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ABSTRACT ARTICLE HISTORY

When evaluating the real-world treatment effect, the analysis based on Received 1 April 2024
randomized clinical trials (RCTs) often introduces generalizability bias due Accepted 1 April 2024
to the difference in risk factors between the trial participants and the real-

KEYWORDS
world patient population. This problem of lack of generalizability associated

Causal inference; covariates

with the RCT-only analysis can be addressed by leveraging observational balance; genRCT;
studies with large sample sizes that are representative of the real-world generalizability; Randomized
population. A set of novel statistical methods, termed “genRCT”, for improv- clinical trials; real-world data;

ing the generalizability of the trial has been developed using calibration treatment effect
weighting, which enforces the covariates balance between the RCT and heterogeneity
observational study. This paper aims to review statistical methods for gen-

eralizing the RCT findings by harnessing information from large observa-

tional studies that represent real-world patients. Specifically, we discuss the

choices of data sources and variables to meet key theoretical assumptions

and principles. We introduce and compare estimation methods for contin-

uous, binary, and survival endpoints. We showcase the use of the R package

genRCT through a case study that estimates the average treatment effect of

adjuvant chemotherapy for the stage 1B non-small cell lung patients repre-

sented by a large cancer registry.

1. Introduction

Randomized clinical trials (RCTs) offer the highest level of evidence of treatment safety and efficacy in
medical and pharmaceutical product developments, as randomization eliminates both measured and
unmeasured confounders. However, patients enrolled in randomized clinical trials are conveniently
ascertained and often represent a more restrictive patient group of the target population to which the
new treatment will be given. Therefore, the treatment effects estimated by standard methods are found to
lack external validity for the target real-world population (Kennedy-Martin et al. 2015; Rothwell 2005).
On the other hand, real-world evidence studies (RWEs), including large population-based observational
studies, registries, electronic health records, and medical claim databases, often contain a much larger
number of patients of the same disease and represent a random sample of the target population.

Due to the lack of treatment randomization, there are always concerns about whether or not
confounding has been addressed adequately in the analyses of the RWE data. In cancer research, there
is an in-depth discussion on the strengths and limitations of utilizing data from RCTs and RWEs for
comparative effectiveness analyses (Korn and Freidlin 2012; Visvanathan et al. 2017). The evaluation
of the treatment effect in the RCT population and the RWE population is both crucial, as they offer
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insights into different aspects of treatment effects, thereby assisting regulatory agencies in evaluating
a drug’s efficacy and safety during the approval process. Our method facilitates the generalization of
treatment effect estimates from the RCT population to the RWE population. Analyzing both the
similarities and differences in treatment effects between these populations provides complementary
evidence about the drug’s performance in both the RCT and RWE settings.

Statistical methods that allow generalization of RCT findings to a target population are in great
need for informing better policy decision-making and countering mis-understanding in drug and
device development. The problem of extending findings from RCT to a target population has been
termed as generalizability (e.g., Cole and Stuart 2010; Dahabreh et al. 2019; Tipton 2013) and
transportability (e.g., Pear] and Bareinboim 2011; Westreich et al. 2017). Most existing methods rely
on direct modeling of the sampling score, the sampling analog of the propensity score. The subsequent
sampling score adjustments include inverse probability of sampling weighting (IPSW; e.g., Cole and
Stuart 2010), stratification (Tipton 2013), and augmented IPSW (AIPSW; Dahabreh et al. 2019). Most
sampling score adjustment approaches require the sampling score model to be correctly specified.
Moreover, weighting estimators involving inverse probability weighting are unstable if the sampling
score is too extreme.

In this article, we consider the information contained in an RCT sample and an RWE sample,
where the RCT sample is subject to patient selection bias and the RWE sample is representative of the
target population with a known sampling mechanism. We review the theory and finite sample
properties of new calibration weighting (CW) methods, reported in Lee et al. (2022, 2023). for
improving the generalizability of the average treatment effect (ATE) of the trial. In contrast to the
dominant approaches that focus on predicting sample selection probabilities, the CW methods
estimate the sampling score weights directly by calibrating the covariates balance between the RCT
sample and the design-weighted RWE sample to address the selection bias of the RCT sample.

In this article, we will focus on the genRCT analysis. Given the complementarity of RCTs and
observational studies, integrated analysis approaches are called for to efficiently exploit the relative
strengths of the data from both RCTs and observational studies. Novel methods, such as pretesting
elastic poolability of RCT and observational studies for estimating treatment effect heterogeneity over
modifiers without or with hidden confounders and learning targeted, optimal, and interpretable
individualized treatment regimes, will not be discussed. Systematic reviews of these methods can be
found in Colnet et al. (2020) and Yang and Wang (2022).

In the rest of the article, we at first illustrate the problem of generalizing RCT results to a target
patient population represented by real-world evidence studies (RWEs) with a real example of making
inference on the average treatment effect of adjuvant chemotherapy in stage 1B NSCLC patients. In
Section 3, we will review the theory and the finite sample properties of the CW estimators and their
competitors, including both standard and augmented variants for binary, continuous and survival
endpoints. Section 4 summarizes the workflow and key considerations of conducting the genRCT
analysis to ensure its validity and completeness in practice. Section 5 provides a summary of the R
package genRCT. In Section 6, we illustrate the genRCT analysis with the data from the motivating
example. We will conclude the article with discussions in Section 7.

