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A 2D rigidity circuit is a minimal graph G = (V , E) supporting a non-trivial stress in any 
generic placement of its vertices in the Euclidean plane. All 2D rigidity circuits can be 
constructed from K4 graphs using combinatorial resultant (CR) operations. A combinatorial 
resultant tree (CR-tree) is a rooted binary tree capturing the structure of such a construction.
The CR operation has a specific algebraic interpretation, where an essentially unique circuit 
polynomial is associated to each circuit graph. Performing Sylvester resultant operations on 
these polynomials is in one-to-one correspondence with CR operations on circuit graphs. 
This mixed combinatorial/algebraic approach led recently to an effective algorithm for 
computing circuit polynomials. Its complexity analysis remains an open problem, but it 
is known to be influenced by the depth and shape of CR-trees in ways that have only 
partially been investigated.
In this paper, we present an effective algorithm for enumerating all the CR-trees of a given 
circuit with n vertices. Our algorithm has been fully implemented in Mathematica and 
allows for computational experimentation with various optimality criteria in the resulting, 
potentially exponentially large collections of CR-trees.

 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Combinatorial resultants. Given two graphs G1 = (V 1, E1) and G2 = (V 2, E2) with non-empty edge set intersection 
and e ∈ E1 ∩ E2, their combinatorial resultant (shortly, c-resultant) with respect to edge e is defined as CRes(G1, G2, e) =
(V 1 ∪ V 2, (E1 ∪ E2) − {e}). In rigidity theory, this graph operation has a natural algebraic counterpart, the classical Sylvester 
resultant, and is used by [12,14] in an algorithm for calculating the unique circuit polynomial associated to a rigidity circuit2

(shortly, a circuit).
C-resultants applied to 2D rigidity circuits have interesting combinatorial properties. Any circuit G on n ≥ 5 vertices can 

always be obtained (“decomposed”) [12,14] as the c-resultant of two smaller circuits: G = CRes(G1, G2, e), where G1 and 
G2 are circuits with |V (G1)|, |V (G2)| < |V (G)| = n. We can continue decomposing G1 and G2 as long as they have at least 
5 vertices to obtain a combinatorial resultant tree (CR-tree) rooted at the circuit G: its internal nodes are marked with circuits 
of decreasing sizes along any path down from the root to each leaf. The leaves of a CR-tree are marked with isomorphic 
versions of K4, the complete graph on 4 vertices. In general, a circuit may allow for more than one CR-tree decomposition: 
an example appears in Fig. 1.
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Fig. 1. Two combinatorial resultant trees for the Desargues-plus-one circuit.

This paper addresses the following:

Main Problem. Given a rigidity circuit, enumerate all of its possible combinatorial resultant trees, up to isomorphism.

Circuit polynomials. Let F be a field and K ⊃ F a field extension with finite transcendence degree over F . It is well-known 
that the collection of elements in a finite subset E of K that are algebraically independent over F satisfy matroid axioms 
[17,21]. Any matroid arising in such way is called algebraic with E as its ground set. If M is an algebraic matroid over F
with ground set E ⊂K, then there exists a map ρ : E →K such that for every C ⊆ E we have rank(C) = trdeg(ρ(C)), where 
trdeg denotes the transcendence degree over F . For E = {e1, . . . , en} the map ρ induces a homomorphism F[x1, . . . , xn] →
K. If we denote by XI = {xi | ei ∈ I} for any I ⊆ E , then the kernel kerρ is a prime ideal which satisfies kerρ ∩F[XI ] = {0} if 
and only if I ⊆ E is independent in M. That is, the collection {XI ⊂ XE | kerρ ∩F[XI ] = {0}} defines a matroid isomorphic 
to M. If C is a circuit in M, then there exists a non-constant polynomial pC ∈ F[XC ] irreducible over F , unique up to 
multiplication with an element in F , such that all elements of C simultaneously vanish on pC [7]. The polynomial pC is 
called the circuit polynomial for C .

To the best of our knowledge, the computation of circuit polynomials in arbitrary polynomial ideals was first studied in 
Zvi Rosen’s thesis [18] and popularized in the American Mathematical Monthly paper [19], where two examples of circuit 
polynomials corresponding to the rigidity circuits given by the complete graph K4 and the wheel W4 of four vertices ap-
peared for the first time. The circuit polynomial corresponding to K4 is obtained “for free” by taking the determinant of the 
Cayley-Menger matrix on 4 vertices, whereas Gröbner basis methods were used to find the circuit polynomial correspond-
ing to W4. The out-of-the-box Gröbner basis methods fail for all other rigidity circuits, however in [12,14] we succeeded 
in computing the circuit polynomials for all rigidity circuits on 6 vertices, as well as some circuits on 7 and 8 vertices by 
making use of CR-trees.

Previous work: enumeration, matroids, rigidity. There is a rich literature on enumeration algorithms for combinatorial 
structures, with particular success in avoiding repetitions and backtracking when a matroidal or polytopal structure under-
lies the objects to be enumerated [1,2]. Interest from the engineering community led to methods for enumerating minimally 
rigid frameworks with particular properties (such as non-crossing ones) [3]. The objects enumerated by the algorithm of 
this paper are quite new and, although related both to rigidity and matroids, do not fall into the patterns where previous 
techniques could have been applied. Several algorithms for recognizing 2D minimally rigid graphs are available in the lit-
erature, but the 2D pebble game of [10], generalized by [11] for sparsity matroids, is the most relevant for the purpose of 
identifying rigidity circuits.

Combinatorial resultant trees were introduced in [12], where a CR-tree for a rigidity circuit G guides the computation 
of the circuit polynomial for G by eliminating variables one by one via the classical Sylvester resultant. Each elimination 
step corresponds to a non-leaf node in a CR-tree for G , hence the cost of computing the circuit polynomial for G varies 
depending on which CR-tree is used to guide the elimination process. For example, the Desargues-plus-one circuit, which 
appears as the root in Fig. 1, could be obtained as the resultant of the circuit polynomials of a single 4-wheel polynomial 
and a K4 polynomial (left), or as the resultant of two isomorphic 4-wheels (right).
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Table 1
Comparison of the cost of the elimination steps for the two CR-tree’s from Fig. 1. The entries i j in the first columns indicate 
the edges ei j and indeterminates xij that are eliminated in CRes(G1, G2, ei j) and Res(p1, p2, xij).

Elimination guided by the left CR-tree in 
Fig. 1

Elim. 24 Syl Det Dimension: 4 × 4
Syl Det Result: hom. poly. with hom. deg. 
8

Elim. 35 Syl Det Dimension: 6 × 6
Syl Det Result: hom. poly. with hom. deg. 
20

Elimination guided by the right CR-tree in 
Fig. 1

Elim. 24 Syl Det Dimension: 4 × 4
Syl Det Result: hom. poly. with hom. deg. 
8

Elim. 24 Syl Det Dimension: 4 × 4
Syl Det Result: hom. poly. with hom. deg. 
8

Elim. 46 Syl Det Dimension: 8 × 8
Syl Det Result: hom. poly. with hom. deg. 
48

Motivation: open problems underlying the computation of circuit polynomials. The CR-tree on the left of Fig. 1 has two 
non-leaf nodes, whereas the CR-tree on the right has three: if the elimination process is guided by the tree on the left, then 
we have to compute one fewer Sylvester resultant than if we were guided by the CR-tree on the right. With the CR-tree on 
the right we also have to do computations with determinants of larger dimension and work with larger polynomials (in the 
sense of homogeneous degree and number of monomial terms) than necessary. Table 1 provides a comparison of the effort 
(in terms of elimination steps) between the two CR-tree trees in Fig. 1.

The complexity analysis of the mixed combinatorial/algebraic algorithm of [12] is left as an explicit open problem. As can 
be inferred from the previous example, its time and space complexity is influenced by the number of nodes, and the depth 
and the shape of the guiding CR-trees in ways that have not been investigated until now. In [12], we explicitly calculated 
the Desargues-plus-one circuit polynomial, accomplished with Mathematica in just 15 seconds compared to several days 
of calculations required by a classical GroebnerBasis method, by being guided by the CR-tree on the left. In this particular 
case, a mere visual inspection helped decide which of the two CR-trees would give the best performance. But in general the 
number of CR-trees grows fast with the number n of vertices and depends on the circuit graph, not just on n.

