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Abstract. With increasing data availability, causal effects can be evaluated
across different data sets, both randomized controlled trials (RCTs) and ob-
servational studies. RCTs isolate the effect of the treatment from that of un-
wanted (confounding) co-occurring effects but they may suffer from unrep-
resentativeness, and thus lack external validity. On the other hand, large ob-
servational samples are often more representative of the target population but
can conflate confounding effects with the treatment of interest. In this paper,
we review the growing literature on methods for causal inference on com-
bined RCTs and observational studies, striving for the best of both worlds.
We first discuss identification and estimation methods that improve gener-
alizability of RCTs using the representativeness of observational data. Clas-
sical estimators include weighting, difference between conditional outcome
models and doubly robust estimators. We then discuss methods that com-
bine RCTs and observational data to either ensure unconfoundedness of the
observational analysis or to improve (conditional) average treatment effect
estimation. We also connect and contrast works developed in both the poten-
tial outcomes literature and the structural causal model literature. Finally, we
compare the main methods using a simulation study and real world data to
analyze the effect of tranexamic acid on the mortality rate in major trauma
patients. A review of available codes and new implementations is also pro-
vided.

Key words and phrases: Causal effect generalization, transportability, dou-
ble robustness, data integration, heterogeneous data, S-admissibility.
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1. INTRODUCTION

Experimental data, collected through carefully de-
signed and randomized protocols, are usually considered
the gold standard approach for assessing the causal ef-
fect of an intervention or a treatment on an outcome of
interest. In particular, the intensive use of randomized
controlled trials (RCTs) grounds the so-called “evidence-
based medicine,” a keystone of modern medicine. In an
RCT, the treatment allocation is under control, ensuring
a balanced distribution of treated and control individ-
uals; as a consequence, simple estimators can be used
to measure the treatment effect, for example, with the
difference in mean effect between the treated and con-
trol individuals (Imbens and Rubin, 2015). Still, RCTs
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come with practical drawbacks such as cost and time,
but also with methodological issues such as restrictive
inclusion/exclusion criteria, which can lead to a trial sam-
ple that differs markedly from the population potentially
eligible for the treatment. Therefore, the findings from
RCTs can lack generalizability to a target population
of interest. This concern is related to the aim of exter-
nal validity, central in medical research (Concato, Shah
and Horwitz, 2000, Rothwell, 2005, Green and Glas-
gow, 2006, Frieden, 2017) policy research (Martel Gar-
cia and Wantchekon, 2010, Deaton and Cartwright, 2018,
Deaton et al., 2019, Jeong and Namkoong, 2022), psy-
chology (Kennedy and Gelman, 2021) and other fields
such as advertising (Gordon et al., 2019).

In contrast, observational data—collected without sys-
tematically designed interventions, such as disease reg-
istries, cohorts, biobanks, epidemiological studies or elec-
tronic health records—are promising as they are readily
available, include large and representative samples and
are less cost-intensive than RCTs. However, there are of-
ten concerns about the quality of these “big data,” given
that the lack of a controlled experimental intervention
opens the door to confounding bias. This concern is re-
ferred to as a lack of internal validity. Under assump-
tions such as unconfoundedness, it is possible to esti-
mate a causal treatment effect from observational data.
In practice, methods such as matching, inverse propen-
sity weighting (IPW) or augmented IPW (AIPW) are used
(Imbens and Rubin, 2015). Even when a confounder is
unobserved, solutions exist at the price of additional as-
sumptions, for example, the front-door criterion (Pearl,
1993), instrumental variables (Angrist, Imbens and Ru-
bin, 1996, Hernán and Robins, 2006, Imbens, 2014) and
sensitivity analysis (Cornfield et al., 1959, Rosenbaum
and Rubin, 1983, Imbens, 2003).

Combining information gathered from experimental
and observational data opens the door to new tools for:

• (a) accounting for the lack of representativeness of
RCT, as observational data can constitute an external
representative sample of a target population of interest;

• (b) making observational evidence more credible using
RCT to ground observational analysis, such as detect-
ing a confounding bias;

• (c) improving statistical efficiency, for example, to bet-
ter estimate heterogeneous treatment effects as RCTs
are often underpowered in such settings.

As of today, there is an abundant literature about the
different ways and purposes of combining both sources
of information. Terms used to refer to similar problems
are generalizability (Cole and Stuart, 2010, Stuart et al.,
2011, Hernán and Van der Weele, 2011, Tipton, 2013,
O’Muircheartaigh and Hedges, 2014, Stuart, Bradshaw
and Leaf, 2015, Keiding and Louis, 2016, Dahabreh

and Hernán, 2019, Dahabreh et al., 2019, Buchanan
et al., 2018, Cinelli and Pearl, 2021), representative-
ness (Campbell, 1957), external validity (Rothwell, 2005,
Stuart, Ackerman and Westreich, 2018, Westreich et al.,
2018), transportability (Pearl and Bareinboim, 2011,
Rudolph and van der Laan, 2017, Westreich et al., 2017),
recoverability (Bareinboim and Pearl, 2012a, Bareinboim,
Tian and Pearl, 2014) and finally data fusion (Bareinboim
and Pearl, 2016); this review will explain the common-
alities or differences between the terminologies. They
have connections to inference from nonprobability sam-
ples in survey sampling (Yang, Kim and Song, 2020,
Yang and Kim, 2020) and to the covariate shift problem
in machine learning (Sugiyama and Kawanabe, 2012).
This problem of data integration for causal inference
is tackled by two main bodies of literature, namely
the potential outcomes (PO) framework (Neyman, 1923,
Rubin, 1974), and the work on structural causal models
(SCM) using directed acyclic graphs (DAGs), pioneered
by Pearl (1995) and his collaborators.

The present paper reviews this literature on combining
experimental and observational data. Section 2 introduces
the notation from the PO literature, as well as the common
designs. Section 3 details how an observational sample
can be used to generalize RCT findings to another popula-
tion (point (a)). We detail the corresponding identifiability
assumptions and present the main estimation methods that
have been suggested to account for distributional shifts.
In this section, only baseline covariates are required in
the observational data. In Section 4, we consider the case
where observational data also contain treatment and out-
come data. This setting in particular provides the opportu-
nity to tackle different scientific questions such as hidden
confounding or statistical efficiency (points (b) and (c)).
In Section 5, we present the SCM literature, using differ-
ent notation and ways to formulate assumptions, thus cap-
turing richer and more diverse identifiability scenarios. In
Section 6, we first present existing implementations and
software and then we illustrate the properties of the gen-
eralization estimators on simulated data with new imple-
mentations. In Section 7, we apply the various methods
presented in Section 3 on a medical application involv-
ing major trauma patients. The aim of this study is to as-
sess the effect of the drug tranexamic acid on mortality in
head trauma patients. Both an RCT (the CRASH-3 trial)
and an observational database (the Traumabase registry)
are available. In this section, we also review methods for
addressing data quality issues such as missing values.

2. PROBLEM SETTING

2.1 Notation in the PO Framework

Each individual in the RCT or observational popula-
tion is described by a random tuple (X,Y (0), Y (1),A,S),
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with distribution P, where X is a p-dimensional vector
of covariates, A the binary treatment assignment (with
A = 0 for the control and A = 1 for the treated indi-
viduals), Y(a) is the binary or continuous outcome had
the subject been given treatment a (for a ∈ {0,1}) and
S a binary variable indicating trial eligibility and will-
ingness to participate.1 We model the individuals be-
longing to an RCT sample of size n and to an observa-
tional data sample of size m by n + m independent ran-
dom tuples: {Xi,Yi(0), Yi(1),Ai, Si}n+m

i=1 , where the RCT
samples i = 1, . . . , n are identically distributed accord-
ing to P(X,Y (0), Y (1),A,S | S = 1), and the observa-
tional data samples i = n + 1, . . . , n + m are identically
distributed according to P(X,Y (0), Y (1),A,S). The sam-
pling mechanisms of the RCT and observational samples
are assumed to be independent, which corresponds to a
so-called nonnested design as explained in Section 2.2.1.
We also denote R = {1, . . . , n} the set of indices of units
observed in the RCT study, and O = {n + 1, . . . , n +
m} the set of indices of units observed in the observa-
tional study. For each RCT sample i ∈ R, we observe
(Xi,Ai, Yi, Si = 1), while for observational data i ∈ O,
we consider two settings: (i) we only observe the covari-
ates Xi (Section 3) and (ii) we also observe the treatment
and outcome (Xi,Ai, Yi) (Section 4).

In this review, we consider the absolute difference, and
do not consider other contrast measures.2 Doing so, we
denote respectively by τ(x) and τ1(x) the conditional av-
erage treatment effect (CATE) in the observational popu-
lation:

∀x ∈ R
p, τ (x) = E

[
Y(1) − Y(0) | X = x

]
,

and the RCT population:

∀x ∈ R
p, τ1(x) = E

[
Y(1) − Y(0) | X = x,S = 1

]
.

We also denote τ and τ1 the population average treat-
ment effect (ATE) in the observational population:

τ = E
[
Y(1) − Y(0)

] = E
[
τ(X)

]
,

and the RCT population:

τ1 = E
[
Y(1) − Y(0) | S = 1

]
,

where the population ATE can be different from the RCT
ATE, that is, τ �= τ1 in general. We denote respectively by

1Note that in the literature, S can have a slightly different meaning,
for example, other works use two separate indicators, one for partic-
ipation and one for eligibility (Nguyen et al., 2018, Dahabreh et al.,
2019).

2Considering other measures such as the ratio or odds ratio can have
an impact on the assumptions considered, for example, in generaliza-
tion (Huitfeldt et al., 2019). As the large majority of the literature fo-
cuses on the absolute difference, this review reflects the practices and,
therefore, considers the absolute difference.

e(x) and e1(x) the propensity score in the observational
population:

e(x) = P(A = 1 | X = x),

and in the RCT population:

e1(x) = P(A = 1 | X = x,S = 1),

where e1(x) is usually known in an RCT. We also denote
by μa(x) and μa,1(x) the conditional mean outcome un-
der treatment a ∈ {0,1} in the observational population:

μa(x) = E
[
Y(a) | X = x

]
,

and in the RCT population:

μa,1(x) = E
[
Y(a) | X = x,S = 1

]
.

Finally, we denote by α(x) the conditional odds that an
individual with covariates x is in the RCT or in the obser-
vational sample:

α(x) = P(i ∈R | ∃i ∈ R∪O,Xi = x)

P(i ∈O | ∃i ∈ R∪O,Xi = x)

= πR(x)

πO(x)

= πR(x)

1 − πR(x)
,

where πR(x) (resp., πO(x)) is the probability that an in-
dividual with covariates x known to be in the concate-
nated data (RCT sample and observational sample) is in
the RCT (resp., in the observational sample). In the litera-
ture, another widely used quantity is the selection score—
or sampling propensity score (in particular this name was
proposed by Tipton (2013))—denoted πS(x) and defined
as

πS(x) = P(S = 1 | X = x).

Because πS(x) is the probability of being sampled in
the trial given covariate values x, it is different from
πR(x). πS(x) is often used with a nested design (see Sec-
tion 2.2.1 for a definition), but is not of interest in our
setup (nonnested design) because it cannot be identified.
Indeed,

πS(x) = P(S = 1)︸ ︷︷ ︸
Not known

P(X = x | S = 1)

P(X = x)︸ ︷︷ ︸
∝ πR(x)/πO(x)

= P(S = 1) × P(X = x | S = 1)

P(X = x)

= P(S = 1) × P(Xi = x | i ∈R)

P(Xi = x | i ∈O)

= P(S = 1)︸ ︷︷ ︸
Not known

× n

m

πR(x)

πO(x)︸ ︷︷ ︸
= α(x)

.
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TABLE 1
Illustration of data structure of RCT data (Set R) and observational

data (Set O) with covariates X, trial eligibility S, binary treatment A

and outcome Y . Left: with observed outcomes, right: with potential
outcomes. Note that the S covariate can be either 0 or 1 in the

observational data set (it is unknown in the nonnested design, hence
the NA for not available), and is always equal to 1 for observations in

the RCT. In the nested design (cf. Section E of the Supplementary
Material of Colnet et al., 2024), S = 0 for all individuals in the

observational data set

Covariates Treatment Outcome

S Set X1 X2 X3 A Y

1 1 R 1.1 20 F 1 1
1 R −6 45 F 0 1

n 1 R 0 15 M 1 0
n + 1 NA O . . . . . . . . .

