Taylor & Francis
Taylor & Francis Group

Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ucgs20

Mixed Matrix Completion in Complex Survey
Sampling under Heterogeneous Missingness

Xiaojun Mao, Hengfang Wang, Zhonglei Wang & Shu Yang

To cite this article: Xiaojun Mao, Hengfang Wang, Zhonglei Wang & Shu Yang (29 Mar 2024):
Mixed Matrix Completion in Complex Survey Sampling under Heterogeneous Missingness,
Journal of Computational and Graphical Statistics, DOI: 10.1080/10618600.2024.2319154

To link to this article: https://doi.org/10.1080/10618600.2024.2319154

A
h View supplementary material &

% Published online: 29 Mar 2024.

N
[:J/ Submit your article to this journal &

||I| Article views: 142

A
& View related articles &'

@ View Crossmark data (&

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=ucgs20


https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/journals/ucgs20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2024.2319154
https://doi.org/10.1080/10618600.2024.2319154
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2024.2319154
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2024.2319154
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2024.2319154?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2024.2319154?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2319154&domain=pdf&date_stamp=29 Mar 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2319154&domain=pdf&date_stamp=29 Mar 2024

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2024,VOL.00,NO.0,1-9
https://doi.org/10.1080/10618600.2024.2319154

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates ‘

Mixed Matrix Completion in Complex Survey Sampling under Heterogeneous
Missingness

Xiaojun Mao® ®, Hengfang Wang® @, Zhonglei Wang©®, and Shu Yang®

2School of Mathematical Sciences, Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University,
Shanghai, China; ®School of Mathematics and Statistics & Fujian Provincial Key Laboratory of Statistics and Artificial Intelligence, Fujian Normal University,
Fuzhou, Fujian, China; “Wang Yanan Institute for Studies in Economics and School of Economics, Xiamen University, Xiamen, Fujian, China; “Department

of Statistics, North Carolina State University, Raleigh, NC

ABSTRACT

Modern surveys with large sample sizes and growing mixed-type questionnaires require robust and scalable
analysis methods. In this work, we consider recovering a mixed dataframe matrix, obtained by complex
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survey sampling, with entries following different canonical exponential distributions and subject to hetero-

geneous missingness. To tackle this challenging task, we propose a two-stage procedure: in the first stage,
we model the entry-wise missing mechanism by logistic regression, and in the second stage, we complete
the target parameter matrix by maximizing a weighted log-likelihood with a low-rank constraint. We propose
a fast and scalable estimation algorithm that achieves sublinear convergence, and the upper bound for the
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estimation error of the proposed method is rigorously derived. Experimental results support our theoretical
claims, and the proposed estimator shows its merits compared to other existing methods. The proposed
method is applied to analyze the National Health and Nutrition Examination Survey data. Supplementary

materials for this article are available online.

1. Introduction

Survey sampling is a touchstone for social science (Elliott and
Valliant 2017; Haziza and Beaumont 2017). Modern technolo-
gies have accelerated the sampling speed with more mixed-
type questionnaires, for example, National Health and Nutri-
tion Examination Survey and web-based surveys (Rivers 2007).
However, in practice, nonresponse is ubiquitous in survey data
with arbitrary missingness patterns. If the missing mechanism
is informative, ignoring the missing values leads to biased esti-
mation. More importantly, a large survey with many mixed-
type questionnaires also requires more scalable and robust
methods.

We envision the survey dataframe as a matrix, where rows
correspond to subjects and columns to responses to different
questions whose entries suffer from missingness. Imputation
methods are commonly used to address such missingness. Gen-
erally, imputation methods fall into two categories: row-wise
imputation and column-wise imputation. Multiple imputation
(Rubin 1976) is a popular row-wise imputation method and it
leverages a posterior predictive distribution given the observa-
tions to impute the missing ones for each row. Multiple impu-
tation requires positing a joint distribution, which is stringent
in practice, and it is computationally heavy or even infeasible
with a growing number of questions. On the other hand, hot-
deck imputation (Chen and Shao 2000; Kim and Fuller 2004) is
a typical column-wise imputation method and imputes missing

values by observations in the same column with a predeter-
mined distance metric. However, it is unrealistic to use the
same metric to impute all the missing values, especially for
large surveys with many mixed-type questions. Furthermore,
due to the arbitrarily missing pattern, some donor pools may be
limited.