Implementation. The enumeration algorithm presented in this paper has been fully implemented as a Mathematica proto-
type and can generate efficiently large collections of CR-trees for rigidity circuits with up to 13 vertices. The circuits with 
n = 13 vertices took approx. 6 hrs and produced 6 × 1033 trees. We were able to push the implementation further for the 
class of wheel graphs of 15 or less vertices. This provides experimental data for addressing some of the conjectures and 
open questions posed in [12]. By selectively searching through this data one would hope to find the right CR-trees amenable 
to shorter algebraic calculations to be contributed to their database of circuit polynomials [13]. Ultimately, the goal is to 
shed light on how the computational complexity of the algebraic part of our algorithm is influenced by the choice of a CR-
tree from the very large collection of possibilities. In this paper we make the first step in this direction by demonstrating 
how to efficiently enumerate and keep track of all the possibilities, without repetitions. We accomplish this goal by using 
truncated CR-trees, briefly introduced now.

Truncated CR-trees. Rather than producing complete CR-trees, we use instead a space-saving structure called a truncated 
CR-tree for G . This is essentially a CR-tree where one or more of its subtrees are truncated if, during the execution of 
the algorithm, it is found that their roots are isomorphic to some previously encountered circuits for which subtrees have 
already been generated (Fig. 2). We keep track of all the isomorphisms and therefore can recover, on demand, an entire 
CR-tree from a truncated one.

Connectivity. There is a substantial difference in the complexity of decomposing a circuit that is 3-connected vs. one that is 
not. In the 3-connected case our decomposition algorithm from [12] finds all decompositions in polynomial time, but cannot 
be applied to circuits that are not 3-connected. In that case an exponential time brute-force search among the subgraphs of 
the circuit has to be performed, and it is an open problem to find a better algorithm. This is hardly ideal, so we apply the 
following heuristic: circuits that are not 3-connected are decomposed only as 2-splits (cf. Section 2), which is accomplished 
in linear time. To not detract from the main goal of this paper, the justification for this heuristic we give in the preprint 
[15].

Generalization. Our algorithm is not confined to rigidity theory, but generalizes to matroids in which an operation similar 
to the c-resultant can be defined. More precisely, given a circuit C in the matroid on ground set E , we require the existence 
of two distinct circuits C1 and C2 and e ∈ C1 ∩ C2 such that C3 = (C1 ∪ C2) − e.

Overview of the paper. All relevant definitions from 2D rigidity theory are presented in Section 2. In Section 3, we give the 
definitions of combinatorial resultants and related concepts. In Section 4, we recall and analyze our CR-decomposition algo-
rithm from [12,14]. In Section 5, we discuss enumeration of all truncated CR-decompositions, followed by Section 6, where 
we describe the data structures that we maintain in the enumerative algorithm. In Section 7, we describe the algorithms for 
enumerating circuits and their decompositions that appear in a CR-tree. In Section 8, we describe a recursive algorithm for 
enumerating truncated CR-trees, followed by an algorithm for reconstructing CR-trees from truncated CR-trees in Section 9. 
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Fig. 2. A truncated CR-tree for the Desargues-plus-one circuit. Compare with the CR-tree on the right of Fig. 1.

In Section 10, we present the results of our implementation of the enumeration algorithm. We conclude with Section 11
where we outline future directions of research.

2. Preliminaries: 2D rigidity circuits

We start by reviewing, in an informal way, those concepts and results from combinatorial rigidity theory in 2D that are 
relevant for our paper.

Notation. Unless explicitly stated otherwise, a graph G has its vertex set V (G) labeled with a subset of [n] := {1, . . . , n}. Its 
support is its set of edges E(G). The vertex span V (E) of edges E is the set of all edge-endpoint vertices. A subgraph G is 
spanning if its edge set E(G) spans [n]. The neighbors N(v) of v are the vertices adjacent to v in G . If G1 = (V 1, E1) and 
G2 = (V 2, E2) are connected graphs, we denote by V∪ = V 1 ∪ V 2 and E∪ = E1 ∪ E2.

Rigid graphs. A graph G = (V , E) is rigid if, up to rigid motions, it has only a finite number of possible placements compat-
ible with any collection of generic lengths associated to its edges, and flexible otherwise. A minimally rigid or Laman graph 
is a rigid graph which becomes flexible when any of its edges is removed. Laman graphs are characterized by a relationship 
between their number of vertices and edges: (a) has a total of 2n − 3 edges and (b) no subset of n′ ≤ n = |V | vertices spans 
more than 2n′ − 3 edges. A Laman-plus-one graph is obtained by adding one edge to a Laman graph: the graph has a total 
of 2n − 2 edges and thus it violates the (2, 3)-sparsity condition on V and possibly on some other proper subsets of V .
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Fig. 3. Left: a Laman-plus-one graph on 7 vertices whose unique circuit is the Desargues-plus-one graph from Fig. 1. Right: a circuit on 7 vertices.

Fig. 4. Splitting a 2-connected circuit (left) to get two 3-connected circuits (right).

Rigidity Matroids. A matroid on a ground set E is a pair (E, I) where I is a collection of subsets of E called independent 
sets, which satisfy certain axioms found in [17] which we skip (they are not relevant for our presentation). A maximal 
independent set is called a base and a set which is not independent is said to be dependent. A minimal dependent set is called 
a circuit. Relevant for our purposes are the following general aspects: (a) (hereditary property) a subset of an independent 
set is also independent; (b) all bases have the same cardinality, called the rank of the matroid. The rigidity matroid is defined 
on a ground set given by all the edges En := {i j : 1 ≤ i < j ≤ n} of the complete graph Kn . Its bases are Laman graphs on n
vertices. A Laman-plus-one graph is a dependent graph obtained by adding an edge to a Laman graph, thus it has exactly 
2n − 2 edges. A (rigidity) circuit is a dependent graph with minimum edge support: removing any of its edges leads to a 
Laman graph on its spanned vertex set. A circuit whose vertex set is [n] is said to be a spanning rigidity circuit (Fig. 3). In 
particular, a circuit G in the rigidity matroid is a subgraph of Kn with k ≤ n vertices and (a) exactly 2k − 2 edges and such 
that (b) any subgraph of G with k′ < k vertices has at most 2k′ − 3 edges. A spanning rigidity circuit G = (V , E) is a special 
case of a Laman-plus-one graph. Furthermore, a Laman-plus-one graph contains a unique circuit, which in general is not 
spanning.

Connectivity. A circuit is always a 2-connected graph, but it may not be 3-connected. If G1 and G2 are two graphs with 
exactly one common edge uv , we define their 2-sum as the graph G = (V∪, E∪ \ {uv}). It is well known that the 2-sum of 
two circuits is a circuit [4]. If G1 and G2 are 3-connected, then their 2-sum is a 2-connected graph that decomposes into 
two 3-connected components G1 and G2. The inverse operation of decomposing G into G1 and G2 along the non-edge uv is 
called a 2-split. It is well-known that the 2-split of a circuit gives a pair of circuits [4], see Fig. 4. A classical theorem due to 
Tutte [20] implies that any circuit which is not 3-connected can be decomposed in a unique way into smaller 3-connected 
circuits via 2-splits.

3. Combinatorial resultants

This section reviews basic definitions on combinatorial resultant trees from [14] and clarifies the isomorphisms taken 
into account by our enumeration algorithm.

Notation. We adopt the following notation. Recall that for connected graphs G1 = (V 1, E1) and G2 = (V 2, E2) we denote by 
V∪ = V 1 ∪ V 2 and E∪ = E1 ∪ E2. If e ∈ E1 ∩ E2 exists, we denote by CRes(G1, G2, e) the graph (V∪, E∪ − e), which is, by 
definition, the combinatorial resultant (c-resultant) of G1 and G2 on edge e.

C-resultants of circuits. Given two circuits G1 = (V 1, E1) and G2 = (V 2, E2) with non-empty edge set intersection and 
e ∈ E1 ∩ E2, their c-resultant with respect to edge e is not always a circuit. When the common part (V∩, E∩) is a Laman 
graph on its vertex set V∩ , then the c-resultant is necessarily a Laman-plus-one graph but will not always a circuit. We will 
work exclusively with the case when the c-resultant of two circuits is a circuit.
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Fig. 5. Left: vertex 5 and the non-edge e46 in the wheel W6 are an admissible pair. Right: the graph W6 − 5 + e46 is a rigidity circuit.