2. Motivating example

CALGB 9633 is a randomized phase III trial to determine the efficacy of adjuvant chemotherapy
compared with observation in stage 1B non-small cell lung cancer (Strauss et al. 2008). The primary
endpoint is overall survival (OS), the time from randomization to deaths of all causes. The eligibility
criteria of this trial are stage 1B NSCLC (T2NOMO), with tumor size >3 cm (T2) and negative N1 and
N2 nodes. Other patient requirements are age > over 18 years, histologically documented NSCLC,
and the tumor was removed by lobectomy or pneumonectomy. Eligible patients were randomized
with equal allocation to adjuvant chemotherapy (paclitaxel, 200 mg/m2 and carboplatin, AUC = 6 mg/
ml x min 4 cycles over 12 weeks) versus observation within 4-8 weeks of surgical resection. After 12
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years of patient recruitment and follow-up, the results of CALGB 9633 were published in the Journal
of Clinical Oncology. The final analysis was done after 155 deaths were observed (74 Chemotherapy,
81 Observation), with a median follow-up of 74 months. Overall survival (OS) was not significantly
different (hazard ratio [HR], 0.83; CI, 0.64 to 1.08; p=0.12). Exploratory analysis demonstrated
a significant survival difference in favor of adjuvant chemotherapy for patients who had tumors > 4
cm in diameter (HR, 0.69; CI, 0.48 to 0.99; p = 0.043). The results are reproduced in Figure 1(a, b), and
the numerical difference is because a few patients with missing tumor size were removed for the
illustration of the genRCT analysis. Grades 3 to 4 neutropenia were the predominant toxicity; there
were no treatment-related deaths. The current NCCN guidelines on treating stage 1B NSCLC patients
after surgery with adjuvant chemotherapy are largely based on the findings from CALGB 9633
(Ettinger et al. 2018).

It is well known that the patients participating in randomized clinical trials tend to be different from
the target population represented by large population-based databases or registries (Pang et al. 2016).
National Cancer Data Base (NCDB) is an oncology outcomes database collecting information on 72%
of all new invasive cancer diagnoses in U.S (Boffa et al. 2017). We identified a total 16,012 patients
diagnosed with NSCLC between years 2004-2016 with stage 1B disease who first had surgery and then
received either adjuvant chemotherapy or on observation (i.e. no chemotherapy). As seen in Table 1,
there are considerable differences between the patient population represented by CALGB 9633 and the
patient population represented by the NCDB sample, though we have used the eligibility criteria of the
RCT to define the boundary of the target population. This raises an important question — can the
adjuvant chemotherapy benefit observed in CALGB 9633 be observed in the target population
represented by the NCDB patients, especially for those patients with larger tumor size? Analysis
based on NCDB data has been published (e.g. Morgensztern et al. 2016) supports the benefit of
adjuvant chemotherapy for early stage NSCLC, including stage 1B, as compared to observation.
However, the analysis is subject to hidden confounders, which cannot be fully addressed by multi-
variable Cox proportional hazards (PH) modelling and propensity score-based methods. Another
concern is about a possible underpowered trial. Originally, the trial was designed to randomize 500
patients. Due to slow accrual, the trial was amended in 2000. The sample size was reduced to 384
patients, and two-sided test was changed to one-sided test. The trial has 80% power to detect a HR of
0.67 with 155 observed deaths at one-sided type I error rate of 0.05. Because of this, Katz and Saad
(2009) have criticized CALGB 9633 as an underpowered trial with a methodologically questionable
conclusion.

(a) All patients (b) Patients with tumor size >4cm

W : e
Observation L Observation
) Chemotherapy Chemotherapy

survival probability
survival probability

- L

N nEvents  HR(90%CI)  5-year OS (90%CI) n nBwents  HR(S0%CI)  5-year OS (90%CI)
Chemotherapy 161 87  079(0.62-1.00) 635 (6.7 - 69.4%) Chemotherapy 102 53 069 (0.51-0.34) 67.4(59.0 - 74.5%)
Observation 165 102 reforence  58.4 (518 - 64.4%) Observation ® 6 reference  60.9 (522 - 68.5%)

6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 06 1 2 3 4 5 § 10 11 12 13 14 15
time from randomization (years) time from randomization (years)
No. atrisk No.atrisk

166 155 137 116 102 9 8 63 46 30 19 9 2 1 0 0 @ 9 79 69 62 57 47 3 25 17 9 5 0 0 0 0

161 150 143 124 111 9% 8 69 60 45 26 12 6 1 0 0 102 9 9 78 71 63 5 47 42 32 19 7 3 1 0 0

Figure 1. Overall survivals for (a) all patients and (b) the patients with >4 c¢m tumor in CALGB 9633.
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Table 1. Summary of CALGB 9633 and NCDB samples.

CALGB 9633 NCDB* Overall
(N =327) (N = 16008) (N =16335)

Treatment

Observation 166 (50.8%) 11542 (72.1%) 11708 (71.7%)

Chemotherapy 161 (49.2%) 4466 (27.9%) 4627 (28.3%)
Sex

Female 118 (36.1%) 7258 (45.3%) 7376 (45.2%)

Male 209 (63.9%) 8750 (54.7%) 8959 (54.8%)
age

Mean (SD) 60.7 (9.79) 67.8 (10.3) 67.6 (10.3)

Median [Min, Max] 61.0 [34.0, 81.0] 69.0 [20.0, 90.0] 69.0 [20.0, 90.0]
Histology

Squamous 130 (39.8%) 6235 (38.9%) 6365 (39.0%)

Other 197 (60.2%) 9773 (61.1%) 9970 (61.0%)
Tumor size

Mean (SD) 4.59 (2.06) 4.81 (1.70) 4.81 (1.71)

Median [Min, Max] 4.00 [1.00, 12.0] 4.40 [3.10, 25.0] 4.40 [1.00, 25.0]

*A few NCDB patients from the extracted sample were removed from this summary and the genRCT
analysis due to extreme outliers.

3. Methods for genRCT analysis

Novel statistical methods have been developed to address the question whether the findings from the
RCT data are generalizable to the underlying target population, which is represented by the NCDB
sample in the motivating example, and whether it is possible to increase statistical inference efficiency
by utilizing all data of both sources.