NA O −2 52 M 0 1
NA O −1 35 M 1 1

n + m NA O −2 22 M 0 0

Covariates Treatment Outcome(s)

S Set X1 X2 X3 A Y(0) Y (1)

1 R 1.1 20 F 1 NA 1
1 R −6 45 F 0 1 NA
1 R 0 15 M 1 NA 1
NA O . . . . . . . . . . . .

NA O −2 52 M 0 1 NA
NA O −1 35 M 1 NA 1
NA O −2 22 M 0 0 NA

Detailed derivations can be found in Section C of the Sup-
plementary Material of Colnet et al. (2024). The quantity
P(S = 1) is unknown because individuals in the target
population could have participated in the RCT or not; S

can be equal to 1 and 0 in the observational sample but
this information is not known. Table 1 illustrates the con-
sidered type of data, and Table 2 summarizes the notation.

2.2 Study Designs and Goals

2.2.1 Nested and nonnested study designs. Following
Dahabreh et al. (2023a) and Dahabreh and Hernán (2019),
the study designs to obtain the trial and observational
samples can be categorized into two types: nested study
designs and nonnested study designs as illustrated on Fig-
ure 1. Designs imply different identifiability conditions
and, therefore, estimators. This review focuses on what is
called the nonnested design, as the trial sample and the ob-
servational sample are obtained separately from the target
population(s). On the contrary, the nested design involves
a two-stage nested sampling. For example, it can corre-
spond to an embedded trial in a broader health system. As
a concrete example, one can mention the Women Health
Initiative, or the recent study on Medicaid where parts of

FIG. 1. Schematics of the nested (left) and nonnested (right) designs,
a similar schematic can be found in Josey et al. (2021).

the participants are randomized (Degtiar et al., 2021). In
this situation, data are not really combined as the over-
all data comes from one initial sampling in which two
treatment assignment regimes (randomized or not) coex-
ist. The nested design estimators are detailed in Section E
of the Supplementary Material of Colnet et al. (2024).

2.2.2 Transportability, generalizability, and recover-
ability. Several terms are currently present in the liter-
ature to describe the process of predicting the effect of
the treatment from an RCT to another population: gen-
eralization (Stuart et al., 2011, Buchanan et al., 2018,
Dahabreh et al., 2019), transportability (Hernán and Van
der Weele, 2011, Bareinboim and Pearl, 2016, Westreich
et al., 2017), or recoverability (Bareinboim, Tian and
Pearl, 2014). Differences in the definitions can be found
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TABLE 2
List of notation

Symbol Description

X Covariates (also known as baseline covariates when measured at inclusion of the patient)
A Treatment indicator (A = 1 for treatment, A = 0 for control)
Y Outcome of interest
S Trial eligibility and willingness to participate if invited to (S = 1 for eligibility, S = 0 for noneligibility)
n Size of the RCT study
m Size of the observational study
R Index set of units observed in the RCT study; R={1,. . . ,n}
O Index set of units observed in the observational study; O={n+1,. . . ,n+m}
πR(x) Probability that a unit in R∪O with covariate x is in R, defined as πR(x) = P(i ∈R | ∃i ∈R∪O,Xi = x)

πO(x) Probability that a unit in R∪O with covariate x is in O, defined as πO(x) = 1 − πR(x)

α(x) Conditional odds α(x) = πR(x)/πO(x)

τ Population average treatment effect (ATE) defined as τ = E[Y (1) − Y (0)]
τ1 Trial (or sample) average treatment effect defined as τ1 = E[Y (1) − Y (0) | S = 1]
τ (x) Conditional average treatment effect (CATE) defined as τ (x) = E[Y (1) − Y (0) | X = x]
τ1(x) Trial conditional average treatment effect defined as τ1(x) = E[Y (1) − Y (0) | X = x,S = 1]
e(x) Propensity score defined as e(x) = P(A = 1 | X = x)

e1(x) Propensity score in the trial defined as e1(x) = P(A = 1 | X = x,S = 1), known by design
μa(x) Outcome mean defined as μa(x) = E[Y (a) | X = x] for a = 0,1
μa,1(x) Outcome mean in the trial defined as μa,1(x) = E[Y (a) | X = x,S = 1] for a = 0,1
πS(x) Selection score defined as πS(x) = P(S = 1 | X = x)

f (X) Covariate distribution in the target population
f (X|S = 1) Covariate distribution conditional to trial-eligible individuals (S = 1)

in the literature, underlying a specific design such as the
existence of a common superpopulation or assumptions
such as the support overlap between different populations.
For example, Dahabreh et al. (2020) highlight that several
definitions are given:

We use the term generalizability when the tar-
get population coincides or is a subset of the
trial-eligible population and transportability
when the target population includes at least
some individuals who are not trial-eligible
(and who, by definition, cannot be trial par-
ticipants) (others have proposed different defi-
nitions).

Due to different definitions in the literature, several
terms can be found to describe the same scientific goal.
In this review, we call generalization the task that extends
the RCT result to its larger population, where it was sam-
pled with a bias (detailed in Section 3). The SCM liter-
ature also uses different terminologies corresponding to
different assumptions—and corresponding diagrams—as
detailed in Section 5. For example, what is called trans-
portability refers to two distinct populations, and not nec-
essarily to different covariate supports as suggested by
Dahabreh et al. (2020). In particular, in this literature the
task that we study in Section 3 is termed recoverability
from a sampling bias, rather than generalization. This ter-
minology has the merit of indicating that generalization
can have a much broader coverage, including other types

of problems. Note that granting some assumptions about
a common support or nonzero probability to be sampled,
then the two problems—namely recovering from a sam-
pling bias and transportability—rely on the same estima-
tors and procedure, as highlighted in Section 3.1.3 and in
Pearl (2015).

3. WHEN OBSERVATIONAL DATA HAVE NO
TREATMENT AND OUTCOME INFORMATION

We start by considering the case where only the covari-
ates from the observational study are available or used.
We consider the observational data as a random sam-
ple from the target population. Considering this setup,
the question tackled in this section is how to general-
ize or transport the trial findings toward a target popu-
lation of interest. Applied examples can be found in Lee
et al. (2023), Lesko et al. (2016), Tipton et al. (2017), Li,
Buchanan and Cole (2021), Yang and Wang (2022). In
particular, He et al. (2020) review current practice, reveal-
ing that generalization implementation is still at the stage
of prototyping without real usage for clinical and public
health decisions yet.

3.1 Assumptions Needed to Identify the ATE on the
Target Population

A fundamental problem in causal inference is that we
can observe at most one of the potential outcomes for
an individual subject. In order to nonetheless identify the
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ATE from RCT and observational covariate data, we re-
quire some of the following assumptions.

3.1.1 Internal validity of the RCT.

ASSUMPTION 1 (Consistency).

Y = AY(1) + (1 − A)Y (0).

Assumption 1 implies that the observed outcome is the
potential outcome under the actual assigned treatment.

ASSUMPTION 2 (Randomization).{
Y(0), Y (1)

} ⊥⊥ A | S = 1,X.

Assumption 2 corresponds to internal validity. It holds
by design in a completely randomized experiment, where
the treatment is independent of all the potential outcomes
and covariates. The more general case of conditional ran-
domization is assumed throughout this review.

If Assumptions 1 and 2 hold, then the RCT is said to be
compliant. In addition, in an RCT, it is common that the
probability of treatment assignment, e1(x), is known. In a
completely randomized trial, the propensity score is fixed
as a constant, and usually e1(x) = 0.5 for all x.

3.1.2 Assumptions ensuring generalizability of the
RCT to the target population. The literature proposes dif-
ferent assumptions to generalize trial findings to a target
population.

ASSUMPTION 3 (Ignorability assumption on trial
participation—Hotz, Imbens and Mortimer, 2005, Stuart
et al., 2011, Tipton, 2013, Hartman et al., 2015, Buchanan
et al., 2018, Degtiar and Rose, 2023, Egami and Hartman,
2021). {

Y(0), Y (1)
} ⊥⊥ S | X.

A parallel can be made with the strong ignorability con-
dition in causal inference with observational data (see
Section B of the Supplementary Material of Colnet et
al., 2024), but applied to the sample selection rather than
treatment assignment. In other words, these assumptions
require to control for all covariates being shifted and pre-
dictive of Y . We call shifted covariates, all the baseline
covariates along which the two populations—trial and
target—do not follow the same distribution. A weaker
version of Assumption 3 can be found in Dahabreh et al.
(2019), Dahabreh et al. (2020).

ASSUMPTION 4 (Mean exchangeability). For all x

and for all a ∈ {0,1},
E

[
Y(a) | X = x,S = 1

] = E
[
Y(a) | X = x

]
Another assumption can be found, relying on the trans-

portability of treatment effect rather than the potential out-
comes.

ASSUMPTION 5 (Sample ignorability for treatment
effects—Kern et al., 2016, Nguyen et al., 2018).

Y(1) − Y(0) ⊥⊥ S | X.

A weaker version can be found as well.

ASSUMPTION 6 (Transportability of the CATE).

τ1(x) = τ(x) for allx.

To meet these last two assumptions, one requires vari-
ables that are both treatment effects modifiers and shifted.
Epidemiologists often use the term “effect modification”
to indicate that the treatment effect varies across strata of
baseline covariates, such baseline covariates being treat-
ment effect modifiers. These assumptions are implied by
Assumption 3, but this is not reciprocal as not all covari-
ates predictive of the outcome are necessarily treatment
effect modifiers. Note that a treatment effect modifier de-
pends on the chosen scale. Here, we focus on the absolute
difference, but if we had considered a risk ratio, the vari-
ables being treatment effects modifiers would not be the
same. Mathematical definitions of a treatment effect mod-
ifier are hard to find, but we quote one from Van der Weele
and Robins (2007) for the absolute scale.

DEFINITION 1 (Treatment effect modifier). We say
that a variable X is a treatment effect modifier for the
causal risk difference of A on Y if X is not affected by
A and if there exist two levels of A, a0 and a1, such that
E[Y (a1) | X = x] −E[Y (a0) | X = x] is not constant in x.

In this work, we only rely on Assumption 5 for the iden-
tification formula. Finally, a last assumption is needed—
the positivity of trial participation assumption.

ASSUMPTION 7 (Positivity of trial participation, also
called overlap). There exists a constant c > 0 such that,
almost surely, P(S = 1 | X) ≥ c.

Assumption 7 requires adequate overlap of the covari-
ate distribution between the trial sample and the target
population (in other words, all members of the target pop-
ulation have nonzero probability of being selected into
the trial). Another formulation of this assumption can be
found under the assumption of the target population’s sup-
port included in the trial sample support (Nie, Imbens and
Wager, 2021, Colnet et al., 2022b)

3.1.3 Identifications formulas. Under Assumptions 1,
2, 6 and 7, the ATE can be identified based on the follow-
ing formulas (derivations in Section C of the Supplemen-
tary Material of Colnet et al., 2024):

1. Reweighting formulation:

(1) τ = E

[
n

mα(X)
τ1(X) | S = 1

]
,
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FIG. 2. Illustrative schematics for the estimation strategies: In this example, the trial findings τ̂1,n would overestimate the target treatment effect τ

(on an absolute scale). On the left, the IPSW (Definition 2) strategy, relying on weighting the RCT observations; on the right, the plug-in g-formula
(Definition 4) strategy, relying on modeling the response using the RCT observations. Notation are the same as introduced in Table 2, that is, fX

(fX|S=1) denotes the density of the target (resp., trial) population, and μ̂a,n(·) denotes the fitted response surface using the n trial observations.

which can also be written as

τ = E

[
n

mα(X)

(
A

e1(X)
− 1 − A

1 − e1(X)

)
Y | S = 1

]
.