As their names manifest, row-wise and column-wise impu-
tation methods use only partial information, so do not harvest
the full information of the data matrix. In contrast, matrix
completion methods (Candes and Recht 2009; Keshavan, Mon-
tanari, and Oh 2010; Mazumder, Hastie, and Tibshirani 2010;
Koltchinskii, Lounici, and Tsybakov 2011; Negahban and Wain-
wright 2012; Fan, Gong, and Zhu 2019) leverage matrix struc-
tures, such as low-rankness, to impute missing values simul-
taneously. Additionally, low-rankness is naturally present for
survey data with block-wise questionnaires and common sam-
pling designs such as stratified and cluster sampling. Mixed-type
responses in large surveys require matrix completion for mixed
data frames (Kiers 1991; Pageés 2014; Udell et al. 2016). In this
vein, Robin et al. (2020) studied the main effects and interac-
tions with low-rankness and sparse matrix completion. Alaya
and Klopp (2019) studied collective matrix completion whose
entries come from exponential family distributions. Some sur-
vey variables are fully observed and can serve as side information
to improve estimation efficiency. Inductive matrix completion
(Xu, Jin, and Zhou 2013; Jain and Dhillon 2013; Wang et al.
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2023) modeled side information by the matrix factorization
method. Fithian and Mazumder (2018) leveraged row-wise and
column-wise side information for reduced-rank modeling of
matrix-valued data. Chiang, Dhillon, and Hsieh (2018) stud-
ied matrix completion with missing and corrupted side infor-
mation. Mao, Chen, and Wong (2019) and Mao, Wang, and
Yang (2023) proposed matrix completion with covariates using
the column-space decomposition method. Meanwhile, most of
the matrix completion literature treats the missing scheme as
uniform missing, that is, missing completely at random. In
the vein of missing data literature, heterogeneous missingness
is more realistic and has been well studied (Little and Rubin
2019; Kim and Shao 2021), and the missing mechanism is usu-
ally modeled by logistic regression on the covariates. Without
covariate information, it is difficult to model heterogeneous
missingness for matrix completion (Mao, Wong, and Chen
2021).

This article considers recovering a mixed survey data matrix
with entries following canonical exponential distributions given
auxiliary information and subject to heterogeneous missingness.
To tackle this challenging problem, we propose a two-stage
procedure: in the first stage, we employ logistic regression to
model the entry-wise missing mechanism with auxiliary vari-
ables, and in the second stage, we leverage an inverse probability
weighted pseudolikelihood with a low-rankness constraint for
matrix recovery, where the estimated response rates serve as sur-
rogate probabilities. We establish the statistical guarantee of the
proposed method and present the upper bound of the estima-
tion error. Computationally, we adopt a fast iterative shrinkage-
thresholding algorithm (FISTA) (Beck and Teboulle 2009) for
estimation and show that it enjoys a sublinear convergence rate.
To support our theoretical analysis, a synthetic experiment is
conducted and the proposed estimator is shown to have its
merits compared to other competitors. We apply the proposed
method to recover mixed-type missing values in the 2015-2016
National Health and Nutrition Examination Survey data.

Notation. For a matrix S = (s;) € R™*", its singular
values are 01(S), . .., 0,(S) in descending order. We denote the
Frobenius norm of S by [|S|r = (2?211 J"il sl-zj)l/z, the oper-
ator norm by [|S|| = omax(S) = 01(S), the nuclear norm
[ISIl« = >_i_, 0i(S) and the sup norm ||S||oc = max; j{s;}. For
a positive integer n, define [n]l = {1,...,n}.

2. Methodology
2.1. Problem Formulation

We consider a finite population containing N subjects repre-
sented as 7 = {(xi,y;) : i € [N]}, where x; € RP is a D-
dimensional covariate, and y; = (y;1,...,yi)" is the response
of interest to L questions. The dimension of y; is denoted by L.
We consider a sampling design without replacement. Denote I;
to be the sampling indicator of the subject i, where I; = 1 if the
subject i is sampled and 0 otherwise. The first-order inclusion
probability for the ith subject is denoted by 7; = E(I;), where the
expectation corresponds to the sampling process. Denote IT =
{m1,..., N} to be the known first-order inclusion probabilities.
For simplicity, we assume that the first n subjects are included
in the sample. The covariate matrix X = (x;) € R"™*D is then

formed, where x;; represents the jth covariate for the ith subject.
This covariate matrix contains demographic information and
typically has fixed D columns. Furthermore, for a questionnaire
with L questions, we construct an #n x L matrix denoted as
Y = (yj) € R™L. Each entry yjj in this matrix corresponds
to the answer provided by the subject i to the jth question. Due
to nonresponses, the response probability of Y is often low. To
this end, we use the corresponding missing indicator matrix
R=(rj e R"™L, where for any (i,j) € [n]l x [L]], the value of
rjj is 1if y;j is observed (not missing), and 0 otherwise.