Fig. 6. Left: by removing vertex 7 a Laman-plus-one graph is obtained. Right: the graph W5 − 7 + e46 contains a unique circuit, a K4 on the vertices 1, 4, 
5, 6 (in green). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

CR decompositions. If a circuit G is obtained as a c-resultant G = CRes(G1, G2, e) of two other circuits G1 and G2, then we 
say that (G1, G2, e) is a combinatorial resultant decomposition (CR-decomposition) of G . In the case when G is not 3-connected 
and e = uv a non-edge whose endpoints form a separating pair uv of vertices, we can do a 2-split on uv . Indeed, this is a 
special case of a CR-decomposition. When G is 3-connected, it was shown in [12] that it has a c-resultant decomposition 
into two circuits G1 and G2 (which may not be 3-connected) that both have fewer vertices than G . By further decomposing 
G1 and G2 we obtain a tree whose nodes are circuits and whose leaves are isomorphic to K4.

C-resultant trees. For the remainder of the paper we assume that G is a rigidity circuit with n ≥ 5 vertices.

Definition 1. Let G be a rigidity circuit with n ≥ 5 vertices. A combinatorial resultant tree (CR-tree) for G is a rooted binary 
tree with G as its root, such that:

(i) each node is labeled with a rigidity circuit;
(ii) the children L and R of a node G ′ satisfy G ′ = CRes(L, R, e) for some e ∈ L ∩ R and both have fewer vertices than G ′;

(iii) leaves are labeled with graphs isomorphic to K4.

We remark that in [14], this is referred to as a combinatorial circuit resultant tree. A rigidity circuit G can have more than 
one CR-decomposition, and therefore more than one CR-tree. In [12] an algorithm for constructing CR-decompositions of 
3-connected circuits is given; before recalling it, we introduce the following notation.

Admissible pairs. Let v be a vertex of a rigidity circuit G and N(v) the set of its neighbors in G . If G is not the smallest 
circuit K4, then any vertex of degree 3 has a non-edge e = {u, w} ⊂ N(v) among its neighbors. We denote by G − v + e the 
graph obtained by deleting v from G and adding e to its edges. If G − v + e is a rigidity circuit we say that (v, e) is an 
admissible vertex-non-edge pair (or just admissible pair for short). An example is shown in Fig. 5.

Lemma 1 ([4]). Let G be a 3-connected rigidity circuit and e, e′ non-edges of G that are not necessarily distinct. Then there exist at 
least two admissible pairs (v, e) and (w, e′) such that v and w are non-adjacent.

If (v, e) is an admissible pair in a circuit with more than 5 vertices, then by removing a vertex v of degree 3 we obtain 
a Laman graph with one fewer vertex. By adding to it the new edge e we obtain a Laman-plus-one graph, and this contains 
a unique circuit, see Fig. 6. This operation is the essential ingredient in computing a CR-decomposition of G . In the next 
section we review the algorithm for computing the unique circuit induced by an admissible pair.

Decomposition algorithm for 3-connected circuits [12].
The correctness of Algorithm 1 follows from Lemma 1 (lines 1-3) and sparsity considerations (line 4). Note that L is 

3-connected [4] but R does not have to be. If G has n vertices then L has n − 1 vertices but R could have fewer than n − 1
vertices.

The details and complexity analysis of this algorithm, which have only been briefly sketched in [14], appear in Section 4.

Admissible triple. Motivated by the above algorithm we define an admissible vertex-non-edge triple (or just admissible triple 
for short) (v, w, e) where (v, e) is an admissible pair in G and w a vertex of G of degree 3 not adjacent to v .

6
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Algorithm 1: CR-DECOMPOSITION(G).
Input: a 3-connected rigidity circuit G with at least 5 vertices
Output: rigidity circuits L and R and a non-edge e of G such that G = CRes(L, R, e)

1 for vertex v of degree 3 do
2 if there is admissible pair (v, e) and a non-adjacent degree 3 vertex w then
3 L = G − v + e;
4 R = unique circuit in G − w + e containing e;
5 return (L, R, e)

4. Analysis of the CR-decomposition algorithm

In this section we analyze the CR-decomposition Algorithm 1 that decomposes a 3-connected rigidity circuit G into 
rigidity circuits L and R such that G = CRes(L, R, e) with |V (L)|, |V (R)| < |V (G)|. We split the algorithm in several sub-
problems that can be treated independently. In Section 4.1, for a minimally rigid graph G and a non-edge e of G we give 
a polynomial-time algorithm FIND-UNIQUE(G, e) which returns the unique circuit in G + e containing e. The FIND-UNIQUE 
algorithm is based on the Pebble Game algorithm of [11]. In Section 4.2, for a 3-connected circuit G we give a polynomial-
time algorithm FIND-ADMISSIBLE(G) that outputs all the admissible pairs (v, e) and all admissible triples (v, w, e) for G . 
In Section 4.3 we describe the algorithm CRD(G, v, w, e) that for a 3-connected circuit G and an admissible triple (v, w, e), 
outputs a single CR-decomposition G = CRes(L, R, e), where L = G − v +e and R is the unique circuit in G − w +e containing 
e. In Section 4.4 we briefly discuss the case when G is a 2-connected rigidity circuit.

4.1. Finding the unique circuit in a Laman-plus-one graph G + e

In this section we describe the polynomial-time algorithm FIND-UNIQUE-CIRCUIT(G , e) that finds the unique rigidity 
circuit C containing e in a Laman-plus-one graph G + e. It uses the Decision Pebble Game of [11] to test the independence 
of subsets of edges of G + e.

Algorithm 2: FIND-UNIQUE-CIRCUIT(G , e).
Input: a Laman graph G and a non-edge e of G
Helper function: PEBBLE-GAME(H) returns True if the graph H is independent, and False otherwise
Output: Unique circuit in G + e containing e

1 D = G + e;
2 forall e′ ∈ G do
3 if PEBBLE-GAME(D − e′) is False then
4 D ← D − e′

5 return D

This algorithm is based on the following properties: (a) G + e is a dependent graph; (b) being a Laman-plus-one graph, 
G + e contains a unique circuit; (c) the unique circuit contains the edge e. We construct the circuit by eliminating from the 
initial dependent graph D = G + e (line 2) those edges e′ ∈ G which are guaranteed not to be in the circuit; namely, when 
D − e′ is still dependent (line 3).

Proof of correctness of Algorithm 2. Let C be the unique circuit in G + e that contains e. If D − e′ is dependent for some 
e′ ∈ E(G) then D − e′ contains the circuit C and we can remove e′ from D . On the other hand, if for some e′ ∈ E(G) we have 
an independent D −e′ , then necessarily e′ ∈ C as otherwise C would be independent. Therefore D has to remain unchanged.

Deleting or retaining edges of D in this fashion ensures that once all the edges of G have been considered, what remains 
of D is the unique circuit in G + e containing e.

Complexity of Algorithm 2. The Decision Pebble Game runs in O(n2) time, and it is invoked for each of the 2n − 2 edges in 
G + e, resulting in a complexity of O(n3).

4.2. Finding admissible vertex-non-edge pairs and triples in a 3-connected circuit G

In this section we will describe an algorithm FIND-ADMISSIBLE(G) that finds all admissible vertex-non-edge pairs (v, e)
in a 3-connected rigidity circuit G in polynomial time. The sparsity condition for G implies that G has at least four vertices 
of degree 3, and by Lemma 1 there is at least one admissible vertex-non-edge pair (v, e).

To find the admissible vertex-non-edge pairs in a 3-connected rigidity circuit G we iterate over all vertices v of degree 
3 and all non-edges e with endpoints in N(v). The vertex-non-edge pair (v, e) is admissible if and only if the output of 
FIND-UNIQUE-CIRCUIT(G − v + e,e) is G − v + e. In the worst case, when all but two vertices of G are of degree 3 we 
iterate over all 3(n − 2) possibilities. Once an admissible pair (v, e) has been identified, we can immediately determine 

7
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Algorithm 3: FIND-ADMISSIBLE(G).
Input: a 3-connected rigidity circuit G
Output: Lists of all admissible pairs (v, e) and admissible triples (v, w, e) of G

1 admissiblePairs = Empty;
2 admissibleTriples = Empty;
3 forall vertices v of degree 3 in G do
4 forall non-edges e of G with endpoints in N(v) do
5 if FIND-UNIQUE-CIRCUIT(G − v + e)== G − v + e then
6 append (v, e) to admissiblePairs;
7 for every w /∈ N(v) of degree 3 append (v, w, e) to admissibleTriples

8 return {admissiblePairs,admissibleTriples}

all admissible triples (v, w, e) by expanding (v, e) with every degree 3 vertex w not incident to v . The complexity for 
FIND-ADMISSIBLE(G) is O(n4).