Note that (1) can be understood as a transportability
problem considering two distributions P1 and P, and
transporting evidence from population P1 to popula-
tion P,

τ = EP

[
τ(X)

] =
∫
X

τ(x)f (x) dx︸ ︷︷ ︸
Integral on P

=
∫
X

τ1(x)
f (x)

f1(x)
f1(x) dx︸ ︷︷ ︸

Integral on P1

=
∫
X

τ1(x)
n

m

1

α(x)
f1(x) dx,

noting that α(x) = P(i∈R|∃i∈R∪O,Xi=x)
P(i∈O|∃i∈R∪O,Xi=x)

= P(i∈R)
P(i∈O)

×
P(Xi=x|i∈R)
P(Xi=x|i∈O)

= n
m

× f1(x)
f (x)

, and using the transportabil-
ity assumption (see Assumption 6) stating that τ(x) =
τ1(x).

2. Regression formulation:

(2) τ = E
[
μ1,1(X) − μ0,1(X)

]= E
[
τ1(X)

]
.

Different identification formulas motivate different es-
timation strategies as discussed next. These strategies are
illustrated in Figure 2.

3.2 Estimation Methods to Generalize Trial Findings
to a Target Population of Interest

All along this review, estimators are indexed with the
number of observations used for estimation. For example,
τ̂n indicates that the finite sample estimator only relies on
the RCT individuals, or τ̂n,m if it depends on both data
sets.

3.2.1 IPSW and stratification: Modeling the probabil-
ity of trial participation. To overcome the bias due to co-
variate shift between populations, most existing methods
rely on direct modeling of the selection score previously
introduced. The selection score adjustment methods in-
clude IPSW (Cole and Stuart, 2010, Stuart et al., 2011,

Lesko et al., 2017, Buchanan et al., 2018, Colnet et al.,
2022b) and stratification (Stuart et al., 2011, Tipton, 2013,
O’Muircheartaigh and Hedges, 2014).

3.2.1.1 Inverse probability of sampling weighting
(IPSW). The IPSW approach can be seen as the coun-
terpart of IPW methods for estimating the ATE from ob-
servational studies by controlling for confounding (see
Section B of the Supplementary Material of Colnet et al.,
2024 for details on IPW). Based on the identification for-
mula (1), the IPSW estimator of the ATE is defined as
the weighted difference of average outcomes between the
treated and control group in the trial. The observations are
weighted by the inverse odds 1/α(x) = πO(x)/πR(x) to
account for the shift of the covariate distribution from the
RCT sample to the target population. The larger α(Xi),
the smaller the weight of the observation i (as illustrated
in Figure 2). The shape of the IPSW estimator is slightly
different from the shape of the IPW estimator. In the latter,
each observation is weighted by the inverse of the proba-
bility to be treated, whereas in the former, it is weighted
by the inverse of the odds of the probability to be in the
trial sample. This is due to the nonnested sampling de-
sign (see the IPSW estimator for the nested design (S5)),
as highlighted by Kern et al. (2016) and Nguyen et al.
(2018).

DEFINITION 2 (Inverse probability of sampling
weighting—IPSW). The IPSW estimator is defined as
follows:

τ̂IPSW,n,m = 1

n

n∑
i=1

n

m

Yi

α̂n,m(Xi)

(
Ai

e1(Xi)
− 1 − Ai

1 − e1(Xi)

)
,

where α̂n,m is an estimate of the odds of the indicatrix of
being in the RCT.

The IPSW estimator is consistent when the quantity α

is consistently estimated by α̂n,m (Buchanan et al., 2018,
Colnet et al., 2022a). In practice, various methods are
used to estimate α, for example, by logistic regression
(Stuart, 2010), while recent works rely on non-parametric
methods such as random forest and gradient boosting
(Kern et al., 2016) or the Hájek-style estimator to target
the density ratio (Huang et al., 2023, Nie, Imbens and
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Wager, 2021). Similar to IPW estimators, IPSW estima-
tors are known to be highly unstable, especially when the
weights are extreme. This can occur if the observational
study contains units with very small probabilities of be-
ing in the trial. Normalized weights can be used to over-
come this issue (Dahabreh and Hernán, 2019). Still, the
major challenge remains that IPSW estimators require a
correct model specification of the weights. Avoiding this
problem requires either very strong domain expertise or
turning to doubly robust methods (Section 3.2.4). Cur-
rent theoretical guarantees and theorems are detailed in
Section D of the Supplementary Material of Colnet et al.
(2024). For example, Buchanan et al. (2018) propose a
derivation of the asymptotic variance under parametric as-
sumptions in the nested case, while Zivich et al. (2022)
extend this to a nonnested design. Dahabreh et al. (2019)
propose the use of sandwich-type variance estimators (for
both nested and nonnested design) or nonparametric boot-
strap approaches, and note that the latter may be preferred
in practice. Colnet et al. (2022a) has formalized consis-
tency results for any consistent estimator of α, including
non-parametric estimators.

ASSUMPTION 8 (Consistency assumptions for α).
Denoting by n

mα̂n,m(x)
the estimated weights on the set

X, the following conditions hold:

• supx∈X | n
mα̂n,m(x)

− fX(x)
fX|S=1(x)

| = εn,m
a.s.−→ 0, when n,

m → ∞;
• for all n, m large enough E[ε2

n,m] exists and

E[ε2
n,m] a.s.−→ 0 , when n,m → ∞;

• Y is square integrable.

THEOREM 3.1 (IPSW consistency—Colnet et al.,
2022a). Under causal assumptions (Assumptions 1, 2, 6,
7), (identifiability), and Assumption 8 (consistency), then
τ̂IPSW,n,m converges toward τ in L1 norm,

τ̂IPSW,n,m
L1−→

n,m→∞ τ.

More recently, Colnet et al. (2022b) have proposed a
finite sample characterization of IPSW when X only con-
tains categorical covariates.

3.2.1.2 Stratification. The stratification approach—or
subclassification—is introduced by Cochran (1968) for
a single observational data set, and has been further
extended by Stuart et al. (2011), Tipton (2013) and
O’Muircheartaigh and Hedges (2014) for the generaliza-
tion’s context. It is proposed as a solution to mitigate the
risks of extreme weights in the IPSW formula. First, one
has to estimate the conditional odds α̂n,m in the same
manner as for the IPSW detailed above. Then, based on
the values of the conditional odds obtained, L strata are
defined (usually 5 as reported in (O’Muircheartaigh and
Hedges, 2014), following the empirical seminal work of

(Cochran, 1968)). In the trial, for each stratum l, one has
to compute the average effect on this strata defined as
Y(1)l − Y(0)l , where Y(a)l denotes the average value of
the outcome for units with treatment a in stratum l in
the RCT. The generalized ATE is defined by the aggre-
gation of the treatment effect estimates on each stratum l

weighted by the proportion of the strata in the target pop-
ulation ml

m
, where ml is the number of individuals in strata

l in the target sample.

DEFINITION 3 (Stratification). The stratification esti-
mator denoted τ̂strat,n,m is defined as

τ̂strat,n,m =
L∑

l=1

ml

m

(
Y(1)l − Y(0)l

)︸ ︷︷ ︸
from RCT

.

Buchanan et al. (2018) proposed an asymptotic nor-
mality result for this estimator. Theoretical results for the
stratification estimator are detailed in Section D of the
Supplementary Material of Colnet et al. (2024).

3.2.2 Plug-in g-formula estimators: Modeling the con-
ditional outcome in the trial. Other estimators to gen-
eralize RCT findings to a target population leverage the
regression formulation (2), in the inspiration of (Robins,
1986). Known as plug-in g-formula estimators, they fit a
model of the conditional outcome mean among trial par-
ticipants, rather than modeling the probability of trial par-
ticipation (as illustrated on Figure 2). Then a marginal-
ization is done over the empirical covariate distribution of
the target population.

DEFINITION 4 (Plug-in g-formula). The plug-in g-
formula (or outcome model-based) estimator is then de-
fined as

τ̂G,n,m = 1

m

n+m∑
i=n+1

(
μ̂1,1,n(Xi) − μ̂0,1,n(Xi)

)
,

where μ̂a,1,n(Xi) is an estimator of μa,1(Xi) fitted using
the RCT data.

In practice, any model can be use to fit μa,1(Xi), for ex-
ample, standard ordinary least squares (OLS). Dahabreh
et al. (2020) announce3 consistency of the plug-in g-
formula for parametric estimator of the response model
μa(X). Note that derivations are made in the context of
a nested design but said to extend to a nonnested de-
sign. They also recommend the use of sandwich-type vari-
ance estimators for computing confidence intervals when
correctly specified parametric models are used. Machine-
learning algorithms such as random forests can also be
used to estimate μa,1(Xi) (Kern et al., 2016). As shown
by Colnet et al. (2022a), if the model is correctly specified
(see Assumption 9 below), the estimator is consistent.

3See their Appendix, Section A, pages 6–7.
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ASSUMPTION 9 (Consistency of surface response es-
timators). Denote μ̂0,n (resp., μ̂1,n) an estimator of μ0
(resp., μ1). Let Dn the RCT sample, so that:

• for a ∈ {0,1}, E[|μ̂a,n(X) − μa(X)| | Dn] p→ 0, when
n → ∞;

• for a ∈ {0,1}, there exist C1, N1 so that for all n ≥ N1,
a.s., E[μ̂2

a,n(X) | Dn] ≤ C1.

THEOREM 3.2 (Consistency of the plug-in g-formula—
Colnet et al. (2022a)). Under causal assumptions (As-
sumptions 1, 2, 6, 7) and Assumption 9, the plug-in g-
formula converges toward τ in L1 norm,

τ̂G,n,m
L1−→

n,m→∞ τ.

3.2.3 Calibration weighting: Balancing covariates.
Beyond propensity scores, other schemes use sample
reweighting. Lee et al. (2023) propose a calibration
weighting approach, similar to the idea of entropy balanc-
ing weights introduced by Hainmueller (2012). They cal-
ibrate subjects in the RCT sample in such a way that after
calibration, the covariate distribution of the RCT sample
empirically matches the target population.

DEFINITION 5 (Calibration weighting (CW)). Let
g(X) be a vector of functions of X to be calibrated, for
example, the moments, interactions and nonlinear trans-
formations of components of X. Then assign a weight ωi

to each subject i in the RCT sample by solving the fol-
lowing optimization problem:

min
ω1,...,ωn

n∑
i=1

ωi logωi,

subject to ωi ≥ 0, for all i,

n∑
i=1

ωi = 1,

n∑
i=1

ωig(Xi) = g̃, (the balancing constraint)

where g̃ = m−1 ∑m+n
i=n+1 g(Xi) is a consistent estimator

of E[g(X)] from the observational sample. Based on the
calibration weights, the CW estimator is then

τ̂CW,n,m =
n∑

i=1

ω̂n,m(Xi)Yi

(
Ai

e1(Xi)
− 1 − Ai

1 − e1(Xi)

)
,

where ω̂n,m(·) is the estimated ω(·) using the RCT and
observational data.