In a survey questionnaire, the questions are usually grouped
into different categories based on the types of possible answers
they can have. For instance, questions that elicit responses like
“yes” or “no,” or “like” and “dislike” fall under the category of
binary responses. Questions that require answers in the form of
nonnegative integers, such as the number of household members
or pets, belong to the category of nonnegative integer responses.
Meanwhile, questions that prompt continuous values like house-
hold income or odometer readings are classified as continu-
ous responses. Assume that there are a total of S categories of
questions in a specific questionnaire, and denote the number
of questions within the sth category as m;. Naturally, the total
number of questions in the survey is given by L = 25521 m;. For
the sake of clarity and with a slight abuse of notation, we arrange
the responses for each subject i in a concatenated manner as
Yy = ((y?l))T,...,(ygs))T)T. Here, yl@ € R™s represents the
responses to the questions of the ith subject in the sth category,
for s € [[S]. Consequently, the full response matrix Y can be
formulated as Y = [Y®V, ..., YO, with YO = (ygjs)) € R"*Ms
containing the responses to the questions in the sth category.
Following a similar concatenation approach for Y, we denote the
missing indicator matrix as R to account for missing responses
in the data. For each s € [S], we define R = [RW, ... RO,
where R® = (ri(js)) € R™™s_Each entry rfjs) in R® indicates

whether the corresponding response yl(js) in Y® is observed (1)
or missing (0). Traditional matrix completion methods assume
a specific distribution for the entire response matrix, limiting
their ability to handle mixed-type responses. To overcome this
limitation, we introduce an exponential family approach, which
can flexibly deal with diverse types of responses (Alaya and
Klopp 2019; Robin et al. 2020; Wang et al. 2023). Specifically, we
assume that all entries within the same response category come
from the same generic exponential family. Mathematically, we
consider the conditional density function within the sth category
as introduce the exponential family to handle different types of
responses,

FO08 1250 = W90 exp ()5 - 9],

for (s,i,j) € [S] x [n] x [m]l, where {(g©,h®)) : s € [S]}
contains S doublets of functions and Z* = [Z*(D,...,Z*®)]
is the parameter matrix with Z*© (z;(s)) € R™""s In
the context of our investigation, we posit that Z* exhibits low-
rank characteristics. For illustrative purposes, let us consider
the example of the exponential family. Some commonly used
distributions from the exponential family are listed in Table 1.

Remark 1. Our setup differs from existing ones in the following
aspects. Traditional matrix completion problem mainly assumes



Table 1. Commonly used distributions from the exponential family.

Exponential family g9(2) h(y)

Bernoulli log{1 + exp(2)} 1

Poisson exp(2) 1/

Gaussian o222)2 @rod) =2 exp (—y2/(202)}
Exponential —log(—2) 1

independence among subjects, but they are usually correlated
under complex sampling designs. Additionally, under survey
sampling, there exists another parameter matrix Z} € RN*L
on the population level, and the parameter matrix Z* consists
of rows of Z¥ € RN*L with respect to the sample i € [n].
Furthermore, if the sampling design is informative, traditional
matrix completion techniques, such as Alaya and Klopp (2019),
will lead to biased recovery of Z* since the sampling information
is overlooked; see Pfeffermann (1996) for details.

Our goal is to estimate the parameter matrix Z* based on
available information. To this end, given the density functions
{f® : s € [S]}, the negative quasi-log-likelihood function for
Z'is

S &
] (), 1(s)
- Y Liog{0i e
s=1 (ij)lnlx[[ms]l
S &
1
:Z Z g { yl(]s) T(s) +g(s) ( T(s))} (1)
=1 Gpelnlxm]
N
DBIRD

s=1 (ij)el[n]l x [ms]l

(S)
ji log {h(S) (ylS))}

1

where Z! = (2., Z'®] and 2O = (V) € R™" for
s € [SI. In (1), we have incorporated the inclusion probabil-
ities to obtain the Horvitz-Thompson estimator (Horvitz and
Thompson 1952). The Horvitz-Thompson estimator is com-
monly used to estimate population parameters under complex
survey sampling. It adjusts for the unequal probabilities of selec-
tion by weighting each unit’s study variable by the inverse of
its probability of being selected, ensuring that the sample more
accurately represents the finite population. Because the second
term of (1) is irrelevant to the argument Z', we concentrate on

T) _ XS: Z ; )’,(f) 1(s) +g<s)( T(S))}

rij {
- i
s=1 (ij)eln]x[mq]

Further, let IF’(ri(js) =1 = pgjs) and PO = (pgjs)) for (s,i,j) €
[ST x [#] x [[m;]l. Due to complex survey sampling and miss-
ingness, we consider the weighted loss function

2 > 30 { 254 +89 ()]

s=1 j= lpz]
Different from existing works (Alaya and Klopp 2019; Robin
et al. 2020), in this article, we target on estimating the
population-level parameters but not the sample-level ones. For
example, Fang et al. (2018) considered an unweighted loss
function with max-norm penalization for robust estimation.

¢, (Z1)
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Unfortunately, under informative sampling, such unweighted
loss functions may lead to biased estimation; see Pfeffermann
(1996) and Mao, Wang, and Yang (2023) for more details.