4.3. A single CR-decomposition for a 3-connected circuit

Algorithm 4 described below computes a single CR-decomposition for a 3-connected rigidity circuit G , assuming that an 
admissible triple (v, w, e) in G is given. This algorithm runs in O (n3) time due to FIND-UNIQUE-CIRCUIT.

Algorithm 4: CRD(G , v , w , e).
Input: 3-connected rigidity circuit G , one admissible triple (v , w , e)
Output: A pair of rigidity circuits (L, R) such that G = CRes(L, R, e)

1 L = G − v + e ;
2 R = FIND-UNIQUE-CIRCUIT(G − w + e, e);
3 return (L,R)

This concludes the detailed analysis of Algorithm 1. It remains to check what can be done for circuits that are not 
3-connected.

4.4. The CR-decomposition of a 2-connected rigidity circuit

In the rest of this section we discuss the case when G is a 2-connected but not 3-connected rigidity circuit. In this case, 
it is not always possible to find an admissible pair in G . For example, the “double banana” shown in the top row of Fig. 7
has no admissible pairs and therefore Algorithms 3 and 4 can not be applied.

However, it is well known that any 2-split of G results in two rigidity circuits [4, Lemmas 4.1, 4.2] and by a theorem 
of Tutte [20] G can be decomposed into unique 3-connected components via 2-splits. A 2-split is a CR-decomposition 
(G1, G2, e) where e is a non-edge between a separating pair of G , hence a CR-tree for G can be obtained by first splitting 
G into the 3-connected components given by Tutte’s theorem, and then by decomposing each 3-connected component with 
Algorithm 4 until we reach K4 graphs.

Moreover, G can have CR-decompositions into 3-connected circuits that are not 2-splits. For example, the double banana 
has a CR-decomposition into two wheels on 4 vertices, as shown in Fig. 7. The graphs (G1, G2, e) in a CR-decomposition of 
G necessarily have to intersect on a Laman graph by following a sparsity count, however we are not aware of any sufficient 
criteria.

Open Problem 1. Find necessary and sufficient conditions for a 2-connected rigidity circuit on n ≥ 6 vertices to have a CR-
decomposition other than a 2-split.

Experimental observations regarding 2-connected circuits. We conjecture that a decomposition of G by 2-splits is the best 
possible in the sense that the corresponding circuit polynomials are the least complicated with respect to the number of 
indeterminates, number of monomial terms, degrees in individual indeterminates, or the homogeneous degree. Our conjec-
ture is based on experimental observation: Table 2 compares the cost of computing the circuit polynomial for the double 
banana, guided by the decomposition trees shown in Fig. 7. The computation guided by the 2-split was completed within 
0.02 seconds,3 producing an irreducible polynomial of homogeneous degree 8 with 1752 monomial terms.

3 Computational time refers to wall-clock time measured by the RepeatedTiming function in Mathematica V13.
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Table 2
Comparison of the cost of performing a resultant computation guided by 
the decompositions shown in Fig. 7.

Elimination guided by the 2-split in Fig. 7 Left

Syl Det Dimension 4 × 4
Syl Det Result Hom. poly. of hom. deg. 8
# of mon. terms 1752
Computational time 0.017 seconds

Elimination guided by the CR-decomposition in Fig. 7 Right

Syl Det Dimension 8 × 8
Syl Det Result Hom. poly. of hom. deg. 48
# of mon. terms Computation exceeded memory capacity
Computational time Computation exceeded memory capacity

Fig. 7. Left: a CR-decomposition of the double banana into two K4 graphs which is a 2-split. Right: a CR-decomposition of the double banana into two 
wheels on 4 vertices with labels 13542 and 23645. The elimination edge for both cases is shown in red.

Fig. 8. Two 2-connected rigidity circuits on 7 vertices with CR-decompositions given by Tutte’s theorem.

However, the computation guided by the combinatorial resultant of the two wheels of 4 vertices crashed after memory 
capacity4 was exhausted. The homogeneous degree could be computed because we can apply the formula for the homo-
geneous degree of the Sylvester resultant determinant Syl( f , g, x) given by h f dg + hgd f − d f dg where h f (resp. hg ) is the 
homogeneous degree of f (resp. g) and d f (resp. dg ) is the degree in x of f (resp. g) [14].

There are entire families of 2-connected circuits with non-2-split CR-decompositions. Two examples on 7 vertices are 
shown in Fig. 8 (decomposition into 3-connected components given by 2-splits, i.e. via Tutte’s theorem) and Fig. 9 (CR-
decomposition via a non-2-split, where one of the circuits is 2-connected and the other is 3-connected). These examples 
can be easily generalized to larger families by, for example, applying Henneberg-2 or 2-sum operations to the circuits in 

4 The computation was performed on a machine with 64GB of RAM.
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Fig. 9. The same two 2-connected circuits from Fig. 8, this time decomposed into a double banana and a K4.

Table 3
Comparison of the cost of performing a resultant computation guided by the decomposi-
tions given by Tutte’s theorem and the decompositions given in Fig. 9.

Elimination guided by Fig. 8 (Left) and Fig. 9 (Left)

Syl Det Dimension 6 × 6
Syl Det Result Hom. poly. of hom. deg. 20
# of mon. terms 1 053 933
Computational time via Tutte’s decomposition 16.94 seconds
Computational time via CR-decomposition in Fig. 9 Left 23.50 seconds

Elimination guided by Fig. 8 (Right) and Fig. 9 (Right)

Syl Det Dimension 6 × 6
Syl Det Result Hom. poly. of hom. deg. 20
# of mon. terms 2 579 050
Computational time via Tutte’s decomposition 42.19 seconds
Computational time via CR-decomposition in Fig. 9 Right 59.88 seconds

the decomposition [15]. They are relevant to our discussion because we could effectively perform the algebraic calculations 
(Sylvester resultants) guided by these different decompositions and compare the algebraic complexity of the polynomials 
implicated in the process. Specifically, in support of our conjecture, Table 3 shows that the 2-split (Tutte) decompositions 
lead to a faster computation time of the desired circuit polynomial.

Decomposing 2-connected rigidity circuits. In spite of lacking a definitive answer to Open Problem 1, the experimental 
observations from the previous section suggest that the enumeration of all possible CR-decompositions of 2-connected 
circuits may not be necessary. Instead, we focus on enumerating only those given by Tutte’s theorem. The 3-connected 
components can be found in linear time using the algorithm of Hopcroft and Tarjan [9]. The process of assembling G from 
the 3-connected components via 2-sums can also be given by the SPQR-tree [5,6] which can be constructed in linear time 
[8]. For the detailed analysis of the 2-connected case we refer the reader to our preprint [15].

5. Enumerating all CR-decompositions for a 3-connected circuit

In this section we discuss the enumeration of all possible CR-decompositions of a 3-connected rigidity circuit G into 
3-connected components. We achieve this by computing CRD(G , v , w , e) via Algorithm 4, for every triple (v, w, e) in the 
output of FIND-ADMISSIBLE(G) via Algorithm 3. If one of the children returned by CRD(G , v , w , e) is 2-connected, we 
truncate the tree and leave it as partially constructed. For the rest of the paper, unless explicitly noted, we assume that all 
circuits are 3-connected.

Isomorphic CR-decompositions. It is possible to have two distinct admissible triples (v1, w1, e1) and (v2, w2, e2) that give 
isomorphic CR-decompositions (L1, R1, e1) and (L2, R2, e2), where by isomorphic we mean that there either exist graph 
isomorphisms L1 → L2 and R1 → R2 or L1 → R2 and R1 → L2. For example, in Fig. 10 two distinct, but isomorphic decom-
positions of the wheel W4 on four vertices are given. In this particular case it is clear that isomorphic CR-decompositions 
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Fig. 10. Two distinct but isomorphic CR-decompositions of the wheel W4 on 4 vertices. The edge that is eliminated in shown in red (edge 35 in the left 
tree and edge 24 in the right tree).

appeared because of the symmetry of W4, however in this paper we are not considering the action of the automorphism 
group of G .

