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Longitudinal clinical trials for which recurrent events endpoints are of interest
are commonly subject to missing event data. Primary analyses in such trials are
often performed assuming events are missing at random, and sensitivity analy-
ses are necessary to assess robustness of primary analysis conclusions tomissing
data assumptions. Control-based imputation is an attractive approach in superi-
ority trials for imposing conservative assumptions on how data may be missing
not at random. A popular approach to implementing control-based assump-
tions for recurrent events is multiple imputation (MI), but Rubin’s variance
estimator is often biased for the true sampling variability of the point estima-
tor in the control-based setting. We propose distributional imputation (DI) with
corresponding wild bootstrap variance estimation procedure for control-based
sensitivity analyses of recurrent events. We apply control-based DI to a type
I diabetes trial. In the application and simulation studies, DI produced more
reasonable standard error estimates than MI with Rubin’s combining rules in
control-based sensitivity analyses of recurrent events.
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1 INTRODUCTION

Recurrent events, such as recurrences of asthma exacerbations or tumor regrowths, are pertinent in many clinical areas
and arise when subjects are at risk of experiencing multiple incidences of the same event. Recurrent event endpoints
are prevalent particularly in chronic disease areas. For example, in a clinical trial conducted by the Juvenile Diabetes
Research Foundation (JDRF) Continuous Glucose Monitoring (CGM) Research Group to evaluate the effect of CGM
on the management of type I diabetes, incidences of severe hypoglycemic events were collected as a recurrent events
outcome. A typical question of interest in such trials with recurrent event endpoints is whether a proposed treatment
affects the number or rate of events during the time of planned follow-up. In the context of the JDRF trial, for instance,
researchers may wish to assess whether CGM decreases the expected number or rate of hypoglycemic events for patients
with type I diabetes. Standard estimands to quantify the treatment effect in recurrent events trials then include the change
in expected rate of events, the rate ratio of events, or the rate of the instantaneous probability of having an event when
comparing active treatment to control. Motivated by the clinical question of interest, recurrent events may be modeled
by either event counts or time to events.
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In longitudinal clinical trials, particularly when planned follow-up time is long or many adverse effects are expected,
missing event data are unavoidable. Missing data can arise for a variety of reasons, such as loss to follow-up or deviations
from protocol, which could be due to administrative reasons or reasons related to treatment assignment itself. There are
three common assumptions for the missing data mechanism: missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR).1 Data are said to be MCAR if the pattern of missingness depends neither
on observed nor missing data values. For the missing mechanism to be MAR, the missingness must only be dependent
on values observed during the study. If, conversely, the missing data process is dependent on the missing values or other
unknown measures, the missingness is MNAR. In this paper, we will primarily consider missingness due to dropout and
loss to follow-up.

The primary analysis in clinical trials is typically performed assuming data are MAR,2 but this assumption is often
not verifiable in practice. The ICH E9(R1) addendum urges that intercurrent events leading to missing data be accounted
for in defining treatment effect estimands, and recommends sensitivity analyses to assess the robustness of study conclu-
sions to unverifiable assumptions in the primary analysis.3 In the language of the ICH E9(R1) addendum, control-based
imputation4 can be an effective “hypothetical strategy,” wherein the event rate or intensity ratio is estimated under hypo-
thetical assumptions about how and why data are missing post-dropout.5 Control-based imputation involves assuming
subjects with missing data on the active treatment arm have event profiles more similar to those observed on the con-
trol arm. This assumption is reasonable particularly when subjects are not expected to receive treatment post-dropout or
when the reference arm is the standard of care treatment. For example, in the JDRF CGM type I diabetes trial, subjects
were randomized to either standard self-monitoring of blood glucose alone or CGM in combination with self-monitoring
blood glucose. If participants randomized to the CGM arm withdrew from the study, they would be likely to continue
self-monitoring blood glucose, making the assumption that their post-dropout behavior would be similar to that observed
for control subjects more plausible.

Control-based imputation targets the de facto estimand,4 which assesses what the effect of treatment would be in prac-
tice rather than in the ideal situation where every subject adheres completely to the protocol. Control-based imputation
is also an attractive option for sensitivity analyses in superiority trials from a regulatory standpoint, as it tends to yield
more conservative treatment effect estimands.6 A practical benefit of control-based imputation is that it does not require
identification of distributions of unknown parameters to describe the behavior of missing events due to its foundation in
pattern-mixture models,7 which are instead built under specification of the patterns of behavior of missing events given
the observed data.2 This pattern-mixture model framework encourages clear, clinically meaningful assumptions about
differences in patterns between subjects who complete the study and those who drop out.8

Multiple imputation (MI)9 is a popular approach to applying control-based assumptions, but Rubin’s standard com-
bining rules for variance estimation have been shown to be inaccurate for estimation of the true sampling variability
of MI treatment effect estimators in the control-based setting.10-12 A variety of analytical variance estimators6,10,11,13-15
have been proposed for improvements over Rubin’s combining rules, but these estimators often involve complicated,
model-specific formulas that make their implementation with recurrent events challenging. A more common approach
to improving variance estimation with control-based MI of recurrent events is the nonparametric bootstrap,5,16,17 but this
approach can be very computationally intensive. In light of the limitations of these existing variance estimation methods
in applications of MI to recurrent events, we propose distributional imputation (DI) as a promising alternative to MI for
control-based sensitivity analyses of recurrent events endpoints. Like MI, DI offers procedural simplicity for implement-
ing control-based assumptions. We also introduce a complementary wild bootstrap procedure for estimation of treatment
effect estimator variance under DI that is more flexible than analytical variance estimators and more efficient than the
nonparametric bootstrap.

In this article, we first introduce the notation and models to be used in implementing our method in the recur-
rent events framework and ground our discussion in the context of a real-world type I diabetes trial. We next review a
few control-based assumptions commonly applied in sensitivity analyses of recurrent events endpoints, as well as MI,
the conventional method of applying these control based assumptions. Next, we introduce DI and the accompanying
wild bootstrap variance estimation procedure, and detail the asymptotic behavior and results of the DI point and vari-
ance estimators. We then evaluate the finite sample performance of DI compared to MI with either Rubin’s combining
rules or a nonparametric bootstrap for the control-based imputation of recurrent events. Finally, we return to our type
I diabetes trial example, for which we compare the execution of DI to that of MI with Rubin’s combining rules and a
Bayesian approach to MI with the nonparametric bootstrap. We conclude with a discussion of our method and future
work.
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2624 FAIRFAX and YANG

2 NOTATION AND MODEL SPECIFICATION

2.1 Basic setup

We first introduce the notation and models we will utilize in the application of DI for recurrent events. The two main
approaches to modeling recurrent events include modeling event counts andmodeling time to recurrent events by gap or
total time. Count models are the simpler of these approaches, but we will incorporate both methods within the context
of our recurrent event sensitivity analysis setting.