The optimization problem in Definition 5 corresponds
to the negative entropy of the calibration weights; thus,
minimizing this criterion ensures that the empirical distri-
bution of calibration weights is not too far away from the
uniform distribution. This aims at minimizing the vari-
ability due to heterogeneous weights. This optimization
problem can be solved using convex optimization with
Lagrange multipliers. For an intuitive understanding of

the calibration weighting framework, consider g(X) = X.
In such a setting, the balancing constraint is forcing the
means of the observational data and of the RCT to be
equal after reweighting. More complex constraints can en-
force balance on higher-order moments. The calibration
algorithm is inherently imposing a log-linear model on the
sampling propensity score and solving the corresponding
parameters by a set of estimating equations induced by co-
variate balance. Other objective functions of the weights
correspond to different models for the sampling propen-
sity score (Chu, Lu and Yang, 2023). Wu and Yang (2023)
propose a cross-validation procedure to select the calibra-
tion weights that target the smallest mean squared error
of the resulting estimator. The CW estimator τ̂CW,n,m is
doubly robust in that it is a consistent estimator for τ if
the selection score of RCT participation follows a log-
linear model, that is, πS(X) = exp{η


0 g(X)} for some η0,
or if the CATE is linear in g(X), that is, τ(X) = γ 


0 g(X),
though not necessarily both. The authors suggest a boot-
strap approach to estimate its variance.

3.2.4 Doubly-robust estimators. The model for the ex-
pectation of the outcomes among randomized individuals
(used for the plug-in g-formula estimator in Definition 4)
and the model for the probability of trial participation
(used in the IPSW estimator in Definition 2) can be com-
bined to form an Augmented IPSW estimator (AIPSW). It
can be shown that this estimator is doubly robust, that is,
consistent when either one of the two models for α̂n,m(·)
and μ̂a,1(·) (a = 0,1) is correctly specified. Dahabreh
et al. (2020) has proposed a proof in the nested case (see
their Appendix, Section A) said to follow the same princi-
ple in the nonnested design (Section B, p. 25). In the plain
text, we recall the results from Colnet et al. (2022a).

DEFINITION 6 (Augmented IPSW (AIPSW)). The
augmented IPSW estimator, denoted τ̂AIPSW,n,m, is defined
as

τ̂AIPSW,n,m

= 1

n

n∑
i=1

n

mα̂n,m(Xi)

(
Ai(Yi − μ̂1,1,n(Xi))

e1(Xi)

)

− 1

n

n∑
i=1

n

mα̂n,m(Xi)

(
(1 − Ai)(Yi − μ̂0,1,n(Xi))

1 − e1(Xi)

)

+ 1

m

m+n∑
i=n+1

(
μ̂1,1,n(Xi) − μ̂0,1,n(Xi)

)
,

where μ̂a,1, are estimated on the RCT sample (see Defi-
nition 4), and α̂n,m (see Definition 2) on the concatenated
RCT and observational samples.

ASSUMPTION 10 (Consistency assumptions—
AIPSW). The nuisance parameters are bounded, and
more particularly:



174 B. COLNET ET AL.

• There exists a function α0 bounded from above and be-
low (from zero), satisfying

lim
m,n→∞ sup

x∈X

∣∣∣∣ n

mα̂n,m(x)
− 1

α0(x)

∣∣∣∣ = 0;

• There exist two bounded functions ξ1, ξ0 : X → R,
such that ∀a ∈ {0,1},

lim
n→+∞ sup

x∈X
∣∣ξa,1(x) − μ̂a,1,n(x)

∣∣ = 0.

THEOREM 3.3 (AIPSW consistency—Colnet et al.,
2022a). Assuming causal assumptions (Assumptions 1,
2, 6, 7) and Assumption 10 (consistency) and consid-
ering that estimated surface responses μ̂a,1,n(·) where
a ∈ {0,1} are obtained following a cross-fitting estima-
tion, then if Assumption 9 or Assumption 8 also holds,
then τ̂AIPSW,n,m converges toward τ in L1 norm,

τ̂AIPSW,n,m
L1−→

n,m→∞ τ.

This estimator is also shown to be asymptotically nor-
mal when both the outcome mean and conditional odds
models are consistently estimated at least at rate n1/4 in
Dahabreh and Hernán (2019) and Li, Hong and Stuart
(2023). Note that machine-learning tools are tempting to
avoid model misspecification when estimating nuisance
parameters. Still this practice requires specific caution,
such as using cross-fitting, due to overfitting and regular-
ization. These issues are well described in the situation of
a single observational data set. We refer to Chernozhukov
et al. (2018) for a detailed explanation, and to Zhong et al.
(2021), Bach et al. (2021), Bach et al. (2022) for imple-
mentations.

More recently, Lee et al. (2023) have proposed an aug-
mented calibration weighting (ACW) estimator.

DEFINITION 7 (Augmented CW (ACW)). The ACW
estimator, denoted τ̂ACW,n,m, is defined as

τ̂ACW,n,m

=
n∑

i=1

ω̂n,m(Xi)

(
Ai(Yi − μ̂1,1,n(Xi))

e1(Xi)

)

−
n∑

i=1

ω̂n,m(Xi)

(
(1 − Ai)(Yi − μ̂0,1,n(Xi))

1 − e1(Xi)

)

+ 1

m

m+n∑
i=n+1

(
μ̂1,1,n(Xi) − μ̂0,1,n(Xi)

)
,

where the estimation of ω̂n,m(·) is detailed in Definition 5,
and where μ̂a,1,n are estimated on the RCT sample (see
Definition 4).

They show that τ̂ACW,n,m achieves double robust-
ness and local efficiency, that is, its asymptotic variance
achieves the semiparametric efficiency bound when both

the calibration weights and the outcome mean model are
correctly specified. Moreover, the convergence rate of the
ACW estimator corresponds to the product of the con-
vergence rates of the nuisance estimators, enabling the
use of machine-learning estimation of nuisance functions
while preserving the

√
n-consistency of the ACW estima-

tor, when both the outcome mean and calibration weights
model are consistently estimated at rate n1/4 (Lee et al.,
2023). Furthermore, Lee, Yang and Wang (2022) and Lee,
Ghosh and Yang (2022) extend the framework for han-
dling survival outcomes.

3.2.5 Practical issues: Nonparametric estimation,
overlap and unobserved covariates.

3.2.5.1 Lack of overlap. The overlap assumption (see
Assumption 7) is restrictive because RCT inclusion and
exclusion criteria can be strict as the goal of RCTs (at
least in early stages) is to show a clear effect even on a
restricted population. Whenever Assumption 7 does not
hold, it is still possible to generalize on a different tar-
get population, such as the subset of the target popula-
tion for which eligibility criteria of the trial are ensured.
This has also been suggested before, for example, by
Tipton (2013), page 245. The question asked would rather
be “What would have been the estimated treatment ef-
fect in a situation where the trial had sampled individ-
uals from the target population who met the trial eligi-
bility criteria?” Another approach has been proposed by
Chen, Chen and Yu (2023). Similar to the idea of trim-
ming propensity scores for dealing with limited overlap
between treated and control groups, they propose a gen-
eralizability score: a function of participation probability
and propensity score, to select subpopulations from the
observational data for causal generalization when overlap
is limited.

3.2.5.2 Unobserved treatment effect modifiers. Finally,
we point out the important caveat that all methods assume
the ignorability conditions (see Assumptions 3, 4, 5 or 6):
given the covariates X, the conditional treatment effect
must be the same in the observational data and the RCT.
In particular, this assumption could be violated if some
shifted treatment effect modifiers were not captured in the
concatenated data, which is a plausible scenario given that
data are seldom collected jointly, and thus typically mea-
sure different covariates.

In case of a richer set of covariates in the RCT than in
the observational study (which does not necessarily mean
that a sufficient set of pretreatment covariates can be cho-
sen; see, e.g., M-bias in Pearl (2000), p. 186), Egami and
Hartman (2021) propose a method to select a sufficient
set of covariates. But in the case of a low number of com-
mon covariates, standard practice is to consider the sub-
set of covariates present in both data sets, but this violates
the identifiability condition. Recently, sensitivity analyses
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have been proposed to mitigate the consequences of miss-
ing covariates in the RCT, or in the observational sample
or even in both data sets (Nguyen et al., 2017, Andrews
and Oster, 2019, Nguyen et al., 2018, Dahabreh et al.,
2023b, Colnet et al., 2022a, Nie, Imbens and Wager, 2021,
Huang, 2022).

4. WHEN OBSERVATIONAL DATA CONTAIN
TREATMENT AND OUTCOME INFORMATION

Section 3 studied how to correct RCT selection bias
(with respect to the target population) while leveraging
covariate distribution of an observational sample. When
the observational sample also contains treatment and out-
come information (Y,A), efficiency improvements can be
obtained (Huang et al., 2023). But beyond the general-
ization question, such additional covariates enable differ-
ent questions of interest. These questions are the purpose
of Section 4. Indeed, RCTs can make causal conclusions
from the observational sample more trustworthy, either by
removing confounding bias (detailed in Section 4.1) or
via more efficient estimation (detailed in Section 4.2). For
completeness, we recall in Section B of the Supplemen-
tary Material of Colnet et al., 2024 how to perform causal
inference from purely observational data.

4.1 Dealing with Unmeasured Confounders in
Observational Data

4.1.1 Motivation. Unmeasured confounding implies
that {Y(1), Y (0)} �⊥⊥ A | X, where X are the observed
covariates. In such situations, standard causal inference
estimators τ̂O

m (x) (resp., τ̂O
m ) of the CATE τ(X) (resp.,

ATE τ ), that are designed for purely observational data of
size m, face a so-called hidden confounding bias for these
quantities, that is,

lim
m→+∞ τ̂O

m (x) �= τ(x), and lim
m→+∞ τ̂O

m �= τ.

In practice, former RCTs can be used as negative con-
trols,4 to ensure the observational study does not suffer
from confounding. For example, in a recent observational
study on a COVID-19 vaccine, Dagan et al. (2021) use
such an approach to ensure that the previous trial re-
sults conclusion could be retrieved. When confounding
remains, solutions such as sensitivity analysis have been
developed to handle such situations (Rosenbaum, 2002,
Imbens, 2003), but they typically rely on sensitivity pa-
rameters, which are difficult to set. Including additional

4The term negative controls comes from usual routine precaution in
biological laboratory experiments, where such controls are used to—
at least partially—check that the experiment is not undermined. For
example, it can test the absence of reagents or components that are
necessary for a detection of something particular. For example, one of
the two bars of the covid antigenic test is one of these controls. The
analogy of this principle in causal inference is detailed in (Lipsitch,
Tchetgen and Cohen, 2010).

experimental data brings interesting promises to handle
such identification bias. Recent works described below
propose to use an RCT to ground the observational anal-
ysis and debias the estimator that would be obtained on
purely confounded observational data.

4.1.2 Using an assumption on secondary outcomes or
surrogates. The use of surrogate outcomes arises in dif-
ferent contexts, for example, in clinical studies (Prentice,
1989, Begg and Leung, 2000), where it may be difficult
to observe long-term outcomes, for example, the effect
of early childhood medical or economic interventions.
Athey, Chetty and Imbens (2020), Athey et al. (2020)
observe that the effect of class size reduction leads to
a decrease in children 3rd grades in the observational
data, while a famous RCT, the Tennessee Student/Teacher
Achievement Ratio (STAR) study (Krueger, 1999), con-
cludes on a positive effect. This difference could come
from the fact that the two populations are different, but
they assume the apparent difference can be entirely ex-
plained by confounding.5 In their setup, they consider two
outcomes, a primary long-term outcome Y 1st

(8th grades)
and a secondary short-term outcome Y 2nd

(3rd grades).
The RCT contains information on the surrogate but not
the long-term outcome while this is the opposite for the
observational sample. Their central assumption to recover
identifiability is called latent unconfoundedness, that is,

A ⊥⊥ Y 1st

(a) | Y 2nd

(a), i ∈ R, for a = 0,1,

which corresponds to the assumption that hidden con-
founders violating identification of the effect on Y 1st

are
the same than for Y 2nd

. In other words, their method con-
sists in adjusting the estimates of the treatment effects on
the primary outcome using the differences observed on
the secondary outcome. Their assumptions can be under-
stood as a missing data problem, that is, the missing data
in the primary outcomes are missing at random in the con-
catenated data (Rubin, 1976). For estimation, they suggest
three methods, namely (i) imputing the missing primary
outcome in the RCT, (ii) weighting the units in the obser-
vational sample and (iii) using control function methods.