When enumerating the CR-decompositions, we want to retain only one representative from each isomorphism class of 
decompositions.

Left-Right symmetry of a decomposition and its truncation. It is possible to have a decomposition (L, R, e) with L isomor-
phic to R , as it is the case for both CR-decompositions in Fig. 10. With the goal of enumerating CR-trees in mind, when this 
case occurs we do not recompute the decomposition subtree for the right circuit, but truncate the tree at the corresponding 
right node. How truncation is implemented in our algorithm is described further down.

Observed decomposition. In the case of an asymmetric decomposition where one or both of the children have already 
appeared as roots of subtrees in previously enumerated CR-decompositions, we replace such a child with a truncation 
described below.

Truncation. To handle the cases above, our method for enumerating CR-trees will maintain a list of circuit representatives 
from each isomorphism class encountered up to the current step of the enumeration algorithm. If a need for truncation 
is identified, the truncated node will be replaced with a pointer to the corresponding representative circuit, together with 
the isomorphism operation, see Fig. 11. The enumeration algorithm will not be computing CR-decompositions of truncated 
nodes.

Isomorphic CR-trees. We consider two CR-trees T1 and T2 for G isomorphic if they are isomorphic as rooted binary trees, 
i.e. if there exists a graph isomorphism f : T1 → T2 such that (i) r is the root of T1 if and only if f (r) is the root of T2
and such that (ii) w is a left (resp. right) child of v iff f (w) is a left (resp. right) child of f (v). Moreover, we require that 
sibling nodes v and w are isomorphic as graphs to either f (v) and f (w), or to f (w) and f (v). Fig. 10 is an example of 
isomorphic CR-trees.

Due to the numerous isomorphism checks that are required to decide whether two CR-trees are isomorphic, we decided 
for time-efficiency reasons to instead enumerate all truncated CR-trees from which all CR-trees can be recovered. We leave 
as an open problem the incorporation of CR-tree isomorphisms into the enumeration algorithm, as well as its complexity 
analysis.

Conventions for partially eliminating duplicate data. While in principle the CR-decompositions (L, R, e) and (R, L, e) of a 
circuit are distinct and lead to distinct CR-trees, they imply the same elimination strategy, i.e. the elimination of e from 
circuits L and R . To avoid the duplication of this data, when a 3-connected circuit G on n vertices is decomposed into 
circuits L and R according to an admissible triple (v, w, e) we always take (L, R, e) to be as in Algorithm 1: L is the circuit 
on n − 1 vertices obtained as G − v + e and R is the unique circuit in G − w + e. Moreover, when G is not 3-connected, we 
take L to be the circuit with most vertices. If both circuits have the same number of vertices, (i) in the case when one is 
3-connected but the other is not we take L to be the 3-connected circuit, (ii) if both or none are 3-connected, we take L to 
be the circuit that is computed first in an algorithm that is computing a 2-split.

6. Data structures

We now describe the data structures used by the enumeration algorithm. Their content at the termination of the algo-
rithm is the output. The main elements are a list of non-isomorphic circuits and a list of truncated trees. Each truncated 
tree is made out of two types of nodes called C-nodes (C for “Circuit”) and B-nodes (B for “Branching”) described below.
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Fig. 11. CR-decompositions for the Desargues-plus-one circuit. (a) The first CR-decomposition that is computed. The left child (a wheel W4) and the right 
child (a K4) are encountered for the first time so no truncation occurs. (b) The second CR-decomposition that is computed. Both children are isomorphic 
to W4 which was encountered in a previous step; truncation occurs. (c) Truncation: instead of keeping the graphs in the second decomposition, we keep 
a pointer to the isomorphic representative circuit together with the corresponding isomorphism.

Fig. 12. The list of circuit representatives that appear during the enumeration of truncated CR-trees for the K3,3-plus-one circuit. The order of the circuits 
in this list corresponds to the order in which they were encountered during the execution of the enumeration algorithm.

6.1. List of circuit representatives

Each circuit representative is given a name (e.g. K4, W4, K3,3-plus-one etc.) and has an identifier given by its position in 
the list. For example, the list of circuit representatives that appears in the enumeration of truncated CR-trees for K3,3-plus-
one is in Fig. 12. The order of the circuits in this list corresponds to the order in which they were encountered during the 
execution of the enumeration algorithm.

6.2. List of truncated trees

The list of truncated trees stores all the truncated trees in the order in which they are generated by the algorithm. When 
a new tree is generated, it is truncated as necessary according to the current list of circuit representatives.
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Fig. 13. Left: a truncated CR-tree for the K3,3-plus-one circuit represented with C-nodes 1, 2, 3, 8 and 9. Right: the same truncated CR-tree in which the 
C-nodes are replaced with the circuits that they represent.

6.3. Representation of truncated trees

A truncated tree is represented by a collection of C-nodes and B-nodes. A C-node is an ordered triple of the following 
data:

• a pointer to a representative circuit
• an isomorphism
• a list of pointers to B-nodes.

Each C-node corresponds to a circuit G that has appeared in the execution of the enumeration algorithm, and keeps track 
whether G was found to be isomorphic to some previously encountered graph or not. A B-node corresponds to a single CR-
decomposition of a circuit from the list of representative circuits. Only the C-nodes with the identity isomorphism v /→ v
for all v ∈ V (G) have a non-empty list of B-nodes. The nodes of truncated trees at which truncation occurs will be exactly 
those C-nodes which have an empty list of B-nodes.

6.4. C-nodes

When G is encountered, it is compared against the graphs in the list of circuit representatives. Two cases can occur:

• G is isomorphic to some representative circuit H . In this case the C-node for G is initialized as (ptH , f , {}), where ptH
is a pointer to H , f : H → G is a graph isomorphism, and the list of pointers to B-nodes is empty.

• G is not isomorphic to any representative circuit. In this case G is appended to the list of representatives and the C-
node for G is initialized as (ptG , f , {}), where ptG is a pointer to G , f : G → G is the identity isomorphism, and the list 
of pointers to B-nodes is empty. The list of B-nodes will be filled in a subsequent step.

6.5. B-nodes

A B-node is an ordered triple (p, l, r) of pointers to C-nodes. Here p, l and r stand for (pointer to) parent, left child, 
and right child, respectively. The B-node (p, l, r) captures the information about a single CR-decomposition of the graph 
corresponding to the C-node pointed to by p.

6.6. An example of a representation of a CR-tree

Let G be the K3,3-plus one circuit shown in Fig. 12. This circuit has 3 admissible vertices {1, 3, 5} and all admis-
sible triples are of the form (v, w, e24) and (v, w, e46) where v, w ∈ {1, 3, 5} with v 0= w . Therefore, there are 12 CR-
decompositions for G and all are given by two wheels W4 of 4 vertices. A truncated CR-tree for G is shown in Fig. 13.
The nodes in Fig. 13 correspond to the following C-nodes:

1 : (G, identity, {B1, . . . , B12})
2 : (G1, identity, {B13, . . . , B16})
3 : (G1, f3, {})
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8 : (G2, identity, {})
9 : (G2, f9, {})

The graph G1 is a wheel W4 with vertices labeled {1, 2, 3, 4, 6}, where 6 is the central vertex. The graph G2 is a K4 on the 
vertices {2, 3, 4, 6}. These graphs form the unique representative circuits. Any other circuit that appears in a CR-tree for G
is isomorphic to G1 or G2. The isomorphisms f3 and f9 are given as follows:

f3 : (1,2,3,4,6) /→ (5,2,3,4,6)

f9 : (2,3,4,6) /→ (4,2,6,1).

The C-node 3 is truncated as it represents an isomorphic copy of G1. To be consistent, the node 9 we also consider as 
truncated, even though it is a leaf by definition. The B-nodes relevant for this truncated CR-tree are B1 = (1, 2, 3) and 
B13 = (2, 8, 9).

This CR-tree is completely represented by the set of C-nodes {1, 2, 3, 8, 9} and the B-nodes {B1, B13}. To reconstruct the tree 
from this representation we simply follow the pointers in B-nodes starting with B1.

The B-nodes B2, . . . , B12 correspond to the other 11 CR-decompositions of G , and the B-nodes B14, B15, B16 correspond to 
the remaining 3 CR-decompositions of G2.