We consider a 2-arm randomized trial whereAi indicates whether subject i is randomized to active treatment (Ai = 1)
or control (Ai = 0). Suppose we have a nonhomogeneous Poisson counting process, Ni(t), for subjects i ∈ {1, … ,n}.
The length of planned follow-up time for subject i is 𝜏i, which may vary among subjects. For example, 𝜏i would vary
among subjects if enrollment is done on a rolling basis with follow-up planned to continue until the set end of the study.
Conversely, if follow-up is planned for a set amount of time from randomization regardless of enrollment date, then 𝜏i
would be constant for all i.

SupposeNi(t) is subject to possible censoring due to dropout, and subjects are followed until timeCi ≤ 𝜏i. Then the full
outcome, Ni(𝜏i), for censored subjects may be deconstructed into observed and missing portions, Ni(𝜏i) = {Ni(Ci),Ni(𝜏i −
Ci)}, respectively, where the event rate is assumed constant for each subject i. For simplicity, we assume missingness is
monotone in that subjects who withdraw are not re-entered into the study. Let Ri be an indicator of censoring such that
Ri = 1 if subject i is followed to completion and Ri = 0 if Ci < 𝜏i for subject i. Suppose Ni(t) is also dependent on possible
baseline covariates, Zi. Call XT

i = (Ai,ZTi ) and 𝜁
T = (𝛿, 𝛽).

We assume Ni(t), i ∈ {1, … ,n}, follows a proportional intensity model with gamma frailty,

ΛXi(t, bi, 𝜃) = Λ0(t, 𝜆)bi exp(Ai𝛿 + ZTi 𝛽), (1)

where we assume the baseline cumulative intensityΛ0(t, 𝜆) is parametric and bi are i.i.d. from a gamma distribution with
mean 1 and variance 𝛾 . The full model parameter is then 𝜃T = (𝜆, 𝛿, 𝛽, 𝛾). This frailty model leverages the time to events in
modeling the event intensity, and allows the event intensity to vary by subject-specific random effect, bi, representing the
excess risk of events for subject i ∈ {1, … ,n} due to unknown factors.18 We also use the Anderson-Gill formulation,19
exp(XT

i 𝜁 ), for the portion of ΛXi(t, bi, 𝜃) dependent on Xi to avoid restrictions on 𝛿 and 𝛽.
Given this nonhomogeneous Poisson process, let Yi be the event count for subject i during planned follow-up, 𝜏i. For

subjects followed until time Ci < 𝜏i, the full event count can be written Yi = (Yi,obs,Yi,mis), where Yi,obs is the observed
event count during (0,Ci] and Yi,mis is the unobserved event count during (Ci, 𝜏i]. We propose to model the event count to
assess the effect of treatment on the rate of occurrence of events for the primary analysis. We further assume the primary
analysis model parameter vector𝜙, which contains the treatment effect parameter, may be estimated in the complete data
analysis via the estimating equations

1
n

n∑

i=1
𝜓(Yi, 𝜙) = 0. (2)

2.2 Primary analysis model

Popular count models for the primary analysis of recurrent events endpoints include the Poisson and negative binomial
log-linear generalized linear models (GLMs). The negative binomial regression model can be more realistic for assessing
the effect of treatment on the expected event rate. Unlike the Poisson regression model, but similar to the gamma-frailty
model for the event intensity, the negative binomial regression model allows event rates between subjects to differ while
assuming a constant within-subject rate of events. For the primary analysis, we thus assume the popular log-linear
negative binomial regression model for the event count with log-offset of follow-up time:

log{E(Yi|Ai,Zi,Ci)} = 𝛼 + Ai𝛿 + ZTi 𝛽 + log(Ci). (3)

Here, E(Yi|Ai,Zi,Ci) is the expected event count conditional on possible baseline characteristics, treatment assignment,
and actual follow-up time. This model implicitly assumes data are MAR. The estimand of interest is 𝛿, which entails the
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FAIRFAX and YANG 2625

treatment effect. The estimating equations (2) may be constructed for 𝜙T = (𝛼, 𝛿, 𝛽, 𝛾), with a natural choice for 𝜓(Yi, 𝜙)
being the score functions under model (3). In this model, 𝛾 is related to the dispersion parameter of the negative binomial
regression.

2.3 Imputation model

We now introduce the model for imputing missing events of subjects who drop out before the end of planned follow-up.
For expository purposes, we assume the proportional intensity model with gamma frailty (1) and specify the parametric
baseline intensity function

Λ0(t, 𝜆) = 𝜆t. (4)

In general,Λ0(t, 𝜆) can be approximated by B-spline functions20 to avoid specifying a precise parametric form for this func-
tion or to allowΛ0(t, 𝜆) to be nonparametric. However, a benefit of the above linear specification considering the primary
analysis model is that it corresponds to a count model for the expected number of events in follow-up time, t, given

log{E(Yi|Xi, bi, t)} = log{ΛXi(t, bi, 𝜃)} = 𝛼 + Ai𝛿 + ZTi 𝛽 + log(t) + log(bi), (5)

where 𝜃

T = (𝜆, 𝛿, 𝛽, 𝛾) and 𝛼 = log(𝜆). The gamma frailty leads to a marginal negative binomial distribution for the
event count.16 While the intensity model (1) could be used to impute post-dropout event times,21 we instead impute the
post-dropout event counts directly of interest for the primary analysis. The distribution of the event count post-dropout
given the observed event count after integrating over bi is

Yi,mis|Yi,obs ∼ NB

(
k = 1

𝛾

+ Yi,obs, p = 1 + 𝛾Λ0(Ci)eX
T
i 𝜁

1 + 𝛾{Λ0(𝜏i) − Λ0(Ci)}e ̃Xi
T
𝜁 + 𝛾Λ0(Ci)eX

T
i 𝜁

)
, (6)

where Yi,obs is the observed number of events experienced through censoring time Ci. Here, k is the number of successes
and p denotes the success probability. Control-based assumptions can be applied to this conditional distribution for the
missing event count through the covariate vector, where Xi represents relevant covariates pre-dropout and ̃Xi represents
relevant covariates post-dropout. Covariates Xi and ̃Xi will be further described in Section 4.

3 MOTIVATING DATASETS

We will later demonstrate and evaluate our method utilizing both data from a real-world type I diabetes trial and a
simulated dataset.

