points Q.

(2) If a point X of Y which is not a vertex intersects Q;Q% ;. We obtain a similar
contradiction as above if X is either of Q7 or Q7 ;. In the case where X is strictly
inside Q7Q%;, the segment of OY on which X is on must be parallel to QiQ% 41
as otherwise a smaller choice of r would result in the segments still intersecting
but contradicting the minimality of r. But for any two segments which are parallel
and intersect each other, one must contain an endpoint of the other one. Thus this
reduces to one of the cases already considered.

Step 2. Proving that the curves L% do not intersect each other.
If two of the curves L} and L¥, intersected each other with s < s’. Then for all r € (s, s)

the curve L} would also necessarily intersect both L} and L, or either it would provide
a separation between them. But for r close enough to s, the curves L} and L} may not
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intersect. This is due to the fact that these curves may be decomposed into the same
number of segments I7 and I7, j = 1,...,N, and so that I] — [7 as r — s. This
convergence implies that for r close enough to s, the segment I7 cannot intersect I3,
unless j' € {j —1,7,7 + 1}. However, even in this case these segments may not intersect
due to geometrical reasons, as the nature of the construction guarantees that I and I7
do not intersect.

Step 8. Uniform estimates in ¢.

We now describe the process of ensuring that the modification done in the previous
steps stays continuous in ¢t and has comparable Lipschitz-estimates in each dyadic set to
the original extension. During the construction made in Section 7, we have created an
extension h : [0,1]> — [0,1]? of the boundary map ¢ so that each level [0,1]% x {t} is
mapped to R? x {t}. For each ¢, such a level is divided into a number (depending on t) of
dyadic squares whose boundaries are mapped to piecewise linear Jordan curves by h on
the target side. Moreover, inside these squares the map h is defined by the shortest curve
extension of its boundary values. For each dyadic level, there is a specific parameter ¢
at which the construction changes from being based on those dyadic squares to being
based on their children. The exact behaviour of h at this parameter was described in
Step 5 of Section 7 at the parameter ¢ = mid in the cube Uy ;. We let the sequence of
such parameters be denoted by t; > t3 > t3 > ... corresponding to each dyadic level.

We first describe how to modify the extension h inside each interval I; = (t;y1,1;]
without paying mind to the continuity between successive intervals. We focus now on a
fixed parameter ¢ and a single dyadic square Q k,; % {t} on the domain side and its target
set, which we interpret as a planar Jordan domain Y; with piecewise linear boundary. We
may appeal to the fact that boundary of the domain Y; deforms continuously in ¢ and
the fact that there is an upper bound on the number of vertices of each piecewise linear
curve to deduce that the quantity D = D(t) as defined earlier on Y; has a uniform lower
bound for ¢ € I;. Here we recall that the quantity D and all other quantities introduced
in the earlier description of the construction need to be interpreted as functions of ¢.

We now appeal to the behaviour of the piecewise linear curve dY;. In a neighbourhood
of parameters ¢t where the number of vertices of JY; is constant, the domain Y; changes
in t only by moving these vertices around in a continuous way. There is hence a corre-
spondence between the segments PVp in ¢ in this neighbourhood and thus to guarantee
continuity of the modified extension we must simply ensure that the length of each such
segment is a continuous function in ¢. This length of PVp was defined as epD/3. Since
D is locally bounded from below in ¢, ep can be chosen for each t in such a way as to
make epD a continuous function in ¢ in such a neighbourhood. In fact, we choose ep D
to be a piecewise linear function to maintain Lipschitz-continuity in ¢ as well (we pay
proper attention to estimates later).

We should pay some special attention here to shortest curves L, which completely
contain a segment PVp. This happens only when the shortest curve L;, with endpoint
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P bisects the angle of the boundary at P. In such a case no other curve Ly may pass
through P as these curves have mutually disjoint endpoints, nor may it pass through
PVp as the shortest curves do not intersect in the interior. At any parameter ¢ where
this issue happens we may therefore set ep = 0, essentially forgetting about the segment
PVp altogether, without losing injectivity of the modified extension at this parameter.
To maintain the continuity of epD in ¢ near those parameters ¢t for which L;, contains
PVp, we may for example take an already chosen function ep(t) and multiply it with a
(piecewise linear) function G(t) for which G(t) € [0,1) and G(t) = 0 exactly for these
exceptional parameters t.

The number of vertices of 0Y; does not generally remain constant, as there may be
new vertices appearing from an edge turning into two edges via a new angle being created
at a given point P on that edge. The reverse may also happen to reduce the vertex count
by one, but for the purposes of proving continuity both of these cases are symmetric to
each other. Let us hence assume that at time Ty the point P = P(Tp) lies on an edge
of Yr,, but on the interval (Tp,T1) the point P(t) is a true vertex of 9Y:. In this case
we do as before on (T, T}), choosing epD to be continuous in terms of t. Moreover, we
choose €p in such a way that epD — 0 as ¢ — 3. This means that the segment PVp
shrinks to a point as ¢ — T, which guarantees continuity at this point also.