For concreteness, we focus on stratified sampling. In this
scenario, we assume the existence of H strata, and a total of
n subjects are sampled, with nj, subjects selected from the hth
stratum for h € [H]. In addition, we assume logistic models
within each stratum,

o _ el
Tl explLahe )

()

for Y=l m +1 < i < YL, n, where ;‘(S) e RPH are
the coefficients for the jth question within the sth category
and the hth stratum. We can fit the logistic model within each

) and further obtamﬁfj)

stratum and each question to estimate C
in a plug-in fashion of (2). Therefore, the surrogate-weighted

loss is

o)

ms
7, (Z’r Zm ZZA@){ y,,) T(s)+g(s)( T(s))}

i=1 51]1

The low-rankness of Z* and X naturally allows us to formulate
the estimation procedure as

=arg min —6 (ZT) +7 || X, ZT]” =: argmin £, Zh),
Zt eRnxL NL ZteRnxL
(3)

where > 0 is a tuning parameter. The concatenation
[X,Z"] helps us capture the potential nonlinear relationship
between Z and X. Similar ideas can be found in the literature of
multi-task learning and multi-view data learning; see Goldberg
et al. (2010), Zhang and Huan (2012), Chen et al. (2018), and
Ashraphijuo, Wang, and Aggarwal (2020) for more details. Even
though we focus on stratified sampling, the derivation of our
proof can be extended to general sampling designs. Further, in
our setting, we consider different missing mechanisms across
strata. In a nutshell, our methodology is summarized in Figure 1.

2.2. Estimation Algorithm

We propose a mixed matrix completion method in survey with
heterogeneous missing (MMCSHM) algorithm to obtain the
estimator in (3) summarized in Algorithm 1. For ease of pre-
sentation, denote

mg (5)
=S S e ()|
s=1 j=1
(4)

where Egjs) is the indicator matrix for the ith subject and the
jth variable within the sth category. Furthermore, for a matrix
S € R"™*L, asingular value decomposition is S = UWVT, where
Ue R,V e R W = diag(oi,...,0r) and oy > -+ >
or > 0. Let Wy = diag(o1,0,...,0). Denote the rank-1 approx-
imation of § as rank-1 SVD(S) = UW,; VT, and it is used as
the initialization for our proposed estimation procedure. Define
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Population Parameter Matrix

my ms

—
150 - |-03f--- |11} [15
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Population Response Matrix

Lf- |04 [ 1] |1
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2.5 1.4 0 3
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! g g o Heterogeneous Missing
07125 3]]|3
. : , Vit = = i B Y
23| ]-06]---| 5 2
L

Figure 1. Algorithm illustration, where a question mark represents a missing value.

the singular value thresholding operator (Cai, Candés, and Shen
2010) for S with the parameter T as SVT;(S) = Udiag((o1 —
)¢ ... (0, — 1)+)VT, where x;, = max{x, 0} for x € R. Specif-
ically, in the first stage, we opt for logistic regression to model
the entry-wise missing mechanism with auxiliary information.
In the second stage (Step 2 to Step 12 of Algorithm 1), with
the fitted response probability, we leverage a decent version of
FISTA (Beck 2017) to solve (3). The computational complexity
for a single iteration is mainly determined by the singular value
decomposition, which is O(n(D + L) min{n, D + L}). Conse-
quently, for K iterations, the overall computational complexity
becomes O(n(D+L)K min{n, D+L}). The convergence analysis
of the proposed algorithm will be presented in the following
section.

3. Theoretical Guarantee

In this section, we present the statistical guarantee and the
convergence analysis of the proposed algorithm. Before we dive
into the theoretical results, we introduce the following technical
assumptions.

Assumption 1. There exist positive constants oy, and ay such
that o; < (Nm;)"ny, < ay, for Z?;ll m+1<ic< ZLI n
and h € [H].

Assumption 2. There exists a positive constant pmin > 0 such
that pmin < p}” for (s,,) € ST x [nll x [Img]).

Assumption 3. There exists a positive constant S, such that
1200 < B-

Sampled Parameter Matrix

L

L1 |-03]---104([---]22

25 - [-1.20--- 05 -- | 1T
n 3 3 3

09 - |-05]--- 113 ]15

2.5(-- [-0.7) - |35 105

MMCSHM algorithm

Observed Response Matrix Covariate Matrix

2003 f 2 [ 2 03f03[ o[- fo1
g g 0o fo2fof|-|o
25012 o]~ 08) 0 o3| |o7
: n n N B B
o922 ||3 05)07f05( - |03

0 foafo|-|o
2.3 ? 4 ’ 03] 0 03] |09

L D

Algorithm 1: MMCSHM algorithm
Input: The observed matrix Y, missingness matrix R,
covariate matrix X, sample size {nh}hH:1 ,
population size N, sampling probability {m;}"_ |,
tuning parameter v, and learning depth K.
Initialize: [Ug, Wy, Vo] = rank — 1 SVD(R o Y).
2 =7 = UyW, V.
1 Compute pijs)} by fitting the logistic model with X and
R within the corresponding strata.

2 fork=1to K, do

3 | Compute 6 = 2/(k+ 1).

4 | ComputeQ=(~1- 9k)Z§k_1) + Gngk_l).

5 | ComputeT = Q — 7 !SVT; (Vi (Q)).

6 | Compute T = SVT,[X,T].