The Juvenile Diabetes Research Foundation conducted a “Randomized Clinical Trial to Assess the Efficacy of
Real-Time Continuous Glucose Monitoring in the Management of Type I Diabetes” Jan 2007 to Jan 2009.22 The source of
the data is the JDRF Artificial Pancreas Project sponsored by Jaeb Center for Health Research, but the analyses, content
and conclusions presented herein are solely the responsibility of the authors and have not been reviewed or approved by
Jaeb Center for Health Research. Though not the original primary endpoint, one safety outcome of interest was the rate of
severe hypoglycemic events. For illustration, we will consider primary and sensitivity analyses of this endpoint utilizing
models and imputation assumptions discussed herein.

In this trial, 232 subjects were randomized to real-time continuous glucose monitoring (CGM) with self-monitoring
blood glucose and 211 were randomized to self-monitoring blood glucose alone (control) for 26 weeks. Subjects were
followed in an extension study for an additional 26 weeks, during which all patients were assigned CGM. For the purpose
of illustratingmethods introduced in this article, we assume planned follow-upwas 𝜏0 = 182 days (26weeks) and 𝜏1 = 364
days (52 weeks) for control and CGM arms, respectively. There were a total of 73 observed severe hypoglycemic events
across both arms within the follow-up times we consider. All subjects on the control arm were followed for the full 182
days of follow-up. The rate of dropout was 51.7% for CGM patients during the 364 days of follow-up, yielding an overall
dropout rate of 27.1%.
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2626 FAIRFAX and YANG

We assume a log-linear negative binomial model with log-offset of follow-up time for primary analysis, but include
only the treatment assignment as the baseline covariate, resulting in the model

log{E(Yi|Ai,Ci)} = 𝛼 + Ai𝛿 + log(Ci), (7)

where Yi, Ai, and Ci represent the hypoglycemic event count during follow-up, the treatment assignment as previously
defined, and the time of follow-up for subject i, respectively. Baseline covariates available for inclusion in the imputa-
tion model (1) include age, height, weight, sex, and duration of diabetes prior to enrollment, though we will discuss the
selection of baseline covariates in greater detail in Section 8.

Now, in this trial, all subjects randomized to control were followed for the entire assumed duration of planned
follow-up, which was shorter than that planned for the active treatment arm. We also simulate a motivating dataset in
which we assume a randomized clinical trial design with equal allocation to active treatment and control, equal length of
planned follow-up for all subjects, and similar dropout rates among both active treatment and control arms. We assume
the endpoint of interest is again the event count, and incorporate the same baseline covariates in both imputation (1) and
primary analysis (3) models for this dataset. The simulation and analysis of this dataset will be discussed in greater detail
in Section 7. We will perform control-based sensitivity analyses on both the simulated and type I diabetes trial datasets
utilizing DI for recurrent events.

4 CONTROL-BASED ASSUMPTIONS

Control-based imputation was first proposed for missing data sensitivity analyses in clinical trials by Carpenter et al4
for continuous longitudinal data. Two approaches to control-based imputation that naturally extend to recurrent events
are copy reference (CR) and jump to reference (J2R) imputation.23 In CR imputation, subjects lost to follow-up on the
active treatment arm are assumed to follow the observed distribution of the control arm subjects pre- and post-dropout.
J2R imputation, on the other hand, is predicated on the assumption that subjects on the active treatment arm who are
lost to follow-up “jump” to the observed control arm distribution only post-dropout. Under CR and J2R assumptions, the
control arm is imputed assuming events post-randomization are MAR. Imputation under both assumptions is performed
conditional on a subject’s baseline profile and history of past events.

Though itmay seem counter-intuitive, J2R has been observed to producemore conservative treatment effect estimates
than CR imputation for recurrent events.5 J2R is often conservative because the underlying assumption implies subjects
will essentially lose any beneficial effect of their time on active treatment.4 Under J2R imputation, if a subject has a higher
than average event rate prior to dropout, then their imputed event rate post-dropout will be higher than typically observed
on the control arm because we condition on past history.23 Under CR imputation, where subjects lost to follow-up are
assumed to follow the observed control armdistribution of events for the full length of planned follow-up, a subject’s event
rate prior to dropout is indicative of their personal event propensity. So, if a subject has a lower event rate pre-dropout
than would be expected had they actually been randomized to the control arm, this prior event rate will feed into their
post-dropout CR imputation. CR imputation can imitate when subjects lost to follow-up are essentially nonresponders.4
Though J2R can be more conservative, it is a reasonable strategy if the reference arm is the standard of care likely to be
given to a subject after dropout,24 such as in the JDRF type I diabetes trial.

We consider CR and J2R control-based imputation of missing events post-dropout. We also employ randomized-arm
MAR (MAR) imputation,4 in which the post-dropout distribution of events for a subject is assumed to be the observed
distribution for subjects on the arm to which they were actually randomized. MAR imputation can mimic the typical
analysis strategy for the primary analysis. Control-based and MAR assumptions can be incorporated in the imputation
model through model covariates used pre- and post-dropout, and events may then be imputed via the posterior distribu-
tion of events post-dropout (6). We specify relevant pre-and post-dropout covariates for subjects lost to follow-up on the
active treatment arm:

• CR: XT
i = (Ai = 0,Zi) pre-dropout and ̃XT

i = (Ãi = 0,Zi) post-dropout;

• J2R: XT
i = (Ai,Zi) pre-dropout and ̃XT

i = (Ãi = 0,Zi) post-dropout; and

• MAR: XT
i = (Ai,Zi) pre-dropout and ̃XT

i = (Ãi = Ai,Zi) post-dropout.
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FAIRFAX and YANG 2627

5 EXISTING METHODS: MULTIPLE IMPUTATION

A popular method for applying control-based assumptions in sensitivity analyses with recurrent events is Rubin’s mul-
tiple imputation (MI).9 Let f be the imputation distribution dependent on imputation parameter 𝜃. In the randomized
clinical trials setting where imputation and analysis models are often proposed by the same party, it is common for 𝜃
and 𝜙 to contain overlap. Given the imputation and analysis models described in Section 2, the imputation parameter is
𝜃

T = (𝜆, 𝛿, 𝛽, 𝛾) and the analysis model parameter is 𝜙T = (𝛼, 𝛿, 𝛽, 𝛾). The general steps for MI of the event count are as
follows.

1. Form ∈ {1, … ,M}, obtain an estimate, ̂𝜃(m), of the imputation parameter, 𝜃, given the observed data and imputation
model, f . Impute missing post-dropout event count Y∗(m)

i,mis under the imputation model, f , conditional on Yi,obs at this
realization of ̂𝜃(m) to create M complete datasets.

2. Perform the primary analysis under the proposed analysis model on each of the M completed datasets to obtain
estimates of the analysis model parameter, ̂𝜙(m).