4.1.3 Deconfounding using the bias/confounding func-
tion. Kallus, Puli and Shalit (2018) propose to use an
RCT sample to deconfound the CATE estimated on a sin-
gle observational data set, denoted τ̂O

m (x). Due to possi-
ble unmeasured confounding, τ̂O

m (x) may be biased for
τ(x), that is, η(x) �= 0 where η(x) := τ(x)− τ̂O

m (x) is the
bias function. To correct for this bias, they assume they
have at hand a narrow RCT (as it is usually the case with

5Assuming the bias comes from an unobserved confounder and
not from inherent differences between populations can be stated as
S ⊥⊥ {Y (1), Y (0)}, which means that the two samples come from com-
parable populations (see Section 3).



176 B. COLNET ET AL.

strict eligibility criteria in trial) with high internal valid-
ity, and with covariate support included in the observa-
tional sample support. Given that τ̂O

m (x) is obtained from
the observational data, one can estimate η(·) on the com-
mon support between the RCT and the observational data
using the (unconfounded) RCT data. Another assumption
is required, being that the bias can be well approximated
by a function with low complexity, for example, a linear
function of the covariates x: η(x) = θT x. Kallus, Puli
and Shalit (2018) then propose to estimate the bias as
η̂m,n(x) = θ̂ T

m,nx by solving the following minimization
problem:

θ̂m,n = argmin
η

n∑
i=1

(
Y∗

i − τ̂O
m (Xi) − η(Xi)

)2

= argmin
θ

n∑
i=1

(
Y∗

i − τ̂O
m (Xi) − θT Xi

)2,

where Y ∗
i = (e(Xi)

−1Ai − {1 − e(Xi)}−1(1 − Ai))Yi ,
which satisfies E[Y ∗

i | Xi] = τ(Xi).
Note that the linear assumption guarantees the validity

of the framework even if the observational data do not
fully overlap with the experimental data as the bias, that
i„ the confounding error, is assumed to be extrapolable.

Finally, τ̂m,n(x) = τ̂O
m (x) + η̂m,n(x) is the estimated

conditional average treatment effect. They prove that un-
der conditions of parametric identification of η, τ̂m,n(x)

is a consistent estimate of τ(x), which converges at a rate
governed by the rate of estimating E[τ̂O

m (x)] by τ̂O
m (x).

More recently, Yang, Zeng and Wang (2020) proposed
another approach. Rather than η(x), they consider what
they call the confounding function λ(x),

λ(x) = E
[
Y(0) | A = 1,X = x

]
−E

[
Y(0) | A = 0,X = x

]
,

summarizing the impact of unmeasured confounders on
the potential outcome distribution between the treated and
untreated patients. In the absence of unmeasured con-
founding, λ(x) is zero for any x ∈ X , while if there
is unmeasured confounding, λ(x) �= 0 for some x. As-
suming a parametric model assumption for the CATE
τ(x) := τϕ0(x) with ϕ0 ∈ R

p1 , and for λ(x) := λφ0(x)

with φ0 ∈ R
p2 , the coupling of RCT and observational

data allows identifiability of τ(x) and λ(x). The key in-
sight is to introduce the following random variable:

Hψ0 = Y − τϕ0(X)A − (1 − S)λφ0(X)
{
A − e(X)

}
,

where ψ0 = (ϕT
0 , φT

0 )T is the full vector of model param-
eters in the CATE and confounding function, and where
here S = 1 (resp., S = 0) denotes trial participation (resp.,
observational study participation). By separating the treat-
ment effect τϕ0(X)A and (1 − S)λφ0(X){A − e(X)} from

the observed Y , Hψ0 mimics the potential outcome Y(0).
They then derive the semiparametric efficient score of ψ0:

Sψ0(V ) = −K
(
σ 2

S (X)
)−1

E[Hψ0 | X,S](A − e(X)
)

+K
(
σ 2

S (X)
)−1

Hψ0,
(3)

where

K :=

⎛⎜⎜⎝
∂τϕ0(X)

∂ϕ0
∂λφ0(X)

∂φ0
(1 − S)

⎞⎟⎟⎠ ,

and σ 2
S (X) = V[Y(0) | X,S]. A semiparametric efficient

estimator of ψ0 can be obtained by solving the estimat-
ing equation based on (3). If the predictors in τϕ0(X) and
λφ0(X) are not linearly dependent, they show that the in-
tegrative estimator of the CATE is strictly more efficient
than the RCT estimator. As a by-product, this framework
can be used to generalize the ATE from the RCT to a
target population without requiring an overlap covariate
distribution assumption between the RCT and observa-
tional data. Wu and Yang (2022) propose an integrative
R-learner that extends the framework of Yang, Zeng and
Wang (2020) to allow flexible machine-learning methods
for approximating CATE, confounding function and nui-
sance functions.

4.2 Toward More Efficient Estimation

Under Assumptions 1, 2 and 6, the CATE can be es-
timated based on the RCT, while under the classical un-
confoundedness assumption (see Section B of the Sup-
plementary Material of Colnet et al., 2024), the CATE
can be estimated using the observational sample. There-
fore, when both sets of assumptions are met, the two
data sources can be pooled to improve estimation effi-
ciency. Toward this end, Yang, Wang and Zeng (2023)
use the semiparametric efficiency theory to derive the
semiparametrically efficient integrative estimator of ϕ0

for the CATE τϕ0(X). However, if the unconfoundedness
assumption is violated, integrating the observational sam-
ple would bias the CATE estimation. Leveraging the de-
sign advantage of RCTs, Yang, Wang and Zeng (2023) de-
rive a preliminary test statistic for the comparability and
reliability assessment of the observational data and decide
whether to use it in an integrative analysis. Denote the ef-
ficient score based solely on the RCT and observational
data as Srct,ϕ0(V ) and Sos,ϕ0(V ), respectively, where V is
a full vector of variables. Their basic idea is to derive an
RCT estimator ϕ̂rct for ϕ0 and construct the preliminary
test statistics based on Sos,ϕ̂rct(V ). The rationale is that if
the observational sample is comparable to the RCT sam-
ple for estimating ϕ0, Sos,ϕ̂rct(V ) is expected to be close
to zero; otherwise, Sos,ϕ̂rct(V ) is expected to deviate from
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zero. This thought process leads to the test statistics

T =
{
n−1/2

n+m∑
i=n+1

Sos,ϕ̂rct(Vi)

}T

· �̂−1
SS

·
{
n−1/2

n+m∑
i=n+1

Sos,ϕ̂rct(Vi)

}
,

(4)

where �̂SS is a consistent estimator for the asymptotic
variance of n−1/2 ∑n+m

i=n+1 Sos,ϕ̂rct(Vi). Under H0 that the
observational sample is comparable to the RCT sample,
T → χ2

p , a chi-square distribution with degrees of free-
dom dim(ϕ0), as n → ∞. This result serves to detect the
violation of the assumption required for the observational
data.

Yang, Wang and Zeng (2023) propose the elastic inte-
grative estimator by solving

(5)
n∑

i=1

Ŝrct,ϕ(Vi) + I(T < cγ )

n+m∑
i=n+1

Ŝos,ϕ(Vi) = 0,

where cγ is the 100(1 − γ )th percentile of χ2
p , serving

as a switch to decide on combining or not. The method-
ological contribution of Yang, Wang and Zeng (2023) is
to derive a data-adaptive selection of cγ such that the re-
sulting estimator has the smallest mean squared error, and
thus performs at least similar to the RCT-only estimator,
if not better. Moreover, the elastic integrative estimator
is non-regular and belongs to pretest estimation by con-
struction. The theoretical contributions of Yang, Wang
and Zeng (2023) include characterizing the distribution
of the elastic integrative estimator under local alterna-
tives, which better approximates the finite-sample behav-
iors, and provides data-adaptive confidence intervals that
are uniformly valid.

4.3 Other Use Cases

Beyond generalizability or overcoming confounding,
there are other purposes motivating the combination of
experimental and observational data. We provide a brief
list of these purposes and methodologies. A detailed or
exhaustive survey is beyond the scope of this review.

4.3.1 Using hybrid controls. A hybrid control arm is a
control arm constructed from a combination of random-
ized patients and patients receiving usual care in standard
clinical practice, as introduced by Pocock (1976) and pur-
sued by Hobbs, Sargent and Carlin (2012), Schmidli et al.
(2014). Recently, the FDA has detailed their usage in the
regulatory purposes (FDA, 2018). Using hybrid controls
has the potential to decrease the cost of randomized trials,
and to reduce ethic constraints on control groups.

4.3.2 Case-control studies. In certain applications, for
example, in epidemiology, the observational data at hand
comes from a case-control study where the selection of
observations is driven by the outcome of interest Y . Thus,
the RCT and observational data differ in terms of the out-
come distribution, typically a preferential selection on the
outcome for the observational data set. Several solutions
have been proposed to handle this type of selection bias.
Robins (2000) and Hernán et al. (2005) propose marginal
structural model approaches to eliminate this bias given
sufficient knowledge of the selection model given treat-
ment. Guo et al. (2021) propose a control variates tech-
nique (Tan, 2006, Yang and Ding, 2020) identifying and
estimating an estimand that is sufficiently correlated with
the target estimand of interest for the observational co-
hort.

4.3.3 Encouragement design intervention. An encour-
agement design intervention is a design in which some
individuals or groups are randomly assigned to receive
encouragement to take up the program. (Rudolph and van
der Laan, 2017) provide a semiparametric efficiency score
for transporting the ATE from one study following an en-
couragement design, to another population. Due to the de-
sign, their setup is a variant of the generalization work
from Section 3, but with treatment allocation information
in the target population.

5. STRUCTURAL CAUSAL MODELS (SCM) AND
TRANSPORTABILITY

Within the SCM framework (Pearl, 1995, 2009b),
Bareinboim and Pearl (2016) have proposed answers
for transportability and combination of different data-
sources, also called data fusion. This section is split off
from the previous section as it builds on additional con-
cepts.

Let us first briefly introduce the SCM framework, using
as much as possible the notation of Section 2.1 that we
introduced for the PO framework (Section F of the Sup-
plementary Material of Colnet et al., 2024 gives a more
general primer on the SCM framework, and in particular
the do-operator). The covariates X, treatment A and re-
sponse Y are modeled in the SCM framework as random
variables with joint distribution P(X,A,Y ). Each inter-
vention, such as setting A to a = 0 or a = 1, defines an al-
ternative distribution over (X,A,Y ) that can be systemat-
ically deduced from the no-intervention (or observational)
distribution P using the SCM model, and which is writ-
ten P(X,A,Y |do(A = a)). In this framework, the CATE
is written:

τ(x) = E
[
Y |do(A = 1),X = x

]
−E

[
Y |do(A = 0),X = x

];
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and the ATE:

τ = E
[
Y |do(A = 1)

] −E
[
Y |do(A = 0)

]
.