7 | Compute 25") = T[0nx, Inxr ™.

s | if £L.(ZP) < £,Z") then

| sz,

10 | else

11 t ng) = ngil);

n |z =z 4o @P - 2.

Output: ZgK).

*(S))

Assumption 4. Denote C(zij = info<r<r(z) r_l]EZ;(s)

[exp{r| Yi;” —(g"® )’(z;;(s)) [}, where r(Z) is the natural parameter
space for the exponential family. Assume that there exists a



constant Cz such that C(z;;(s)) < Cz < oo for (s,4,j) € [S] x
(]l x [ms]].

Assumption 5. Let D = [—-8 — €, B + €], for some € > 0. For
any z € D, there exist positive constants Lg and Ug, such that
Lg < (g<5))/ '(z) < Ug, where g(s) is the link function of the
exponential family for the sth category of the questionaire, for
s € [SI.

Assumption 1 is commonly used to control the sampling
weights in survey sampling; see sec. 1.3 in Fuller (2009).
Assumption 2 controls the response probabilities for the
entries. Assumption 3 implies that the parameters are bounded.
Assumption 4 requires all C(z;(s))’s bounded from above by
a constant Cz. Under the framework of the canonical expo-

nential family, Assumption 5 indicates that Var(Y(S)|Z*(S) ) =

rS% ’(zf’f(s)) > 0 with extended support.

Denoting POt = ((p(s)) 1),], the inverse probability matrix
is Pt = [P | P(S)T]. Similarly, let pt = [P, POT,
where PO = ((ﬁgjs))_l)ij. Further, denote

IR :maX{HRo (’ﬁ’r —PT)|

RT o (P' — PT)THOO,Z} ,

|oo,2’

and
%o |12ty Diogn+ D} ayCyeriogn + L)'+
/PminnL ’ nL ’
\/ QuBLI1/pminl(n v L) log(n + L)
nL

for some § > 0. The upper bound of | |i —ZF| |% can be obtained
by the following theorem, which provides a statistical guarantee
of our method.

Theorem 1. Suppose Assumptions 1-5 hold. Then there exist
positive constants Cy, C, C3 such that for 7 > C3A

1 ,~ C 1 L) C k(M*
_||Z—Z*||;§max laLz,/ 0g(n + ), zrank(M")
L ayB nL QL Pmin

x {Tz+.a%flog<n+m”

nAL
holds with probability atleast 1 —3/(n+L), where M* =

[X,Z*].

Proof. First of all, by R* (Z) < R*(Z), we have

PP - 1~
7 @+ TIXZl < 0@ + 71X, 27]

which yields

n

LS M@ — T < (11X, 271, — (11X, Z)
Hi:l wi(Z) = Ly (29} < T (X Z7[ | — 11X, Z1] 1) -
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Expand the terms ¢,,, i(i) and £, ;(Z*), we obtain

mg (S)
Z N7 ZZA@) { Ve - (s)(zZ(S))]

s=1 j= 1
<7 (X Z*1« — II[X Z]II*)

S ms (5)

ZNn ZZA(s)yt(JS) (A;S) ZZ(S))'

3—1]1

By definition of Bregman dlvergence, it follows that

ms (S)
ZNzr ZZA@ g“ S) *(S))

! s=1 j= 1
<t(|xz*), - II[X Z)|I.)

mg (s)
(s) *(S) ©) | (=) *<S)
ZNH,XEXEA«){( ) ) - yv}(v % )
s=1 j=
(5)
To handle the left-hand-side of (5), by Lg(x — y)2 < 2dg (s (x —

y) < Ug(x — y)?, we have

S my (5)
Z Y@ )
N; "(5)
s=1 j= 1
ms (S)
s) _x(s)
- nLLﬁ ZNn ;;A(s) g“>(<‘ oz ) (6)

Plug (6) into (5), it turns out that

n ms (S)
=) _ *(S)
2nLZN7t ZZ"(S)( )

s=1 j=1
< (X2, - N1X.Zll)

1 n s ms (5)
_ L ©) @@y — 0l o _
nLZNn,ZZA(S){( ) ) - yu}(u Zij )
i=1

s=1 j=1 plj
(7)
Recall that the inverse probability matrix PT = [P(l)T ..., PO
and its estimated surrogate matrix P! = [P(I)T,...,P(S)T],

where POT ((pij)) )i and POT (@{;))_l)ij. Let
1,, be a vector of all ones elements with length m. Denote
nt = N‘l(nh(l)nl_l, ey nh(y,)nn_l)TIE. Furthermore, let ] =
1,,1{. Inequality (7) can be written into the following matrix
representation

L
LR, Mt
2nL

~ 1
<t (|x. 2], — X, ZIll) + (R P’

0o (Z—-12" 0 (Z-17%)

°0G, "0 (Z-2"),

(8)
where o is the Hadamard product between matrices, G =
[GY,...,G9Tand GO = (Y — () (z;)). We further
expand the terms in (8) as

RoP Mo (Z—-27%0(Z-17")
= (RoP' TIT0(Z -7 0 (Z-17")
+ (RoPT —RoP' M0 (Z-7Z"0@Z—-27%). ()
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Therefore, plug (9) into (8), we have

L N _
ﬁ(RoPT,HT o (Z—-7" o (Z—17")
n

-~ 1 ~ R
= (|x.2], — IIX.Z1ll) + —(Ro P o G I'Z - 2%)

T1 o)

- L—ﬁ(R o —PH TIN(Z - 72" 0o Z-27")Y).