Rubin’s combining rules9 are used to arrive at the MI estimator for the analysis parameter, ̂
𝜙MI , and its

variance:

̂
𝜙MI =

1
M

M∑

m=1

̂
𝜙

(m)
, V(̂𝜙MI) = WM + (1 +M−1)BM . (8)

Here, WM = M−1∑M
m=1Wm is the average within-imputation variance, Wm is the estimated variance of ̂

𝜙

(m), and the
between-imputation variance, BM , is the sample variance of the ̂

𝜙

(m)’s. The complete event count for partially observed
subject i is constructed: Y∗(m)

i = Yi,obs + Y∗(m)
i,mis .

The typical approach in the literature for the selection of ̂𝜃(m) in missing recurrent events sensitivity analyses with
control-based MI is to sample the imputation model parameter via either Bayesian posterior draw methods16,23 or from
the asymptotic distribution of the maximum likelihood estimator (MLE).5,21 A more computationally efficient option,
however, is to estimate 𝜃 as the pseudo-MLE from observed data (MLMI), since the MLE is the same in every imputation
iteration.17 MLMI is appealing due to its relative computational efficiency, but Rubin’s variance estimator can be biased
for MLMI25 because imputing missing outcomes from the conditional distribution given the observed data evaluated at
the MLE is “improper.”9

Regardless of the approach to MI, Rubin’s variance estimator has been shown to be biased for the true sampling
variance of the MI estimator in applications of control-based imputation of recurrent events.26 While MI can provide
valid inference for data MAR,27 this is not always true for data MNAR or in cases of uncongeniality or model mis-
specification.28 Congeniality generally means the imputation and analysis model classes are compatible (see Xie and
Meng29 and Meng30 for a formal definition). This congeniality condition is problematic in our control-based imputation
setting, as control-based assumptionsmade in sensitivity analyses retaining the primary analysis model impose unconge-
nialty.31 Control-based imputation is predicated on the assumption that data are MNAR. Even if imputation and analysis
models are of similar forms, performing imputation assuming events are MNAR results in incompatibility between the
imputation and primary analysis models. Despite Rubin’s variance estimator being known to be biased in this setting,
conventional use of Rubin’s combining rules following control-based MI of recurrent events remains popular in the
literature.21,23

Bootstrappingmethods offer flexibility in improving variance estimation of theMI point estimator. The nonparametric
bootstrap has been successfully utilized to estimate the variance of treatment effect estimators with control-based MI
of recurrent events,5 and has been shown to yield more accurate estimates of standard error and proper coverage for
confidence intervals under control-basedMI of recurrent events in comparison to Rubin’s variance estimator.16 Though it
offers improvements over Rubin’s variance estimator, the nonparametric bootstrap can be very computationally intensive
regardless of the method used to select ̂𝜃(m). This can be a major disadvantage in practice. Given the deficiencies of MI
withRubin’s variance estimator in the control-based setting and practical limitations of other popularmethods of variance
estimation for the MI point estimator, we propose distributional imputation (DI) with a parallel wild bootstrap variance
estimation procedure for missing recurrent events sensitivity analyses.
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2628 FAIRFAX and YANG

6 DISTRIBUTIONAL IMPUTATION FOR RECURRENT EVENTS

6.1 Distributional imputation procedure

We propose DI with wild bootstrap variance estimating procedure for estimating and assessing the uncertainty of the
treatment effect in control-based missing data sensitivity analyses of recurrent events endpoints. Liu et al32 also recently
suggested DI for performing control-based sensitivity analyses in the continuous longitudinal data setting. Liu et al
demonstrated via simulations that DI produces comparable point estimates to MI for a variety of estimands and outper-
forms Rubin’s combining rules regarding coverage probabilities and relative bias of estimated variance in the continuous
longitudinal data setting.32 However, the DI method proposed by Liu et al only handles continuous and binary data. We
propose a DI method for recurrent events sensitivity analyses.

Recall we assume the target analysis parameter, 𝜙, may be estimated by solving n−1
∑n

i=1𝜓(Yi, 𝜙) = 0. In the presence
of missing data and under MAR, a consistent estimator for 𝜙may be obtained by solving

n−1
n∑

i=1
E{𝜓(Yi, 𝜙)|Yi,obs, ̂𝜃} = 0. (9)

This expectation is with respect to imputation density f (Yi,mis|Yi,obs, 𝜃), which in our case is the conditional negative bino-
mial distribution (6). Like in MLMI, the imputation parameter 𝜃 may be estimated by the pseudo-MLE, ̂𝜃, via the mean
score equations, n−1

∑n
i=1E{s(Yi, 𝜃)|Yi,obs} = 0, given the imputation model.

Rooted in the idea of Monte Carlo (MC) integration,33 the conditional expectation estimating equations for 𝜙 (9) may
be approximated by M−1∑M

m=1𝜓(Y∗(m)
i , 𝜙), where Y∗(m)

i is the complete data post-imputation. Thus, 𝜙 may be estimated
by solving:

1
nM

n∑

i=1

M∑

m=1
𝜓(Y∗(m)

i , 𝜙) = 0. (10)

The procedure for DI is then as follows.

1. Calculate the imputation model estimator, ̂𝜃, from the observed data via the mean score equations under the
imputation model.

2. Form ∈ {1, … ,M}, impute missing event counts Y∗(m)
i,mis ∼ f (Yi,mis|Yi,obs, ̂𝜃).

3. Obtain the DI estimator for the analysis model parameter, ̂𝜙DI , by solving (10).

A fundamental difference between DI and MI is that ̂
𝜙DI is estimated using all of the completed data, rather than

by averaging over the analysis performed inM single complete datasets. We note that estimating ̂
𝜙DI from the pooledM

completed datasets is similar to what is done under parametric fractional imputation (FI).34,35 In contrast to FI, DI does
not require importance sampling or a proposal distribution, but takes advantage of the estimated conditional distribution
given observed data under the control-based sensitivity assumptions for direct imputation of missing data. This makes
DI more straightforward to implement with control-based assumptions. Pooling over the completed datasets can make
estimation of the point estimator more computationally efficient under DI than MI, but can also require more storage
than MI. To reduce storage costs of DI, a weighted regression technique can be utilized for the estimating equations (10)
so only one copy of the event count must be retained for subjects followed to completion.

6.2 Variance estimation

The variance of the point estimator obtained under DI may be estimated via an accompanying wild bootstrap pro-
cedure,36 which parallels the DI procedure and draws on the concept of importance sampling37 to account for the
variability contributed from estimating both the imputation and analysis parameters. This wild bootstrap, like the non-
parametric bootstrap, is flexible for easy application to the recurrent events setting. The wild bootstrap procedure is as
follows.