3.1. Notations and data structure

To facilitate the discussion, we let A denote the treatment indicator with O=control and 1=treatment,
and Y a continuous or binary variable. X denotes a p-dimensional vector of covariates. § is an indicator

for the RCT participation, and 8 is the complimentary indicator for the RWE participation. We would
like to frame the generalizability question in a counterfactual framework (Imbens and Rubin 2015).
The potential (counterfactual) outcome for a = 1,0 is denoted as Y(a),a € {0, 1}. Define the condi-
tional average treatment effect (CATE) as 7(X) = E{Y(1) — Y(0)|X}. To make an inference on the
causal treatment effect, we are interested in estimating the population ATE
70 = E{Y(1) — Y(0)} = E{r(X)}, where E is taken w.r.t the target population. The data structure
for both RCT and RWE samples is presented in Figure 2, where we assume the RCT sample and the
RWE sample are independent. In other words, we assume that &; and ; cannot be both equal to 1 for
any subject i in the genRCT analysis.

3.2. Inverse probability of sampling weighting method

Inverse probability of sampling weighting (IPSW) methods were discussed in Cole and Stuart (2010);
Buchanan et al. (2018); Dahabreh and Hernan (2019). Estimate the sampling score
n5(X) = P(8 = 11X) using a logistic regression model 75(X; #). Inversely weight 75(X) to account
for the shift of the covariate distribution.

HIPSW _ > (X ) ALY _ > (X ’?)71(1 —A)Yi
iy me(Xis ) A > (X 7T-4)
where n is the sample size of the RCT sample. However, this estimator has a few limitations. Its

estimation requires the availability of the baseline covariates of the population, and
n5(X) = P(8 = 1]X) is correctly modelled. Inverting the estimated sampling probability often leads
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Figure 2. Data structure for a genRCT analysis.

to extreme weights that result in highly variable estimates. The model for the expected outcomes for
the RCT sample and the model for the probability of trial participation can be combined to form an
augmented IPSW estimator (AIPSW). Colnet et al. (2022) and Lee et al. (2023) have shown that
AIPSW is doubly robust, i.e., it is consistent when either one of the two models is correctly specified
and shown to be asymptotically normal when both models are consistently estimated at least at

rate nl/4.

3.3. Calibration weighting method

Calibration weighting (CW) is widely used to integrate auxiliary information in survey sampling (Wu
and Sitter 2001) and causal inference (Hainmueller 2012; Qin and Zhang 2007; Wang et al. 2019).
Hartman et al. (2015) implemented CW to estimate the population ATEs by combining RCTs with
RWEs. Here, we review the calibrating weight method in Lee et al. (2023) for binary and continuous
endpoints. The following assumptions are needed for the CW estimation, and similar assumptions are
required for the IPSW estimator.

Al: (Consistency) Y = AY(1) + (1 — A)Y(0)
A2: (i) {Y(0),Y(1)} L A|(X, §=1); and (ii) 0 < P(A =1|X, §=1) < 1 with probability 1.
A3: E{Y(1)-Y(0)|X, § = 1}=1(X); and (ii) ms(X)>0 with probability 1.

Under these assumptions, the ATE 1y = E{7(X) }is identifiable.
To balance the covariate distribution between RCT and RWE

E{ﬁgm} — 5{3dg(x)} = E{g())

where d = 1/P(8 = 1|X) is the design weight of RWE sample, we consider the following balancing
constraint:
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N N__
Zaw,g Z idig(X))/ Y 0:di=g,
i=1 i=1

where N is the total sample size of the RCT sample and the RWE sample, and g(X) is vector-valued
function, which can be moment functions of X, i.e. {X, X2 X3, .. -}, or any transformations of X. We
can estimate {w; : §; = 1} by solving min >, w; log w; subject to the balancing constraint and w; > 0
for all i, >}, w; = 1. This optimization problem can be solved using convex optimization with
Lagrange multiplier

Q)= iwilogwi —/\T{iw,g(X,-) —g}
pe =1

The estimated weights are given by

o exp{lg(x)}
S expfd g(X))}

and A from solving

Zexp{ﬂ DHe(X) - g) = 0.

Let 4, = P(A; = 1|X;;0; = 1) be the treatment propensity score for subject i. We obtain the CW

estimator
1 Ay, (1-A)Y;
CwW § : ~ iti i)Li
T Wi
‘{ A, 1 —7a,

i=1

>

For RCTs, often 74, = 0.5 for all 4, but it can be replaced by 714, for better efficiency. To establish the
consistency and asymptotic normality for the CW estimator, we need the following assumptions

A4: Linearity of the CATE: 7(X) = ylg(X)

AS5: Log-linear sampling score: The sampling score of RCT participation follows a log-linear model,
iers(X) = P(8 = 11X) = exp{nlg(X)} for some 7.

Under A5, we have the following connection between calibration weights and the sampling score:
@; — {Nms(X;)} " 2, 0. The asymptotic properties are followed. If either 7(X) = ylg(X) (A4

. . . . d
holds) or A5 holds, CW estimator is consistent for 7, and N'/2(z°W — 1) —— N(0,V), as
n — o0o. The CW estimator does not need parametric modelling on the sampling score or the outcome
mean model. We can use a sandwich estimator or bootstrap to estimate the variance of the CW
estimator.