These expressions mirror the corresponding expressions
in the PO framework (Table 2) when one identifies the
variable Y(a) in the PO framework to the variable Y un-
der the intervention do(A = a) in the SCM framework,
namely when we set P(Y (a),X) = P(Y,X|do(A = a)).
In fact, this analogy is valid in the sense that any theorem
that holds for SCM counterfactuals holds in the PO frame-
work, and vice versa (Pearl, 2009b, Chapter 7; Pearl,
2009a, Chapter 4). In spite of this formal equivalence,
the two frameworks differ in how they allow practitioners
to express causal assumptions, and to derive correspond-
ing estimands of causal effects. The SCM framework
provides a convenient graphical representation known as
causal diagrams to encode potentially complex causal as-
sumptions between variables, and provides a complete
language known as do-calculus to express causal effects
(i.e., some expectation under the do(A = a) probability)
as a function of observational data (i.e., some expecta-
tion under the no-intervention distribution) (Pearl (1995,
2009b)). When this reduction is possible, the causal ef-
fect is called identifiable. In addition, the do-calculus is
complete in the sense that a causal effect is identifiable
if and only if it can be reduced to a function of observa-
tional data using do-calculus (Huang and Valtorta, 2006,
Shpitser and Pearl, 2006). Interestingly, this provides a
variety of formulas to correctly infer causal effects even
in the presence of unmeasured confounders, which can-
not be handled by the PO framework (without additional
structural and modeling assumptions), such as the front-
door adjustment formula (Pearl, 1995).

5.1 Formulating Transportability in the SCM
Framework

The SCM literature and do-calculus naturally cover the
problem of generalizing an RCT experiment to a differ-
ent target population. Following our notation in the PO
setting (Section 2.1), we again denote by S a binary ran-
dom variable that indicates which individuals can be in the
RCT. The RCT population then follows the distribution
P(X,Y,A|S = 1), and by design the RCT allows estimat-
ing the conditional distributions P(Y |do(A = a),X,S =
1) for a = 0,1. The problem of generalization to the tar-
get population in this setting is then to deduce the dis-
tributions of P(Y |do(A = a),X) for a = 0,1 from these
two distributions and the observed distribution of the co-
variates P(X) in the target distribution (as in Section 3),
or of the covariates, treatments and responses P(X,A,Y )

in the target population (as in Section 4). If this deduc-
tion (using do-calculus) is possible, then the causal effect
on the target population is identifiable, and the deduction
provides a formula for the causal effect that can then be

estimated from a finite population using some consistent
estimator.

Interestingly, this formalism covers two important sit-
uations: (i) the sample selection bias problem, when the
RCT population is a subset of the target population that
fulfills some eligibility criterion,6 and (ii) the transporta-
bility problem, where the RCT population differs more
drastically from the target, for example, when one wants
to generalize an RCT conducted in one country to a pop-
ulation in another country (Pearl, 2015). To model sam-
ple selection bias, on the one hand, one typically adds
a node S with incoming edges to a causal graph in or-
der to capture the eligibility conditions that may de-
pend on pre- or post-treatment variables. It is then pos-
sible to derive conditions under which one can recover
from selection bias when the probability of selection is
available (Cooper, 1995, Lauritzen and Richardson, 2008,
Geneletti, Richardson and Best, 2008) or when no quan-
titative knowledge is available about probability of se-
lection (Didelez, Kreiner and Keiding, 2010, Bareinboim
and Pearl, 2012a). We provide examples of such con-
ditions in Section F.3 of the Supplementary Material of
Colnet et al. (2024). To model transportability to a differ-
ent population, on the other hand, the node S has typically
no incoming edge, and instead points to variables that dif-
fer between the RCT and the target population, either in
their functional dependency to their parents in the causal
graph, or in the distribution of their exogenous variables.
The resulting graph is called a selection diagram and al-
lows to encode graphically detailed assumptions about the
differences between populations (Pearl and Bareinboim,
2011, 2014, Bareinboim and Pearl, 2012b, 2013). Note
that even if the two situations imply different causal di-
agrams, the problem of selection bias “has some unique
features, but can also be viewed as a nuance of the trans-
portability problem, thus inheriting all the theoretical re-
sults of transportability” (Pearl, 2015); this remark is con-
nected to the discussion from Section 2.2.

The SCM approach thus provides powerful machinery
to generalize causal effect across populations, and en-
tails a detailed description of the causal assumptions be-
tween variables in the selection diagram, including the
selection variable S. The two selection diagrams of Fig-
ure 3 represent, for example, transportability problems
with a distributional change of covariates X between the
RCT and target populations (with an arrow from S to
X), and where the interventional nature of the RCT ver-
sus the target population is also represented with an ar-
row from S to A. In addition, in Figure 3(a) the ar-
row from S to Y indicates that the conditional distri-
bution of Y given X and A differs between the two

6This setting has been termed as generalizability in the introduction
of the different study designs in Section 2.2.
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FIG. 3. Illustration of selection diagrams depicting differences between source and target populations: In (a) and (b), the two populations differ by
covariate distributions (indicated by S pointing to X) and the two populations differ in their interventional nature (S pointing to A). Assumption 6
(transportability assumption) is assumed on (b), but not on (a) (since S points to Y in (a)). These two examples are inspired by Pearl and Bareinboim
(2011).

populations, which in general prevents any transporta-
bility of causal effect, while the lack of arrow from S

to A in Figure 3(b) encodes the independence assump-
tion P(Y |X,A) = P(Y |X,A,S = 1), which implies the
transportability assumption P(Y |do(A = a),X,S = 1) =
P(Y |do(A = a),X) (which itself implies Assumption 6
in the PO framework). In that case, one easily deduces
by simple conditioning on X that the distribution of Y

under intervention on the whole population is given by
P(Y | do(A = a)) =
(6)

∑
x

P
(
Y | do(A = a),X = x,S = 1

)︸ ︷︷ ︸
RCT

P(X = x)︸ ︷︷ ︸
Obs.

.

This transport formula, also known as recalibration, re-
weighting or post-stratification formula (Pearl, 2015),
thus combines experimental results obtained in the RCT
population and the observational description of the target
population to estimate the causal effect in the target pop-
ulation. In particular, we easily deduce the ATE on the
target population by integrating (6) in Y to get

(7) τ = ∑
x

τ1(x)︸ ︷︷ ︸
RCT

P(X = x)︸ ︷︷ ︸
Obs.

,

where τ1(x) is by design identifiable by conditioning on
treatment in the RCT population. This formula (7) is
equivalent to the regression formula (2) in the PO frame-
work, which is valid under Assumption 6. Interestingly,
Pearl and Bareinboim (2011) show that the transport for-
mula (6) holds more generally as soon as X is a set of
pre-treatment variables, which is S-admissible, that is,
if S ⊥⊥ Y | X,do(A = a) for a = 0,1. Graphically, S-
admissibility holds whenever X blocks all paths from S

to Y after deleting from the graph all incoming arrows
into A. We note that S-admissibility implies the mean ex-
changeability assumption (Assumption 4) and is equiva-
lent to the S-ignorability assumption S ⊥⊥ Y(a) | X (As-
sumption 3) used in the PO literature when X and S are

pre-treatment variables, and entails similar transport for-
mula in that situation. However, the two notions differ
for treatment-dependent selection and covariates, as dis-
cussed by Pearl (2015), where several examples illustrate
how the S-admissibility assumption can lead to differ-
ent transport formulas when both pre- and post-treatment
variables are leveraged. Such an example is presented on
Figure 4, where the covariate X is a post-treatment vari-
able, for example, a biomarker, believed to mediate be-
tween treatment and outcome.

Here, we presented how Assumptions 2, 3 and 4 are
translated in the SCM literature and how another scenario
with post-treatment covariates can be identified. More
identifiability scenarios have been discussed in the SCM
literature (Huang and Valtorta, 2012, Bareinboim et al.,
2013, Pearl, 2015, Lee, Correa and Bareinboim, 2020b),
and to our knowledge we have found no similar identifia-
bility scenario in the PO literature. It is worth mention-
ing that the transportation problem discussed so far, to
export a causal effect estimated in an RCT to a general
population, is only one specific instance of the more gen-
eral problem of data fusion (Pearl and Bareinboim, 2011,

FIG. 4. Post-treatment covariate adjustment: On this selection di-
agram, the arrow from S to X indicates the assumption of differ-
ent effects of A on X in the two populations. Here, X is S-admissi-
ble but not S-ignorable, and the corresponding transport formula is
P(Y | do(A = a)) = ∑

x P(Y | do(A = a),X = x,S = 1)P(X = x |
A = a), where it invokes an unconventional average of the CATE
weighted by a conditional probability in the target population. This
example is taken from Pearl (2015).
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Bareinboim and Pearl, 2012b, 2016, Hünermund and
Bareinboim, 2019, Lee, Correa and Bareinboim, 2020a),
which simultaneously accounts for confounding issues of
observational data, sample selection issues, as well as
extrapolation of causal claims across heterogeneous en-
vironments. The SCM framework, with its elegant way
of formalizing the problem, helps practitioners formulate
and discuss causal assumptions across variables and en-
vironments. In particular, subject to a good knowledge
of the graph, it helps selecting sets of variables that are
sufficient to establish identifiability and exclude variables
that would bias the analysis. As we will see in Section 7,
already in the early phase of a study, the causal and se-
lection diagrams offer a very convenient tool to discuss
with clinicians and explicitly lay out conditional inde-
pendence assumptions. Once a diagram encodes assump-
tions about a system, algorithmic solutions implement-
ing the do-calculus are available to determine whether
nonparametric identifiability holds, and to provide correct
formula if it holds (Correa, Tian and Bareinboim, 2018,
Tikka, Hyttinen and Karvanen, 2019).

While the SCM literature provides powerful and ver-
satile sets of concepts and tools to identify causal ef-
fects, practical estimators with publicly available imple-
mentations and detailed consistency, convergence rates
or robustness results are still scarce. Some recent work
has proposed solutions for this estimation task in the
context of either experimental or observational data by
extending weighting-based methods developed for the
back-door case to more general settings Jung, Tian
and Bareinboim (2020a, 2020b), or extending the dou-
ble/debiased machine learning (DML) approach proposed
by Chernozhukov et al. (2018) under ignorability as-
sumption to any identifiable causal effect (Jung, Tian
and Bareinboim, 2021). In the same spirit, Karvanen,
Tikka and Hyttinen (2020) propose a combination of data
from a survey and a meta-analysis of 34 trials, where
identifiability and transport formula are the output of
the algorithm do-search (see Section 6), and estima-
tion is performed with the real data at hand. Addition-
ally, even if a causal effect is not identifiable, partial-
identifiability techniques have been proposed for deriv-
ing bounds for the causal effect (Tian and Pearl, 2000,
Dawid, Humphreys and Musio, 2019). Cinelli and Pearl
(2021) give an example illustrating partial identifiability
on real data, with experiments assessing the effect of the
Vitamin A supplementation. In this setting, the existence
of experimental data from one source population leads to
identify bounds on the transported causal effect, but the
availability of two trials instead of one leads to a point es-
timate. Finally, Dahabreh et al. (2019), Dahabreh, Robins
and Hernán (2020) propose an alternative approach for
generalizability and integrative analyses of trials and ob-
servational studies using structural equation models un-

der weaker error assumptions and represented using sin-
gle world intervention graphs (Richardson and Robins,
2013).

6. SOFTWARE FOR COMBINING RCT AND
OBSERVATIONAL DATA

6.1 Review of Available Implementations

An important point to bridge the gap between theory
and practice is the availability of software. In recent years,
there have been more and more solutions for users in-
terested in causal inference and causation; see Tikka and
Karvanen (2017), Guo et al. (2018), Yao et al. (2020) for
surveys and Mayer et al. (2022) for a task view of R imple-
mentations. Regarding the specific subject of this article,
we present in Table 3 the implementations available for
both identifiability and estimation.

The available implementations are often dedicated to
specific sampling designs, and as mentioned, estimators
are different from nested and nonnested framework. As
a consequence, a new user has to pay attention to all of
these practical—but fundamental—details.