For a fixed parameter ¢, it is clear that as the numbers ep are chosen uniformly small
enough, for example, by multiplying each with a small constant §; > 0 independent of P,
the modified extension H is arbitrarily close to the original extension H,, in the Lipschitz
norm. Moreover as the quantities ep D were chosen to be Lipschitz continuous, choosing
d¢ as a piecewise linear function in ¢ with small enough Lipschitz norm guarantees that
the map (z,t) — Hj, (2) may be chosen arbitrarily close to the original map h in the
Lipschitz norm for ¢ € (¢x1, tx]. This shows that the Lipschitz estimates obtained in the
previous section may be inherited by the modified extension as well.

Finally, we address the case of the parameters t; where we switch from one dyadic
level to another (t = mid in Uy ;). We pick a parameter ¢; < t; slightly below t; so that
on the level ¢ the extension h is given by the shortest curve extension in the four dyadic
children instead. Choosing t; close enough to ¢; lets us assume that the two maps levels
t;, and ?; are arbitrarily close to each other in the Lipschitz norm. Moreover, due to
this we may assume that the two modified maps are also as close in the Lipschitz norm
as we want. For the sake of this argument we interpret these modified maps as planar
maps hy,, ez + S — Y from a square to a piecewise Lipschitz Jordan domain, and recall
that they have the same boundary values. As both of these maps are piecewise linear
and homeomorphic, for ¢} close enough to t; we may assume that each of the maps
(T = (1 — 7)hy, + Thy; is also homeomorphic for 7 € [0,1] due to the fact that the
Jacobian determinant of h(") must be bounded away from zero for all 7 when h;, and
ht; are close enough in the Lipschitz norm.

We may then redefine the extension for parameters ¢ € [t},tx] by setting it equal to
h(7) for 7 = (t —t},)/(t; — tx). Note that the Lipschitz norm in ¢ may now be very large
here due to the fact that the denominator t; — ¢, may be arbitrarily small. To fix this,



S. Hencl et al. / Journal of Functional Analysis 286 (2024) 110371 47

The quadrilaterals on the side faces. The quadrilaterals on the top face.

Fig. 16. The construction of refined dyadic quadrilaterals on the side and top faces.

we rescale the parametrization on the interval (tx1, tx] on the domain and target side so
that if M denotes the midpoint of this interval, we scale (t},tx] to (M, tx] and (tx+1, 5]
to (tg+1, M]. The length of the interval (M, t;] is hence comparable to 2%, which means
that the Lipschitz constant of the map for parameters ¢t € (M, ;] on Uy ; is controlled
by 2k|f‘k,j| as we have wanted. This finishes the construction and the proof.

9. Extending a boundary map of the sphere

In this section we describe how to modify the local extension method constructed in
Sections 5 to 8 to obtain a proof of Theorem 1.2. We go through the arguments in order
and explain the changes needed in each part.

Proof of Theorem 1.2. First we must define a dyadic decomposition of the unit sphere.
For this purpose we embed the boundary of the unit cube smoothly onto the sphere
and inherit the dyadic decomposition from each face of the unit cube. Thus the dyadic
decomposition of the sphere splits into six dyadic decompositions of squares, which cor-
respond to the six faces of the unit cube, and we may label the respective sets on the
sphere as four side faces and one top and bottom face.

The key difference in the spherical case lies in Lemma 5.1, where the dyadic decom-
position is refined on each level. The main issue is that in Lemma 5.1 the vertices of
the refined quadrilaterals Q) ; were positioned in the same direction (to the right and
up) with respect to the original dyadic squares, whereas no such uniform direction can
be chosen on the sphere. Instead we do as follows. For each dyadic quadrilateral Q ;
belonging to one of the side faces, we apply the same arguments as in Section 5 and
choose the vertices of its four children in the direction of east and north on the sphere,
see Fig. 16. Thus on the side faces the construction can proceed as usual.

We turn our attention to the top face. Let us fix a dyadic level k£ and suppose that
the choice of quadrilaterals Qg ; has been made. Let us denote by {v,,} the collection
of points that are either vertices of the quadrilaterals Q) ;, midpoints of their sides, or
intersections of two segments between opposing midpoints. The points {?,,} will denote
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Stage 1: Vertices o, € O are fixed due  Stage 2: Picking neighbouring vertices. Stage 3: The rest may be chosen
to the construction on the side faces. arbitrarily.