2nL (10)

T3

Let A = ZA(I)/Lﬂ +A®and7 = 27/Lg. By (10) and Lemma
§1-83, with probability at least 1 — 3/(n + L), there exists a
constant C > 0 such that
1 ~ ~
—(RoP' M0 (Z—-Z" 0 (Z-127")
nL
<7 (24, - X Zl.) + CA | 2" - 2

*

Denote M* = [X, Z*]. Let the singular value decomposition of
M*

M* ="M a,-,M*u,',M*vEM*. Denote Ay = [t M*5 . - - » Uy M*]

and Ay = [vi,mM*, . . ., Vry M#] - The projection operators can be

defined as

,PAL(B) = PAuLBPA%’
PaB) =B —Pp1(B) =Py, B — PA#BPA‘,)

(11)

where Py is the projection matrix generated by Al and Al =
Ay, — Py, (Ay). It follows that

Xz, - IX.Z1il.
< [Pa (X, 2°1 = X, 2|, — [Poeye (X271 - (X, Z1)
<[P (10.2° = Z])[, = [Paeye (10.2° = Z))],.  (12)
Further,
[P (10,2% = Z))|, < v/rank(Pae) 10,2 — ZI|
= Vrank(Py) [ 2 - Z| .

By the second equation in (11), we have rank(Ppm=) <
2rank(M*). Take T > 2713CA, it follows that

L(Ro P10 (Z - 7% o (Z — 7))
nL
< £/2rnk (M) |2 2], + 37/ 2rank () |2 - 2]

<7 {\/rank(M*) + g\/rank(Z*)} |zt -Z|,

< f\/Zrank(M*) + grank(Z*) ||Z* — ZHF

< f\/ZD + ?rank(l*) |zr -Z],. (13)

By Lemma S6 in the supplementary material, we have
|z-2], <[z -2z1],
= [P (10.2° = Z))|, + [Porey: (10.2° - Z))],
<6 [P (10.2" - 2))],

<V/72rank(M) |2 ~ Z] .

Denote § = ||2 — Z*|| 0. Apparently, B < 2B. Further, define

C(r) ={Z e R 1 ||Z||oo = L I|ZIlx < V7IIZIIF

Y T T (G 7 64log(n+ L)
(' (Z—-7Z") o (Z Z)>2aU‘,—log(6/5)nL

- > 1 e .

LI, (Z— 2% 0 (Z - 29) < aup?\| Temn it yields
1

arnlL
oo 64log(n+ L)
~ ayB?\ log(6/5)nL

. - - 1
2. Otherwise, (IT*, (Z — Z*) o (Z — Z*)) > ayp?, /i‘;g‘gg—y;;?.

In this case, S (2— Z*) € C(72rank(M*)). By (13), Lemma
S4 and Lemma S5 in the supplementary material, we have

(M (Z—-2" 0 (@Z-12")

1 o 2
Ljz-z) <

1 ,~ 2 1 ~ ~

—z-z|, <— M, (Z-Z" o (Z — Z*

22y —rmh2-2902-29)

Crank(M*)
<————[t* + {E(|@™D}*]
OLPmin

- Ct?rank(M*) Ca%]rank(M*) log(n+ L)
- A1 Pmin Otmein(n AL)

holds with probability at least 1 — 3/(n + L), where ®® is
defined in Lemma S4 in the supplementary material, which
completes the proof of the theorem.

O

Theorem 1 presents an upper bound with the same order
as the methods in Robin et al. (2020) and Alaya and Klopp
(2019), but with a different proof technique faithfully incorpo-
rating sampling weights, estimated response probabilities, and
the covariate matrix. Meanwhile, the following theorem ensures
that the proposed algorithm enjoys a sub-linear convergence
rate.

Theorem 2. Suppose Assumptions 1-5 hold. Then, there exists
constant C3 > 0 such that for 7 > C3A,

oAl
(k+1)2
holds with probability at least 1 — 3/(n + L).

1£.(ZP) — £.(z") < (14)

Proof. The proof of Theorem 2 is similar to the proof of Theo-
rem 4.1 in Ji and Ye (2009). We first claim that 4 is convex. For
o € (0,1),C,D € R™L, we have

h(@C+ (1 —a)D) = [[[X,aC + (1 — a)D]||,
= [la[X,C] + (1 — o)[X, D]||,,
< a[l[X,Clll, + (1 — o) [[X, D]l
= ah(C) + (1 — a)h(D).

We conclude that ¢,, (Z) is convex as ©9)"(z) > 0 from
Assumption 4, so L (Z) is convex.