6.2 Simulation Study of Generalization Estimators

This part presents simulation results to illustrate the dif-
ferent estimators introduced in Section 3 and their be-
havior under several misspecification patterns. The code
to reproduce the results is available on Github.7 We im-
plement in R (R Core Team, 2021) our own version of
the estimators to match exactly the formulas introduced
in the review (IPSW and IPSW.normd; see Defini-
tion 2, stratification; Definition 3, plug-in g-
formula; Definition 4, and AIPSW; Definition 6), ex-
cept for the CW and ACW estimators (Definitions 5)
and 7) for which we use the genRCT package.

6.2.1 Scenario 1: Well-specified models. Similar to
Lee et al. (2023), we generate nonnested trial settings as
follows. First, we draw a sample of size 50,000 from a co-
variate distribution with four covariates are generated in-
dependently as with Xj ∼ N (1,1) for each j = 1, . . . ,4.
From this sample, we then select an RCT sample of size
n ∼ 1000 with trial selection scores defined using a logis-
tic regression model:

logit
{
πS(X)

} = −2.5 − 0.5X1 − 0.3X2

− 0.5X3 − 0.4X4.
(8)

Then we generate the treatment according to a Bernoulli
distribution with probability equals to 0.5, e1(x) = e1 =
0.5 and the outcome according to a linear model:

Y(a) = −100 + 27.4aX1 + 13.7X2 + 13.7X3

+ 13.7X4 + ε with ε ∼ N (0,1).
(9)

7BenedicteColnet/combine-rct-rwd-review.

https://github.com/BenedicteColnet/combine-rct-rwd-review
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TABLE 3
Inventory of publicly available code for generalization (top: software for identification; bottom: software for estimation)

Name Method—Setting Source and Reference

Identification
causaleffect Identification and transportation of causal effects,

for example, conditional causal effect identification
algorithm

R package on CRAN, Tikka and Karvanen (2017)

dosearch Identification of causal effects from arbitrary
observational and experimental probability
distributions via do-calculus

R package on CRAN, Tikka, Hyttinen and Karvanen
(2019)

Causal Fusion Identifiability in data fusion framework, (Section 5) Browser beta version upon request Bareinboim and
Pearl (2016)

Estimation
ExtendingInferences IPSW (Definition 2), plug-in g-formula equation

S7—Nested AIPSW S9—Nested Continuous
outcome

R code on GitHub, Dahabreh et al. (2020)

generalize IPSW (Definition 2), TMLE (Section 3.2.4) R package on GitHub Ackerman et al. (2021)
genRCT IPSW (Definition 2), calibration weighting

(Section 3.2.4) Continuous and binary outcome
R package Lee et al. (2023)

IntegrativeHTE Integrative HTE (Section 4.1) R package on GitHub, Yang, Wang and Zeng (2023)
IntegrativeHTEcf Includes confounding functions (Section 4.1) R package on GitHub, Yang, Wang and Zeng (2023)
generalizing SCM with probabilistic graphical model for

Bayesian inference Binary outcome
R package on GitHub, Cinelli and Pearl (2021)

RemovingHiddenConfounding Unmeasured confounder (Section 4.1) R package on GitHub, Kallus, Puli and Shalit (2018)
senseweight Sensitivity analysis (IPSW Definition 2) R package on Github Huang (2022)
transport Targeted maximum likelihood estimators (TMLEs)

Transport
R package on GitHub, Rudolph et al. (2018)

combine-rct-rwd-review Generalization estimators of Section 3 R code on GitHub

This outcome model implies a target population ATE
of τ = 27.4 and E[X1] = 27.4. Finally, we generate an
observational sample by drawing a new sample of size
m = 10,000 from the distribution of the covariates.

FIG. 5. Well-specified model. Estimated ATE with the inverse
propensity of sampling weighting with and without weights normaliza-
tion (IPSW and IPSW.norm; Definition 2), stratification (with 10 strata;
Definition 3), plug-in g-formula (Definition 4), calibration weighting
(CW; Definition 5), augmented IPSW (AIPSW; Definition 6) and ACW
(Definition 7)) over 100 simulations.

Figure 5 presents estimated ATE over 100 simulations.
The true ATE is represented with a dashed line. The ATE
estimated only with the RCT sample is also displayed as
a baseline. As expected, it is biased downward (its mean
is equal to 14.24) as the distribution of the covariates and
in particular the treatment effect modifiers such as X1 is
not the same in the trial sample and in the population (as
illustrated in Table S5 in Section G of the Supplementary
Material of Colnet et al., 2024). Note that in this simu-
lation, all the estimators are unbiased. The variability of
the two IPSW estimators are larger than the others. The
number of strata in the stratification estimator plays an
important role. As shown in Figure S7 in Section G of the
Supplementary Material of Colnet et al. (2024), the re-
sults are biased when the number of strata is smaller than
10.

6.2.2 Scenario 2: Misspecification of the sampling
propensity score or outcome model. To study the im-
pact of misspecification of the sampling propensity score
model, we generate the RCT selection according to the
model

logit
{
πS(X)

} = −2.5 − 0.5eX1 − 0.3eX2

− 0.5eX3 − 0.4eX4 + 3,

https://github.com/serobertson/ExtendingInferences
https://github.com/benjamin-ackerman/generalize
https://github.com/shuyang1987/IntegrativeHTE
https://github.com/shuyang1987/IntegrativeHTEcf
https://github.com/carloscinelli/generalizing
https://github.com/carloscinelli/generalizing
https://github.com/melodyyhuang/senseweight
https://github.com/kararudolph/transport
https://github.com/BenedicteColnet/combine-rct-rwd-review
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FIG. 6. Misspecified models. Estimated ATE when selection in RCT and/or outcome models are misspecified. Estimators used being IPSW (IPSW
and IPSW.norm; Definition 2), stratification (with 10 strata; Definition 3), plug-in g-formula (Definition 4), calibration weighting (CW; Definition 5),
augmented IPSW (AIPSW; Definition 6) and ACW (Definition 7) over 100 simulations.

and outcome according to the model

Y(a) = −100 + 27.4aX1X2 + 13.7X2

+ 13.7X3 + 13.7X4 + ε.

The analysis is then performed using classical logistic
and linear estimators on the four covariates. As shown
in Figure 6, when the sampling propensity score model
is misspecified, the IPSW estimators are biased; whereas
when the outcome model is misspecified, the plug-in
g-estimator is biased. In both settings, the double ro-
bust estimator (AIPSW) is unbiased and robust to mis-
specification. In the case where both models are mis-
specified, all estimators are biased except the CW and
ACW estimators. This demonstrates some robust proper-
ties of calibration against slight model misspecification.

Section G of the Supplementary Material of Colnet
et al. (2024) investigates the effect of a missing covari-
ate, homogeneous treatment effect, and the impact of a
stronger covariate shift, that is, poorly satisfied Assump-
tion 7.

7. APPLICATION: EFFECT OF TRANEXAMIC ACID

To illustrate the methodological question of combin-
ing experimental and observational data and demonstrate
some of the previously discussed methods, we consider
an open medical question about major trauma patients.
We focus on trauma patients suffering from a traumatic
brain injury (TBI): brain damage caused by a blow or jolt
to the head. Tranexamic acid (TXA) is an antifibrinolytic
agent that limits excessive bleeding, commonly given to
surgical patients. Previous clinical trials showed that TXA

decreases mortality in patients with traumatic extracra-
nial bleeding (Shakur-Still et al., 2009). Such prior re-
sult raises the possibility that it might also be effective in
TBI, because intracranial hemorrhage is common in TBI
patients, with risks of raised intracranial pressure, brain
herniation and death. Therefore, the aim here is to as-
sess the potential decrease of mortality in patients with
intracranial bleeding when using TXA. To answer this
question, we have at our disposal both an RCT, CRASH-
3 and an observational study, the Traumabase. Both data
have previously been analyzed separately in CRASH-3
(2019), Cap (2019) (for the RCT) and in Mayer et al.
(2020) (for the observational study) and the medical teams
of both studies want to share their respective data to an-
swer both medical and methodological questions. Such
initiatives allow to: (1) collate the results from the ob-
servational study with the RCT findings; (2) assess the
generalizability methods, considering the Traumabase as
the target population and assess the estimators presented
in this review in a real application. We first present the
two data sources, treatment effect analyses and findings
from these, before turning to the combined analysis in
Section 7.3. The code to reproduce all these analyses is
available on Github;8 however, the medical data cannot
be publicly shared for privacy concerns.

7.1 The Observational Data: Traumabase

7.1.1 Context. The Traumabase regroups 23 French
Trauma centers that collect detailed clinical data from

8https://github.com/BenedicteColnet/combine-
rct-rwd-review.

https://github.com/BenedicteColnet/combine-rct-rwd-review
http://www.traumabase.eu/fr_FR
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major trauma patients from the scene of the accident to
hospital discharge in form of a registry. The data, cur-
rently counting over 30,000 patient records, are of unique
granularity and size in Europe. However, they are highly
heterogeneous, with both categorical—sex, type of ill-
ness, . . . — and quantitative—blood pressure, hemoglobin
level, . . . —features, multiple sources and many miss-
ing data (98% of the records are incomplete). Here, we
use 8270 patients suffering from TBI extracted from the
Traumabase. Mayer et al. (2020) performed a first, purely
observational, study to assess the effect of TXA on mor-
tality for traumatic brain injury patients from this data:
the treatment variable is the administration of TXA dur-
ing pre-hospital care or on admission to a Trauma Center9

within 3 hours of the initial trauma. The Traumabase anal-
ysis contains many missing values (see Section H of the
Supplementary Material of Colnet et al., 2024), which im-
plies additional assumptions to perform causal inference.

7.1.2 Purely-observational results from two different
estimation strategies. The direct causal effect of TXA
on 28-day intrahospital TBI-related mortality and on all
cause intrahospital mortality among traumatic brain in-
jury patients is estimated by adjusting for confounding
using 17 confounding variables. In addition, 21 variables
predictive of the outcome but not related to the treat-
ment are included (see Mayer et al. (2020) for the de-
tailed adjustment set). We recall the results from this
study, which put a focus on how to estimate treatment ef-
fects in the presence of incomplete data. The presented
methods rely either on logistic regressions or generalized
random forests (Athey, Tibshirani and Wager, 2019) for
the nuisance components, denoted respectively by GLM
and GRF in Table 4. The doubly robust results (AIPW)
in Table 4 show that from this study there is no ev-
idence for an effect of TXA on mortality of TBI pa-
tients. These findings—obtained prior to the publication
of CRASH-3—are consistent with the main conclusion
of the CRASH-3 study. However, the results from IPW
conclude on a possible deleterious effect. In such a situa-
tion, the possibility to generalize the treatment effect from
the RCT is also a step to comfort the results. In Section
H of the Supplementary Material of Colnet et al. (2024),
we additionally recall results on sub-groups obtained by
stratifying along trauma severity.

7.2 The RCT: CRASH-3

7.2.1 Context. CRASH-3 is a multicentric randomized
and placebo-controlled trial launched over 175 hospi-
tals in 29 different countries (Dewan et al., 2012). This
trial recruited 9202 adults—unusually large for a medical

9More precisely, to the resuscitation room of a hospital equipped to
treat major trauma patients.

FIG. 7. Structural causal diagram representing treatment, outcome,
inclusion criteria with S and other predictors of outcome (Figure gen-
erated using the Causal Fusion software presented in Section 6 from
Bareinboim and Pearl (2016)).