The enumeration algorithm described in the following section will in the same step compute not just the C-nodes for this 
particular CR-tree, i.e. but all C-nodes in the CR-decompositions of the root node. This is why the labels for C-nodes jump 
from 3 to 8; the C-nodes 4 to 7 correspond to the isomorphic copies of G1 that appear in other truncated CR-trees for 
G . The enumeration algorithm will produce two more C-nodes, both representing circuits isomorphic to G3. Therefore all 
truncated CR-trees for G are represented by the following data:

Representative circuits: G , G1, G2;
C-nodes 1, 2, . . . , 11.
B-nodes (1,2,3), (1,4,5), (1,2,6), (1,4,7), (1,3,2), (1,5,4), (1,3,6), (1,5,7), (1, 6, 2), (1, 7, 4), (1, 6, 3), (1, 7, 5), (2, 8, 9), (2, 10, 
11), (2, 11, 10), (2, 9, 8),

and all can be reconstructed by following the pointers in the B-nodes.
Note that in this example certain B-nodes carry symmetric data. For example there is no reason to consider both (1, 2, 3)

and (1, 3, 2). While the CR-trees will be distinct, the information that they carry, i.e. the elimination strategy for computing 
the circuit polynomial of G , will be the same. In this presentation we keep this symmetric data, however in our implemen-
tation we have optimized this step so that such symmetries are excluded.

7. Enumerating C-nodes and B-nodes

We describe now Algorithm 5, ENUMERATE-NODES(G). It takes as input a 3-connected circuit G and produces represen-
tatives of isomorphism classes of circuits, all the C- and all the B-nodes that can occur in any truncated CR-tree for G . The 
algorithm maintains a queue of pointers to C-nodes and uses two methods: UPDATE-C-NODE, Algorithm 7, and CREATE-B-
NODE method, Algorithm 6. These algorithms create new C- and B-nodes and apply isomorphism tests. The details of the 
CREATE-B-NODE and UPDATE-C-NODE methods are explained below.

Algorithm 5: ENUMERATE-NODES(G).
Input: Rigidity circuit G
Output: Lists of representative circuits, C- and B-nodes for G

1 listOfCircReps = {G};
2 CG = (ptG , identity isomorphism, Null);
3 listOfAllC-Nodes = {ptCG };
4 listOfAllB-Nodes = Empty;
5 processingQueue = {ptCG };
6 while processingQueue 0= Empty do
7 currentC-Node = processingQueue.dequeue();
8 UPDATE-C-NODE(currentC-Node)

9 return {listOfCircReps, listOfAllC-Nodes, listOfAllB-Nodes }
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7.1. Creating a single B-node

Algorithm 6, CREATE-B-NODE is invoked within the UPDATE-C-NODE method (Section 7.2), which is invoked for a C-node 
CG corresponding to a representative circuit G . The input that the algorithm receives distinguishes whether G is 3-connected 
or not: it is either an admissible triple (v, w, e), or a triple (v, w, Null) where {v, w} is a separation pair. The necessary 
checks are performed in Algorithm 7. CREATE-B-NODE algorithm computes a single CR-decomposition (L, R) of a circuit G , 
tests L and R for isomorphism against the circuits that are in the list of circuit representatives, creates new C-nodes CL and 
C R , and outputs a triple of pointers (ptCG

, ptCL
, ptC R

) to CG , CL and C R .

Algorithm 6: CREATE-B-NODE(ptCG , v , w , e).
Input: pointer ptCG to a C-node CG and an admissible triple (v, w, e) or a triple (v, w, Null) where {v, w} is a separation pair
Output: New B-node (ptCG

, ptCL
, ptC R

)

Global variables: listOfCircReps, listOfAllC-Nodes initialized in Algorithm 5

1 if e 0= Null then
2 (L, R) = CRD(G, v, w, e)
3 else
4 (L, R) = a 2-split of G along the separation pair {v, w}
5 for J in {L, R} do
6 if J is not isomorphic to any representative circuit then
7 append circuit to listOfCircReps;
8 create a new C-node C J = (pt J , identity, Null);
9 append ptC J to listOfAllC-Nodes;

10 enqueue ptC J in processingQueue

11 if J is isomorphic to a representative circuit H with isomorphism f : H → J then
12 create a new C-node (ptH , f , Null);
13 append ptC J to listOfAllC-Nodes

14 return (ptCG
, ptCL

, ptC R
)

Analysis of Algorithm 6. During its execution, this algorithm will append new elements to the global lists of circuit 
representatives and all (pointers to) C-nodes.

In lines 1-5 we find a CR-decomposition either by invoking CRD(G, v, w, e), Algorithm 4 or by computing a 2-split 
along {v, w}. Starting with line 5, first the circuit L, and then R , is tested for isomorphism against currently known circuit 
representatives.

Lines 6-10 account for the case when L (resp. R) is not isomorphic to any currently known circuit representative. In 
this case it becomes a new representative, and a new C-node CL (resp. C R ) is created for it. Because this circuit is the first 
instance of its isomorphism class that appeared, CL (resp. C R ) does not exist in the list of all C-nodes so we are free to 
append it to this list. For the same reason, we enqueue a pointer to CL (resp. C R ) to the processing queue.

Lines 11-13 account for the case when L (resp. R) is isomorphic to some known circuit representative H with isomor-
phism f : H → L. A new C-node CL (resp. C R ) is created and we append a pointer ptCL (resp. ptC R ) to it. In line 14 the 
newly created B-node is returned.

Except for the isomorphism check, the rest of the algorithm runs in polynomial time. We are assuming that the isomor-
phism check always runs in exponential time and do not account for the special cases when it is log space (e.g. for planar 
graphs) or polynomial time (e.g. for graphs of bounded genus).

7.2. Updating a C-node

UPDATE-C-NODE, Algorithm 7 takes as input a pointer ptCG to the C-node CG that is enqueued in the processing queue 
in Algorithm 5. The output is the C-node CG updated with a list of pointers to B-nodes. Recall that only those C-nodes that 
correspond to circuit representatives are in the processing queue.

During its execution, this algorithm will append new elements to the global lists of pointers to all B-nodes. Line 1 
initializes an empty list that is going to be filled in by pointers to B-nodes. In line 2 we check if G is not 3-connected. If 
so, we find all separation pairs, create a B-node for each 2-split with CREATE-B-NODE, Algorithm 6, and append it to the 
local and global lists of B-nodes. Separation pairs can be found in linear time [8]; for full details see our preprint on the 
enumeration of the 2-connected case [15]. Similarly, in lines 9-13 we obtain all triples (v, w, e) with FIND-ADMISSIBLE(G), 
Algorithm 3, create a B-node for each triple with CREATE-B-NODE and append it to the local and global lists of B-nodes. In 
line 14 the C-node CG is modified so that it now contains a non-empty list of pointers to B-nodes.

Remark. The complexity of this algorithm depends on the isomorphism checks performed within the CREATE-B-NODE 
method. While the complexity of the general Graph Isomorphism Problem has not been settled theoretically, color-
refinement heuristics perform very well in practice [16]. Mathematica’s GraphIsomorphism function, which we have used 
in the prototype implementation of the algorithms described in this paper, ran very fast on our specific class of graphs, 
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Algorithm 7: UPDATE-C-NODE(ptCG ).
Input: pointer ptCG to C-node CG
Output: C-node CG updated with a list of pointers to B-nodes
Global variables: listOfAllB-Nodes initialized in ENUMERATE-NODES, Algorithm 5

1 pointersToBNodes = Empty;
2 if VERTEX-CONNECTIVITY(G) 0= 3 then
3 SP = all separation pairs for G;
4 forall (v, w) in SP do
5 B = CREATE-B-NODE(ptCG , v, w, Null);
6 append ptB to listOfAllB-Nodes;
7 append ptB to pointersToBNodes

8 else
9 admissibleTriples = FIND-ADMISSIBLE(G);

10 forall (v, w, e) in admissibleTriples do
11 B = CREATE-B-NODE(ptCG , v, w, e);
12 append ptB to listOfAllB-Nodes;
13 append ptB to pointersToBNodes

14 CG ← (ptG , identity, pointersToBNodes);
15 return

rigidity circuits. It remains an open problem to find an algorithm for circuit-isomorphism with a theoretically-proven time 
complexity.