 10970258, 2024, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10087 by N
orth C

arolina State U
niversity, W

iley O
nline Library on [02/06/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



FAIRFAX and YANG 2629

1. Randomly generate i.i.d. wild bootstrap weights, u(b)i , with mean and variance 1 such that u(b)i ≥ 0 for each subject i.
Here b denotes the current bootstrap replicate. Calculate the imputation parameter estimate replicate ̂𝜃(b) by solving
the weighted mean score equations:

1
n

n∑

i=1
u(b)i E{s(Yi, 𝜃)|Yi,obs} = 0. (11)

2. Update, importance weights w(m)
i (̂𝜃(b)), subject to

∑M
m=1w

(m)
i (̂𝜃(b)) = 1 for all i, where

w(m)
i (̂𝜃(b)) ∝

f (Y∗(m)
i |Yi,obs, ̂𝜃(b))

f (Y∗(m)
i |Yi,obs, ̂𝜃)

. (12)

3. Obtain the DI estimate replicate, ̂𝜙(b)
DI , by solving the weighted estimating equations:

1
n

n∑

i=1

M∑

m=1
u(b)i w(m)

i (̂𝜃(b))𝜓(Y∗(m)
i , 𝜙) = 0. (13)

We repeat steps 1-3 for b ∈ {1, … ,B}. Then the variance of ̂𝜙DI may be estimated by

̂VWB(̂𝜙DI) =
1

B − 1

B∑

b=1
(̂𝜙(b)

DI − ̂
𝜙DI)⊗2. (14)

By constructing the importance weights subject to the conditions given in Step 2, (13) approximates the bootstrap
replication of the estimating equations (9) without re-imputation of themissing values. Solving theseweighted estimating
equations (13) for ̂

𝜙

(b) involves the expectation conditional on both the current bootstrap sample and the estimated ̂
𝜃

(b).
Thus, the importance weights are constructed to account for the variability introduced by estimating the imputation
parameter in the current bootstrap sample. Furthermore, control-based assumptions can be easily implemented through
updating these importance weights (12) using the conditional distribution of events given the observed event count.

Now, there are many options for the distribution of the wild bootstrap weights, u(b)i , including exponential or Poisson
distributions with rate parameter 1. The procedure is not sensitive to the choice of wild bootstrap weight distribution,
given the conditions for u(b)i specified in Step 1 above.32 In comparison to the nonparametric bootstrap, this wild bootstrap
procedure offers a gain in computational efficiency by avoiding repeating the full imputation and analysis processes in
each bootstrap iteration.

6.3 Asymptotic results

The DI estimator and corresponding variance estimator based on the wild bootstrap procedure exhibit favorable asymp-
totic properties, which we discuss in this section. We present theorems for the consistency and asymptotic normality
of the DI point estimator, ̂

𝜙DI , and for the consistency of the variance estimator, ̂VWB(̂𝜙DI), based on the wild bootstrap
procedure. Proofs of all presented theorems are given in the Supporting Information.

Theorem 1 (consistency of ̂
𝜙DI). Under regularity conditions given in Section A.1 of the Supporting Informa-

tion, ̂𝜙DI converges in probability to 𝜙0 as sample size n → ∞ and imputation size M → ∞, where 𝜙0 is the true
value of the target analysis parameter.

Theorem 2 (asymptotic normality of ̂
𝜙DI). Under regularity conditions given in SectionA.2 in the Supporting

Information, and as sample size n → ∞ and imputation size M → ∞,

√
n(̂𝜙DI − 𝜙0) converges in distribution to N(0,VDI),
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2630 FAIRFAX and YANG

where VDI = E(K1KT
1 ) and

Ki = C2E{𝜓(Yi, 𝜙0)|Yi,obs, 𝜃0} + C2C1C3E{s(Yi, 𝜃0)|Yi,obs};

C1 = E[{s(Yi, 𝜃0) − sobs(Yi, 𝜃0)}𝜓(Yi, 𝜙0)]; C2 = −
[
E
{

𝜕

𝜕𝜃

𝜓(Yi, 𝜙0)
}]−1

; C3 = I−1obs(𝜽0).

Iobs(𝜽0) is the observed Fisher information of the true value of the imputation parameter, 𝜃0, and sobs(Yi, 𝜃0) is
the observed score equation with respect to the imputation model evaluated at 𝜃0.

Theorem 3 (consistency of ̂VWB(̂𝜙DI)). Let wild bootstrap weights u(b)i ≥ 0 for all i = 1, … ,n be i.i.d. with
mean and variance 1. Then under regularity conditions given in Section A.3 of the Supporting Information,
̂VWB(̂𝜙DI) converges in probability to ̂VDI as sample size n → ∞, imputation size M → ∞, and bootstrap size
B → ∞.

Concerning the choice of imputation size M and bootstrap size B, larger values of both offer improved performance
if computationally feasible. However, results from our simulation studies show that performance of the DI point and
variance estimators for the treatment effect is not very susceptible to the choice ofM.

7 SIMULATION STUDY

We design a simulation study similar to that given by Gao et al16 to evaluate the finite-sample performance of DI with
the wild bootstrap for the treatment effect (𝛿DI) under CR, J2R, and MAR imputation. We compare the point and vari-
ance estimators given by DI to those for the treatment effect produced by MI (𝛿MI) with either Rubin’s combining rules
or a nonparametric bootstrap. We consider a randomized clinical trial design with total sample size n ∈ {200, 2000}
with equal allocation to active treatment and control arms. The outcome of interest is the event count during specified
follow-up period 𝜏i = 5 for all i ∈ {1, … ,n}. We utilize the log-linear negative binomial regression model (3) for the
planned analysis to estimate treatment effect, 𝛿, where the full analysis parameter is 𝜙T = (𝛼, 𝛿, 𝛽, 𝛾).

We consider performance across 1000 simulated datasets, generating event counts assuming a gamma frailty model
with cumulative intensity function (1), linear baseline intensity function (4), and initial parameter 𝜃

T
0 = (𝜆 = 0.5,

𝛿0 = −0.8, 𝛽 = 0.5, 𝛾 = 1). We specify initial 𝛿0, as the true treatment effect 𝛿 is expected to change under varying
control-based assumptions and rates of missingness. The true values of 𝛿 are estimated by performing MI and DI with
n = 10,000 and M = 100, and are shown in Table 1. We include one baseline covariate, Zi

i.i.d.∼ Unif(0, 1), in the data
generation, imputation, and analysis models.

We assume monotone missingness due to loss to follow-up. We generate a noninformative censoring time, Ci ≤
𝜏i, representing the time of dropout or completion of planned follow-up according to Ci = Bi𝜏i + (1 − Bi)Unif(0, 𝜏i),
where Bi

i.i.d.∼ Bernoulli(p0). We vary p0 ∈ {0.8, 0.5, 0.3}, corresponding to expected dropout rates (DORs) of E(DOR) ∈
{20%, 50%, 70%}. The rate of missing events corresponds to approximately E(DOR)∕2 here, shown empirically in Table 2.