>



Second, we verify the subgradient form of h(Z) = ||[X, Z]||,.
The subgradient G for h at Z = Z, indicates that, for any Z €
RnxL,

WZ) = W(Zo) + (Z — Zo, G), (15)

where (-,-) is induced by trace norm. Expand (15), it yields
X, Z]l. — X, Zolllx = (Z — Zg, G). On the other hand, for
any G € 9 [X, Zo] I, that is, the subgradient for nuclear norm
of the n x (D + L) matrix at [X, Zy], we have

X, Z1Il, — X, Zollly = (X, Z] — [X, Zo), G)
= ([0,Z — Zo],(G1, Ga]) = (Z — Zo, Gy).

We know that the subgradient

—(UV' +W:W eR™E@D ygTw =9
WV =0, ||W| <1},

9 11X, Zo]ll«

where [X,Zg] = UXV is an SVD. Therefore, let I =
[0,5cd> Inxz17, it turns out that

Ih(Zo) ={(UV' +W)T: W e R™ @D yTw = o,
WV =0, W[ <1},

where the subgradient of 4 is verified. O

4. Synthetic Experiment

We conduct a simulation study under a stratified two-stage
cluster sampling design. Specifically, we assume a finite pop-
ulation consists of H strata, M}, clusters in the hth stratum
and Mj,; elements in the (hi)th cluster. Assume stratum effects
ap ~ Ex(1) for h = 1,...,H, where Ex(}) is an exponential
distribution with rate parameter A. Generate the stratum sizes
My, | ap ~ 5Po(ay) + 20 for h = ., H, where Po() is a
Poisson distribution with parameter A. Further, generate cluster
effects by; ~ Ex(1) for i = 1,..., M and the cluster sizes
Mjy; ~ 5Po(ay + by;) + 30 fori = 1,..., M. We consider
the following sampling design. The first-stage sampling design
is probability proportional to size sampling with replacement,
where the selection probability is proportional to the cluster size,
and the sample size is m;. That is, for h = 1,..., H, indepen-
dently sample m; clusters with selection probability proportion
to Mp; fori = 1,..., My. The second-stage sampling is simple
random sampling without replacement, and the sample size is
my. Then, for h = 1,..., H, the inclusion probability for each
sampled element is 7ry;; = mymy/Ny fori = 1,..., M and
j=1,...,Mp;, where N, = Z?ihl My,; is the stratum size. We
consider (mj,m;) = (5,20) for each setup of H. The above
sampling mechanism results in sample size n = 900.

Within each cluster, we generate an auxiliary matrix and a
response matrix of interest. Specifically, generate Xg’h ; € RMnixD
whose entries are independent and identically distributed from
Ex(1). Let X, = X, 0,./11X° il loo- Further, generate coefficient

matrix W(S) R¥*™s whose elements are independently gen-
erated from a uniform distribution over (0,2) for s = 1,2,3.
Let Z). = X, W,y and 2%, = Z)./||Z%) |10 Each Y} are

generated by parameters in Zf:)h ;- Specifically, we assume that the
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entries of Yﬁ) come from the Gaussian distribution, the entries
of Yﬁ) come from the Poisson distribution and the entries of

Ygﬁ) come from the Bernoulli distribution.

For entry-wise missing mechanism, let C(S) = (;f?h,

§2<2h, 53(,51‘),h’ f])h)T We generate ¢, (S) from N (E,O.lz) and fk(j)h
from N(0.3,0.1%) for k = 2,3,4, where & is used to adjust
the overall missing rate. In this simulation study, we take & =
0.3,—0.1, —0.5 for response probability 40% and 60%. In addi-
tion, take m; = mp; = m3 = 300. We further choose
learning depth K = 200. We tune the parameter 7 using an
independently generated validation dataset and apply the same
parameter to the 100 Monte Carlo samples. We compare the
proposed method with three other popular matrix completion
methods:

e Collective: penalized likelihood accelerated inexact soft
impute method from collective matrix completion Alaya and
Klopp (2019).

e Soft_Impute : Soft-Impute method Mazumder, Hastie, and
Tibshirani (2010).

e Hot_Deck : Hot deck imputation method Kim and Fuller
(2004).

To measure the performance of each method, we employ the
relative error of recovered matrix B compared with true matrix
S*, that is, RE(S, $*) = [[S — S*|[r/||S*|F-

In the simulation, we compare different methods in the
aspects of RE(Z, Z*) for the overall recovered matrix, RE(Z(I)
Z*) in Gaussian response part, RE(Z(Z) Z*@) in Poisson
response part and RE(Z®), Z*®) in Bernoulli response part.
The results are presented in Figure 2, where the error bar on top
of each colored bar represents one standard error for the cor-
responding relative error. The proposed method has the lowest
overall relative error in all three missing scenarios. More specif-
ically, in each sub-matrix, our proposed method also presents
nearly lowest relative errors in RE(ZD, Z*(D) RE(Z?), Z*?)
and RE(Z®, Z*®). The numerical results partially support the
benefit of auxiliary information for heterogeneous missingness
for better matrix completion under survey sampling framework.