8. Enumerating truncated CR-trees of a circuit G

The input to Algorithm 8 ENUM-TRUNCATED-TREES is a tree T with C-nodes as its nodes. The initial call ENUM-
TRUNCATED-TREES(G) is understood as the tree G in which the only node is the C-node CG that corresponds to G . The 
algorithm follows the pointers of B-nodes computed by ENUMERATE-NODES(G), Algorithm 5, recursively in a depth-first 
manner. We describe only the recursive enumeration and assume that ENUMERATE-NODES(G) has been computed and an 
empty list listOfAllTruncatedTrees has been initialized before the initial call of Algorithm 8.

Algorithm 8: ENUM-TRUNCATED-TREES(T ).
Input: tree T with C-nodes as its nodes
Output: the list listOfAllTruncatedTrees of all truncated trees for G
Global variables: empty list listOfAllTruncatedTrees, initialized before the first call of this algorithm

1 if all leaves of T have empty list of B-nodes then
2 append T to listOfAllTruncatedTrees;
3 return

4 for leaf C J of T with a non-empty list of B-nodes do
5 for (ptC J

, ptCL
, ptC R

) in list of B-nodes of C J do
6 T ← T + (C J CL , C J C R );
7 return ENUM-TRUNCATED-TREES(T)

Let CG be the C-node corresponding to a circuit G on n vertices. The initial call of the algorithm is for the tree T in 
which CG is the only node. We assume that the leaves are found with a depth-first search; in particular, the leaves are 
considered from left to right. The tree T is extended whenever it has a leaf C J that has a non-empty list of pointers to 
B-nodes. We create two children (CL, C R) for C J that are pointed to by the pointers in the B-node (ptC J

, ptCL
, ptC R

) and 
extend T with the edges (C J CL, C J C R). These nodes are the new leaves, and we recursively call the algorithm on the new 
enlarged tree.

The complexity of enumerating truncated trees depends greatly on the input circuit G . Those circuits that exhibit a lot 
of symmetry will have many isomorphic CR-decompositions thereby reducing the number of possible truncated trees.

9. Reconstructing CR-trees from a single truncated CR-tree

Let TG denote the list of all truncated trees for G enumerated by Algorithm 8, and let T ∈ TG . In this section we describe 
how to recover all CR-trees whose truncation is T .

For clarity of presentation, we enlarge TG by adding to it all truncated trees for all representative circuits that appear in 
TG . In other words, if H is a representative circuit in a truncated tree for G , we add TH to TG . Note that for implementation 
purposes we do not have to do this since any truncated tree in TH can be reconstructed from the data generated by TG
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by following the pointers in the appropriate B-nodes and applying isomorphisms, starting from the B-nodes of the form 
(ptH , ptA, ptB).

Algorithm 9: RECONSTRUCT-CR-TREES(TG ,T ).
Input: All truncated trees TG for a circuit G and T ∈ TG
Output: List completeResultantTrees of CR-trees for G whose truncation is T

1 completeResultantTrees = Empty;
2 processingQueue = {T };
3 while processingQueue is not empty do
4 currentTree = processingQueue.dequeue();
5 nonTerminatingLeaves = set of C-node leaves in currentTree that point to a circuit not isomorphic to K4;
6 if nonTerminatingLeaves is empty then
7 append currentTree to completeResultantTrees
8 else
9 (ptH , f , Null) = first element of nonTerminatingLeaves that points to a circuit H ;

10 forall T ′ ∈ TH do
11 enqueue T + f (T ′) to processingQueue

12 return completeResultantTrees

The algorithm uses a processing queue of partial CR-trees. The while loop starting at line 3 dequeues a current tree. At 
each iteration, the leaves of the current tree are checked (line 5). If there are no leaves isomorphic to a K4, then the current 
tree is a complete resultant tree and we append it to the list of complete resultant trees (lines 5-7). Otherwise, in lines 9-11, 
we take the first leaf (ptH , f , Null) found (e.g. the first detected by DFS), that points to a 3-connected circuit H that is not 
isomorphic to a K4. We then extend T with all possible branchings of H . These branchings are given by the truncated trees 
T ′ ∈ TH rooted at H . However, before we can attach T ′ to T , we have to relabel all the nodes in T ′ with the isomorphism 
f stored in (ptH , f , Null). By f (T ′) we denote the tree obtained from T ′ such that a C-node (pt J , g, ∗) of T ′ is mapped to 
the C-node (pt J , f ◦ g, Null) of f (T ′), where f is restricted to the appropriate domain.

10. Implementation and results

We have implemented the algorithm for enumerating truncated CR-trees in Mathematica V13.3.1 and have successfully 
run it on circuits with as many as 15 vertices. In our implementation we have performed optimizations in which duplicate 
B-nodes are ignored, and for symmetric branchings given by B-nodes of the form (ptG , pt A, ptB) and (ptG , ptB , pt A) only 
one is counted.

The wheels Wn of n vertices. The wheel Wn of n vertices is obtained by connecting each vertex of the cycle graph on 
n vertices to a new vertex. These graphs exhibit dihedral symmetry and can be realized as regular n-gons in which every 
vertex on the boundary is connected to the barycenter. The number of truncated CR-trees and the number of unique circuits 
appearing in those trees is given in Table 4.

For n ≥ 4 the wheel Wn has up to isomorphism only one CR-decomposition given by (Wn−1, K4), with W3 = K4. As a 
consequence, Wn has up to isomorphism only one CR-tree obtained by first decomposing the root Wn into L = Wn−1 and 
R = K4 and then inductively decomposing W i for all 4 ≤ i ≤ n − 1 into (W i−1, K4).

The number of truncated trees for Wn is given by the following lemma.

Lemma 2. Let n ≥ 4 and let τ (n) denote the number of truncated trees for Wn. Then τ (n) = 1
2 (n2 − n − 8).

Proof. Let v be a vertex of degree 3 in Wn and u, w its degree 3 neighbors. Let z be any of the n − 4 vertices of degree 3 
not adjacent to v . Then (v, z, euw ) is an admissible triple such that the corresponding CR-decomposition is given by Wn−1
with vertex set V (Wn) − {v} and the K4 on vertices {u, v, w, x}, where x is the unique vertex of degree n in Wn . Therefore, 
all such admissible triples give the same B-node, of which we keep only one. This means that the C-node for Wn has n
B-nodes, one for each vertex of degree 3.

Only the first of these n B-nodes points to C-nodes that are not truncated. Therefore, if τ (n) denotes the number of 
truncated trees for Wn , then τ (n) = τ (n − 1) + n − 1 with τ (4) = 2. The solution to this recurrence relation is τ (n) =
1
2 (n2 − n − 8). !

The role of symmetry is visible when we compare Table 4 with the results for circuits that have less symmetry.

Desargues-plus-1 with Henneberg-2 moves. The Desargues-plus-1 is the circuit on 6 vertices given in Fig. 1. A Henneberg-2 
move on a graph G with respect to an edge e and vertex v /∈ e is defined as the operation in which we subdivide e with a 
new vertex w and add a new edge v w . It is well known that any Henneberg-2 move on a 3-connected circuit on n vertices 
results with a 3-connected circuit on n + 1 vertices.
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Table 4
Statistics for the wheel Wk of k vertices given by the edge-set {{1, j} | j = 2, . . . , k}. 
Computational time is given in seconds.

n circuit # truncated trees # unique circuits appearing comp. time

6 W5 6 3 0.503314
7 W6 11 4 1.386
8 W7 17 5 3.15491
9 W8 24 6 6.23663
10 W9 32 7 11.1559
11 W10 41 8 18.5865
12 W11 51 9 29.6419
13 W12 62 10 45.216
14 W13 74 11 66.3113
15 W14 87 12 94.6188

Table 5
Statistics for the rigidity circuits obtained from the Desargues-plus-one circuit by applying 
Henneberg-2 moves randomly. The notation Dp1-rand-i stands for the Desargues-plus-1 on which 
i random Henneberg-2 moves have been applied. The edge-sets of the circuits are given in Table 6. 
Computational time is given in seconds.

n circuit # truncated trees # unique circuits appearing comp. time

7 Dp1-rand-1 23 6 1.87185
8 Dp1-rand-2 145 11 6.27536
9 Dp1-rand-3 5 648 21 14.3079
10 Dp1-rand-4 654 711 70 99.9289
11 Dp1-rand-5 94 182 020 875 289 685.383
12 Dp1-rand-6 243 674 119 275 752 2182.71
13 Dp1-rand-7 6 693 672 561 546 338 585 3730 22115.7