We assume the intensity model with gamma frailty and linear baseline intensity function to avoidmodel misspecifica-
tion in the imputation process. Initial estimation of imputation parameter 𝜃T = (𝜆, 𝛿, 𝛽, 𝛾) is performed utilizing all of the
observed data under J2R and MAR imputation and utilizing only the observed control arm data under CR imputation.
Missing event counts post-dropout are imputed from the conditional negative binomial density (6). We consider imputa-
tion sizeM ∈ {5, 50}. For the bootstrapping methods, we utilize bootstrap size B = 200. For the wild bootstrap variance
estimating procedure, we assume wild bootstrap weights ui

i.i.d.∼ Exp(1) for i ∈ {1, … ,n}.

TABLE 1 True values of 𝛿MI and 𝛿DI for each imputation assumption and expected dropout rate (E(DOR)).

CR J2R MAR

E(DOR) 20% 50% 70% 20% 50% 70% 20% 50% 70%

𝛿MI −0.735 −0.644 −0.588 −0.684 −0.533 −0.443 −0.800 −0.800 −0.800

𝛿DI −0.734 −0.644 −0.588 −0.684 −0.533 −0.443 −0.800 −0.800 −0.800
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FAIRFAX and YANG 2631

TABLE 2 Observed dropout rates (DORs) and missing event rates (MRs) by E(DOR).

n = 200 n = 2000

Rate 20% 50% 70% 20% 50% 70%

DOR 0.200 0.498 0.699 0.200 0.500 0.700

MR 0.101 0.249 0.350 0.100 0.251 0.351

Note: n = total sample size.

We assess performance of DI with the wild bootstrap for variance estimation in comparison to MI with either Rubin’s
combining rules or a nonparametric bootstrap under CR, J2R, and MAR imputation in terms of treatment effect point
estimator bias, relative bias of estimated standard errors (SEs), average confidence interval lengths and average computa-
tional time, presented in Table 3. Confidence intervals are standard Wald intervals. MI and DI produce similar estimates
of 𝛿 in simulations, with both estimators tending to be negatively biased and ̂

𝛿DI typically being less than or as biased
as ̂

𝛿MI . The bias of either estimator improves with increases in sample size, n. The magnitude of these biases tends to
decrease as dropout rate increases under CR and J2R imputation, which is likely due to the decrease in magnitude of
treatment effect estimates as dropout rate increases.

The true standard errors of ̂
𝛿MI and ̂

𝛿DI are similar. DI with the wild bootstrap offers great improvements over MI
with Rubin’s combining rules for accurate estimation of the true sampling variability of the point estimator under CR and
J2R imputation. For these control-based assumptions, the relative biases of the estimated standard error under DI with
the wild bootstrap are more similar to those produced by MI with the nonparametric bootstrap, with the latter typically
yielding slightly less biased standard error estimates for the treatment effect. Under J2R and CR assumptions, relative
bias remains similar despite increasing sample size, and performance of estimated standard error is more accurate under
lower dropout rates for either estimator. Relative bias of the standard error estimates for ̂𝛿MI with Rubin’s combining rules
under CR and J2R imputation tends to increase as imputation size M increases, whereas those for ̂

𝛿DI or MI with the
nonparametric bootstrap are affected to a lesser degree under changes toM. In general, relative biases for ̂𝛿DI and ̂

𝛿MI with
the nonparametric bootstrap are much less varied than that for ̂

𝛿MI with Rubin’s combining rules. This suggests DI with
thewild bootstrap, similar to the nonparamtric bootstrapwhen usedwithMI, is less susceptible to changes in sample size,
imputation size, or dropout rates than MI with Rubin’s combining rules in more consistently estimating standard error
of the treatment effect estimator. While DI with the wild bootstrap more accurately estimates the standard error of 𝛿 than
MI with Rubin’s combining rules under the control-based assumptions considered, this is not necessarily the case under
MAR imputation. MI typically, if not uniformly, appears to produce more accurate standard error estimates with either
variance estimator underMAR imputation than DI with the wild bootstrap procedure. DI does experience improvements
in standard error estimation under MAR imputation with increases inM and sample size.

One trend we observe is that the true standard error decreases for both point estimators as dropout rate increases in
the control-based imputation scenarios. While this may seem counter-intuitive, it is likely due in part to the decreasing
magnitude of 𝛿 for increasing dropout rates under control-based imputation assumptions. Additionally, Xie and Meng29
found that in some cases the efficiency of MI estimators increases as the amount of missingness increases. For example,
in this setting, the score equations used in estimating ̂

𝛿MI and ̂
𝛿DI are not the true observed score equations, as obtaining

the latter would require taking the expectation of the former with respect to the observed data. Doing so is not always
practically feasible, and could create an added barrier to use of thesemethods. Becausewe do not take this expectation, the
obtained estimator under CR and J2R imputation is no longer the true MLE, and may not be the most efficient estimator
for 𝛿. Despite this, the wild bootstrap for ̂

𝛿DI , like the nonparametric bootstrap for ̂
𝛿MI , is able to reflect this true trend

much better than Rubin’s combining rules for variance estimation of ̂𝛿MI .
As we expect, MI with Rubin’s combining rules is very computationally efficient. Though DI with the wild bootstrap

is computationally more intensive than MI with Rubin’s combining rules, DI is still computationally more efficient than
MI with the nonparametric bootstrap. Average computational time increases for all three estimation methods as sample
size andM increase. Average computational times for MI with either variance estimating procedure appear affected to a
greater degree by increases inM as compared to sample size, while the opposite appears to be the case forDI. Average com-
putational time for DI with the wild bootstrap increases with increasing dropout rates, whereas MI with either variance
estimator is less affected by changes to dropout rates. Thus, DI with the wild bootstrap offers increased improvements to
computation time over MI with the nonparametric bootstrap under low to moderate dropout rates.
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2634 FAIRFAX and YANG

F IGURE 1 Estimated coverage rates for Wald confidence intervals of ̂𝛿MI with Rubin’s rules (blue), ̂𝛿MI with nonparametric bootstrap
(green), and ̂

𝛿DI (red) under CR, J2R, and MAR imputation with sample size n ∈ {200, 2000} and imputation sizeM ∈ {5, 50}.