3.4. Augmented calibration weighting method

Lee et al. (2023) proposed the augmented CW (ACW) estimator that is doubly robust and achieves the
semiparametric efficiency bound when both nuisance models are correctly specified. However, the
parametric approach is prone to model misspecification, especially when complex confounding exists.
To cope with model misspecification, we adopted a method of sieves (Chen 2007), which allows
flexible data-adaptive estimation of the nuisance functions while the ACW estimator retains the usual
root-n consistency under regularity conditions.
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In comparison with other nonparametric and machine learning methods, the ACW estimator
with the sieve approximation is attractive: (1) unlike black-box machine learning methods,
calibration weighting is straightforward and transparent; and (2) our framework allows for
selecting important sieve basis terms that are related to the outcome to calibrate and enforcing
the balance on these covariates for efficient estimation. In the presence of many covariates,
variable or sieve basis selection for calibration becomes necessary. We classify covariates into
three types: the covariates associated with trial participation and outcome as confounders, that
affect outcome only through trial participation as instrumental variables (IVs), and that are
predictive of the outcome as precision variables or outcome predictors. In other causal inference
contexts, studies have shown that in addition to the confounding variables, including outcome
predictors in the propensity score may improve efficiency, whereas including IVs may decrease
efficiency (e.g., Tang et al. 2020). Despite the importance of proper basis selection for the efficient
causal estimator, the current literature lacks a principled approach to guide basis selection for
covariate balancing. Capitalizing on an explicit connection between calibration weighting and
estimating equations under parametric models, we propose a penalized estimating equation
approach for variable selection, emphasizing outcome predictors. Variable selection is conducted
by applying a penalty for each variable included, similar to the least absolute shrinkage and
selection operator (LASSO) method. This approach to variable selection can enhance both the
predictive accuracy and interpretability of the resultant models.

An augmented CW estimator can be obtained (doubly robust), and it achieves the semiparametric
efficiency bound if both nuisance models are correctly specified. A flexible data-adaptive estimation of
the nuisance functions can be used to retain the usual root-n consistency under mild regularity
conditions. By following the semiparametric theory (Tsiatis 2006), Lee et al. (2023) derived the

semiparametric efficiency score ¢(X, A, Y, 8,8) for 7o:

é |:A{Y_[’11(X)}_(1_A){Y_AMO(X)}
75(X) A 1 —my

+ 8d{7(X) — 10}
The score $(X,A,Y, 6, 5) involves unknown nuisance functions about the sampling score 75(X;#)

and the outcome mean y,(X) = E(Y|X, A = a), which can be estimated from the RCT sample. The
ACW estimator is given by

A N ~
TACW — E o 6iwi

TTA; 1-— TTA;

ALY — (X B)Y (1= A){Y - mxz-;ﬁo)}}

N ~ —1 N ~ ~ ~
+ {Zizl &d,} > 5idi{H1(Xi§ﬁ1) - Mo(Xi;ﬁo)}
Under A1-A3 and if either A4 or A5 holds, 74V is consistent for 7,. When both A4 and A5 hold,

N2(7ACW _ 74) 4N (0, Veg) in distribution, as n — oo, where Vg is the semiparametric
efficiency bound. The variance estimator can be calculated empirically using bootstrap.

To overcome the model misspecification issue inherent to parametric models, we consider flexible
models for 775(X) and u,(X). We approximate 75(X) and p,(X) by the generalized sieves functions. To
estimate y,(X), we apply the penalization technique for regression models with the pre-specified basis
functions based on the RCT sample. The sieve method with power series as basis functions can be
used.

3.5. when Y and A are available in the RWE sample

The covariate distribution of the RWE sample was used to adjust/calibrate the selection shift of the
RCT sample. With the following assumption
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A6:Fora e {0,1},E(Y|X,A=a,0 =1) = u (X),

the efficiency of the ACW estimator can be further improved. The nuisance functions y,(X) can be
estimated using the RWE sample. A6 is testable with data. Further discussion on this approach can be
found in Yang et al. (2023) for a test-and-pool approach and Yang, Zeng, and Wang (2020) for an
approach relying on estimating the confounding function associated with hidden confounders in
observational studies, such as the NCDB sample in the motivating example, in which treatment
selection is not randomly assigned but decided by the preference of surgeons and patients.

3.6. Extension to survival endpoints

Restricted mean survival time (RMST) p(7) measures the averaged event time up to a pre-specified
time horizon 7 and is defined as the area under the survival curve up to 1, i.e.,

T
p(1) = E[min(T, 7)] = J S(t)dt,

0
where T is the time to event and S(¢) is the survival function. As illustrated in Figure 3, RMST
difference 0 = y,(7) — y4,(7) can be interpreted as the difference of event-free time (e.g., in months,
years) between treatment group and control group up to 7. Unlike conventional estimand for
treatment effect for survival endpoints, e.g., hazard ratio, RMST has valid interpretation when
proportional hazards (PH) assumption has been violated. Violation of PH assumption is common
in cancer clinical trials, as seen in Figure 1(a, b) for CALGB 9633, and cancer immunotherapies trials
due to delayed treatment effect.

Sa(t|x) = S(¢|X,A = a,8 = 1) is the treatment-specific conditional survival curves for a and

0 €{0,1}. ma(X) = P(A=1|X,6 =1) is the treatment propensity score. m5(X) = P(§ = 1|X) is
the sampling score. Estimands based on S,(¢) are of interest: (1) survival rate difference at
a fixed time 7: 6, = S;(7) — So(7); and (2) restricted mean survival time (RMST) difference
over [0, 7]

(a) ctrl (b) ol — trt

RMST Difference
RMST

0.0 05 1.0 15 2.0 25 3.0 0.0 05 1.0 15 20 25 30
Year Year

Figure 3. (a) Restricted mean survival time (RMST), and (b) RMST difference between treatment groups.
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Figure 4. Workflow and key considerations for genRCT analysis.
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0, = JT{Sl(t) — So(#)}dt

S, (t) identification is achieved by noticing that S,(t) = E{5dS,(t|X)}, where
S.(t1X) = E{I(T > t)|X,A = a,0 = 1},
and
) I(A=a) Y(¢)
75(X) 74 (X)" {1 — ma(X)}' SE(21X, 4)

where S¢(t|X,A) = P(C>t|X,A,8 = 1) is the conditional censoring model and C is the cen-
soring time. The estimated calibration weights are obtained by

w; = w(X,»;X) = exp{X’g(Xi)}/[Z:’:1 exp{?g(X,»)}], where 1 solves
UQR) =Y 7 exp{Ag(X;)}{g(Xi) —g} = 0. The estimated treatment propensity score is
known for RCTs, but one can estimate it for better efficiency by