5. Real Data Application

The National Health and Nutrition Examination Survey
(NHANES) is a comprehensive national survey conducted
every two years to provide representative data on the health
and nutritional status of adults and children in the United
States. NHANES employs a multi-faceted approach to data
collection, involving interviews, physical examinations, and
laboratory tests. This survey covers a wide range of health-
related topics, including demographic information, health
conditions, nutrition status, and health behaviors, among
others. The goal is to recover the values in the 2015-2016
NHANES data.

The dataset comprises n = 5375 sampled units, each asso-
ciated with corresponding sampling weights. The number of
strata H in our real data application is 14; see Chen et al. (2020)
for more details. The covariate information includes 16 fully
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I Proposed

| | Collective

[1soft_Impute
I Hot_Deck

Relative Error

Overall Gaussian  Poisson Bernoulli

(a) response probability 40%

I Proposed

| | Collective

[TIsoft_Impute
Il Hot_Deck

Relative Error

Overall Gaussian  Poisson Bernoulli

(b) response probability 60%

Figure 2. Relative errors for each method with 100 Monte Carlo samples in three response probability scenarios (including hot deck).

observed demographic variables, such as gender, age and mar-
ital status. To create the covariate matrix, we standardize these
variables, ensuring that their columns have zero mean and unit
variance. The response matrix consists of answers to 130 survey
questions, and a majority of them have missing values. Among
these questions, 57 are binary answers and 73 are continuous-
valued. We assume that the binary variables follow Bernoulli
distributions and the continuous variables follow Gaussian dis-
tributions. Following the convention of Alaya and Klopp (2019)
and Robin et al. (2020), we standardize the columns for con-
tinuous responses. We revert to the original scale to present
the final results. We apply the four methods assessed in the
previous section to this dataset. To select the appropriate tuning
parameter, we adopt a 5-fold cross-validation approach. The
dataset is randomly divided into 5-fold, and within each fold, we
employ the training set to complete the matrix and calculate the
squared Euclidean norm for the difference between the imputed
mean and the observed entries in the validation set. The sum of
these errors serves as the cross-validation criterion for a specific
tuning parameter. We choose the best tuning parameter with the
lowest cross-validation error from {271°,...,271,1,2}.

The weighted mean for each question is computed using the
imputed matrix and the survey weights. To present the results,
we have randomly selected six questions, categorized by different
levels of response probabilities. Specifically, we have two ques-
tions with high response rates of 0.95 and 0.93, two questions
with moderate response rates of 0.77 and 0.66, and two questions
with low response rates of 0.35 and 0.23. The corresponding
results along with descriptions of the questions are provided in
Table 2. Notably, when the response rates are high, the results
obtained from the four methods are relatively similar. However,
as the response rates decrease, the four methods begin to diverge
from each other. It is important to observe that in all scenarios,
the results from our proposed method consistently agree with
one of the other three methods, demonstrating its robustness
and practical use.

6. Conclusion

In this work, we study mixed matrix completion in survey
sampling with heterogeneous missingness. Statistical guarantees

Table 2. Mean estimation for the following six questions.

Responserate  Collective  Soft_Impute Hot_Deck  Proposed
| 0.95 3.75 3.75 3.76 3.74
I 0.93 9.88 9.89 9.91 9.89
ln 0.77 1.86 1.98 2.08 1.99
v 0.66 1.57 1.37 1.54 1.30
\ 035 0.80 0.52 0.80 0.80
U 0.23 0.56 0.56 0.90 0.55

NOTE: “I" stands for “What is the highest grade or level of school you have/SP
has completed or the highest degree you have/s/he has received?’, “II" for “Total
household income (reported as a range value in dollars)’, “lll” for “How many of
those meals did you/did SP get from a fast-food or pizza place?’, “IV” for “Total
savings or cash assets at this time for you/NAMES OF OTHER FAMILY/your family.,
“V" for “Because of your/SP’s (high blood pressure/hypertension), have you/has
s/he ever been told to . . . take prescribed medicine?”, “VI" for “During the past 30
days, how many times did you/SP drink DISPLAY NUMBER or more drinks of any
kind of alcohol in about 2 hr?".

of the proposed method and the upper bound of the estima-
tion error are presented. We propose an algorithm for estima-
tion, and its convergence analysis shows that it achieves a sub-
linear convergence. Experimental results support our theoretical
claims and the proposed estimator shows its merits compared
to other existing methods. Some research directions are worthy
of investigation. To accommodate longitudinal observations,
extension to the tensor completion of the proposed method is a
potential research topic. To improve the numerical performance,
anon-convex factorization (Zhao, Wang, and Liu 2015) method
for Z' in (3) can be considered.

Supplementary Materials

Supplementary materials contain a demo Matlab code for our proposed
method and useful lemmas for Theorem 1.
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