In addition to the confidence interval lengths given in Table 3, estimated coverage rates are presented with 95% con-
fidence limits in Figure 1. DI with the wild bootstrap and MI with the nonparametric bootstrap tend to produce shorter
confidence intervals than MI with Rubin’s combining rules. DI with the wild bootstrap and MI with the nonparametric
bootstrap also produce coverage rates typically closer to the nominal level than MI with Rubin’s combining rules under
CR and J2R imputation, though 95% confidence intervals for the estimated coverage of ̂

𝛿DI and ̂
𝛿MI when utilizing the

nonparametric bootstrap fall completely below the nominal level under CR imputation for the smaller sample size and
highest dropout rate. Under MAR imputation, the performance of MI and DI are more similar. However, MI with either
variance estimation method often produces confidence intervals with coverage rates closer to the nominal level than DI
under MAR imputation, particularly for smaller sample sizes.

We additionally assess type I error rates of thesemethods setting 𝛿0 = 0, which yields true 𝛿 values very close to zero. DI
with thewild bootstrap andMIwith the nonparametric bootstrap similarly produce estimated type I error rates (displayed
with 95% confidence limits in Figure 2) closer to the nominal level, which generally improve as sample size increases
and dropout rate decreases, than MI with Rubin’s combining rules under CR and J2R imputation. For MAR imputation,
however, MI results in improved type I error rates over DI under smallerM and sample size. MI with the nonparametric
bootstrap on average offers the best performance for type I error rates under MAR imputation.

We also evaluate the power of ̂𝛿DI and ̂
𝛿MI whenusingRubin’s combining rules, displayed in Figure 3, as themagnitude

of initial 𝛿0 increases. We exclude MI with the nonparametric bootstrap from the assessment of power due to the high
computational time of the nonparametric bootstrap. Under CR and J2R assumptions, estimated power increases much
more rapidlywith increases to themagnitude of 𝛿0 for ̂𝛿DI than for ̂𝛿MI withRubin’s combining rules,with estimated power
improving for both estimators with increases to sample size andM and decreases to dropout rate. Estimated power for ̂𝛿MI
with Rubin’s combining rules and ̂

𝛿DI is more similar under MAR imputation, with the most noticeable improvements
resulting from increases to sample size. As we expect, estimated power improves most slowly under J2R imputation with
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FAIRFAX and YANG 2635

F I GURE 2 Estimated type I error rates for ̂
𝛿MI with Rubin’s rules (blue), ̂𝛿MI with nonparametric bootstrap (green), and ̂

𝛿DI (red)
under CR, J2R, and MAR imputation with sample size n ∈ {200, 2000} and imputation sizeM ∈ {5, 50}.

increasing magnitude of 𝛿0, as we observe that J2R imputation produces the most conservative estimates of the treatment
effect.

In these simulations, since we utilize the same pseudo-maximum likelihood-based methods for estimation of impu-
tation parameter 𝜃 in our approach to MI as in our implementation of DI, we employ MLMI. These results empirically
demonstrate that DI with the wild bootstrap more accurately estimates point estimator standard errors than MI with
Rubin’s combining rules when ML methods are used in estimating 𝜃 under control-based assumptions that introduce
uncongeniality between imputation and analysis models. However, sinceMI with Rubin’s combining rules inmany cases
outperforms DI under MAR imputation in these simulations, we cannot yet suggest that DI corrects the shortcomings of
MLMI due only to its improper nature.

8 DATA APPLICATION

We return to the motivating example, a “Randomized Clinical Trial to Assess the Efficacy of Real-Time Continuous Glu-
cose Monitoring in the Management of Type I Diabetes.”22 Again, the source of the data is the JDRF Artificial Pancreas
Project sponsored by Jaeb Center for Health Research, but the analyses, content and conclusions presented herein are
solely the responsibility of the authors and have not been reviewed or approved by Jaeb Center for Health Research. Recall
that we assume a log-linear negative binomial model with log-offset of follow-up time with treatment assignment as the
only baseline covariate for analysis of the rate of hypoglycemic events:

log{E(Yi|Ai,Ci)} = 𝛼 + Ai𝛿 + log(Ci), (15)
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2636 FAIRFAX and YANG

F IGURE 3 Estimated power for ̂
𝛿MI with Rubin’s Rules (dashed) and ̂

𝛿DI (solid) with initial treatment effect size, −0.6 ≤ 𝛿0 ≤ 0, under
CR, J2R, and MAR imputation with sample size n ∈ {200, 2000} and imputation sizeM ∈ {5, 50}.

where Yi, Ai, and Ci represent the hypoglycemic event count during follow-up, the treatment assignment as previously
defined, and the time of follow-up for subject i, respectively. With this model we can estimate the average treatment
effect. For imputation, we assume a gamma frailty intensity model with linear baseline intensity, leading to the condi-
tional negative binomial imputation density (6). It is advisable to select an imputation model at least as saturated as the
primary analysis model,29 but including too many auxiliary variables in the imputation model can result in poor model
fit.27 Considering this, we include in the imputation model additional baseline covariates, selected as those forming the
corresponding negative binomial count model with the smallest AIC among those with at least three covariates other
than Ai. We assume a treatment arm-specific imputation model, allowing baseline covariates to differ between CGM and
control arms. Covariates considered for inclusion in the imputation model were age, height, weight, sex, and duration of
diabetes prior to enrollment.
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For fitting the imputation model, weight (W), height (H), and duration of diabetes (D) were selected for subjects on
the CGM arm. For subjects on the control arm, weight (W), sex (S), and duration of diabetes (D) were included in fitting
the imputation model. Thus, we fit the J2R and MAR imputation model with gamma frailty:

Λ(t; bi, 𝜆, 𝛿, 𝜷) = 𝜆tbi exp{𝛿Ai + 𝛽1Wi + 𝛽2AiHi + 𝛽3(1 − Ai)Si + 𝛽4Di}, (16)

where bi is an i.i.d. gamma distributed random variable with mean 1 and variance 𝛾 . We also fit the CR imputation model
with gamma frailty using only the control data:

Λ(t; bi, 𝜆, 𝛿, 𝜷) = 𝜆tbi exp(𝛿Ai + 𝛽1Wi + 𝛽2Si + 𝛽3Di). (17)

In addition to DI with the wild bootstrap and MLMI with Rubin’s combining rules, we choose to demonstrate MI
with the nonparametric bootstrap using the Bayesian imputation method given in Gao et al.16 This latter approach to
imputation through Bayesian data augmentation methods and a nonparametric bootstrap was shown to lead to more
accurate standard error estimates and proper coverage for confidence intervals under control-based imputation compared
to those calculated with Rubin’s variance estimator.16 Gao et al16 proposed a piece-wise exponential baseline intensity
function for imputation of recurrent events. We specify K = 1 cutpoints for this piece-wise baseline intensity function,
which results in the linear baseline intensity we specify previously. A sensitivity analysis for the number of K cutpoints
used is given in the Supporting Information. We select noninformative priors for imputation model parameters, and
set burn-in to 5000 and thinning to 100 to reduce autocorrelation among parameter samples. For all three imputation
methods we select imputation size M = 50, and we utilize bootstrap size B = 100 for both the proposed wild bootstrap
and the nonparametric Bayesian bootstrap given in Gao et al.16 We utilize the Exp(1) distribution for the wild bootstrap
weights, ui. The results of these analyses and their computational times are presented in Table 4.