RCT—all suffering from TBI with only intracranial bleed-
ing, that is, without major extracranial bleeding. All par-
ticipants were randomly administrated TXA (CRASH-3,
2019, Cap, 2019). The primary outcome studied is head-
injury-related death in hospital within 28 days of injury
in patients included and randomized within 3 hours of
injury. The study concludes that the risk of head-injury-
related death is 18.5% in the TXA group versus 19.8% in
the placebo group. The causal effect, measured as a Risk
Ratio (RR) was not significant (RR = 0.94 [95% CI 0.86
−1.02])). Note that CRASH-3 revealed a positive effect of
TXA only when considering mild and moderate cases. In
Section H.4.3 of the Supplementary Material of Colnet et
al. (2024), we provide a complementary analysis to study
this subgroup.

7.2.2 RCT selection. Six covariates are present at
baseline, being age, sex, time since injury, systolic blood
pressure, Glasgow Coma Scale score (GCS)10 and pupil
reaction. The inclusion criteria of the trial are patients
with a GCS score of 12 or lower or any intracranial bleed-
ing on CT scan (computed tomography), and no major
extra cranial bleeding. We provide a DAG summarizing
the trial selection and predictors of the outcome present
in CRASH-3 in Figure 7.

7.3 Transporting the ATE on the Observational Data

With the two separate analyses in mind, we can now
turn to the combined analysis, more specifically, the gen-
eralization from the RCT results to the target population
defined by the observational Traumabase registry. Before
any analysis aiming to compare and combine two data
sets, an important step is to assess that baseline covari-
ates, treatment and outcome are the same (for details, see
Section H.2 of the Supplementary Material of Colnet et
al., 2024).

7.3.1 Descriptive analyses.

10The Glasgow Coma Scale (GCS) is a neurological scale, which
aims to assess a person’s consciousness. The lower the score, the
higher the severity of the trauma.
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TABLE 4
ATE estimations from the Traumabase for TBI-related 28-day mortality. Red cells conclude on deteriorating effect, white cells conclude on no
effect. GLM stands for Generalized Linear Models and GRF for Generalized Random Forests. Additional results can be found in Table S1 in

Section H of the Supplementary Material of Colnet et al. (2024)

7.3.1.1 Missing values. The RCT contains almost no
missing values, whereas the variables for determining el-
igibility in the observational data contain important frac-
tions of missing values, ranging from 0.27 to 29%. Thus,
the methods discussed in this review must be adapted to
account for missing values.11 In order to estimate the nui-
sance components, that is, the conditional odds and the
outcome model(s), despite the missing data, we explore
two alternative strategies: (1) logistic regression with in-
complete covariates using an expectation maximization
algorithm (Dempster, Laird and Rubin, 1977), a compu-
tationally efficient variant of this method using stochas-
tic approximation is implemented in the R package mis-
aem (Jiang et al., 2020); (2) generalized regression for-
est with missing incorporated in attributes (Twala, Jones
and Hand, 2008, Josse et al., 2019), this method is im-
plemented in the R package grf (Tibshirani, Athey and
Wager, 2020).

7.3.1.2 Distribution shift. Simple comparisons of the
means of the covariates between the treatment groups of
the two studies—Figure 8—reveal the fundamental dif-
ference between the two studies, namely the treatment as-
signment bias in the observational study and the balanced
treatment groups in the RCT. In Section H.3.1 of the Sup-
plementary Material of Colnet et al. (2024), we further
explore the distribution shift with univariate histograms
(Figures S12–S16).

TABLE 5
Sample sizes for both studies

Traumabase CRASH-3

m #treated #death n #treated #death

8248 683 1411 9168 4632 1745

11If we assumed the missing values being missing completely at ran-
dom (MCAR), we could “throw away” the incomplete observations
and perform the analyses on the complete observations, but this would
reduce the total sample size to 917 observations. And as explained in
Section 7.1, the MCAR assumption is not plausible for the present ob-
servational data, thus such a complete case analysis would be biased.

7.3.2 Analyses.
7.3.2.1 Notation and estimator details. We use two

consistent ATE estimators from the CRASH-3 data,
namely the difference in mean estimator (Difference
in means; Section A of the Supplementary Material of
Colnet et al., 2024) and the difference in conditional mean
relying on OLS (Difference in conditional
means). We also present the results from the purely ob-
servational study outlined earlier: AIPW coupled with
multiple imputation (MI AIPW) and AIPW based on nui-
sance parameters estimated via generalized random for-
est (GRF AIPW) that can directly handle missing values
when needed with missing incorporated in attribute strat-
egy.

To generalize the ATE to the target population, we ap-
ply the estimators discussed in this review while imple-
menting strategies to handle the missing values. The re-
sulting estimators are presented in Table 6.

The confidence intervals of these estimators are com-
puted with a stratified bootstrap in the RCT and the ob-
servational data set in order to maintain the ratio of rela-
tive size of the two studies (with 100 bootstrap samples).
Note that the Calibration Weighting estimators (CW and

FIG. 8. Distributional shift and difference in terms of univariate
means of the trial inclusion criteria (red: group mean greater than
overall mean, blue: group mean less than overall mean, white: no
significant difference with overall mean, numeric values: group mean
(resp., proportion for binary variables). Graph obtained with the cat-
des function of the FactoMineR package (Lê, Josse and Husson,
2008).
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TABLE 6
Overview of generalization estimators based on different missing values handling strategies used in the data analysis

Missing values strategy

Logistic regression with missing values Generalized random forests (grf)—MIA

τ̂n,m IPSW EM IPSW GRF IPSW
Plug-in g-formula EM Plug-in g-formula GRF Plug-in g-formula

AIPSW EM AIPSW GRF AIPSW

ACW) are not used in this analysis as they would require
a specific adaptation to the case of the missing values.

7.3.2.2 Results of the combined analysis. Figure 9
gives the generalization from the RCT to the target pop-
ulation using all the observations from both data sets,
showing certain discrepancies with respect to the separate
analysis results. On the one hand, one-half of the general-
ization estimators support the CRASH-3 conclusion about
the treatment effect: no significant effect. On the other
hand, some estimators point toward a deleterious treat-
ment effect. Recall that the AIPW ATE estimations from
the purely observational data study do not reject the null
hypothesis of no treatment effect. Note that these results
are to be interpreted carefully due to the potential impact
of missing values on the performance of the chosen esti-
mators. For example, the large confidence intervals for the
GRF estimators when used to estimate weights are likely

to be due to the imbalanced proportions of missing values
in the RCT and the observational data. Indeed, the vari-
ance is much smaller using the plug-in g-formula with
GRF. Dealing with missing values when generalizing a
treatment effect remains an open research question.

Here, we present the results transported onto the to-
tal TBI Traumabase population, but the CRASH-3 study
highlights a specific subgroup of patients (mild and mod-
erate patients) for which a positive effect of the tranex-
amic acid is measured. The generalization of the CRASH-
3 findings onto this subgroup in the Traumabase raises
multiple methodological issues that still need to be ad-
dressed in future works (detailed in Section H.4.3 of the
Supplementary Material of Colnet et al., 2024).

Overall this data analysis highlights the interest of
combining two different data sets, but also some chal-
lenges: the need for a good understanding of the com-

FIG. 9. Juxtaposition of different estimation results with ATE estimators computed on the Traumabase (observational data set), on the CRASH-3
trial (RCT) and transported from CRASH-3 to the Traumabase target population. All the observations are used. Number of variables used in each
context is given in the legend.
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mon covariates, exposure and outcome of interest be-
fore combining the data sets, different missing data pat-
terns and poor overlap when considering specific target
(sub)populations.

8. CONCLUSION

Combining observational data and RCTs can improve
many aspects of causal inference, from increased statisti-
cal power to better external validity. A large part of this
review is dedicated to generalizability and transportabil-
ity of RCT from one population to another. The corre-
sponding rich and prolific literature answers a real prac-
tical concern: external validity. Indeed, questions about
external validity arise as soon as there are treatment effect
heterogeneities in the populations under study. We find
that, as any growing scientific field, the ideas are in flux:
notation differ, implementations are scattered and the pro-
posed methods still lack real-world benchmarks, gener-
ated hand-in-hand with practitioners. In addition, many
open questions still remain as detailed below.

8.1 Discrepancies Between RCTs and Observational
Data

The application on tranexamic acid effect hinted to
moderate external validity of the RCT as the generalized
ATE is concordant with the findings from the RCT, at
least for half of the estimators. Additionally, the purely
observational data study also supports the results from
the RCT. Determining which analysis to trust depends on
the assumptions we are willing to make—either related
to transportability or unconfoundedness—as well as the
suitability of the selected variables. Beyond these assump-
tions, caution is needed when interpreting the results, as
observing the methods in action reveals threats to their va-
lidity. The target population of interest and overlap also
raise concerns. Considering certain strata revealed vio-
lated positivity, which leads to a nontransportable treat-
ment effect on the strata of interest: mild and moderate
patients. Therefore, further discussions and analyses with
the medical expert committee are necessary to redefine
a target population of interest on which generalization
is possible and medically relevant. As it is generally the
case, beyond methodological and theoretical guarantees, a
major step to be taken before applying a set of methods is
to clearly state the causal question and estimand(s) and the
associated identifiability requirements. This task is even
more complex when combining data sets. A primary and
fundamental concern is whether outcome, treatment and
covariates are comparable in the two studies (Lodi et al.,
2019).

8.2 Right Choice of Covariates to Answer the
Question

Domain expertise can be used to postulate a causal
graph: a directed acyclic graph representing the mecha-

nisms (as Figure 7). The SCM framework is then con-
venient to assess whether the question of interest can be
formulated in an identifiable way. This approach offers
a principled way of selecting variables needed for iden-
tification of the causal effect and to avoid biased causal
effect estimates. Without such an approach, identifiabil-
ity claims are limited. A common practical recommenda-
tion is to include as many variables as possible to avoid
violation of any assumption as proposed, for example,
by Stuart and Rhodes (2017), Ling et al. (2022) and
Dahabreh and Hernán (2019): “it is probably best to in-
clude as many outcome predictors as possible in regres-
sion models for the expectation of the outcome or the
probability of trial participation.” On the contrary, a recent
work alerts about the bad consequences of adding covari-
ates that are shifted between the two populations while
not being treatment effect modifiers, resulting in variance
inflation (Colnet et al., 2022b). In its current state, the
field probably lacks work on covariate selection and its
impact on bias and variance. Some recent works propose
the use of causal graphs to select optimal adjustment sets
that allow the reduction of the variance of the final esti-
mation (Rotnitzky and Smucler, 2020, Witte et al., 2020,
Guo and Perković, 2022), but such methods have not yet
been developed for generalization or data fusion.

8.3 Challenges in Handling Missing Values

In our data analysis, we have seen the need to account
for missing values, and in particular different missing
value patterns between data sources. Missing values typ-
ically occur more often in observational data since in
RCTs, investigators typically deploy significant efforts
to avoid them. RCTs may however suffer from partic-
ipants missing scheduled visits or completely dropping
out from the study. The literature for RCT mainly fo-
cuses on missing outcome data and calls for sensitivity
analysis given that available strategies to handle such
missing data (weighting, multiple imputation) rely on
untestable assumptions about the missing values mech-
anism (Carpenter and Kenward, 2007, National Research
Council, 2012, Kenward, 2013, O’Kelly and Ratitch,
2014, Li and Stuart, 2019, Cro et al., 2020). Missing val-
ues may lead to subtle biases in the inferences, as they
are seldom uniformly distributed across both data sets—
occurring more in one than in the other. While a recent
research work proposes an assessment of the effect of dif-
ferent missing data patterns (Mayer, Josse and Traum-
abase Group, 2023), further research is needed to clarify
identifiability conditions and estimators in this setting in
order to better understand the scope of each method.
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SUPP; .pdf). The supplementary material contains details
on treatment effect estimation performed separately on
RCT data (Section A) and on observational data (Section
B), derivations of the different identification formula for
the generalization problem (Section C), a review of for-
mal results for estimators discussed in the review (Section
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