Salt) = Ef

i

ma(X) = [1 + exp{—p'g(x)}]", where p is the vector of regression coefficients of g(x). We
posit Cox PH model with conditional hazard A°(t|X, A = a) = A5, (t) exp(y' X) for a € {0,1} to

t
estimate y_ and AS = J AS (4)du. Combining Wi, 7, and AS(t), we have the CW estimator
0

for the marginal treatment-specific survival curves as

o~ L
S (1) Z& 7,52 A0y 1

Tai

Lee et al. (2022) improved the CW estimator following the semiparametric theory (Tsiatis 2006). Based
on the efficient influence function, the improved ACW estimator is driven as

. t _ dgdenom
SACW (t) = exp —J ——— () ,
0 Saenom(u)

where

Tgi

and

i=1 ai

-1
+ Z dAm (Z 0 d) 61‘di — (Siwi/ﬁ_ui{l — Jo{eA“i< )+ Aai )}dMuCl(S)}‘| s

where M¢(u) = N¢(u) — A{f(s)ds is a martingale with N¢ = A,I(U < u,A = 0). The ACW
estimator can be viewed as an augmentation of the survival model and the weighting model, which
combines the sampling score model, the treatment propensity score model, and the censoring model.
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The ACW estimator is consistent if either the survival model or the weighting model is correctly
specified, and achieves local efficiency when both are correct. Note that even though 83¢"°™ (¢) itself is

a survival estimator and is asymptotically equivalent to ggcw(t), the latter was found to show better
finite-sample performance. Additionally, as an alternative to parametric estimation, Lee et al. (2022)
employed the nonparametric method of sieves to add flexibility and robustness to the ACW estimator,
meanwhile retaining the root-n consistency and efficiency.

3.7. Finite sample performance for genRCT methods
Extensive simulation studies were conducted to compare the finite sample performance of the genRCT
estimators, including
Naive: difference in sample means of the two treatment groups in the RCT sample to demonstrate
the degree of selection bias;

IPSW: inverse probability of sampling weighting estimator, where the sampling weights are
estimated by logistic regression;

AIPSW: augmented inverse probability of sampling weighting estimator, where the sampling
weights and the outcome mean are estimated by logistic regression;

CW: calibration weighting estimator with g(X) = g (X);

ACW: augmented calibration weighting estimator with g(X) = ¢;(X) and the nuisance functions
#1(X) and p,(X) are estimated based on the RWE sample;

ACW(S): penalized augmented calibration weighting estimator using the method of sieves with
8(X) = &(X).
We have used g (X) = (X1, X, X3, X4)" in all four scenarios, and
oX) =X, X, X1 X0, -, Xp 1 Xp, X7, ,X;)T for ACW(S). Four scenarios were considered

to evaluate the performance of these estimators.

Scenario 1 (O:C/S:C): both outcome and sampling score models are correctly specified;

Scenario 2 (O:C/S:W): the outcome model is correctly specified; the sampling score model is
incorrectly specified;

Scenario 3 (O:W/S:C): the outcome model is incorrectly specified; the sampling score model is
correctly specified;

Scenario 4 (O:W/S:W): both outcome model and sampling score models are incorrectly specified.

For details, please refer to Lee et al. (2022, 2023). Overall, IPSW and AIPSW have wider variation
compared to their CW and ACW counterparts. When both outcome and sampling score models are
misspecified, the ACW(S) estimator is still unbiased and efficient. The empirical coverage rates for the
unbiased ACW estimators are close to the nominal level. Moreover, ACW-b(S) has smaller variance
than ACW-t(S) by exploiting the predictive power from the observational sample.

4. Workflow and key considerations for genRCT analysis

Figure 4 displays the major steps to conduct a comprehensive genRCT analysis. These steps will help
verify the assumptions required for valid and efficient genRCT analysis.
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4.1. Identify the need for generalizability

One way to gauge the need for generalizability is by examining the consistency in the distribution of
essential baseline risk factors. As evident from Tablel and Table Al in Appendix, which provide
a snapshot of the motivating example, there are evident inconsistencies in the distribution of some
important factors. This becomes a preliminary condition, warranting the exploration of
a generalizable randomized controlled trial (genRCT) analysis.

A systematic method to ascertain the necessity for such an analysis is by evaluating the standardized
differences of key baseline covariates between two distinct data sources. If these standardized differ-
ences are closely aligned or are relatively similar, it negates the requirement for a genRCT analysis.
This suggests that the baseline factors are balanced, thereby making generalization less critical in this
context.

However, if the need arises to integrate results from RCTs and RWE, particularly to achieve
heightened efficiency or for other objectives, it is essential to harness the specialized methodologies
tailored for this integration. Such integrative analysis offers a broader perspective and ensures the
resultant findings reflect the diverse patient populations, thus enhancing the external validity of the
study findings.

4.2. Generate comparable patient populations, i.e., RCT sample and RWE-target

In the genRCT analysis of CALGB 9633 and NCDB, we have chosen comparable patients from the NCDB
database by defining the target patient population using the eligibility criteria of CALGB 9633. In contrast,
the real NCDB patients have more diverse constituents, such as early-stage NSCLC with a tumor size of less
than 3 cm. Even though the distribution of the two data sources is comparable, the distribution of the two
data sources may still be different. One key observation is that RCT's, such as CALGB 9633, often have
a propensity to enroll patients who are generally younger and have smaller tumor size. Furthermore, these
trials might showcase a demographic tilt, leaning towards younger and white participants. Various factors
can contribute to this bias, such as the stringent eligibility criteria for RCTs, socioeconomic determinants,
or institutional preferences.

In general, comparing an RCT to an external dataset aims to bridge the gap between controlled
experimental conditions and diverse, real-world patient scenarios. External data sources can be diverse
and encompass population-based disease registries or comprehensive national health studies. Such
comparisons not only enhance the generalizability of RCT findings but also provide a more nuanced
understanding of how treatment works in everyday clinical practice.