Regardless of imputation scenario, all methods result in a treatment effect estimate indicating a mitigating effect of
CGM on rate of severe hypoglycemic event recurrence that is not statistically significant. Under CR and J2R assumptions,
DI and MLMI point estimates for 𝛿 are more similar to each other than to those produced by the Bayesian posterior
draw MI method. This likely stems from differences in ML and Bayesian estimation between these methods, but could
also indicate poor fit of the Bayesian model. As such, caution is necessary for interpretation of observed trends in model
parameter estimation via the posterior draw MI and nonparametric bootstrap.

Under CR and J2R imputation, the proposedDI andwild bootstrap produce the smallest standard errors for ̂𝛿, with the
reduction in standard error compared to the other two methods being largest in the case of CR imputation. The posterior
drawMI and nonparametric bootstrap of Gao et al16 produces the largest standard errors for the treatment effect estimator
under these control-based assumptions. Under MAR imputation, DI with the wild bootstrap yields the largest standard
error for ̂𝛿. These results agreewith simulations in thatDIwith thewild bootstrap is less likely to overestimate the variance
of the treatment effect estimator than MI with Rubin’s combining rules under CR and J2R imputation, but not under
MAR imputation. Furthermore, DI with the wild bootstrap also yields decreased standard errors even compared to the
Bayesian MI and nonparametric bootstrap under the control-based assumptions in this application.

Though DI with the wild bootstrap is less computationally efficient thanMI with Rubin’s combining rules, the time to
perform the DI analysis is not prohibitive at less than 18 seconds under each imputation scenario. Furthermore, DI with
the wild bootstrap is much more computationally efficient than the Bayesian MI and nonparametric bootstrap proposed

TABLE 4 Sensitivity analysis results for the treatment effect in the CGM trial application.

CR J2R MAR

Method Estimate (95% CI) SE
Time
(s) Estimate (95% CI) SE

Time
(s) Estimate (95% CI) SE

Time
(s)

DI −0.411 (-0.964, 0.141) 0.282 12.20 −0.365 (-0.984, 0.254) 0.316 15.41 −0.388 (-1.150, 0.373) 0.388 17.10

MI −0.413 (-1.020, 0.195) 0.310 0.59 −0.367 (-0.988, 0.254) 0.317 0.51 −0.391 (-1.018, 0.237) 0.320 0.48

NP −0.343 (-0.960, 0.275) 0.315 3094.54 −0.407 (-1.044 0.230) 0.325 8544.94 −0.388 (-1.034, 0.259) 0.330 8551.25

Note: The analysis is performed under copy reference (CR), jump to reference (J2R), and as-randomized missing at random (MAR) imputation assumptions
using distributional imputation with the wild bootstrap (DI), multiple imputation with Rubin’s combining rules (MI), and the Bayesian posterior draw multiple
imputation with nonparametric bootstrap method (NP) of Gao et al.16
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2638 FAIRFAX and YANG

by Gao et al,16 which runs at more than 250 times longer in the CR scenario and more than 500 times longer in the J2R
and MAR scenarios than DI.

9 CONCLUSIONS

Missing data are inevitable in longitudinal clinical trials. Primary analyses are typically performed under the assumption
that data are MAR, making sensitivity analyses imperative to assess robustness of primary analysis conclusions to this
assumption. Control-based imputation provides a conservative strategy to transparently assess specific MNAR assump-
tions in superiority trials. Though MI is common in the literature for applying control-based assumptions in sensitivity
analyses of clinical trials with recurrent event endpoints,5,16,21,23 Rubin’s combining rules are often biased for the true
sampling variability of the treatment effect estimator due to uncongeniality and MNAR data assumptions imposed in
the control-based setting.28 Analytical estimators known to improve variance estimation in MI can be impractical due to
complex, model-specific formulas. While the nonparametric bootstrap has successfully improved variance estimation in
control-based MI of recurrent events,5,16 this method is computationally expensive.

We propose DI as an alternative method yielding improvements over standardMI for conducting control-based sensi-
tivity analyses of recurrent events endpoints. DI with the parallel wild bootstrap variance estimation procedure produces
asymptotically consistent point and variance estimators for the treatment effect. In simulations and an application to a
type I diabetes trial with recurrent events endpoint, DI yielded point estimates of the treatment effect similar to those pro-
duced by MI. DI with the wild bootstrap more accurately estimated the true sampling variability of the treatment effect
estimator and produced improved power, more precise confidence intervals, and confidence interval coverage rates and
type I error rates closer to nominal levels for the treatment effect estimator under the control-based assumptions of CR
and J2R imputation than didMIwith Rubin’s combining rules in simulations. Researchersmay, however, need to exercise
caution in regard to type I error rates and confidence interval coverage rates for DI under control-based, and particularly
CR, imputation when sample size is small to moderate and dropout rates are high. Simulations and the results of the
type I diabetes trial application suggest the improvements demonstrated for DI over MI with Rubin’s combining rules do
not extend to MAR imputation. Utilizing a nonparametric bootstrap for variance estimation with MI did greatly improve
standard error estimation under control-based imputation in simulations. However, most improvements observed in sim-
ulations when using the nonparametric bootstrap with MI under control-based imputation were comparable to those
shown for DI, and MI with the nonparametric bootstrap was computationally more expensive than DI with the proposed
wild bootstrap.

In addition to attractive asymptotic properties and some demonstrated comparative improvements in finite-sample
performance, DI and the accompanying wild bootstrap offer simplicity and flexibility for the implementation of
control-based assumptions. One limitation of DI compared to MI is its increased storage costs. However, this can be par-
tially addressed by using a weighted regression technique to decrease the amount of storage needed. In this article, we
considered monotone missingness resulting from dropout or loss to follow-up, but control-based imputation can handle
specification of assumptions according tomultiple types of intercurrent events.2 We leave the extension of DI of recurrent
events to handle intermittent missingness or to incorporate multiple reasons for missingness for future research. We also
chose to apply DI to impute missing event counts, but DI could readily be used with the gamma frailty imputation model
to impute event times for a time to recurrent events analysis. See Tang38 for practical suggestions for imputation strate-
gies of times to recurrent events. Our chosen imputation and analysis models were fully parametric. One further area of
work is to implement DI of recurrent events in the nonparametric or semi-parametric setting, for which the imputation
model proposed by Diao et al5 could be useful.
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