509 181 772 986 135

Table 6
The edge-sets of circuits from Table 5. The notation Dp1-rand-i stands for Desargues-
plus-1 with i random Henneberg-2 moves.

n circuit edge-set

7 Dp1-rand-1 {{1,4}, {1,5}, {1,6}, {1,7}, {2,4}, {2,5},
{2,6}, {2,7}, {3,5}, {3,6}, {3,7}, {4,6}}

8 Dp1-rand-2 {{1,3}, {1,4}, {1,6}, {1,8}, {2,4}, {2,6}, {2,7},
{3,5}, {3,6}, {4,6}, {4,7}, {4,8}, {5,7}, {5,8}}

9 Dp1-rand-3 {{1,3}, {1,4}, {1,5}, {1,7}, {2,4}, {2,5},
{2,6}, {2,9}, {3,5}, {3,9}, {4,6},
{4,8}, {5,7}, {6,8}, {6,9}, {7,8}}

10 Dp1-rand-4 {{1,3}, {1,4}, {1,5}, {1,6}, {2,4}, {2,6}, {2,10},
{3,6}, {3,8}, {4,6}, {4,8}, {4,9}, {5,7}, {5,9},
{6,7}, {7,8}, {7,10}, {9,10}}

11 Dp1-rand-5 {{1,3}, {1,4}, {1,5}, {1,6}, {1,9}, {2,5}, {2,6},
{2,7}, {3,5}, {3,7}, {3,9}, {3,11}, {4,6}, {4,7},
{6,8}, {7,8}, {7,10}, {8,11}, {9,10}, {10,11}}

12 Dp1-rand-6 {{1,3}, {1,4}, {1,6}, {1,8}, {1,10}, {2,5}, {2,7}, {2,9},
{2,11}, {3,6}, {3,8}, {4,6}, {4,7}, {5,9}, {5,10},
{6,7}, {6,12}, {7,10}, {8,9}, {9,12}, {10,11}, {11,12}}

13 Dp1-rand-7 {{1,4}, {1,7}, {1,8}, {1,12}, {2,4}, {2,5}, {2,9}, {3,5},
{3,10}, {3,11}, {3,12}, {3,13}, {4,6}, {4,7}, {5,11}, {6,7},
{6,9}, {6,13}, {7,10}, {8,9}, {8,10}, {8,11}, {9,12}, {10,13}}

In this example we have generated 7 circuits with an increasing number of vertices by successively applying a 
Henneberg-2 move to the Desargues-plus-one circuit. The results of the enumeration are given in Table 5. The choice of 
an edge e and vertex v for the Henneberg-2 move was random. The edge-sets of the resulting circuits are given in Table 6.

K3,3-plus-1 with Henneberg-2 moves. The K3,3-plus-1 is the circuit on 6 vertices given in Fig. 12. As in the previous 
example, we have generated 7 circuits with an increasing number of vertices by successively applying a Henneberg-2 move 
to the K3,3-plus-1 circuit. The results of the enumeration are given in Table 7. The choice of an edge e and vertex v for the 
Henneberg-2 move was random. The edge-sets of the resulting circuits are given in Table 8.
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Table 7
Statistics for the rigidity circuits obtained from the K3,3-plus-one circuit by applying 
Henneberg-2 moves randomly. The notation K3,3-rand-i stands for K3,3-plus-1 with i ran-
dom Henneberg-2 moves. The edge-sets of the circuits are given in Table 8. Computational 
time is given in seconds.

n circuit # truncated trees # unique circuits appearing comp. time

7 K3,3-rand-1 57 6 3.74199
8 K3,3-rand-2 126 12 8.87238
9 K3,3-rand-3 9 646 27 41.4054
10 K3,3-rand-4 2 474 671 100 269.798
11 K3,3-rand-5 42 354 053 225 97 225.857
12 K3,3-rand-6 4 267 627 299 735 293 981.639
13 K3,3-rand-7 383 529 900 996 175 1961 11653.9

910 365 699 391 713

Table 8
The edge-sets of circuits from Table 7. The notation K3,3-rand-i stands for K3,3-plus-
1 with i random Henneberg-2 moves.

n circuit edge-set

7 K3,3-rand-1 {{1,5}, {1,6}, {1,7}, {2,4}, {2,5}, {2,6},
{3,4}, {3,5}, {3,6}, {4,6}, {4,7}, {6,7}}

8 K3,3-rand-2 {{1,4}, {1,6}, {1,7}, {2,4}, {2,5}, {2,6}, {2,7},
{3,4}, {3,6}, {3,8}, {4,6}, {5,7}, {5,8}, {7,8}}

9 K3,3-rand-3 {{1,5}, {1,7}, {1,9}, {2,4}, {2,5}, {2,6},
{2,8}, {3,4}, {3,5}, {3,6}, {4,6},
{4,7}, {4,8}, {4,9}, {6,9}, {7,8}}

10 K3,3-rand-4 {{1,4}, {1,6}, {1,7}, {1,8}, {1,10}, {2,4}, {2,5},
{2,6}, {3,4}, {3,7}, {3,9}, {4,6}, {4,10}, {5,7},
{5,9}, {5,10}, {6,8}, {8,9}}

11 K3,3-rand-5 {{1,4}, {1,7}, {1,8}, {2,4}, {2,6}, {2,7}, {2,11},
{3,4}, {3,5}, {3,6}, {3,10}, {4,6}, {4,9}, {4,11},
{5,8}, {5,10}, {6,7}, {7,9}, {8,9}, {10,11}}

12 K3,3-rand-6 {{1,4}, {1,5}, {1,6}, {2,4}, {2,6}, {2,7}, {2,8}, {3,5},
{3,6}, {3,7}, {3,10}, {3,11}, {4,6}, {4,7}, {4,9},
{5,8}, {7,9}, {7,12}, {8,11}, {9,12}, {10,11}, {10,12}}

13 K3,3-rand-7 {{1,6}, {1,7}, {1,8}, {1,9}, {2,6}, {2,9}, {2,11}, {2,12},
{3,4}, {3,5}, {3,7}, {3,10}, {3,12}, {4,6}, {4,10}, {4,11},
{5,9}, {5,13}, {6,8}, {6,12}, {7,10}, {8,11}, {8,13}, {11,13}}

Additional experiments. We have generated data for the number of all truncated CR-trees of all 3-connected circuits with 
n = 6, 7, 8. Due to the large number of circuits considered, we omit the presentation here, however the data is available on 
the GitHub repository [13] in the Mathematica notebook format.

11. Conclusion and future work

In this paper we described the combinatorial aspects of algorithms necessary to compute circuit polynomials of rigidity 
circuits. The results of the presented experiments suggest that while the number of truncated CR-trees grows rapidly, the 
growth might be controlled in circuits that exhibit lots of symmetry, as was the case with the wheel graphs. We leave this 
direction of research as a future project. It remains to be seen how much of a performance improvement do truncated CR-
trees provide over considering isomorphism classes of CR-trees where numerous isomorphism checks have to be performed.

We do not include the discussion on what kind of insight do CR-trees provide for the rigidity matroid for the reason 
that we believe that this question is better suited in a more general context. Namely, C-resultants and CR-trees naturally 
appear in the class of matroids for which a sort-of converse of the circuit elimination axiom holds, i.e. the property that for 
any circuit C of cardinality not minimal among all circuits there exists a pair of distinct circuits C1, C2 with less elements 
than C and such that C3 = (C1 ∪ C2) − e for some e ∈ C1 ∩ C2. To our knowledge this class of matroids has not been studied, 
hence any insight given by CR-trees in this general context will translate immediately to the rigidity matroid.

Furthermore, we do not touch upon the motivational problem of performing algebraic calculations necessary to obtain 
the circuit polynomials. These polynomials, while incomprehensibly large, are sparse in the sense that most coefficients in 
the dense representation 

∑
ai1,...,in x

ki1
i1

· · · x
kin
in

are 0, and therefore the data structures used for representing polynomials 
are not always optimized for our case. Furthermore, the algorithms for computing resultants implemented in software like 
Mathematica, Maple, Singular etc. are general purpose algorithms that work on polynomials arising in any context, and 
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not optimized for the very large circuit polynomials. The implementation of new data structures and new computational 
algorithms that would be necessary to compute larger circuit polynomials we see as a comprehensive future project for 
which this paper is the starting point.
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