Additionally, it is worth highlighting the unique position of pragmatic clinical trials conducted within
Electronic Health Record (EHR) systems. For such trials, the population captured in the EHR system
inherently represents the real-world population. This setup offers a more organic, day-to-day representa-
tion of patients, emphasizing the practicality and applicability of the data within real-world medical
settings.

4.3. Selection and calibration of variables

For the genRCT analysis, selecting variables for calibration is important. Our primary objective in this
selection process is to ensure a consistent and efficient analysis. The variables used for calibration have
been identified based on specific criteria.

Firstly, confounders play a crucial role. A confounder is a variable related to the treatment effect and
selection into the RCT study. The presence of confounders can introduce bias, as they might inadvertently
suggest a relationship between the treatment effect and the selection. Hence, when identifying variables for
calibration, it’s critical to consider these confounders to enhance the validity of our analysis. Secondly, it is
essential to incorporate all prognostic factors. These factors have a direct correlation with the outcomes
under consideration. Including these ensures that our analysis is efficient (Cho and Yang 2023). Thirdly,
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there is a possibility of the presence of instrumental variables that are associated solely with the selection
and not the outcomes. Incorporating these instrumental variables does not compromise the consistency of
the estimator, though it may increase the variance. Nonetheless, as indicated by Yang, Kim, and Song
(2020), including these instrumental variables reduces the likelihood of omitting potential confounders.
Finally, there might be scenarios where certain covariates, suspected to be confounders, are not available in
any of the data sources at our disposal. In such situations, it is advisable to identify surrogate variables for
these unobserved confounders.

Once the covariates are determined, the subsequent step ensures the distributional balance between the
RCT and RWE studies. Toward this end, one can include first-order, second-order, and even higher-order
moments of these covariates for calibration. Such an approach strengthens the overall validity of the
genRCT analysis. However, as the number of calibration constraints increases, over-calibration or impro-
per application of calibration weighting on too many variables, can lead to variance inflation. In such cases,
one can use regularization (Tan 2020) for selecting important calibration constraints or soft calibration
(Gao et al. 2022) for relaxing the constraints.

4.4. Selection of methods for the primary analysis

To determine the most suitable method for the primary analysis, a comprehensive review was
undertaken based on both theoretical foundations and extensive simulation studies. In situations
where the RWE study provides only the covariate data, we recommend using ACW(s)-t as the
primary analysis method. The rationale behind this recommendation is the double robustness
feature of the ACW(s)-t method and its ability to provide stable weighting, making it especially
reliable in such cases.

On the other hand, when the RWE study provides a more comprehensive dataset including
covariates, treatment, and outcome data, our recommendation shifts to the ACW(s)-b method.
ACW(s)-b is designed to utilize the outcome mean information in the RWE study, ensuring a more
informed and accurate analysis in scenarios where complete data is accessible.

4.5. Sensitivity analysis

The success of genRCT relies on the key assumption, labeled A3. This key assumption, however,
cannot be verified directly using the data available. As a consequence, the robustness of the study’s
conclusions may be vulnerable to any deviations from this assumption (e.g. due to missing important
confounders), making a sensitivity analysis critical. Sensitivity analysis serves as an essential tool to
assess how much the conclusions might change under potential violations of this assumption.

In recent times, there has been a growing recognition of the challenges posed by missing con-
founders, both within the RCT and RWE studies. This has culminated in the proposal of various
sensitivity analyses aimed at counteracting the impact of unmeasured confounders in both of these
types of data. Notable contributions in this area have been made by Nguyen et al. (2017), Nie et al.
(2021), Huang (2022) and many others. These analyses provide valuable frameworks to evaluate the
robustness of conclusions derived from datasets where key confounders might be missing.

5. Software

The R package for conducting genRCT analysis is available for download from the github and installed
in the local R environment by typing

devtools :: install_github("idasomm/genRCT")

at R command prompt. The function genRCT is for the analysis of binary and continuous endpoints.
Its arguments can be found on the package help page and are listed below.
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Y.trial Observed outcome from a trial; vector of size n. (trial sample size)
A.trial Treatment received from a trial; vector of size n.
X.trial Matrix of p baseline covariates from a trial; dimension n by p.

Y.rwe Observed outcome from RWE; if obtained, vector of size m (RWE sample size); otherwise, set
Y.rwe = NULL.

A.rwe Treatment received from RWE; if obtained, vector of size m; otherwise, set A.rwe = NULL.
X.rwe Matrix of p baseline covariates from RWE; dimension m by p.

family The type of outcome, “gaussian” for Gaussian regression or “binomial” for logistic regression
Default is “gaussian”.

estimators A vector of one or multiple methods to estimate the ATE. Allowed values are “Naive”,
“IPSW”, “AIPSW”, “CW”, “ACW-t”, “ACW-b”. The “ACW-b” is allowed only when both “Y.rwe”
and “A.rwe” are obtained. Default specifies all six methods.

sieve A logical value indicates whether the method of sieves is used for estimating sampling score
and outcome models. Used only if estimators = “AIPSW” or “ACW-t” or “ACW-b”. The default is
TRUE.

inference A logical value indicating whether inference for the ATE via bootstrap should be
provided. The default is TRUE.

n.boot A numeric value indicating the number of bootstrap samples used. This is only relevant if
inference = TRUE. The default is 100.

conf .level The level of bootstrap confidence interval; Default is 0.05.

seed An optional integer specifying an initial randomization seed for reproducibility. The default is
NULL, corresponding to no seed.

plot.boot A logical value indicating whether histograms of the bootstrap samples should be
produced. The default is TRUE.

verbose A logical value indicating whether intermediate progress messages should be printed. The
default is TRUE.