Fig. 17. Picking vertices ¥,, in three stages.

vertices of the quadrilaterals Qx1,; which we must now choose. Let us define two sets
of vertices O and O by saying that v,, € O if the vertex v,, is on the outer boundary of
the union of all () ; on the top face, and likewise 0y, € O if ©,, is on the outer boundary
of the union of all Q441,; on the top face. The choices made on the side faces already fix
the points 9,, € O and imply that on each dyadic level k, vertices 0y, € O are closer to
the north pole than the vertices v,, € O, and thus belong inside the union of all @y, ;, see
Fig. 16. On the bottom face this relation is reversed, but these two cases are analogous
enough that we only need to describe the construction on the top face and the other case
is done with similar arguments.

For vertices v,, ¢ O, we must pick one of four possible directions in which to choose
O in, corresponding to the four dyadic quadrilaterals meeting at v,,. Supposing that
k > 2, we pick the vertices as follows. For each vertex v, for which v,, has a neighbour
vm € O, we choose 0, to lie inside the same quadrilateral as ©,,/, see Fig. 17. There
are four vertices near the corners where the choice of v,,, is not unique and thus we
have two quadrilaterals to choose from: one in the corner and one adjacent to it. In this
case we pick ¥, in the quadrilateral adjacent to the corner. For vertices v, not having
neighbours in O, we can pick the direction in which to choose ¥y, arbitrarily.

As we have now chosen the grids on the domain side, we proceed as usual to define
curves I'; ; on the image side as piecewise linear approximations of the image curves
of 0Qy,; under . Topological information can be preserved here since ¢ is a homeo-
morphism, which means that we can assume that the image grid formed by the I'y ; is
topologically equivalent to the domain grid. Hence on each dyadic level k the grid formed
by the I'y ; and the grid on the next level formed by the children fk,j can be assumed
to have topologically the same intersection points as the respective grids on the domain
side.

Due to the appearance of some additional intersection points compared to the argu-
ments in Section 7, we must explain how the homotopy between I';, ; and f‘k’ ; is defined
in our case. Denote by V,,, and Vi the vertices on the image side corresponding to vy,
and 7,,, and abuse notation to define V,, € O if v, € O. First we note that due to the
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Stage 1: The two crosses with midpoints Stage 2: The cross with midpoint V,, Stage 3: After doing this process for every outer
Vin €0 and V;, € O. is deformed to one with midpoint V,,. vertex, the curves on the outer boundary and
in the side faces may be deformed to be equal.

Fig. 18. Deforming the two crosses.

choice of the vertices 0, before, if d,,, € O then at these points we are in the topologically
correct situation to apply the homotopy construction from Section 7. As in the argument
presented there, we may deform the cross with centre V,, into a cross with centre Vj,
and having the same endpoints, see Stage 2 in Fig. 18.

At the four vertices in the corners of the top face there is a special situation where
only three curves meet at v,, and 0, instead of four, so technically we can not apply the
previous homotopy argument between crosses here. But the “cross” consisting of three
curves is only easier to deform than one with four. For example, one can add an auxiliary
curve to both configurations, use the previous argument for four curves, and then forget
about the auxiliary curves altogether.

Thus we may apply an initial homotopy at the points Vi € O and the side faces to
replace the grid formed by the curves fk ; with another grid G whose outer boundary
curves and points align with the respective I'y, ; and V;,,. See Stages 2 and 3 in Fig. 19.
We must then describe how to deform the parts of the two grids left over inside the top
face to each other despite the existence of some extra intersection points.

In order to do this we simply define an auxiliary grid with vertices at points we denote
by W, as follows. The points W,, will be chosen in the same direction with respect to
both points V,,, ¢ O and Vin ¢ O. Precisely we mean that if the grid G is identified with
a square grid of dimensions 2¥ x 2%, then each point W,, lies in the square to, say, the
lower right of its respective point Vi € G. We may make this choice so that W,, also
lies to the lower right with respect to V,,, in the original grid G consisting of the curves
Fk,j.

The points W,,, can then be connected by piecewise linear Jordan curves with lengths
comparable to the total length of the respective curves T'y; and 'y ;. This may be
justified for example by travelling sufficiently close to either of the given grids G and G.
These curves form an auxiliary grid G containing the points W,,, and we can moreover
pick this grid so that each of the curves in G between neighbouring points W, only
intersects both grids G and G at most once.
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AR N

Stage 1: The inital configuration. Stage 2: The vertices 9., € O are Stage 3: Adding an auxiliary grid.
moved to respective vertices v, € O.

Fig. 19. Deformation between the two grids.

It then only remains to apply the arguments of Section 7 concerning the homotopy
between grids to first deform G to G, and then G to G as the grid G is in the correct
position w.r.t. the other two grids to apply the usual construction. The rest of the proof
proceeds the same way. O

Data availability
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