The outputs of the R function are

fit A table of estimated ATEs with bootstrap SE and confidence interval.

plot A set of histograms displaying the distribution of the bootstrapped estimates. The red vertical
reference lines represent the estimated ATEs from each method.

The R function genRCT .surv is for conducting the genRCT analysis for survival endpoints subject
to right censoring. The treatment effect is characterized as survival rates and its difference at
landmark follow-up time or RMST and its difference up to a time horizon 7. The arguments of
genRCT.surv can be found on the package help page and are listed below. At this moment,
genRCT.surv does not support incorporating the outcome and treatment data from RWE into
the generalizability analysis.

Y.trial Observed outcome from a trial; vector of size n. (trial sample size)

d.trial The event indicator, normally 1 = event, 0 = censored; vector of size n.
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A.trial Treatment received from a trial; vector of size n.

X.trial Matrix of p baseline covariates from a trial; dimension n by p.

X.rwe Matrix of p baseline covariates from RWE; dimension m by p.

tau A vector of truncation time for defining restricted mean survival time; e.g., seq (10, 50, by = 10)

n.boot A numeric value indicating the number of bootstrap samples used. This is only relevant if
inference = TRUE. The default is 100.

conf .level The level of bootstrap confidence interval; Default is 0.05.

seed An optional integer specifying an initial randomization seed for reproducibility. The default is
NULL, corresponding to no seed.

verbose A logical value indicating whether intermediate progress messages should be printed. The
default is TRUE.

The outputs of the R function are

rmst A list of estimated RMSTs with bootstrap SE and confidence interval.

surv A list of estimated treatment-specific survival functions.

6. Case study of genRCT analysis
6.1. genRCT analysis with binary endpoint
The R scripts for this analysis can be found in the supplementary material. The following variables are
available for the genRCT analysis:
recurrence Y: 1=overall survival time <3 years, O=otherwise
arm=A: treatment indicator with 1 for Chemotherapy and 0 for Observation
male=X,: 1 for male and 0 for female
age=X,: age at randomization
squam=Xj3: histology with 1=squamous, 0=non-squamous
tsize=X4: tumor size measured at baseline

cohort: trial=“CALGB 9633”7, rwe=“NCDB”
We applied the following estimators to the pooled data of CALGB 9633 and NCDB samples.

e Naive: difference in sample means of the two treatment groups in the RCT sample to demon-
strate the degree of selection bias;

e IPSW: inverse probability of sampling weighting estimator, where the sampling weights are
estimated by logistic regression;

o AIPSW(S): augmented IPSW estimator with sieves method for sampling score and outcome
models;

e CW: calibration weighting estimator with g(X) = g (X);

o ACW-t(S): augmented CW estimator with sieves method for sampling score and outcome
models, and the outcome and treatment data from RWE are not used;
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o ACW-b(S): augmented CW estimator with sieves method for sampling score and outcome
models, and the outcome and treatment data from both RCT and RWE are used. See Lee et al.
(2023) for more discussion on ACW-b(S) and its difference from ACW-t(S).

Y is the indicator of cancer recurrence within 3 years after the surgery, i.e. Y =1 if recurrence
occurred and Y = 0 otherwise. As a few patients dropped out or withdrew consent for being
followed up before 3 years, they were excluded from this analysis due to indefinite recurrence
status. Figure 5 is a Love plot showing the standardized difference of key baseline covariates
before and after balancing the covariates of the RCT sample against the RWE-target. Figure 6
shows the averaged risk difference between adjuvant chemotherapy and observation based on
CALGB 9633 and NCDB. ACW-t(S) denotes the ACW estimator with sieves method using the
outcome and treatment data only from the trial CALGB 9633, and it suggests a marginal
benefit of adjuvant chemotherapy in risk reduction by 12% with the upper 95%CI barely
exceeding 0. ACW-b(S) denotes the ACW estimator with sieves method using the outcome
and treatment data from both CALGB 9633 and NCDB samples, and it shows a 17% risk
decrease (p<0.05), supporting a more profound benefit of adjuvant chemotherapy over
observation in the real-world population.

(a) CW estimator (b) ACW-t(S) estimator
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Figure 5. Love plot before and after balancing the covariates of CALGB 9633 sample against the NCDB sample using (a) CW and (b)
ACW-t(S) estimators.

Method Estimate (95% CI)
Naive — -0.08 (-0.19, 0.02)
IPSW — -0.09 (-0.20, 0.02)
AIPSW(S) ~ -0.11(-0.22, 0.01)
cw -0.10 (-0.21, 0.00)
ACW-(S) L— -0.12 (-0.27, 0.02)
ACW-b(S) ' -0.17 (-0.34, -0.01)

Adj. Chemo.: Adjuvant Chemotherapy I I I I

Obs.: Observation -0.3 -0.2 -0.1 0

Adj. Chemo. Better Obs. Better

Figure 6. Case study of CALGB 9633 and NCDB samples with recurrence within 3 years (yes or no) as binary outcome.
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6.2. genRCT analysis with survival endpoint

The R scripts for this analysis can be found in the supplementary material. The following variables are
available for the genRCT analysis with overall survival (OS) as the primary outcome.

survtime: overall survival (OS)

survcens: OS censoring indicator, 1 for “death” and 0 for “censored”
arm=A: treatment indicator with 1 for Chemotherapy and 0 for Observation
male=X,: 1 for male and 0 for female

age=X,: age at randomization

squam=Xj: histology with 1=squamous, 0=non-squamous

tsize=X4: tumor size measured at baseline

cohort: trial=“CALGB 9633”, rwe=“NCDB”

The estimates and 95% CIs of the RMST difference with 7 =5 and 7 = 10 years between adjuvant
chemotherapy and observation are given in Figure 7, supporting a strong benefit of adjuvant
chemotherapy in the RWE target population, as defined by the NCDB sample, relative to observation
by generalizing the treatment effect found in CALGB 9633.

7. Concluding remarks

In this article, we introduce a framework for conducting the genRCT analysis that generalizes the
findings of a randomized clinical trial from the RCT population to its corresponding RWD popula-
tion. This analysis offers a means to assess the disparity in treatment effects between populations in
RCTs and RWD. This analysis becomes particularly relevant when treatment effects are not readily
deducible from the Real-World Evidence (RWE) database. By applying the findings from RCTs to the
RWE population, the generalizability analysis estimates the treatment effect for the RWE population.
The discrepancy between the treatment effects observed in RCTs and those calculated through
genRCT analysis serves as an indicator of the gap between the two populations. This difference is
valuable for both the pharmaceutical industry and regulatory agencies, as it aids in evaluating the
effectiveness of specific drugs or treatments during the development of pharmaceutical products. The

Method Adj. Chemo. Observation Difference Difference (95% Cl)
5-year RMST |
Naive — — —f— 0.06 (-0.42, 0.54)
IPSW —e — —— 0.29 (-0.28, 0.86)
CW —e — —‘—-— 0.26 (-0.34, 0.86)
ACW-t — — —-— 0.57 (0.02, 1.12)
ACW-t(S) —e —— — 0.57 (0.03, 1.11)
10-year RMST
Naive — 0.01 (-0.81, 0.83)

IPSW —

0.45 (<052, 1.42)
0.53 (<052, 1.58)

cw —_—
ACW-t 1.01 (0.01, 2.01)
ACW-(S) ———=———— 1.11(0.13, 2.09)

Adj. Chemo. T T T T

T T T T 1 T I T
fduventChemotherapy 25 3 3.5 4 45 5 25 3 35 -05005115

Figure 7. RMST difference as treatment effect for the case study of CALGB 9633 and NCDB samples with time horizon at 5 and 10
years.
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genRCT framework leverages both the RCT (e.g., CALGB 9633) and the observational studies (e.g.,
NCDB), to estimate the average treatment effect (e.g., adjuvant chemotherapy on average survival
times). Among a few competitors, the ACW estimator has been demonstrated to be doubly robust,
surpassing the efficiency of both IPSW and CW estimators. Even with misspecified models, the
ACW(S) estimator remains unbiased and efficient, with empirical coverage rates aligning closely
with nominal values. This framework caters to continuous, binary, and survival outcomes. Our
accompanying R package, “genRCT”, facilitates straightforward implementation. We provide
a comprehensive guideline for achieving generalizable treatment effect analyses pertinent to real-
world patient demographics, detailing necessary criteria for data representation, variable selection,
and estimator preferences.

To conclude the article, we would like to make a few remarks regarding the use of the
genRCT analysis in practice. A specific quantitative metric for determining the need for
a genRCT analysis does not exist. However, it’s advisable to evaluate the differences in covari-
ates between RCT and RWE groups. Conducting a genRCT analysis becomes necessary if the
standardized difference in at least one covariate, identified as a moderate or strong confounder
by subject matter experts, is observed. Moreover, even if there’s pre-existing knowledge suggest-
ing similarities between RCT and RWE populations, a genRCT analysis may still be beneficial.
Consequently, it’s recommended to perform a genRCT analysis on all completed RCTs, regard-
less of any prior understanding of potential discrepancies between the RCT and RWE cohorts.
Drawing from semiparametric efficiency theory and the positive outcomes seen in extensive
simulation studies, the ACW(S) estimator provides both consistency, efficiency, and double
robustness. Furthermore, the associated variance estimator provides a close-to-nominal coverage
rate for confidence intervals. Given its good performance relative to other estimators, its
application in practical scenarios is highly recommended. Although the ACW(S) estimator
outperforms others in certain respects, employing alternative estimators for comparative analysis
remains beneficial. Such comparisons not only reinforce the reliability of ACW(S) results but
also when significant discrepancies are noted, prompt further investigation into the underlying
causes of these differences. The performance of various estimators, in terms of consistency and
efficiency, hinges on different assumptions and the correctness of either the sampling model or
the outcome model. Consequently, it is common in practice to observe numerical and quanti-
tative differences among these methods, particularly when the treatment effect is only marginally
significant. In such instances, it is crucial for researchers to delve into the possible causes behind
these variances. However, overall, the results derived from the ACW(S) estimator should be
considered more reliable than those from alternative estimators.
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Appendix

Data summary for CALGB 9633 and NCDB samples

Table Al lists all key baseline characteristics of CALGB 9633 patients. A few patients in NCDB are removed from the
genRCT analysis due to missing data.

Table A1. Baseline patient characteristics of CALGB 9633 and NCDB samples.

CALGB 9633 NCDB
Observation Adjuvant Chemo Observation Adjuvant Chemo
(N=166) (N=161) (N =11544) (N = 4468)

Sex
Female 61 (36.7%) 57 (35.4%) 5219 (45.2%) 2040 (45.7%)
Male 105 (63.3%) 104 (64.6%) 6325 (54.8%) 2428 (54.3%)
Age
Mean (SD) 61.0 (9.24) 60.3 (10.4) 69.3 (10.2) 63.9 (9.29)
Median [Min, Max] 62.0 [40.0, 81.0] 61.0 [34.0, 78.0] 70.0 [20.0, 90.0] 65.0 [29.0, 88.0]
Histology
Other 101 (60.8%) 96 (59.6%) 6902 (59.8%) 2872 (64.3%)
Adenocarcinoma 65 (39.2%) 65 (40.4%) 4642 (40.2%) 1596 (35.7%)
Tumor Size
Mean (SD) 4.56 (2.06) 4.63 (2.07) 4.67 (1.65) 5.19 (1.78)
Median [Min, Max] 4.00 [1.00, 12.0] 4.00 [1.00, 12.0] 4.20 [3.10, 25.0] 4.80 [3.10, 21.0]

R scripts for genRCT analysis for binary endpoint
R scripts for genRCT analysis for survival endpoint
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